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Abstract: Measuring exercise variables is one of the most important points to consider to maximize
physiological adaptations. High-intensity interval training (HIIT) is a useful method to improve
both cardiovascular and neuromuscular performance. The 30–15IFT is a field test reflecting the effort
elicited by HIIT, and the final velocity reached in the test is used to set the intensity of HIIT during
the training session. In order to have a valid measure of the velocity during training, devices such as
GPS can be used. However, in several situations (e.g., indoor setting), such devices do not provide
reliable measures. The aim of the study was to predict exact running velocity during the 30–15IFT

using accelerometry-derived metrics (i.e., Player Load and Average Net Force) and heart rate (HR)
through a machine learning (ML) approach (i.e., Support Vector Machine) with a leave-one-subject-
out cross-validation. The SVM approach showed the highest performance to predict running velocity
(r = 0.91) when compared to univariate approaches using PL (r = 0.62), AvNetForce (r = 0.73) and
HR only (r = 0.87). In conclusion, the presented multivariate ML approach is able to predict running
velocity better than univariate ones, and the model is generalizable across subjects.

Keywords: training load; physiology; HIIT; heart rate; acceleration; support vector machine; global
positioning system; inertial measurement unit

1. Introduction

Measuring the training load consists of recording physiological and psychological re-
quirements during exercise training and competition periods in order to maximize training
adaptation and minimize overtraining and the injury risk [1–3]. Training load is a construct
comprising two components: the external and the internal training load. External training
load represents the physical workload imposed on the subject (e.g., distance covered in a
run, weight lifted), while internal training load denotes the physiological, psychological
and biomechanical responses of the subject to the imposed stimuli (i.e., to the external
training load) [4–8]. External training load is typically measured using micro-sensors and
time-motion analysis [9–11], while internal training load can be assessed using physio-
logical indices including heart rate (HR), oxygen consumption, lactate concentration and
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rating of perceived exertion (RPE) [12–16]. One type of training in which assessing training
load and regulate exercise variables accordingly are key practices is high-intensity interval
training (HIIT) [17]. HIIT includes repeated bouts of high-intensity exercise interspersed
with recovery periods, where high intensity generally means spending several minutes of
the exercise session at least at 90% of maximal oxygen uptake (

.
VO2max) [17,18], and reflects

the model of physical effort experienced in team sports training sessions (e.g., ice hockey,
basketball, rugby and soccer), thus representing a useful tool for enhancing performance
in team sport athletes [19–22]. Since HIIT protocols elicit

.
VO2max, they maximally involve

oxygen transport and consumption and stimulate specific signaling pathways, providing
an optimal stimulus to increase cardiorespiratory capacity and thus endurance perfor-
mance [23–26]. The two intermittent fitness tests used to prescribe exercise intensity for
HIIT are the Yo-Yo Intermittent Recovery Test (Yo-Yo IR) [27] and the 30–15 Intermittent
Fitness Test (30–15IFT) [28]. The 30–15IFT is a field test specifically developed to resolve
training intensity prescription for HIIT. In addition to cardiorespiratory fitness, the 30–15IFT
was designed to assess anaerobic capacity, inter-effort recovery abilities and the change in
direction ability [28], with all these parameters fundamental in high-intensity intermittent
efforts. The final velocity reached in the 30–15IFT (i.e., the VIFT) is used to prescribe the
training intensity for HIIT. Nevertheless, it was suggested that the final velocity reached in
the Yo-Yo IR1 is not as accurate as the VIFT for velocity-based exercise prescription since
its relationship with

.
VO2max is speed-dependent [29]. When running at vYo-Yo IR1, slow

and unfit athletes would use a greater proportion of their anaerobic speed reserve, while
fitter athletes would run below their

.
VO2max [17]. Accordingly, obtaining precise measures

of running velocity is fundamental. In this regard, accelerometry is a relatively recent
method used to quantify external training load (including velocity) in team sports [30]
and physical activity in different populations [31–33]. Triaxial accelerometers present high
acquisition rates and measure the activities in three orthogonal planes of motion. On
the contrary, Global Positioning Systems (GPS), which are also used to assess external
training load, can measure activities only in one plane of motion and can be unreliable
because of intermittent signal when insufficient satellites connection occurs [34]. They can
provide good estimates of external training load (e.g., velocity, total distance, speed zones)
only during outdoor physical activities [35]. Compared to GPS, accelerometers have the
potential also to quantify movements such as jumping, change in direction, shuffling and
concussion in both outdoor and indoor settings [36,37]. Two main metrics used to assess
the external training load are the average net force (AvNetForce) and the Player Load
(PL). AvNetForce is an accelerometry-derived metric that is indicative of objective exercise
intensity and offers a valuable method to quantify the intensity during intermittent efforts.
AvNetForce is obtained by multiplying the vector magnitude units (VMU) by the subject
weight [38]. PL is a proprietary formula created by Catapult Sports, and it represents a
variable used for quantifying the total workload, and it is measured in arbitrary units [39].

These two metrics were employed by Staunton et al. [37] to assess the construct
validity of accelerometry-derived net force to quantify the external load during basketball
movements. The external load during the basketball exercise simulation test (BEST) was
estimated employing a within-player model developed considering the correlation between
running speed in the Yo-Yo IR1 and the accelerometry-derived AvNetForce [37]. These
findings indeed demonstrated the possibility to generalize the results obtained during the
Yo-Yo IR1 for other exercises. The need to implement a within-player model instead of a
between-player model highlights a variability across subjects of the correlation between
running speed and accelerometry-derived metrics.

In order to overcome this issue, a machine learning (ML) approach is highly suited.
ML is a field of applied statistics that, instead of inferring confidence intervals of variables
of interest, employs multivariate approaches for prediction purposes [40]. Recently, in
sport science, it was observed that ML approaches could be useful to evaluate both for
automating sports movement recognition and physical activity intensity measured by
triaxial accelerometers [41]. Indeed, different physical activity typologies, energy expendi-
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ture and intensities can be measured from raw acceleration data using machine learning
approaches [42–44]. In a multivariate framework, it is possible to combinate external and
internal training load information to obtain an estimate of an unknown parameter (e.g., the
velocity of running in a training session). Obtaining accurate values of exercise intensity,
such as velocity, is of key importance given that the adaptations of the human body are
highly specific to the typology of imposed demand.

Since the VIFT can be used to prescribe the training intensity for HIIT, obtain precise
velocities during this test in different conditions (e.g., both indoor and outdoor) is of utmost
importance. Thus, the aim of this study was to demonstrate the capability of a multivariate
data-driven ML approach to predict the exact velocity in the 30–15IFT. Specifically, a
support-vector machine (SVM) framework was fed with parameters indicative of both
the internal (i.e., heart rate) and the external (i.e., AvNetForce and PL) load, evaluated
in a semi-professional soccer team. In order to test the generalization capabilities of the
approach, a leave-one-subject-out cross-validation was also implemented.

2. Materials and Methods
2.1. Participants

Twenty-six semi-professional soccer players (age = 19.83 ± 1.25 years) from a com-
petitive regional-level team participated in the study. After baseline testing, 5 players
were initially excluded from the sample due to injuries unrelated to the proposed testing
interventions. The intervention took place during the preseason training period. Twenty-
one players completed the study. The technical department of the soccer club approved
the study procedures and interventions. The present data arose as a condition of regular
monitoring and training manipulation defined by the investigated club. The researchers
only supported the appropriate design of the data collection. Therefore, because of the a
posteriori nature of the analyses without interfering in the training routine, a signature of
the informed consent form was not required [45].

2.2. Height, Weight and BMI

All the anthropometric measurements were performed by a certified specialist (i.e., a
level 1 certification of the International Society for the Advancement of Kinanthropometry
(ISAK)). Subjects wore light clothing and had fasted for at least 12 h before the assessments.
Height was measured to the nearest 0.1 cm, and body weight was measured to the nearest
0.1 kg using a stadiometer with a balance-beam scale (Seca 200, Seca, Hamburg, Germany).
Body mass index (BMI) was calculated as weight in kilograms divided by the square of
height, expressed in meters.

2.3. Procedures

Athletes participated in two familiarization training sessions one week before the
beginning of the study. The week before and after the preseason training period, athletes
were assessed for the 30–15 Intermittent Fitness Test (30–15IFT) performance [28]. All
measurements were completed under the same standardized conditions in a grass soccer
field where the athletes regularly trained, wearing habitual soccer garments and boots. In
addition, participants were asked to avoid consumption of caffeine-containing beverages
and alcohol on the testing days, to continue their habitual daily dietary regimen and to be
well hydrated. They were also required to avoid heavy activities in the 24 h preceding the
tests. A standardized warm-up consisting of 5 min jogging, 5 squat jumps, 5 countermove-
ment jumps, and 3 × 15 m sprint was completed before pre- and post-preseason training
period measurements. During the entire test session, players wore a commercial triaxial
accelerometer (GT9X Link; Actigraph, Pensacola, FL, USA) inside a pouch positioned on
the posterior torso at the level of the inferior angle of the scapulae [39,46]. The initialization
of the ActiGraph accelerometer and chest mount Polar H7 HR monitor (Polar Electro
Oy, Kempele, Finland) was performed by using the ActiLife6 software (version 6.12.1,
ActiGraph, Cary, NC, USA). The sampling frequency of the accelerometer and heart rate
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monitor was set to 100 Hz, and HR data were collected in 1-s intervals set manually via
ActiLife6 software.

2.4. The 30–15 Intermittent Fitness Test

The 30–15IFT was conducted according to the procedures outlined by Buchheit [28].
Briefly, athletes performed 30 s shuttle runs interspersed with 15 s of walking recovery,
having an initial velocity of 8 km·h−1 with increments of 0.5 km·h−1 every 45 s. The
30–15IFT was performed over a 40 m shuttle distance, where the subject had to run back
and forth at a pace governed by a prerecorded beep so that at each short beep sound
subjects should be within 3 min of zones placed at each extremity or in the middle of
the course. During the 15 s recovery period, athletes walked in the forward direction
towards the closest start line, where they would begin the next stage from the standing
position. Exhaustion was defined as an inability to complete the required distance before
the occurrence of the audio signal on three consecutive occasions. The last completed stage
was deemed to be the final velocity reached in the test (VIFT).

2.5. Preprocessing

Regarding the accelerometry data, the raw signal was corrected for high-frequency
motions artifacts considering the envelope of the signal. The corrupted epochs were
assessed by visual inspection and removed from the analysis. The corrected signal was
divided into temporal windows corresponding to the different running speeds of 30–15IFT.
On these temporal windows, PL [47] (Equation (3)) and AvNetForce were computed. In
order to obtain AvNetForce, epochs of 30 sec of Instantaneous Net force were averaged
(Equation (2)) (Instantaneous Net force was obtained multiplying the VMU by the subject’s
weight (Equation (1)). The raw acceleration on the three axes (x, y, z) used to compute VMU,
AvNetForce, and PL were easily obtained using the proprietary software ActiLife6 software
(version 6.12.1, ActiGraph, Cary, NC, USA). Concerning the HR data, the average HR was
computed for each temporal window considered (i.e., every 30 s) to match accelerometry
variables. Importantly, a trimmean approach was employed in order to exclude the outliers
from the analysis. This approach allowed to obtain 341 temporal windows from the
21 participants.

VMU =
√

x2 + y2 + z2 (1)

Istantaneous Net Force = Subject′s mass×VMU (2)

PL =

√
(ay1 − ay−1)

2 + (ax1 − ax−1)
2 (az1 − az−1)

2

100
(3)

2.6. Statistical Analysis

An in-sample correlation analysis between the running speed, the accelerometry
derived metrics (i.e., AvNetForce and PL) and the HR was performed. Specifically, this
descriptive statistical analysis was performed, including all the samples in order to investi-
gate the relationship between the running speed and the metrics evaluated. The correlation
coefficient is indicative of the strength of the relationship between two variables. Several
approaches were proposed to make the correlation coefficient a descriptor of the extent
of the investigated relationship by setting some thresholds. Specifically, in this work the
magnitude of correlations was considered: r = 0.00–0.09, negligible; r = 0.10–0.39, weak;
r = 0.40–0.69, moderate; r = 0.70–0.89, strong; and r = 0.90–1.00, very strong, in accordance
with the cut-off points defined by Schober et al. [48]. Importantly, the coefficient of the
linear fitting was considered to assess the variability across subjects.

Concerning the ML approach, a regression based on SVM was implemented using a
linear kernel. The features used as input of the model were the HR, PL and AvgNetForce,
whereas the output was the running velocity. Of note, the metrics were normalized (z-score).
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The generalization capabilities of the model were tested through a leave-one-subject-out
cross-validation [49].

Notably, the machinery was fed with 341 samples from 21 subjects; hence, all the
samples from each subject were excluded during the leave-one-subject-out cross-validation.
The performance of the model in estimating the running speed was evaluated by cor-
relation analysis, Bland–Altman plot, and paired t-test. Finally, the performance of the
cross-validated multivariate approach was compared to those of the out-sample univari-
ate approaches (i.e., employing the input features considered separately) to assess the
advantage of the multivariate procedure. It is worth highlighting that this approach differs
from the descriptive analysis because it is evaluated by leaving out samples from one
subject at a time in an iterated framework. In fact, the aim of the ML procedure is not to
describe the relationship between the variables but to predict the dependent variable from
the independent one. All statistical analysis were performed in MATLAB. Additionally, a
schematic study flow chart is provided in Figure 1.

Figure 1. Study flow chart. It indicates the different experimental stages. BMI = body mass in-
dex; 30–15 IFT = 30–15 intermittent fitness test; HR = heart rate; VMU = vector magnitude units;
AvNetForce = average net force; PL = Player Load.

3. Results
3.1. Descriptive Statistics, Correlation Analysis and in-Sample Linear Regression

Table 1 reports descriptive statistics of the sample. The in-sample correlation analysis
between the velocity and the metrics considered showed that PL was moderately correlated
with velocity (r = 0.68). AvNetForce exhibited a strong correlation (r = 0.78), whereas HR
highlighted a very strong correlation with velocity (r = 0.91). Importantly, a very low inter-
subject variability of correlation coefficients between velocity and AvNetForce (Figure 2a,
SD = 0.11), PL (Figure 2b, SD = 0.097), and HR (Figure 2c, SD = 0.081) was found.
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Table 1. Descriptive statistics of the sample.

M ± SD Min–Max CV (%)

Age (years) 26.72 ± 6.43 20–41 24.08

Height (cm) 177.5 ± 8.08 157–190.2 4.55

Weight (kg) 71.93 ± 11.14 48.4–94 15.49

BMI 22.71 ± 2.36 19.21–28.55 10.39

Min HR (bpm) 59.8 ± 8.53 49–79 14.26

Max HR (bpm) 197.07 ± 8.39 181–209 4.27

VIFT (km/h) 19.78 ± 0.94 18.5–21.5 4.77
BMI = body mass index; VIFT = final velocity reached in the 30–15 Intermittent Fitness Test.

Figure 2. The figure reports the average and standard deviation (SD) of the correlation coefficient (r) between the velocity
and the metrics considered. AvNetForce = average net force; PL = Player Load; HR = heart rate. (a) AvNetForce vs Velocity;
(b) PL vs Velocity; (c) HR vs Velocity.

Moreover, the average coefficient of the linear fitting between velocity and the metrics
considered were 132.46 ± 18.87 for the AvNetForce (Figure 3a), 0.012 ± 0.005 for the PL
(Figure 3b) and 3.92 ± 3.68 for the HR (Figure 3c).

Figure 3. The figure reports the average and SD of the coefficient of the linear fitting (β) between velocity and the metrics
considered. AvNetForce = average net force; PL = Player Load; HR = heart rate. (a) AvNetForce vs Velocity; (b) PL vs
Velocity; (c) HR vs Velocity.
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3.2. SVM and Agreement

The SVM delivered a cross-validated model able to predict the velocity during the
30–15IFT with a correlation coefficient of 0.91 (Figure 4a). The linear equation linking the
predicted and the real velocity is:

Predicted VEL = 0.85×VEL + 1.81 (4)

Figure 4. The figure reports the correlation (a) and the Bland-Altman (b) plots obtained between the estimated and the
known velocities. VEL = velocity.

The Bland–Altman plot (Figure 4b) showed a high agreement between the velocity
during the 30–15IFT and the predicted velocity (mean difference = −0.28, upper LoA = 2.9;
lower LoA = −3.4). In addition, a paired t-test between the velocity and the predicted
velocity revealed no significant differences (t = 1.386; df = 340; p = 0.167).

Additionally, Table 2 reports the out-of-sample correlation coefficient of the multivari-
ate (i.e., SVM) and univariate approaches (i.e., AvNetForce, PL, HR), showing a significantly
higher performance of the multivariate method with respect to the univariate ones.

Table 2. The table reports the correlation coefficients of the multivariate and univariate cross-
validated approaches (p ~ 0) and the results of the statistical comparison between the multivariate
and univariate methods.

r z-Statistics (SVM vs. UNIVARIATE) p-Value

SVM 0.91 - -

AvNetForce 0.73 7.78 ~0

PL 0.62 10.43 ~0

HR 0.87 2.53 0.01
SVM = Support Vector Machine; AvNetForce = average net force; PL = Player Load; HR = heart rate.

4. Discussion

In this study, an ML approach to predict running velocity using accelerometry-derived
metrics (i.e., AvNetForce and PL) and physiological parameters (i.e., HR) measured dur-
ing the execution of the 30–5IFT was used. The SVM provided a nearly perfect correla-
tion between predicted velocity and the running velocity during the 30–15IFT. In addi-
tion, the univariate approaches (using AvNetForce, PL, and HR separately) demonstrate
lower performance.
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Measuring external load is of utmost importance during training and competition. In
a team sport, for example, GPS and accelerometry are the most used devices [30,36,50,51].
However, the reliability of GPS is affected by sample rate, the typology of the task and the
velocity [5,35]. Indeed, it was found that the higher the velocity during a task, the lower
the GPS reliability [52]. Another limitation of commercially available GPS is that it can
track velocity only during outdoor activities. In this regard, there is a need to find methods
to monitor parameters of external load (e.g., running velocity) during indoor activities [35].
Thus, the presented approach provides an alternative to meet such necessities.

Moreover, the predicted velocity obtained using the accelerometry-derived metrics
and HR was compared with the running velocity during the 30–15IFT. The final velocity
reached in this test could be used to prescribe the intensity of running-based HIIT. For
example, for short interval running-based HIIT (e.g., with a duration of <60 s of work
interval), the velocity prescribed is usually 89/105% of VIFT [17,53]. On the contrary,
repeated sprint training, a type of HIIT, is formed by work intervals lasting from 3 to 7 s with
a velocity corresponding to 100–160% VIFT. Importantly, each type of HIIT leads to specific
adaptations, where lower velocities with longer duration taxes predominantly metabolic
(O2 system) and higher velocities with shorter duration involved a major neuromuscular
component [53,54]. Thus, having the ability to monitor and prescribe accurate velocities
during training is of main importance.

The results displayed that the in-sample analysis showed a moderate correlation
between PL and velocity, a strong correlation between AvNetForce and velocity and a very
strong between HR and velocity. However, the analysis of the coefficient of the linear fitting
highlights a great variability among the subjects of the relationship between the velocity
and the metrics considered, confirming the results of previous studies [37].

This finding confirms the necessity of an ML approach to estimate the velocity that
could be generalizable across the subjects.

In order to investigate the generalization performance of the model, a leave-one-
subject-out cross-validation approach was implemented to estimate the prediction capa-
bility of the model on a novel dataset, hence providing an unbiased estimation of the
algorithm performance.

The capability of the cross-validated ML approach to estimate the velocity during the
30–15IFT from accelerometry (using AvNetForce and PL) and physiological metrics (i.e., HR)
was tested by means of a correlation analysis: Bland–Altman plot and t-test. The correlation
analysis showed a strong correlation between the velocity during the 30–15IFT and the
predicted velocity. The Bland–Altman plot demonstrated that the errors in the estimation
of velocity with respect to the real running velocity during the test were distributed within
the 95% confidence interval, showing a good correspondence of the two methods without
clear outliers.

However, it should be highlighted that a slight systematic error of the model in the
estimation of the velocity is present (i.e., underestimation of the velocity at high values).
This error is related to the fitting equation linking the predicted and real velocities. In fact,
a perfect model would deliver a slope of the linear fitting equal to 1, and the line should
pass through the origin of the coordinate system. In this case, the slope is lower than 1, and
the y-axis intercept is 1.81. However, although the parameters of the linear fitting are not
optimal, the paired t-test did not show a significant difference between the real and the
predicted velocities, thus demonstrating good performances of the model.

Importantly, the multivariate SVM approach performed better with respect to all the
univariate regressions, including the HR, which was the best-correlated variable with the
velocity. Further studies should be performed to enlarge the sample size of the population.
In fact, ML frameworks rely on data-driven analysis that might greatly increase their
performances with large sample sizes. Furthermore, increasing the sample size allows to
decrease the risk of a possible in-sample overfitting effect of the regressor and to increase
the number of input regressors.
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Moreover, it would be worth investigating more complex non-linear machinery such
as Deep Learning [55,56] to predict the velocity from accelerometry and physiological
signals in order to obtain more precise measures.

5. Conclusions

This is the first study aiming to predict the precise velocity during the 30–15IFT using
heart rate and accelerometry-derived metrics through an ML approach with a leave-one-
subject-out cross-validation. The SVM provides the best performance in predicting running
velocity with very high precision using the selected metrics. In addition, these results offer
a practical opportunity for prescribing and monitoring velocity during running-based HIIT
using accelerometry and HR where GPS is not able to provide reliable measures. Impor-
tantly, this method allows the generalization of the model to anyone, offering a further
modality to monitoring performance and training adaption and prescribe exercise intensity
for HIIT. Such an approach is of utmost importance also from a physiological point of
view, since different physical demands elicit specific adaptation to training; thus, the more
precise are the measures used to prescribe training, the better the physiological adaptation.
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