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ABSTRACT:
Hypoxia-inducible factor 1 (HIF-1), the major transcription factor specifically 
activated during hypoxia, regulates genes involved in critical aspects of cancer 
biology, including angiogenesis, cell proliferation, glycolysis and invasion. The HIF-
1a subunit is stabilized by low oxygen, genetic alteration and cobaltous ions, and 
its over-expression correlates with drug resistance and increased cancer mortality 
in various cancer types, therefore representing an important anticancer target. Zinc 
supplementation has been shown to counteract the hypoxic phenotype in cancer 
cells, in vitro and in vivo, hence, understanding the molecular pathways modulated 
by zinc under hypoxia may provide the basis for reprogramming signalling pathways 
for anticancer therapy. Here we performed genome-wide analyses of colon cancer 
cells treated with combinations of cobalt, zinc and anticancer drug and evaluated 
the effect of zinc on gene expression patterns. Using Principal Component 
Analysis we found that zinc markedly reverted the cobalt-induced changes of gene 
expression, with reactivation of the drug-induced transcription of pro-apoptotic 
genes. We conclude that the hypoxia pathway is a potential therapeutic target 
addressed by zinc that also influences tumor cell response to anticancer drug.

INTRODUCTION

Hypoxia is a common state of cancer cells due to 
the lack of blood supply to the rapidly growing tumor. 
Hypoxia-inducible factor 1 (HIF-1) is the key factor 
that mediates adaptive response to hypoxia; it is an 
heterodimeric transcription factor consisting of the 
HIF-1b subunit, constitutively expressed in cells, and 
the HIF-1a subunit whose stability is enhanced by low 
intracellular oxygen and also by genetic alteration [1]. In 
normoxia, HIF-1a is hydroxylated by prolyl hydroxylases 

(PHD1-3) at key proline residues in the oxygen-dependent 
degradation domain (ODD) facilitating interaction 
with the E3 ligase, Von Hippel-Lindau protein (VHL), 
which drives HIF-1a ubiquitination and degradation [2, 
3]. Under hypoxic conditions, prolyl hydroxylation is 
inhibited, thereby stabilizing HIF-1a and EPAS1 (also 
known as HIF-2α), which can then translocate to the 
nucleus and bind to constitutively expressed HIF-1b 
forming the active HIF-1 complex [4]. In a screen from the 
National Toxicology Program [5], three out of 1408 tested 
compounds (o-phenantroline, IodoChlorohydroxiquinone 
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Symbol Gene Title C-0 ZC-C References
Up-regulated Fold change Fold change

P4HA1 prolyl 4-hydroxylase, alpha polypeptide I 3.12 -1.32 20-26, 29
ADM adrenomedullin 6.67 -4.43 20-22, 25-27
ANGPTL4 angiopoietin-like 4 2.83 -1.99 20, 21, 23, 25, 26, 29
BNIP3L BCL2/adenovirus E1B 19kDa interacting protein 3-like 4.51 -2.09 20-23, 25, 26
NDRG1 N-myc dow nstreamregulated 1 9.40 -5.30 20,21,23,25 ,26,29
SLC2A1 solute carrier family 2 (facilitated glucose transporter), member 1 1.99 -1.12 20-24, 29
AK3L1 adenylate kinase 3-like 1 1.75 -1.29 21, 23-25, 29
BHLHE40 basic helix-loop-helix family, member e40 4.63 -2.26 20, 21, 24-26
C7orf68 chromosome 7 open reading frame 68 3.00 -2.25 20, 21, 23, 26, 29
CCNG2 cyclin G2 2.01 -2.30 20-22, 24, 25
ENO2 enolase 2 (gamma, neuronal) 3.90 -2.34 20, 21, 23, 25, 26
KDM3A lysine (K)-specif ic demethylase 3A 3.98 -1.88 20, 21, 24, 25, 26
P4HA2 prolyl 4-hydroxylase, alpha polypeptide II 1.82 -1.55 20, 21, 24, 25, 26
PGK1 phosphoglycerate kinase 1 1.54 -1.13 20-22, 26, 29
CA9 carbonic anhydrase IX 7.60 -1.35 20-22, 29
EGLN1 egl nine homolog 1 (C. elegans) 2.90 -1.75 20, 21, 25, 26
FAM162A family w ith sequence similarity 162, member A 2.35 -1.56 20, 21, 23, 26
GBE1 glucan (1,4-alpha-), branching enzyme 1 3.17 -1.84 20, 21, 25, 26
HK2 hexokinase 2 1.85 -1.17 20-22, 26
PFKFB4 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 4 16.27 -4.59 20, 24, 26, 29
ALDOA aldolase A, fructose-bisphosphate 1.74 -1.32 22,24, 29
ALDOC aldolase C, fructose-bisphosphate 6.93 -3.57 21,23,26
ANG angiogenin, ribonuclease, RNase A family, 5 1.61 -1.79 21,26,27
ANKRD37 ankyrin repeat domain 37 5.43 -3.73 20,26,29
HMOX1 heme oxygenase (decycling) 1 6.47 -2.87 22, 23, 28
INSIG2 insulin induced gene 2 2.57 -2.11 20, 21, 26
MAFF v-maf musculoaponeurotic f ibrosarcoma oncogene homolog F (avian) 1.87 -1.48 21, 25, 26
PDK1 pyruvate dehydrogenase kinase, isozyme 1 2.56 -1.18 20, 21, 26
PFKFB3 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 3 1.55 -1.41 20, 21, 26
PGM1 phosphoglucomutase 1 1.97 -1.41 21, 23, 25
SPAG4 sperm associated antigen 4 2.88 -1.19 21, 25, 26
TMEM45A transmembrane protein 45A 5.45 -2.53 20, 21, 25
ZNF292 zinc finger protein 292 2.69 -1.56 20, 21, 25
ABCB6 ATP-binding cassette, sub-family B (MDR/TAP), member 6 2.73 -1.90 20, 26
ANKZF1 ankyrin repeat and zinc finger domain containing 1 2.74 -1.75 20, 21
CITED2 Cbp/p300-interacting transactivator, with Glu/Asp-rich carboxy-terminal domain, 2 1.71 -1.87 21, 23
CSRP2 cysteine and glycine-rich protein 2 2.10 -2.05 20, 21
FOS FBJ murine osteosarcoma viral oncogene homolog 2.99 -1.83 21, 22
GYS1 glycogen synthase 1 (muscle) 1.62 -1.27 20, 21
HCFC1R1 host cell factor C1 regulator 1 (XPO1 dependent) 1.69 -1.87 21, 26
KDM4B lysine (K)-specif ic demethylase 4B 2.21 -1.82 21, 26
LIMCH1 LIM and calponin homology domains 1 1.99 -1.46 21, 25
RAB20 RAB20, member RAS oncogene family 3.88 -2.20 20, 23
RBPJ recombination signal binding protein for immunoglobulin kappa J region 1.58 -1.36 21, 26
RIOK3 RIO kinase 3 (yeast) 1.61 -1.32 20, 26
RORA RAR-related orphan receptor A 3.98 -2.79 20, 26
SAP30 Sin3A-associated protein, 30kDa 1.77 -1.72 20, 24
SCD stearoyl-CoA desaturase (delta-9-desaturase) 1.72 -1.67 23, 26
SERTAD2 SERTA domain containing 2 1.66 -1.57 20, 23
SLC16A3 solute carrier family 16, member 3 (monocarboxylic acid transporter 4) 1.57 -1.27 24, 28
STBD1 starch binding domain 1 1.58 -1.75 21, 23
WSB1 WD repeat and SOCS box-containing 1 1.79 -1.29 20, 21
YEATS2 YEATS domain containing 2 1.58 -1.26 20, 21
SPOCK1 sparc/osteonectin, cwcv and kazal-like domains proteoglycan (testican) 1 1.57 -1.37 21, 25
Down-regulated

EEF1E1 eukaryotic translation elongation factor 1 epsilon 1 -1.68 -1.01 20, 21, 25
BOP1 block of proliferation 1 -1.68 1.46 21, 25
DDX21 DEAD (Asp-Glu-Ala-Asp)box polypeptide 21 -1.61 1.56 20, 25
IL18R1 interleukin 18 receptor 1 -1.95 1.97 20, 28
NIP7 nuclear import 7 homolog (S. cerevisiae) -1.58 1.24 20, 21
RANGAP1 Ran GTPase activating protein 1 -1.55 1.29 20, 21
RRP15 ribosomal RNA processing 15 homolog (S. cerevisiae) -1.65 1.36 21, 25
RRS1 RRS1 ribosome biogenesis regulator homolog (S. cerevisiae) -1.59 1.56 21, 25
RUVBL1 RuvB-like 1 (E. coli) -1.80 1.53 20, 25
SLC25A15 solute carrier family 25 (mitochondrial carrier; ornithine transporter) member 15 -1.75 1.33 20, 25
SRM spermidine synthase -1.55 1.48 21, 25
WDR4 WD repeat domain 4 -1.51 1.65 20, 25

Table 1: Hypoxia and cobalt treatment shared genes and their reversal by zinc supplementation. The table lists 54 up-
regulated and 12 down-regulated genes that are shared between the cobalt treatment (C) of RKO cells and the hypoxia modulated genes 
reported by at least two out of ten studies taken from the MSigDB [19]. The fold change of gene expression in RKO treated cells is shown 
for treatment by cobalt compared with untreated cells (C-0) and by treatment with zinc and cobalt compared with cobalt treated cells (ZC-
C); negative sign of the fold changes indicates decrease in expression.
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and cobalt sulfate) were selected as hypoxia-mimetic 
whereas cobalt was the only one that interacted with 
HIF-1 in a manner similar to hypoxia. Thus, cobaltous 
ions have been shown to inhibit hydroxylation of HIF-
1a and therefore induce elevated HIF-1a protein levels, 

mimicking hypoxia [1]. The interest in HIF-1 comes form 
the fact that HIF-1 controls the expression of numerous 
genes involved in many aspects of cancer progression, 
including angiogenesis (e.g., vascular endothelial growth 
factor - VEGF), metabolic adaptation (e.g., Glut1), 
apoptosis resistance (e.g., Bcl2), invasion and metastasis 
(e.g., c-Met) [6]. The levels of HIF-1a subunit are often 
increased in most solid human tumors including colon, 
brain, breast, gastric, lung, skin, ovarian, prostate, 
renal, and pancreatic carcinoma, rendering tumor cells 
resistant to conventional chemotherapy and selecting 
a more malignant and invasive phenotype leading to 
poor prognosis [6]. Inhibition of HIF-1a may, therefore, 
represent an attractive strategy with potential for 
synergism with other antitumor therapies [7, 8].

We found that zinc supplementation to highly 
invasive and angiogenic glioblastoma cells or to prostate 
cancer cells, either constitutively hypoxic or after induction 
of hypoxia, downregulates HIF-1a protein levels and 

Samples Abbreviation ADR Zinc Cobalt
Untreated (0) - - -

ADR (A) + - -
Zinc (Z) - + -

Cobalt (C) - - +
ADR+ Zinc (AZ) + + -

ADR+ Cobalt (AC) + - +
Zinc+ Cobalt (ZC) - + +

ADR+ Zinc+ Cobalt (AZC) + + +

Table 2: Schematic representation of the several 
combination treatments between ADR, cobalt and 
zinc performed for microarray analysis. Each sample 
was represented by duplicates.

Figure 1: Expression of genes regulated by cobalt and reversed by zinc. (A). PCA of the samples, after log2 transformation and 
averaging between replicates, in the space of all probesets. Filled markers represent cobalt, red markers represent ADR and the triangular 
markers represent zinc. The arrows indicate the reverse effect of the zinc treatment when applied on cobalt, returning the expression to the 
original (untreated) position. (B) Heatmap of the genes that were differentially expressed (passed 5% FDR, and had at least 1.5 fold change) 
between cobalt treated cells (C) and untreated cells (0). Data is centered and normalized after log2 and averaging of replicates, sorted using 
SPIN [51]. The red sidebar represents up-regulated genes and the blue sidebar represents down-regulated genes. (C) Left panel. Scatter 
plots of the genes that were up regulated (in red) and down regulated (in green) by cobalt (C), compared with untreated cells (0). Dashed 
lines represent represent 1.5 fold change (0.585 in log2 scale). Right panel. The same genes when comparing zinc+cobalt (ZC) to untreated 
cells (0), showing the reversal of gene expression by supplemental zinc on cobalt treated cells.
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inhibits HIF-1 activity, resulting in the inhibition of VEGF 
expression, angiogenesis and tumor cell invasiveness [9]. 
This is relevant in light of recent findings showing that 
treatment of cancer by anti-angiogenic agents like anti 
VEGF or small molecule inhibitors of tyrosine kinase 
may result in hypoxia that selects for more malignant 

metastatic and invasive cells, that eventually lead the 
tumors to relapse as a more invasive and metastatic 
disease [10, 11]. Similar results may apply also for the 
treatment with antibodies when the signaling triggered 
by the antibody affects the HIF-1 pathway [12]. Zinc is 
a trace element that is essential for the normal function 
of cells and is a cofactor for a wide range of structural 
proteins, enzymes, and transcription factors involved in 
key cellular functions such as the response to oxidative 
stress, DNA damage repair, cell cycle progression and 
apoptosis [13]. The mechanisms through which gene 
expression is regulated by zinc are central to cellular 
homeostasis, thus, zinc is an essential prerequisite for the 
execution of many signaling pathways in eukaryotes [14]. 
Preclinical studies have shown that zinc exerts a positive 
beneficial effect against chemically induced pre-neoplastic 
progression in rats and provides an effective dietary 
chemopreventive approach to disease [15]. On the other 
hand, zinc deficiency has been associated with induction 
of cancer [16]. Furthermore, in vitro and in vivo studies 
by our group have shown that zinc supplementation to 
cancer cells improves the chemotherapeutic response with 
reactivation, for instance, of inactive onco-suppressor 
p53 and apoptosis [17, 18]. Understanding the molecular 
pathways modulated by zinc under hypoxia may provide 
the basis for reprogramming signalling pathways for 
anticancer therapy and hopefully improve classical 
anticancer therapies. To this aim, we performed a genome-
wide expression analysis in colon cancer cells treated with 
different combinations of hypoxia-mimetic cobalt, zinc 
and anticancer drug. Our strategy identified differences 
in gene expression among the combination treatments. 
The most remarkable result was that zinc reversed gene 
expression of most genes modulated by hypoxia, including 
genes involved in metabolism, proteasomal build-up, and 
amino acid biosynthesis. As a result of hypoxic phenotype 
reversion, zinc supplementation restored the drug-induced 
apoptosis, inhibited by hypoxia. Our studies suggest that 
zinc supplementation to cancer cells may have an effective 
anticancer outcome by targeting the hypoxia pathway and 
therefore provide the molecular basis for the combination 
treatment of tumors by zinc with classical anti-tumoral 
drugs.

RESULTS

Expression of the modulated genes shared 
between cobalt and hypoxia

Low oxygen as well as cobaltous ions inhibit 
hydroxylation of HIF-1a and therefore induce elevated 
HIF-1a protein levels, mimicking hypoxia [1]. Here, we 
first attempted to evaluate the extent of similarity in gene 
expression between cobalt and hypoxia treatment by 

Figure 2: Expression of genes regulated by ADR+cobalt 
and reversed by zinc. (A) Heatmap of the genes that were 
differentially expressed (passed 5% FDR, and had at least 
1.5 fold change) between ADR+cobalt treated cells (AC) and 
ADR treated cells (A). Data is centered and normalized after 
log2 and averaging of replicates, sorted using SPIN. The pink 
sidebar represents up-regulated genes and the blue sidebar 
represents down-regulated genes. (B) Left panel. Scatter plots 
of the genes that were up regulated (in pink) and down regulated 
(in blue) by ADR+cobalt (AC), compared with ADR treated 
cells (A). Dashed lines represent 1.5 fold changes (0.585 in 
log2 scale). Right panel. The same genes in the comparison of 
ADR+zinc+cobalt (AZC) to ADR treated cells (A), showing the 
counter effect of zinc on cobalt treated cells.
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constructing a list of hypoxia genes using hypoxia related 
gene sets that were published on the MSigDB database 
[19 by ten different studies [20-29]. This resulted in 
150 up-regulated (hypoxia up) and 76 down-regulated 
(hypoxia down) genes that appeared in at least two out 
of the ten hypoxia studies (data not shown). When the 
150 and 76 modulated genes were intersected with the 
modulated genes in the cobalt (C) treatment of RKO cells 
(Supplementary Table S1), the resulting shared genes 
were found to be 54 out of the 150 ‘hypoxia up’, and 12 
out of the 76 ‘hypoxia down’ genes (Table 1, column C-0). 
This significant overlap is in agreement with many studies 
on hypoxia-like effect by cobalt, showing high level of 
similarity in modulated genes between hypoxia and cobalt 
treatment [30, 31].

Among the shared ‘hypoxia up’ genes we identified 
genes involved in carbohydrates metabolism, fructose, 
mannose, and glycolysis, (i.e., SLC2A1, also known as 
GLUT1, PGM1, ALDOA, ALDOC, PFKFB3, PFKFB4, 
GYS1, GBE1, HK2, ENO2 and PGK1), genes involved 
in oxidoreductase activity (i.e., SCD, P4HA2, P4HA1, 

HMOX1 and EGLN1), in autophagy and tumor cell 
survival (i.e., BNIP3L) [32], in pH regulation (i.e., 
CA9) [33] in multidrug resistance (i.e., ABCB6) [34] in 
cell survival and proliferation (i.e., ADM, cyclin G2), in 
angiogenesis (i.e., EGLN1, ANG and ANGPTL4). We 
also found newly identified HIF-1a target genes such 
as TMEM45A, ANKRD37 and WSB1 [35], the latter 
one being involved in ubiquitination and degradation 
of HIPK2 [36], a putative tumor suppressor and p53 
apoptotic regulator [37] that is down-regulated in hypoxia 
[38], supporting the hypoxia-mimetic function of cobalt.

Since we recently showed that the hypoxic phenotype 
can be inhibited by zinc supplementation to cancer cells 
[9, 17], we next evaluated the effect of zinc treatment 
on the cobalt modulated genes. Interestingly, we found 
that zinc markedly reverted the differential expression 
of genes shared between hypoxia and cobalt (Table 1, 
column ZC-C), in support of our biological results [9, 
17]. Although some of the up- and down-regulated genes 
were reversed by less than 1.5 fold change, the expression 
levels of most of the ‘hypoxia up’ genes (34 out of 54) and 

AZC-AC AND A-0

Chromosome 6p22 (22), Histones (16)
[↑]HIST1H2BO, HIST1H3H, LOC222699, PEX6, SOX4
[↓] DTNBP1, HIST1H1E, HIST1H2A (G, H, L), HIST1H2B (C, D, F, I, J, N, I),
HIST1H3 (B, F), HIST1H4B, NUP153, ZNF322A
RNA polymerase I, III and mitochondrial transcription (28, including the
Histones)
[↑]KAT2B, POU2F1, PTRF
[↓] EHMT2, GTF2H2, GTF3C2, H2AFX, NFIC, POLR1A, POLR3E, POLRMT,
SNAPC5
Packaging of telomer ends (13, including 11 Histones)
[↓]H2AFX, POT1
Transcription fromRNA polymerase II (58)
[↑] ARID4A, ATF5, CHD4, CITED (1, 2), ELL2, FOS, FOSB, GTF2B, HEXIM1,
HOXC5, IRF (1, 3, 7, 9), KLF (5, 12), LITAF, MEIS2, MTF1, NR6A1, PLAGL1,
SKIL, SOD2, STAT (1, 2), SUPT4H1, TBX3, TCF7, TCF7L2, TFA P2A, TP53,
TRIM24, ZNF367
[↓] ABT1, ATF4, E2F6, FOSL1, FUBP1, GMEB2, MDM4, MED20, MED7, MYC,
NFIC, RNF14, SMARCB1, SNAPC5, SRCAP, SREBF1, TCERG1, TFA P4,
TGFB1I1, TNFRSF1A, TRIP4, VPS72, ZNF136, ZNF202

Apoptosis (18)
[↑] APAF1, CASP10, CASP7, CFLAR, CYCS, IL1RAP, MYD88, PIK3CG,
PIK3R1, PIK3R3, PPP3CA, PRKACA, TNFRSF10D, TP53
[↓]BCL2L1, DFFB, EXOG, TNFRSF1A

Colorectal cancer (14)
[↑] CYCS, FOS, PIK3CG, PIK3R1, PIK3R3, RALGDS, TCF7, TCF7L2, TGFB3,
TGFBR1, TP53
[↓]ARAF, JUN, MYC

chr9q22 (16)
[↑] C9orf130, CTSL2, HABP4, NINJ1, NR4A3, PTCH1, PTPDC1, RMI1,
TBC1D2, TDRD7, TGFBR1, ZNF367
[↓]C9orf21, NOL8, RNF20, XPA

Table 3: Pathways that were found to be enriched with genes modulated by zinc in AZC-AC and A-0. Enrichment analysis 
of the cluster genes shown in the heathmaps in Fig. 3A (pink and green groups) (see Methods). The arrows indicate the up- and down-
regulated genes. Numbers in parenthesis indicate the number of modulated gene.
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5 of the 12 ‘hypoxia down’ genes were reversed by zinc 
supplementation to cobalt treatment by more than 1.5 fold 
change (Table 1).

Zinc supplementation reverses the gene expression 
pattern induced by cobalt

We next compared global gene expression variation 
between samples treated with different combination of 
cobalt (C), zinc (Z) and ADR (A), as shown in Table 2. 
The number of genes modulated by each treatment is 
shown in Supplementary Table S1. We used Principal 
Component Analysis (PCA), a method that reveals the 
internal structure of high dimensional data in a way 
which best explains the variance in the data [39]. PC1, 
the first principal component, shows that ADR treatment 
had the strongest effect on the cells (Fig. 1A), as PC1 
separates the samples into two groups according to the 
ADR effect, differentiating between samples treated 
with ADR (red) and without ADR (blue). On the other 
hand, PC2 separates the cobalt and ADR+cobalt samples 
(filled red and blue squares) from the rest of the samples 

(Fig. 1A). Interestingly, zinc treatment shifted the cobalt 
sample to the untreated and zinc-treated samples (Fig. 1A, 
see arrow) and the ADR+cobalt sample to the ADR and 
ADR+zinc samples (Fig. 1A, see arrow), suggesting that 
zinc counteracts and reverses the effect of cobalt on gene 
expression. Indeed, this reversal effect was also evident 
in heatmaps of the normalized expression data, showing 
that most genes up-regulated by cobalt, marked by the red 
sidebar, were down-regulated after zinc treatment, while 
the group of genes down-regulated by cobalt, marked by 
the green sidebar, was up-regulated after zinc treatment 
(Figure 1B, compare C with ZC column). This expression 
reversal was further analysed in the scatter plots showing 
the same red and green groups of genes comparing cobalt 
treatment with the untreated sample (Fig. 1C, left panel). 
The right scatter plot in Fig. 1C shows the same groups 
when comparing cobalt+zinc with the untreated sample. 
In this comparison, almost all the genes are within the 1.5 
fold change range (marked by dashed lines), meaning that 
their expression levels were shifted towards their original 
(untreated) values.

The strong effect of zinc on cobalt-induced gene 
expression was evident in the samples treated with ADR. 

ZC-C AND AZC-AC

Proteasome complex (13)
[↓]PSMA2, PSMB (3,5), PSMC (1,4, 6), PSMD (1, 3, 4, 6, 11, 12), SHFM1
Protein catabolic process (6)
[↓]MDM2, NPLOC4, UBE4B, UBR3, UFD1L, VCP

Amino Acid transporters and metabolism (11)
[↑] SLC1A (4, 5), SLC7A (1, 5, 11), SLC38A1, SLC43A1, ASNS, CPS1, GOT1,
PYCR1
Aminoacyl tRNA biosynthesis (5)
[↑]AARS, CARS, MARS, MARS2, WARS
Other SLC mediated transmembrane transport (5)
[↑]SLC2A10, SLC31A1, SLC4A7, SLC6A9, SLC9A2
Glycine, serine and threonine metabolism (5)
[↑]CTH, PHGDH, PSAT1, PSPH
[↓]ALAS1

Steroid metabolism (6)
[↑]TM7SF2
[↓]HMGCS1, HSD17B4, IDI1, MVD, SC4MOL

Gluconeogenesis (5)
[↑]GOT1, PCK2
[↓]ALDOC, ENO2, PFKFB4

Protein folding (6)
[↑]ARL2
[↓]DNAJB2, LMAN1, PFDN4, TBCE, TTC1

chr16q13 (5), Methallotionines (4)
[↑]MT1E, MT1F, MT1JP, MT1X
[↓]POLR2C
Other Methallotionines (2)
[↑]MT1G, MT1M

Table 4: Pathways that were found to be enriched with genes modulated by zinc in both AZC-AC and ZC-C. Enrichment 
analysis of the cluster genes shown in the heathmaps in Fig. 3A (light blue and violet groups) (see Methods). The arrows indicate the up- and 
down-regulated genes. Numbers in parenthesis indicate the number of modulated gene.
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The heatmap shows that cobalt treatment inhibited the 
effect of ADR on gene expression (Fig. 2A, compare 
column A with AC). Interestingly, zinc treatment 
counteracted the effect of cobalt (Fig. 2A, compare 
column AC with AZC), restoring the ADR-induced gene 
expression (Fig. 2A, compare column AZC with A). 
Of note, zinc treatment per se did not change the ADR-

induced gene expression (Fig. 2A, compare column A 
with AZ), suggesting that the main variation obtained 
was by cobalt treatment. This expression reversal was 
also apparent in the scatter plots showing the comparison 
of AC with A (Fig. 2B, left panel), and then reversal of 
expression changes in AZC compared with A (Fig. 2B, 
right panel), showing that zinc supplementation to AC 
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Figure 3: Zinc and adriamycin regulated genes in cobalt treated cells. (A). Venn diagram of the up- and down-regulated genes 
(passed 5% FDR, and had at least 1.5 fold change), following zinc supplement on cobalt treated (ZC) compared with cobalt treated cells 
(C), zinc supplement to ADR+cobalt treated cells (AZC) compared with ADR+cobalt treated cells (AC), and when comparing ADR treated 
cells (A) with untreated cells (0). The light blue and violet groups represent genes that are shared between AZC-AC and ZC-C (246 up- 
regulated and 198 down-regulated genes, respectively). The pink and green groups represent genes that are shared between AZC-AC and 
A-0, not including ZC-C (956 up-regulated and 784 down-regulated genes, respectively). The intersection of all three comparisons (i.e. 
AZC-AC and ZC-C and A-0) contains 28 up regulated and 31 down regulated genes. (B). Heatmap of the genes that belong to the colored 
groups (see Venn diagram, sidebar). Expression values are centered and normalized after log2 and averaging of replicates, sorted using 
SPIN. (C). Heatmap of apoptotic genes that were regulated by zinc addition to ADR+cobat treated cells. Expression values are presented 
as log2 fold change compared with the untreated cells. The differences between AZC column and AC column are at least 1.5 fold changes. 
The up-regulated genes belong to the pink group and the down-regulated genes belong to the green group.
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antagonized the effect of cobalt and decreased expression 
of the up-regulated genes towards their expression levels 
in A cells. The same applies to the down regulated genes. 
Altogether, these findings demonstrate that most of the 
genes that were significantly modulated by cobalt, when 
compared with the untreated cells, were reversed by zinc 
almost to their previous expression.

Zinc restores the ADR-induced pro-apoptotic 
pathway in the presence of cobalt

The next step in our analysis was the identification 
of the cellular pathways that are enriched within groups 
of modulated genes by the different treatments (see 
Methods). We first analysed the set of genes modulated in 
the comparison of AZC with AC treatments (denoted by 
AZC-AC in Supplementary Table S1). The result is shown 
in the Venn diagrams and includes 956 up-regulated genes 
(Fig. 3A, left panel, pink) and 784 down regulated genes 
(Fig. 3A, right panel, green). Most likely, the genes of 
these groups, which intersected with genes modulated in 
the A-0 comparison but not with ZC-C comparison, are 
good candidates to include genes for apoptotic response. 
Another group of genes that are modulated by zinc either 
in the presence or in the absence of ADR, is represented 
by the intersection of AZC-AC with ZC-C, and may not 
contribute to the chemosensitivity of the cells, since cells 
treated with zinc+cobalt do not undergo apoptosis [17]. 
This intersection includes 246 up-regulated genes (Fig. 
3A, left panel, light blue) and 198 down-regulated genes 
(Fig. 3A, right panel, violet). The normalized expression 
levels of the genes that belong to these two groups are 
shown in the heatmap using the same colors than the Venn 
diagram, indicated on the side bar (Fig. 3B). The first two 
clusters of genes (light blue, violet) showed differential 
expression when comparing their expression in the cobalt 
treated samples (AC, C) versus the other samples. The 
third and fourth clusters (pink, green) showed differential 
expression when comparing the ADR related samples (A, 
AZ, AZC) with the rest of the samples. The reversal by 
zinc supplementation to cobalt treated cells in the pink 
and green clusters occurred only in the presence of ADR 
(Fig. 3B, AZC vs. AC). In order to determine putatively 
affected pathways, enrichment analysis was performed on 
these clusters (see Methods). The first enrichment analysis 
was performed on genes belonging to the pink and green 
clusters (Fig. 3A, 3B). We found that the apoptotic 
pathway showed one of the highest score for enrichment, 
comprising 18 genes between up-regulated pro-apoptotic 
genes (i.e., caspase 7 and 10, cytochrome C (CYCS) and 
the apoptotic protease-activating factor APAF1, etc) and 
down-regulated anti-apoptotic genes (i.e., inhibitor of 
cell death BCL2L1, etc.) (Table 3). The heatmaps of the 
normalized expression data show that the apoptotic genes, 
up-regulated by ADR (A), were downregulated by cobalt 

(AC) but restored by zinc (AZC) (Fig. 3C). As expected, 
the apoptotic genes were neither up-regulated by zinc nor 
in zinc-cobalt treatment (Fig. 3C, ZC).

Enrichment analyses of the cluster genes showing 
additional modified pathways

In addition to the apoptosis pathway, Table 3 reflects 
the effect of ADR on chromatin and the clusters that 
contain these genes showed enrichment for genes involved 
in chromatin structure like histones, some of them 
involved with enzymes of ribosomal RNA synthesis like 
RNA polymerase I, and III. Many (over 50) of the genes 
in this group are involved in facilitating transcription of 
coding RNA by RNA polymerase II. In addition, genes 
in these clusters take part in different signaling pathways 
such as insulin receptor, PI3K, TP53, TGFB that are 
also related to colorectal cancer. The pathways enriched 
within the light blue and pink clusters (Fig. 3B) reflect the 
effect of zinc on cobalt treatment and are mainly involved 
in carbohydrates metabolism, in protein synthesis and 
in regulation of metallothioneins (Table 4). Protein 
translation is one of the processes down-regulated in 
hypoxia [40]. In this regard, we found increased activation 
by zinc of pathways, such as metabolism of amino acid, 
aminoacyl tRNA biosynthesis and transporters of amino 
acids that will result in increase of protein synthesis 
(Table 4). On the other hand, the genes that were down-
regulated by zinc are enriched in pathways of protein 
degradation and in proteolytic enzymes associated with 
protein degradation (Table 4). Decrease in the expression 
of these genes results in decrease of protein degradation 
in the cells, which complements the increase in protein 
synthesis.

DISCUSSION

Hypoxia is a common state within many growing 
tumors because of lack of adequate blood supply, that 
promotes cell survival and blocks cell death. Therefore, 
targeting hypoxia is an attractive strategy to inhibit tumor 
growth and reactivate drug response. In the present 
work we aimed at evaluating the global gene expression 
pattern of colon cancer cell line, treated with the hypoxia-
mimetic cobalt and the antagonistic effect of zinc on the 
gene expression level and particularly with regard to 
response to drug (ADR) treatment. As demonstrated here, 
zinc reverted almost completely the hypoxia-induced 
gene expression. This was markedly evident by using 
the Principal Component Analysis (PCA) [39], a method 
that reveals the internal structure of high dimensional 
data in a way which best explains the variance in the 
data. This method, clearly substantiated how the zinc 
treatment shifted the cobalt samples near the untreated 
or zinc-treated samples (see Fig. 1A, 1B). The positive 
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effect of cobalt inhibition was then corroborated with drug 
treatment (see Fig. 1A, Fig. 2).

How could zinc down-regulate the hypoxia-induced 
gene expression? One mechanism could be through 
inhibition of HIF-1 activity that mediates adaptive 
responses to changes in tissue oxygenation. Thus, our 
previous findings showed that zinc supplementation 
to cancer cells downregulates HIF1α/2α protein levels 
with a mechanism that involves PHD and VHL, leading 
to inhibition of HIF-1 activity [9]. This was particularly 
interesting in vivo, where the zinc-inhibitory of HIF-1a 
was reached inside the xenograft tumor injected in nude 
mice, meaning that oral zinc administration is able to 
reach the tumor site and modify the intratumoral HIF-1a 
expression [9]. The specific effect of zinc on HIF-1 activity 
was evident here at the molecular level, where the list of 
genes up-regulated by cobalt treatment and then reversed 
to their initial expression values by zinc supplementation 
(see Table 2), largely reflects the HIF-1 target genes (i.e., 
SLC2A1, BNIP3L, CA9, HK2, ALDOC, TMEM45A, 
WSB1, etc.) [6, 35]. A large overlap with hypoxia related 
genes compiled by MSigDB database [19] on the basis 
of ten different studies [20-29] supported the hypoxia-like 
effect of cobalt.

Is it possible to clinically exploit the zinc-induced 
HIF-1 inhibition in tumor treatments? It is well known 
that hypoxia leads to chemoresistance which is a 
significant obstacle to successful cancer treatment [6]. 
One of the mechanisms of apoptosis resistance could be 
through expression of GLUT-1 or glycolytic enzymes, 
e.g., Aldolase A/C and hexokinases [41-43]. Besides these 
protective mechanisms that depend on glucose metabolism, 
alternative survival mechanisms that block apoptosis 
under hypoxia have been also implicated. These survival 
pathways may involve overexpression of anti-apoptotic 
proteins, e.g., Bcl-2 and inhibition or downregulation of 
pro-apoptotic proteins such as Bid or Bax [43]. Here, we 
found that zinc supplementation markedly reversed both 
the glycolytic pro-survival and anti-apoptotic pathways 
(see Table 1), leading to restoration of chemosensitivity 
under hypoxia. Thus, the ADR-induced gene expression, 
partially abrogated by the cobalt treatment, was restored 
by zinc supplementation almost to the original expression 
level of ADR (see Fig. 1A, Fig. 2), therefore giving a 
molecular answer to the initial question.

Recently, HIF-1 has been shown to antagonize 
the p53 apoptotic activity [44] and in particular we 
showed that this depends on HIF-1-induced HIPK2 
downregulation [45]. A major determinant of a successful 
cancer therapy is the ability of cancer cells to activate 
apoptotic cell death, mainly through intact p53 function, 
and much experimental and pre-clinical effort is devoted 
to reactivation of inactive and/or mutant p53. Therefore, 
by assuming that a solid tumor presents intratumoral 
hypoxia, the zinc-induced HIF-1 inhibition should 
rescue the p53 function in tumors bearing wtp53 and 

HIPK2. As a proof of principle, we found here that one 
of the ubiquitine ligases involved in HIPK2 degradation 
under hypoxia, that is WSB-1 [35, 36], was up-regulated 
by cobalt but downregulated by zinc supplementation, 
strongly supporting the role of zinc in reactivating the 
HIPK2/p53 oncosuppressor axis under hypoxia. Another 
molecule important in p53 regulation is the MDM2 
oncogene that downregulates both p53 and HIPK2 protein 
levels, strongly impairing tumor treatments [46]. Here, we 
found that MDM2 was one of the genes that were down-
regulated by zinc (Table 4), supporting, at molecular level, 
the zinc inhibitory effect on MDM2 activity [17, 47].

Although much more effort must be taken to 
understand the physiological implications of the various 
pathways modified by hypoxia and/or cobalt and after 
zinc supplementation, our findings provide the molecular 
basis for the reversal of the hypoxia-induced changes of 
gene expression by zinc, which may have an effective 
anticancer outcome through a more efficient utilization of 
chemotherapy.

MATERIALS AND METHODS

Cell lines and treatments

RKO human colon carcinoma cells (wild-type 
p53) were maintained in RPMI-1640 (Life Technology-
Invitrogen) supplemented with 10% heat-inactivated fetal 
bovine serum plus glutamine and antibiotics in humidified 
atmosphere with 5% CO2 at 370 C. Subconfluent cells 
were seeded the day before the treatment. The cells were 
pre-treated for 16 hours with CoCl2 (200µM) and ZnCl2 
(100 µM) before adding adryamicin (ADR) (1.5 µM) for 
additional 8 hours. The list of the different combination 
treatments used for the analyses is shown in Table 2, each 
treatment was prepared in duplicates.

RNA extraction and reverse transcription (RT)-
PCR analysis

After treatments, cells were harvested in TRIzol 
Reagent (Invitrogen) and total RNA was isolated 
following the manufacturer’s instructions. The first 
strand cDNA and the semi-quantitative RT-PCRs were 
carried out essentially as described [17, 18]. Part of the 
cDNA was used to validate the system through analyses 
of gene transcription by RT-PCR by using genes specific 
oligonucleotides under conditions of linear amplification 
(data not shown). Total RNA was hybridized to Affymetrix 
HU-gene st1.0 microarrays.
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Data analysis

For normalization of the data from the 28,830 
probesets of the arrays, Iter-Plier [48] algorithm was used 
on the .cel files, followed by modified Lowess correction 
algorithm [49] and log2 transformation. The mean 
intensity of each probe set in each pair of replicates was 
calculated, producing ‘averaged data’ for nine different 
conditions. The histograms of these nine conditions are 
plotted in Supplementary Figure S1. Intensity dependent 
variance was estimated for each probe set, using the 
distribution of the differences between repeats of probe 
sets having similar mean intensity [50]. To look for 
differentially expressed probe sets between the different 
conditions, 17 comparisons were made (described in 
Supplementary Table S1), Each comparison was made 
between two corresponding pairs of replicates, using a 
filtering step which included probe sets that were above 
threshold (t=4) in both replicates, in at least one of the 
conditions. FDR of 5% was applied on all probe sets to 
control the number of false positives. An additional filter 
was imposed, requiring the fold change of the average 
gene expression to exceed 1.5. Unique gene representation 
of the data (known gene symbols only) was calculated for 
each gene symbol by averaging over all probe sets of that 
gene, and by averaging the replicates of each treatment.

To extract some biological meaning from 
differentially expressed genes, we looked at gene sets 
that share a common biological function such as cellular 
pathways. In order to do this we intersected the list of 
co-expressed genes with a subset of gene sets from the 
MsigDB [19] dataset, that belong to the positional, 
canonical pathways and GO biological process collections, 
retaining gene sets of minimal size of 8 and maximal size 
of 500 genes. Each gene set was assigned an enrichment 
score using the hyper geometric test; sets that passed FDR 
of 10% and included at least 5 genes were considered as 
significantly enriched.
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