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Abstract
We exploit the information derived from geographical coordinates to endogenously identify spatial regimes in technologies
that are the result of a variety of complex, dynamic interactions among site-specific environmental variables and farmer
decision making about technology, which are often not observed at the farm level. Controlling for unobserved heterogeneity
is a fundamental challenge in empirical research, as failing to do so can produce model misspecification and preclude causal
inference. In this article, we adopt a two-step procedure to deal with unobserved spatial heterogeneity, while accounting for
spatial dependence in a cross-sectional setting. The first step of the procedure takes explicitly unobserved spatial
heterogeneity into account to endogenously identify subsets of farms that follow a similar local production econometric
model, i.e. spatial production regimes. The second step consists in the specification of a spatial autoregressive model with
autoregressive disturbances and spatial regimes. The method is applied to two regional samples of olive growing farms in
Italy. The main finding is that the identification of spatial regimes can help drawing a more detailed picture of the production
environment and provide more accurate information to guide extension services and policy makers.
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1 Introduction

Although theory supports the idea that firms do not operate
on the basis of a common production function, i.e., that
firms do not use homogeneous technology (Nelson and
Winter 1982; Dosi 1988), a global production function is
typically proposed in most empirical studies; thus, it is
assumed that production technology is invariant over space
and across firms. Indeed, especially in land-based indus-
tries, such as agriculture, the analysis of production often
must be more nuanced and account for the variations in
technology arising from locally-specific solutions that
satisfy the environmental or social conditions within which
firms operate (Mundlak 2001; Just and Pope 2001; Fezzi
and Bateman 2011). Under these circumstances estimating a

common production function (technology) to all farms can
yield biased estimates of the technological characteristics
and lead to wrong management advice or policy
prescriptions.

For this reason, many empirical studies control for the
possibility of heterogeneous technologies by classifying
farms into groups on the basis of a priori exogenous
information about their technological characteristics, and
subsequently estimate separate different production func-
tions for each group. This classification is based on either
some a priori information (e.g., location of farms, etc.) or
the application of cluster analysis (Álvarez et al. 2008). It
has however been noted (Alvarez et al. 2012) that the use of
single or even multiple characteristics to split a sample of
observations can only be incomplete proxy descriptor for
technologies, since differences in technologies can be the
result of both observed and unobserved factors.

Modelling unobserved heterogeneity, instead, can be
made via non-parametric and flexible mixtures methods.
For instance, in several applications to agriculture, finite
mixture models provide the opportunity to classify the
sample into a finite number of technologies (classes)
underlying the data, according to the estimated probabilities
of class membership based on multiple specified
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characteristics or auxiliary/proxy variables (Orea and
Kumbhakar 2004; O’Donnell and Griffiths 2006; Alvarez
and del Corral 2010; Sauer and Paul 2013; Baráth and Fertő
2015).

The issue of dealing with unobserved heterogeneity has
been recently accounted for by an increasing number of
methodological papers (Greene 2005a, b; Emvalomatis
2012; Galán et al. 2014). Most of them relied on fixed- and
random-effects panel data models, which former case cap-
ture unobserved heterogeneity through a set of firm specific
intercepts that are simultaneously estimated with other
parameters. These approaches are increasingly used in the
context of stochastic frontier models, though distinguishing
between heterogeneity and inefficiency is still an open
problem (Amsler and Schmidt 2015, Kumbhakar et al.
2014, Colombi et al. 2014).

In this article, we focus the attention on a specific type of
unobserved heterogeneity, i.e. spatial heterogeneity. Spatial
heterogeneity, a term that has been coined by Anselin
(1988), can refer to structural instability over space, in terms
of changing functional forms or varying parameters
(instability in the mean), or to heteroskedasticity, due to
different forms of model misspecification that lead to non-
constant error variances (instability in the variance).1 Spatial
heterogeneity can also be classified into discrete hetero-
geneity and continuous heterogeneity (Anselin 2010). In
this article, we are particularly interested in studying dis-
crete spatial heterogeneity, that is situations in which the
relationship or the functional form varies across spatial
subsets of the data that, in turn, might point to the existence
of spatial regimes (Anselin 1988). Spatial regimes are then
geographic subsets of data in which the model coefficients
assume different values. It can be seen as simply a special
case of group-wise heterogeneity.

The rationale behind our interest in spatial regimes is that
in agriculture there is a long tradition of studies aimed at
identifying agro-ecological zones (AEZ) i.e., homogenous
and contiguous areas with similar soil, land and climate
characteristics and having a specific range of potentials and
constraints for land use. The AEZ methodology (FAO
1978) provides maximum potential and agronomically
attainable crop yields, under assumed levels of inputs and
management conditions. As a matter of fact, within each
AEZ the long term, dynamic interactions among site-
specific environmental variables which characterize a AEZ
and farmer decision making about technology contributed
to develop local specific varieties and production technol-
ogies, hence to give rise to local technology clusters, a
concept similar to that of terroir used in oenology. In other
words, environmental and social factors contribute to

describe a patchy technological landscape. Borrowing from
spatial econometric analysis, these local technology clusters
can be defined as spatial regimes in farms technologies.
However, the zoning of such local technology clusters or
terroirs is largely unknown. This is mainly due to the fact
that their identification needs comprehensive spatial mod-
elling of soil, agronomical and climatic properties, includ-
ing their changes through time, hence the processing of
large quantities of data acquired at a very fine spatial
resolution. In fact, researchers can often rely on a few
control variables. For example, agricultural surveys usually
do not carry information about cultivars grown, which are
key to correctly associate the climatic variables collected in
local meteorological stations with farms, in consideration of
the differences in the timing of the phenological stages of
each cultivar.

These issues motivate us to endogenously identify spatial
regimes in farm technologies. To that end, the idea is to
exploit the information derived from geographical coordi-
nates (longitude and latitude) to approximate the effects of a
variety of complex, dynamic interactions among site-
specific environmental variables and farmer decision mak-
ing about technology that are often not observed at the farm
level. The starting point of our analysis is the hypothesis
that there may be significant spatial dependence (Anselin
2002) and spatial heterogeneity in the natural clustering of
farms around different geographical poles of attraction.
Spatial dependence has been recently introduced also into
stochastic frontier models, see Druska and Horrace (2004),
Schmidt et al (2009)., Areal et al (2012)., Glass et al (2014,
2016)., Adetutu et al (2015). and Vidoli et al (2016)..
However, the above references still assume the hypothesis
of an aggregate production function, ignoring the effect of
unobserved spatial heterogeneity. With the aim of
accounting for both spatial dependence and spatial hetero-
geneity in the estimation of the production function of
olive-growing farms in Italy, in this article we apply an
approach based on the recent works by Andreano et al.
(2017) and Billé et al (2017).

A main difficulty with cross-sectional data, as stressed by
Anselin (2010), is that it is often hard separating spatial
heterogeneity from spatial dependence. Spatial dependence
is viewed as a special case of cross-sectional dependence for
which a parametric structure of the covariance matrix is
imposed by using a specific ordering of the spatial units.
The essence of the problem is that cross-sectional data,
while allowing the identification of clusters and patterns, do
not provide sufficient information to identify the processes
that led to the patterns. As a result, it is impossible to dis-
tinguish between the case where the cluster is derived from
an apparent contagion due to structural change, hence dis-
crete heterogeneity, or follows from a true contagious pro-
cess, hence dependence. Moreover, when we deal with

1 Note that in this paper we only consider heterogeneity due to
structural instability in the mean.
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unobserved spatial regimes, no a priori information is
typically available to identify them and to easily estimate
the econometric model.

In this study, we employ a two-step estimation approach.
In the first step, we employ the underlying spatial hetero-
geneity as the criterion to divide the whole sample into
groups of contiguous observations that are homogeneous in
terms of technology. We capture potential coefficient var-
iations in the the estimated function by making use of an
algorithm that builds on local estimation procedure, in the
spirit of Cleveland and Devlin (1988), in conjunction with
the adaptive weights smoothing (AWS) approach, see Pol-
zehl and Spokoiny (2000). The AWS procedure, originally
proposed in the context of image denoising, can be used in
all applications where the regression function is likely to
possess jumps or sharp edges. We use the AWS approach to
make the local coefficients statistically converge into a
discrete variation over space, hence identify the edges
between different local technology clusters. In the second
step of the estimation strategy, once the spatial regimes in
technologies are identified, we contemporaneously account
both for spatial regimes and spatial dependence (which in
this case we suppose is determined by a true contagion
process) with the aim to reduce as much as possible the
consequences of model misspecifications. In the current
research, we employ the above two step approach to
investigate farm-level olive production in two regions in
Italy, i.e. Tuscany and Apulia.

The remainder of the article is organized as follows. In
Section 2 we explain the iterative procedure used to detect
unobserved spatial heterogeneity and to identify the spatial
technological regimes in a data-driven approach, we then
specify the spatial econometric model with regimes used to
simultaneously detect the effects of spatial dependence and
spatial regimes, and finally we explain how we address the
potential endogeneity issue that typically arises into pro-
duction function estimation. In Section 3 we introduce the
data set and show the main estimation results of the appli-
cation of the procedure to two regional samples of olive
growing farms in Italy. Finally, Section 4 concludes.

2 The model

In this section, we present the procedure used to detect
unobserved spatial heterogeneity and to identify groups of
spatial units (farms in our case) with homogeneous local
production function parameters, i.e. spatial regimes in
technologies. In particular, in subsection 2.1 we briefly
explain the iterative procedure which allows us to control
for unobserved spatial heterogeneity and to identify spatial
regimes in a data-driven approach. In subsection 2.2 we
specify the spatial econometric model with regimes used to

simultaneously detect the effects of spatial dependence and
spatial regimes. Whereas in subsection 2.3, we present the
production function that we are going to estimate and
explain how we address the potential endogeneity issue.

2.1 The iterative procedure used to identify spatial
regimes

The iterative procedure used to identify spatial regimes is
based on a first set of locally (geographically) weighted
estimates (Cleveland and Devlin 1988), and the adaptive
weights smoothing (AWS) approach (see Polzehl and
Spokoiny 2000). The result of the combination of above-
mentioned methods is an algorithm that is able to endo-
genously identify (i.e., in a data-driven approach) regimes
over space, that is large homogeneous areas with sharp
discontinuities. Overall, the iterative procedure tries to
answer the following question: do the coefficient estimates
of a spatial unit (farm in our case) statistically differ from
the coefficient estimates of the nearby ones? Details on the
proposed algorithm can be found in Andreano et al (2017)..
Further improvements as well as the R code can be found in
Billé et al (2017). In this article, we adopt the same two-step
procedure as in Billé et al (2017). A brief explanation of the
iterative procedure follows.

To account for local parameter estimates that vary over
space, simple linear functions may provide a reasonable
approximation of the local estimate as long as we use the
information on a group of observations (farms in our case)
close to observation i. The goal is to approximate the fol-
lowing model

y ¼ β � Xð Þ1þ ε; ε � iidNð0; σ2ε IÞ; ð2:1Þ

where y is an n-dimensional column of dependent variables,
β is an n by k+ 1 matrix of local coefficients with i-th row
βi= (βi0, βi1, βi2,…, βik)' referred to observation i, � is the
Hadamard product operator in which each element of βi is
multiplied by the corresponding element of the i-th row in
the matrix of regressors X, xi= (xi0, xi1, xi2,…, xik), 1 is a (k
+ 1)-dimentional column vector of ones, and ε is an n-
dimensional column vector of iid normal innovations.

Local estimates of βi (i.e. for each unit in space) can be
directly obtained by repeated weighted least squares (WLS)

bβWLS
i ¼ X′WiX

� ��1
X′Wiy; i ¼ 1; ¼ n; ð2:2Þ

where Wi is an n-by-n matrix whose non-zero elements
denote the geographical distance weights (wi1, wi2, …, wij,
…, win), obtained on the basis of longitude and latitude, of
each of the n observed data for observation. So, the role of
the Wi, i= 1, …, n, weighting matrices is simply to give
different distance-based weights in estimating the local
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coefficients i. We therefore have n diagonal spatial
weighting matrices, one for each of the n observed data.
The final result of the locally weighted least squares is
obtained when n sets of local parameter estimates, that
correspond to the local marginal effects, have been
estimated. The subsets of observations (farms in our case)
i.e., the neighborhood of i used for each local weighted least
square fit, are selected by the “bandwidth” or “smoothing
parameter” that determines how much of the data is used to
fit each local regression.

Let now define y(i)= Xβi+ ε(i), εðiÞ � Nð0; σ2
εðiÞ I

ðiÞÞ, the
model effectively and iteratively estimated for each i= 1,
…, n. The WLS estimator for each observation i in Eq. (2.2)
has the following expected value and variance-covariance
matrix

E β̂i
� � ¼ E X′WiXð Þ�1X′WiyðiÞ

h i
¼ E X′WiXð Þ�1X′Wi Xβi þ εð Þ

h i
¼ βi

V β̂i
� �¼ E β̂i � βi

� �
β̂i � βi
� �′h i

¼ E X′WiXð Þ�1X′WiyðiÞ � βi

� �h
X′WiXð Þ�1X′WiyðiÞ � βi

� �′
�

¼ E X′WiXð Þ�1X′Wi Xβi þ εð Þ � βi

� �h
X′WiXð Þ�1X′Wi Xβi þ εð Þ � βi

� �′
�

¼ E X′WiXð Þ�1X′Wiε
� �

X′WiXð Þ�1X′Wiε
� �′

� �
¼ X′WiXð Þ�1X′WiE εε′ð ÞWiX X′WiXð Þ�1

so that the WLS estimator is locally unbiased (i.e. given the
optimal bandwidth value) with variance-covariance matrix
in equation V β̂i

� � ¼ σ2
εðiÞ X′WiXð Þ�1X′W2

i X X′WiXð Þ�1.
Given our aim to identify spatial regimes i.e., large

homogeneous regions separated by sharp discontinuities,
we use the AWS approach to detect the greatest possible
local neighborhood of every observation i in which the local
parametric assumption is justified by the data. The AWS
approach is based on a successive increase of local neigh-
borhoods around every point i and a description of the local
model within such neighborhoods by assigning weights.
The weights describing the shape of the local model at the
point i depend on the result of the previous step of the
procedure. More in detail, we iteratively update the weights
(geographical distances) in the main diagonal of Wi and, at
each iteration, we compare the estimated beta coefficients in
(2.2) by using Wald test statistics in order to check whether
pairs of spatial units (farms in our case) follow the same
economic behavior (production function in our case). The
initial Wi matrix, i.e., the weights from which we start the

procedure, is defined by using a bi-square kernel weighting
function, whereas a Gaussian kernel weighting function is
used during the updating procedure of the weights. Both
these kernels are defined as functions of the Euclidean
distance2 between observations i and j, i.e. dij, and the
bandwidth b, though alterative definitions of distances can
be used.3 In this article, we use an adaptive bandwidth
because it ensures sufficient (and constant) local informa-
tion for each local calibration.4 We select the optimal
adaptive bandwidth value (bopt) by a mix selection of the
model specification for local estimates, the optimizing cri-
terion (AIC in our case; see Fotheringham et al 2002., p 61)
and the used kernel which, consistently with the function
chosen to define the initial weights, we choose to be a bi-
square kernel function. To this purpose, we used the
package GWmodel in R (Lu et al. 2014). Details on the
steps of the iteration procedure are in the appendix.

This procedure does not impose any restrictions and is
fully adaptive in the sense that no prior economic infor-
mation about the spatial structure is required.

2.2 Controlling for spatial dependence

Once the spatial regimes are identified by applying the
iterative procedure described above, i.e., after controlling
for spatial heterogeneity, we have to deal with spatial
dependence among the observations. A huge literature is
available on several types of spatial autoregressive models
that can be alternatively used to control for spatial interac-
tions (see e.g. LeSage and Pace 2009). Among the most
general ones, the spatial autoregressive model with auto-
regressive disturbances (typically known as SARAR/SAC
model) is one possible candidate, which includes both the
spatially lagged dependent variables and a parametric cor-
relation structure among the disturbances. Asymptotic
properties of the maximum likelihood and quasi-maximum
likelihood estimators has been proved by Lee (2004) and of
the generalized method of moments by Kelejian and Prucha

2 Alternative definitions of distances, like e.g. economic-based dis-
tances, can be defined.
3 The choice of the value of b is crucial because it determines, first,
which observations receive weight in the local estimate and, second,
how rapidly the weights decline with distance. In other words, b
defines the search window size. In general, higher values of b put more
weight on distant observations, leading to results similar to those
obtained by OLS, which are more biased for the local estimation
procedure but also more efficient. On the contrary, if the bandwidth
value tends to zero, then the local estimation is performed by using a
smaller number of observations which reduces the local bias but
increases the standard error.
4 It is worth nothing that when b is fixed all the observations within
the bandwidth are taken into account for the local neighborhood
definition. When b is a variable (adaptive) bandwidth, a fixed number
of neighboring observations is assumed, thus defining a k-nearest
neighbor approach.
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(2010). By adding the information about spatial regimes,
this model can be written as
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where ~y ¼ ~yj
� 	

is a partitioned n-dimensional column
vector of dependent variables (production in our case), ~yj ¼
yj
..
.

ynj

2
64

3
75 for j= 1, …, c is the nj-dimensional vector of

dependent variables relative to the unknown regime
(cluster) j, with n= n1+ … + nj+…+ nc; ρ and λ are
the well-known spatial autoregressive coefficients, which
capture the spillover effects in the dependent variables and
the correlation structure among the disturbances, respec-
tively; W1 and W2 are n by n spatial weighting matrices;
which pre-specify the spatial structure among the observa-
tions; ~β ¼ ~βj

� 	
is the (k × c)-dimensional partitioned

column vector of parameters (a vector for each cluster);
~X ¼ ~Xj

� 	
is a block-diagonal matrix of k regressors (inputs

in our case) of dimension n by (k × c); ~ε ¼ ~εj
� 	

is a
partitioned n-dimensional column vector of iid normal
innovations, with ~εj � N 0; σ2~εj Inj

� �
each. Note that the

weighting matrices are not partitioned, so that we do not
assume unknown form of group-wise autocorrelation
heterogeneity, but rather observations that belong to different
clusters may be connected each other. The grade of
connection directly depends on the choice of the criteria
used for defining the weights. If dense matrices are assumed,
all the n observations are connected with a different weight.
Model identification issues require either W1 and W2 to be
different or the vector ~β statistically significant.

The model in Eq. (2.3) reduces to a spatial autoregressive
error (SAE) model with regimes by setting ρ= 0 and to a
spatial autoregressive (SAR) model with regimes by setting
λ= 0. Both the squared weighting matrices, i.e. W1 and W2,
have diagonal elements wii equal to zero, i.e. each spatial
unit is not viewed as its own neighbor, and they are nor-
malized so that the admissible parameter spaces of ρ and λ
are known and less than unity in absolute value. In this
article, we adopt the typical row-normalization rule for the
weighting matrices.

It is worth nothing that robust covariance estimates can
be properly obtained by models with heteroskedastic and

autocorrelated consistent (HAC) structures (see Kelejian
and Prucha 2007 for a spatial extension), which are able to
properly handle unobserved factors from an econometric
perspective (Dell et al. 2014; Deschênes and Greenstone
2007).

2.3 The estimation of a production function and
potential endogeneity

In this article, we apply the iterative procedure described in
Section 2.1 to identify the unobserved spatial production
regimes, i.e. spatial groups of farms that are homogeneous
in terms of technologies. For this purpose, we replace the
general model in 2.1 with the following Cobb-Douglas
production function in logs

y ¼ β1x1 þ β2x2 þ β3x3 þ β4x4 þ ε; ð2:4Þ

where y is a column vector of logs of produced quantities
and and x1, x2, x3, x4 are column vectors of logs of area (land
used), capital inputs, labor inputs and intermediate inputs,
while ε � N 0; σ2ε In

� �
. Once the spatial regimes are

identified, we also control for spatial dependence by
estimating the spatial model with regimes (2.3). In the
context of production function models the endogenous
spatial interactions i.e., ρ capture the spatial dependence
structure between farms’ production systems (Horrace et al.
2016). For example, farmers’ decisions on production
innovations that spill-over among neighboring farms. The
coefficient λ of the spatially autoregressive disturbances
may capture an unobserved dependence structure, so that a
shock on a farm production propagates through the entire
system of farms’ production with a higher effect on the
neighborhood.

When we consider the production function, a typical
problem of endogeneity arises for one or more of the
regressors (Ackerberg et al. 2015; Shee and Stefanou 2014;
Latruffe et al. 2016). The endogeneity of inputs is mainly
due to the presence of some determinants of the firm pro-
ductions that are unobserved to the econometrician (omit-
ted-variable bias) but observed by the farmer, leading to
inconsistency of the standard least squares estimators. In a
linear framework, the standard approach for addressing the
potential endogeneity bias is to use instrumental variables.
The two-stage least squares (2SLS) estimator (Hansen
1982) has been widely used for this purpose. To efficiently
combine 2SLS with repeated local estimates, we regress the
set of endogenous variables in (2.4) on the selected
instruments before starting the iterative procedure in order
to guarantee new orthogonality conditions. To briefly
explain, consider the previous model of interest (2.4) in a
generic form, y= X1β1+ X2β2+ ε, where X1 are k1 exo-
genous variables, whereas X2 are k2endogenous variables.
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Given some useful information on a set of k3 instruments for
X2—say Z= [X1, P] with kP ≥ k2 and P other instruments
different from the exogenous ones in the model—we can
obtain the predicted values of X= [X1, X2] from the first
step as X̂ ¼ ZðZ′ZÞ�1Z′X. These values are then used in the
local regressions during the iterative procedure with
β̂WLS
i ¼ X̂′WiX̂

� ��1
X̂′Wiy.

Controlling for endogeneity becomes more difficult if we
wish to concurrently consider spatial spillover effects (Rey
and Boarnet 2004) due to the presence of two different
sources of endogeneity, namely, endogenous regressors and
spatially lagged variables. The endogeneity problem within
the spatial framework can be addressed, for example, by
using the spatial heteroscedasticity and autocorrelation
consistent (SHAC) estimator proposed by Kelejian and
Prucha (2007). In fact, in our local estimates endogeneity of
the regressors is an issue prior to the application of the
convergence procedure that allows us to endogenously
identify the spatial regimes. During the first stage of the
estimation procedure we only control for heterogeneous
effects. It is only after this first stage that we estimate both a
spatial error model and a spatial error model with regimes.
Under these circumstances, in the first-stage estimates, we
can appropriately address endogeneity by using the gen-
eralized instrumental variable method without incurring in
the problems deriving from the concurrent existence of
another source of endogeneity.

3 An application to olive farms in Italy

We use the above technique to examine the production of
olives in Italy. Italy ranks second in the world after Spain
for olive oil production. The Italian olive sector is still
characterized by a large number of small operations. Spe-
cifically, Italy has the highest number of holdings (776,000)
with the smallest average size (1.3 ha) in the European
Union (EU) Mediterranean countries. Over time, the dif-
ferent microclimate conditions, soil formations and eleva-
tion levels have led to natural or manmade modifications
(breeding and selection) of the olive tree into many
location-specific varieties, each with different productivity
levels, agronomic needs and adaptability to irrigation and
mechanization. In the case of arable crops (e.g. maize and
oil seeds), local varieties have been widely substituted by
industrial global varieties whose production response does
not vary greatly over space. In the case of olive trees,
locally-specific varieties are still largely in use. The terri-
torial anchorage of the production of location-specific olive
varieties is further strengthened by social and marketing
considerations because, similarly to the case of wine and
grapes, farmers choose varieties on the basis of not only
agronomic characteristics (e.g., disease resistance, climate

preferences, high productivity) but also the aptitude for
preserving local production knowledge (e.g., flavor, suit-
ability for curing, etc.) and ability to guarantee the pro-
duction of high-quality oil.

Based on all these considerations, it follows that the
technology available to farms depends on the characteristics
of the physical, social and economic environment in which
production takes place. In other words, the underlying
production technology is not the same for all olive farms;
rather, it is location specific, and the group of farms sharing
the same technology can be termed a local technology
cluster, a concept similar to that of terroir in oenology. The
local olive production function used by farmers operating in
a territory results from the choice of locally-optimal
technology from a given menu of technologies as a con-
sequence of a process of localized technological change
(Stiglitz and Atkinson 1969; Nelson and Winter 1982;
Antonelli 2008; Acemoglu 2015). This view is consistent
with evolutionary theories (Nelson and Winter 1982; Dosi
1988) according to which firms cannot be assumed to
operate using a single common production function. These
theories explain why permanent asymmetries exist across
firms in terms of production technologies and quality of
products (Dosi 1988). External inputs and the past accu-
mulation of skills and knowledge guide the creation of
technological knowledge. The technology prevailing in the
local technology cluster is the efficient solution to the
specific techno-economic problems experienced by the
firms operating in the cluster. This solution consists of
specific families of recipes and routines, and it is based on
carefully selected principles derived from natural sciences
jointly with specific rules aimed at acquiring related new
knowledge (Dosi and Nelson 2013).

For example, in the case of olive trees, farmers grow
different cultivars that have different yields, aptitude to the
mechanization of the harvesting and input needs. As we
noted above, the decision to grow a low-yield or higher-cost
variety is partly connected to the characteristics of the local
natural environment (e.g., climate, water, soil) and partly to
the preservation of the local cultural heritage (e.g., flavor
and quality of oil, landscape). Under these circumstances, it
is difficult, if not impossible, to collect all the information
needed to define the boundaries of the local technology
cluster. A solution is offered by the application of the two-
step procedure described in Section 2.

3.1 Data

This study relies on cross-sectional data collected by the
2013 Italian Farm Accountancy Data Network (FADN)
survey. The data set consists in 233 observations for Tus-
cany and 227 for Apulia. The FADN sample is stratified
according to the criteria of the geographical region,
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economic size and type of farming. The field of observation
is the total number of commercial farms, that is farms large
enough to provide a main activity for the farmer and a level
of income sufficient to support his or her family. The survey
gathers physical and structural data (e.g., location, crop
areas, livestock numbers, labor force) and the economic and
financial data needed for the determination of incomes and
business analysis of agricultural holdings. We also exploit a
peculiar characteristic of the Italian FADN, which provides
longitude and latitude coordinates of farms, thus allowing
us to use spatial econometric models and, in our specific
case, account for farm spatial heterogeneity. Another
advantage of the Italian FADN is that the information on
input use and production results is collected by activity.
Consequently, unlike most previous studies (see for exam-
ple Dinar et al 2007. and Karagiannis and Tzouvelekas
2009 for applications to olive production), we do not need
to rely on data that refer to the entire farm production.
Instead, both output results and input use in our study are
activity specific. The availability of information by activity
has several advantages. First, we do not need to focus on
farms that are highly specialized in the production of a
specific crop—olives, in our case—thus preventing the loss
of observations related to farms that grow the selected crops
jointly with other products and allowing us to segment the
regional samples in groups of farms large enough to pro-
duce reliable estimates. Second, given that we do not have
to aggregate the farm crop outputs, we can measure output
in physical rather than in monetary terms. This feature,
along with the availability of activity-specific input uses,
guarantees more accurate results.

The dependent variable in the production function in Eq.
(2.4) is the olive production measured in kilograms. The
inputs included as explanatory variables are (a) land (A)
measured in hectares, including only the share of utilized
agricultural area devoted to olive tree cultivation; (b) labor
(L), comprising hired (permanent and casual) and family
labor, measured in working hours; (c) capital (K), proxied
by the hours of mechanical work employed in olive grow-
ing and harvesting; and (d) intermediate inputs (M)—
including expenses for water, fertilizers, pesticides, fuel and
electric power and other miscellaneous expenses—mea-
sured in euros and augmented with the expenses for contract
work. The descriptive statistics are reported in Table 1.

To control for the potential endogeneity of inputs, we
tested the suitability of a set of variables to be used as
instruments. All the inputs, i.e. labor, capital, and inter-
mediate inputs, are treated as endogenous. Recall that we
proxy capital by the hours of mechanical work employed in
olive growing, so we have to treat it as an endogenous
variable. This set first contains, following the standard
approach proposed by Pindyck and Rotenberg (1983), the
lagged values of the three variables suspected of being

endogenous, namely Lt−1, Kt−1, and Mt−1. Additionally, we
consider the prices of nutrients (PF) and pesticides (PP),5

the opportunity cost of labor6 (OCL) and capital7 (OCK)
provided in the Italian FADN, and a proxy of the invest-
ments in machinery (I) that is obtained as the variation in
horsepower at the farm level observed between 2013 and
2012. After testing for the correlation among the endo-
genous variables and the above-mentioned available
instruments by using simple linear regression models, we
find that in the cases of Tuscany and Marche, the lagged
values of inputs (Lt−1, Kt−1, and Mt−1) are valid instruments
of the three variables suspected of being endogenous, while
in Apulia, the valid instruments are the lagged value and
opportunity cost in the case of labor (Lt−1, OCL); lagged
value, opportunity cost and investment in machinery for
capital (Kt−1, OCK, I); and finally, lagged value and price of
fertilizers (Mt−1, PF) in the case of intermediate inputs.

3.2 Results

Our empirical results are based on year 2013, while the 2012
data set is used to check the robustness of the grouping of
farms. To model production, we first correct for endogeneity,
then we apply the iterative procedure described in Section 2.1
by using the Cobb–Douglas (CD) functional form in Eq.
(2.4) in order to identify the spatial production regimes by
repeated WLS. Finally, we estimate the model specified in
(2.3) and its simplified version without regimes, to control for

Table 1 Descriptive statistics (year 2013)

Min Median Mean Max sd

Tuscany

Produced
quantity

2.000 31.000 72.420 1681.000 152.878

Land (UAA) 0.100 1.200 3.259 160.000 11.114

Labor 0.623 174.093 365.899 3263.510 489.961

Capital 0.516 45.000 92.816 966.4031 148.499

Other inputs 0.113 225.908 724.159 15965.754 1680.735

Apulia

Produced
quantity

4.000 130.000 475.400 8500.000 1008.591

Land (UAA) 0.200 4.100 12.410 213.000 28.422

Labor 73.380 901.830 1996.920 37894.000 3900.829

Capital 2.099 184.872 514.866 10973.854 1165.981

Other inputs 30.470 1845.760 3705.820 53250.130 6163.086

5 The exogenous property of input prices can be reasonable assumed
since farms in our sample are small-size enterprises, as a consequence
they do not have market power in input markets.
6 Wage per hour in agriculture defined by collective negotiations at
the provincial level.
7 Cost of hiring machines operated by the farm’s labor.
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possible spatial dependence not already controlled for. We
also estimate the CD model by OLS, with and without
regimes, as benchmark models to check if including spatial
effects improves the goodness of fit.

The optimal bandwidth values, i.e., the optimal numbers
of nearest neighbors required for local estimates, suggested
by the AIC and used to fit the models with regimes are 67
for Tuscany and 111 for Apulia. These values come from a
proper combination of the assumed economic model spe-
cification and the trade-off problem between bias and var-
iance in considering local estimation procedures, given the
sample size. Therefore, the optimizing bandwidth criterion

(AIC in our case) tries to find the best subsample size that is
able to give the best local fit of the specified model, see Eq.
2.4, for each point regression i. It is worth noting that the
model in Eq. 2.4 should be correctly specified.

We identify 4 spatial regimes in Tuscany (Fig. 1a) and 3
in Apulia (Fig. 1c).

The results show that the relationship between input use
and olive output does not vary evenly across space; rather, it
describes a patchy landscape due to spatial heterogeneity.
After all, it is not surprising to find, for example, clusters of
lower output elasticity of mechanical work on steeply
sloping land or higher output elasticity of land when tall

Fig. 1 Spatial technology regimes of olive farms. Note: The bi-square kernel function for the initial weights and Gaussian kernel function for the
updated weights are used. The adaptive bandwidths are based on the AIC criterion: a bAICknn ¼ 67, b bAICknn ¼ 83, c bAICknn ¼ 111, d bAICknn ¼ 135

180 Journal of Productivity Analysis (2018) 49:173–185



olive trees, i.e., those not suitable for mechanical harvesting
and pruning, are grown. Input use and yields may also be
locally influenced by private and public regulations. For
example, farms located in areas covered by geographical
indication such as Protected Denomination of Origin (PDO)
may be required to comply with the requirement to limit
yields to improve the quality of certified products, while
those operating in environmentally sensitive areas may be
required to reduce their nutrient loadings. At this regard, it
is interesting to note that in both regions in both regions the
spatial regimes conform well with expert based maps of the
olive oil PDO. PDO rules—which aim to protect the names
of quality agricultural products—define the geographic area
covered and regulate the varieties of olives (usually local
cultivar) that can be grown, and the methods of cultivation
that can be used. As we already mentioned the local culti-
vars are the result of a long run process of selection and
adaptation to the environment. The high degree of overlap
between the clusters identified by the iterative procedure
and the geographic distribution of local cultivars and PDO
cross-validates our results and the suitability of geographic
coordinates as a proxy for variety variations, soil type,
climate, etc. In other words, this overlap validates the ability
of farms’ longitude and latitude to account for the hetero-
geneity in spatial distribution of technology that, in turn,
arises from the adaptation of production techniques to
variables that are not usually detected by agricultural sur-
veys at the farm level. In other word, environmental and
social factors may contribute to describe a patchy techno-
logical landscape characterized by the presence of discrete
spatial technological regimes.

To statistically assess the significance of the groupings of
farms identified by the iterative procedure, i.e., to test whe-
ther the beta coefficients statistically differ across clusters, we
computed the Chow test and its spatial version (Anselin
2005). In Tuscany, the results (Table 2) indicate strong evi-
dence of significantly different coefficients in each of the
spatial clusters of farms and suggest that the proposed par-
tition can be accepted. In Apulia, the AIC criterion signals
that the global model fits the data best. It is worth noting,
however, that the (admittedly slightly) significant spatial
Chow test statistic (p-value: 0.079) suggests that the clusters
of farms identified by the iterative procedure can still be used
for descriptive purposes and further investigation.

Finally, in order to check the robustness of the grouping
of farms to short term variations in the output and inputs
variables, due for example to variations in weather condi-
tions, we tested the sensitivity of the clustering to the
change in time by replicating the application of the iterative
procedure on two regional samples of olive growing farms
referred to year 2012 (Fig. 1b, d). It is easy to see that the
zoning obtained using the data referred to year 2013 is very
similar to the one obtained using the sample referred to the
previous year. The minor differences in the borders are
largely due to the fact that the samples are not balanced,
hence part of the farms observed in year 2012 were replaced
by different farms with different locations. In other words,
as expected, we find the clustering of farms is time invar-
iant, the reason for this is that it is the result of the long-term
interactions of social and environmental variables that affect
the farmers’ choice of technology.

After having controlled for spatial heterogeneity and
identified the local technological clusters of farms, we
estimate the model specified in (2.3) to control for possible
spatial dependence in the data not already controlled for
during the application of the iterative procedure. We did not
find any statistically significant spatial autoregressive
coefficient (ρ) in our empirical application, which result was
also supported by the LR test statistic values in Table 3. As
already noted, when ρ= 0, then the SARAR/SAC model
described in (2.3) collapses to a spatial autoregressive error
(SAE) model. The coefficient estimates of the global SAE
and those of the SAE with regimes are reported in Tables 4
and 5. At this regard, it is worth noting that, like in OLS, the
coefficient estimates of both SAE and a SAE with regimes
can be interpreted as output elasticity. This is because the
autocorrelation among disturbances does not affect the
expected mean, but only the variance-covariance matrix of
the spatial model, hence we do not need to calculate the
direct, indirect and total effects typically needed for spatial
marginal effects interpretations (LeSage and Pace 2009).

Table 2 A-spatial and spatial Chow tests

OLS vs. OLS-regimes SAE vs. SAE-regimes

Regions n tstatistic p-value k (# par.) t statistic p-value k (# par.)

Tuscany 233 9.201 6.003E-08 5 31.094 8.975E-06 5

Apulia 227 6.127 2.503E-05 5 9.840 0.079 5

Table 3 LR test values between SARAR and SAE specifications

LR test SARAR vs. SAE SARAR-regimes vs.
SAE-regimes

DF Chisq. Prob. DF Chisq. Prob.

Tuscany −1 1.543 0.214 −1 0.452 0.501

Apulia −1 0.041 0.839 −1 0.844 0.358

Journal of Productivity Analysis (2018) 49:173–185 181



The best fitting model in each region has been defined on
the basis of the smallest AIC (Table 6). The best-fitting model
in Tuscany is the one accounting for both spatial dependence
in the disturbances (λ) and spatial heterogeneity. In fact, it is
notable that in Tuscany, the measure of spatial error depen-
dence is highly statistically significant both in the global model
and the model with regimes though slightly lower in magni-
tude in the latter model. This means that spatial dependence is
still at work even after controlling for spatial heterogeneity.
Also in Apulia, we find spatial error dependence is statistically
significant, though in this case the AIC criterion selects the
global spatial model as the specification that fits the data best.
This result does not mean that spatial heterogeneity is not at
work in Apulia, it rather indicates that the model with spatially
varying parameters is excessively complex, i.e. less parsimo-
nious, with respect to the sample size.

The spatial dependence in the disturbances (λ) detected
in both regions means that there are different unobserved
factors, such as land characteristics (e.g., soil composition)
and socio-economic aspects (e.g., information sharing,
managerial abilities), that are spatially correlated. In other
words, the coefficient λ of the spatially autoregressive dis-
turbances captures an unobserved dependence structure, so
that a shock on a farm production propagates through the
entire system of farms’ production with a higher effect on
the neighborhood. In the case of olive cultivation, for
example, the closer the farm operates to the sea and the
more farmers chose to grow salt- and wind-tolerant vari-
eties. Similarly, the more the farm is located in the Northern
or elevated areas, the more the farmer tends to choose frost-
tolerant cultivars.

Overall, in Apulia the global model fits the data best, this
means that the olive production technology does not vary
over space in this region. On the contrary, in Tuscany we

Table 5 Spatial autoregressive error models with regimes

Tuscany Apulia

Intercept Cluster 1 1.538**
(0.480)

0.121
(1.000)

Intercept Cluster 2 2.469***
(0.266)

1.975˙
(1.081)

Intercept Cluster 3 0.641
(0.445)

1.763**
(0.600)

Intercept Cluster 4 3.011***
(0.462)

–

Land (UAA) Cluster 1 0.513***
(0.077)

0.468***
(0.136)

Land (UAA) Cluster 2 0.792***
(0.062)

0.884***
(0.124)

Land (UAA) Cluster 3 0.420***
(0.086)

0.761***
(0.090)

Land (UAA) Cluster 4 0.767***
(0.070)

–

Labor Cluster 1 0.121
(0.149)

0.139
(0.238)

Labor Cluster 2 0.104*
(0.052)

−0.071
(0.310)

Labor Cluster 3 0.219*
(0.106)

−0.177
(0.163)

Labor Cluster 4 −0.159
(0.105)

–

Capital Cluster 1 0.110
(0.116)

0.139
(0.086)

Capital Cluster 2 0.065
(0.060)

0.030
(0.144)

Capital Cluster 3 0.162
(0.101)

0.191**
(0.065)

Capital Cluster 3 0.137**
(0.070)

–

Other inputs Cluster 1 0.148*
(0.063)

0.351*
(0.137)

Other inputs Cluster 2 −0.006
(0.039)

0.266
(0.214)

Other inputs Cluster 3 0.168**
(0.059)

0.286**
(0.097)

Other inputs Cluster 4 0.158***
(0.039)

–

lambda 0.536***
(0.093)

0.675***
(0.066)

This table reports the cluster-specific marginal effects and standard
errors (in the brackets) of the log of quantity and cost variables. The
units of the land are measured in hectares, whereas labor and capital
are measured in working and machinery working hours, respectively.
Intermediate inputs are measured in euros. Labor, capital and
intermediate inputs are corrected for endogeneity. ***, **, * and .
denote variables significant at the 0.1, 1, 5 and 10% levels,
respectively.

Table 4 Spatial global models

Tuscany Apulia

Intercept 1.954***
(0.193)

1.545***
(0.459)

Land (UAA) 0.634***
(0.037)

0.733***
(0.061)

Labor 0.099*
(0.042)

−0.093
(0.122)

Capital 0.110**
(0.040)

0.156**
(0.049)

Other inputs 0.096***
(0.024)

0.288***
(0.075)

lambda 0.571***
(0.088)

0.686***
(0.065)

This table reports the global marginal effects and standard errors (in
the brackets) of the log of quantity and cost variables. The units of the
land are measured in hectares, whereas labor and capital are measured
in working and machinery working hours, respectively. The
intermediate inputs are measured in euros. Labor, capital and
intermediate inputs are corrected for endogeneity. ***, **, * and .
denote variables significant at the 0.1, 1, 5 and 10% levels,
respectively.

182 Journal of Productivity Analysis (2018) 49:173–185



find the best fitting model is the one with regimes. This
means that the long term, dynamic interactions among site-
specific environmental variables and farmer decision mak-
ing about technology have given rise to structural differ-
ences across space, hence to local technology clusters of
farms. For example, Cluster 1 and 3 are very close one to
the other, but the first is characterized by hills while the
second by flatlands. They are among the most productive
olive growing areas in Tuscany and this feature is reflected
by the high and statistically significant elasticity of land. In
both Cluster 1 and 3 the elasticity of capital is non-
significant. In Cluster 1, this result is probably caused by the
fact that the orchards are located in hilly and sloping land
not suitable for mechanical operations, while in Cluster 3 it
is n mainly due to the fact the trees are usually very tall and
not suitable for mechanical harvesting. This latter feature is
probably the cause also of the statistically significant elas-
ticity of labor found in Cluster 3. In Cluster 2 the traditional
orchards are characterized by low yields due to the habit to
keep the trees low by severe pruning as a defense against
frost damages. This latter feature explains the significant
elasticity of labor (used for pruning and harvesting) found
in this cluster. The low input management systems used in
traditional orchards in this cluster explains the non-
significant elasticity of other inputs and capital. In Cluster
4, the severe damage caused by harsh frosts recorded in the
1960s and 1985 led to the replacement of old trees with
frost-tolerant cultivars that responded favorably to more
intensive fertilizers and pesticides use. The presence of such
modern plantations is probably the cause of the statistically
significant response to changes in capital, i.e., mechanical
work, and in other inputs, while changes in labor do not
produce any statistically significant impact on output.
Finally, our findings show that in all the clusters, there are
decreasing returns to scale, i.e., output increases by less
than the proportional change in inputs. Overall, we find that
when there is spatial heterogeneity the identification of
spatial regimes can help drawing a more detailed picture of
the production environment and provide more accurate
information to guide extension services and policy makers.

4 Conclusion

In agriculture, the long-term interactions among site-
specific environmental variables and farmer decision mak-
ing about technology have contributed to developing local

specific varieties and technologies, hence to give rise to a
patchy technological landscape characterized by the pre-
sence of a discrete number of spatial regimes in technolo-
gies. The clustering of farms in areas in which farms follow
a local production econometric model can be the result of
true contagious effects, i.e. spatial dependence, or apparent
contagion effects due to structural changes, i.e. discrete
spatial heterogeneity. Unfortunately, in the estimation of
production functions the effects of spatial heterogeneity are
often ignored. The result is that a global model is usually
fitted to all the farms in the sample. Clearly, when that
relationship varies over space, global parameter estimates
may be very misleading and lead to wrong economic con-
clusions. On the other hand, it is often hard separating
spatial heterogeneity from spatial dependence with only the
statistical information coming from a cross-sectional data
set.

In this article we use a two-step procedure that exploits
the information carried by the geographic coordinates of
farms to control for both spatial heterogeneity and spatial
dependence. The main advantages of this procedure are
that, first, it identifies spatial regimes in a data-driven
approach, and, second, it estimates group-wise (regime-
specific) coefficients. As a consequence, it avoids the pro-
blem of the lack of information on large sets of variables
(variety grown, soil quality, etc.) causing the clustering of
farms technologies in spatial regimes, and it provides more
accurate information of the input-output relationships in the
agricultural landscape than the global estimates..

We apply the above-mentioned two-step procedure to
estimate the production function of olives on geocoded
individual farm data as collected by the FADN sample
survey in 2013 in 2 Italian Regions. The aim of the of this
work is twofold. Firstly, we want to identify the unknown
number of spatial regimes in olive growing technologies
and, secondly, we want to detect the presence of spatial
dependence in the data. For this latter purpose, once the
spatial regimes are identified, we estimate a spatial auto-
regressive model with autoregressive disturbances and
regimes, which captures both the spatial spillover effects
(true contagion) and the heterogeneous ones (apparent
contagion).

Our empirical results confirmed the existence of local
technology clusters of farms, i.e. areas in which farms fol-
low a local production econometric model. In other words,
our results confirm the hypothesis that the presence of dif-
ferent spatial production regimes is related to the existence
of a variety of latent unobserved factors, which are closely
intertwined to the spatial location of the observed farms. In
addition, we do not detect any statistically significant spatial
autoregressive coefficient related to the dependent variables
in both the regions under analysis. On the contrary, we find
the spatial error dependence is at work in both regions,

Table 6 AIC values for model comparisons

AIC OLS OLS-regimes SAE SAE-regimes

Tuscany 306.953 293.333 281.215 280.121

Apulia 394.181 384.210 325.402 335.562
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suggesting that the effect of a shock on a farm propagate on
the other farms with the intensity given by the value of the
autocorrelation coefficient.

The use of the two-step procedure to control for both
spatial heterogeneity and spatial dependence can provide a
detailed zoning of crop production systems that takes into
account the effects of many unobserved agro-ecological and
social factors at work in the territory. For example, the
procedure can identify the geographical extension of spe-
cific terroirs and their borders, making this concept opera-
tive and relevant to land use and planning policies. In
addition, by estimating local crop models with regimes we
can provide regime-specific output elasticities that can be
used for accurate analysis of farms’ efficiencies that operate
in a specific terroir.

The conditions under which the proposed partitions
imply a better fit of the regression model can be further
investigated. In particular, it would be interesting to extend
the procedure to panel data models with both endogenous
spatial regimes and spatial spillover effects in order to
account for both time- and space-variations of farms pro-
duction technologies.
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Appendix

The iterative procedure to identify the spatial regimes can
be summarized in the following steps.

1. Define a starting weighting vector, w0
ij ¼ K dij; bopt

� �
,

which is a bi-square kernel function based on both the
distance between two units in space, dij, and the
specified optimal bandwidth value (bopt).

2. Calculate the initial pair of parameter estimates, i.e.

β̂0i ; σ̂
0
εi

� �
, for each location i= 1, …, n.

3. At each iteration, say l, simultaneously compare the

local parameter estimates β̂li; β̂
l
j

� �
8ij, i ≠ j by using

Wald test statistics, χlij ¼ β̂li � β̂lj

� �
′ Σl
� ��1

β̂li � β̂lj

� �
,

and calculate new weights wl
ij ¼ K dlij; b

� �
K χlij; τ
� �

as a product of the initial weights and a Gaussian
kernel defined as a function of the Wald statistic
values and τ= 0.001.

4. To stabilize the convergence procedure, re-update the
weights as �wl

ij ¼ 1� ηð Þ�wl�1
ij þ ηwl

ij with η= 0.5.
5. Repeat steps 2–4, till the condition

max wl�1
ij � wl

ij




 


<ω8ij, i ≠ j holds, hence till when

the spatial regimes are identified, where ω is a fixed
small value.
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