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Abstract: In the framework of space flight, the risk of radiation carcinogenesis is considered a “red”
risk due to the high likelihood of occurrence as well as the high potential impact on the quality of life in
terms of disease-free survival after space missions. The cyclic AMP response element-binding protein
(CREB) is overexpressed both in haematological malignancies and solid tumours and its expression
and function are modulated following irradiation. The CREB protein is a transcription factor and
member of the CREB/activating transcription factor (ATF) family. As such, it has an essential role in
a wide range of cell processes, including cell survival, proliferation, and differentiation. Among the
CREB-related nuclear transcription factors, NF-κB and p53 have a relevant role in cell response to
ionising radiation. Their expression and function can decide the fate of the cell by choosing between
death or survival. The aim of this review was to define the role of the CREB/ATF family members
and the related transcription factors in the response to ionising radiation of human haematological
malignancies and solid tumours.

Keywords: CREB/ATF; NF-κB; radioresistance; ionising radiation; galactic cosmic rays; radiotherapy;
human cancer; space flight

1. Introduction

Outside of the Earth’s protective magnetosphere, crews are exposed to galactic cosmic
rays (GCR) and solar proton events (SPE) that occur when particles emitted by the sun,
mostly protons, become accelerated in the interplanetary space due to a coronal mass
ejection shock [1]. The exposure to GCR in the form of high-energy (HZE) ions, secondary
protons, and neutrons has high linear energy transfer values that evoke complex DNA and
other cellular damage [2]. In the purpose of controlling the health risks associated with the
unique hazards of space flight, highly sophisticated systems have been developed [3]. A
key question that impacts risk assessment is how cancers caused by HZE radiation compare
to either radiogenic cancer induced by ground-based radiation [4]. As a unifying concept,
NASA studies have sought to examine how space radiation exposure induces genetic and
epigenetic modifications, noted as the hallmarks of cancer onset [5]. Due to the lack of
human epidemiological data related to the types of radiation found in space, the current
research utilises a translational approach which includes advanced human cell-based
model systems exposed to space radiation simulants connected with human molecular
pathways [6]. This approach allows relating the biological effects of space radiation to
effects from similar exposure to ground-based gamma rays and X-rays to extrapolate the
results to large human epidemiological cohorts [6,7]. Among the molecules involved at the
cellular level, the CREB/ATF family plays a crucial role.

The CREB protein was initially described as a cAMP-responsive transcription factor
involved in the regulation of the somatostatin gene [8]. Today, it is known to modulate
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gene transcription through binding to DNA sequences known as the cAMP response
elements (CREs) [9]. In the human genome, there are approximately 750,000 of these CREs,
although most of them are not available for protein binding as their cytosine methylation
physically prevents these interactions [10]. The CREB/ATF transcription factors have key
roles in cell survival, proliferation, and differentiation, as well as in apoptosis and adaptive
responses [11]. Nuclear factor-κB (NF-κB) appears to be the most important CREB-related
transcription factor [12]. Increased NF-κB activity can be considered as a hallmark of
different diseases, such as human leukaemia, lymphoma, and other types of cancers [13].
NF-κB activity can be induced by ionising radiation, which appears to promote enhanced
survival of human leukaemia K562 cells [14]. Indeed, a link has been shown between
constitutive NF-κB activity, basal apoptosis, and radiosensitivity in breast carcinoma cell
lines [15]. Furthermore, high NF-κB activity in human cancers can promote apoptosis
suppression and radiotherapy resistance [16].

The present review is focused on the complex biochemical interactions of the CREB/ATF
family members and the related transcription factors in the response to ionising radiation
of human haematological malignancies and solid tumours.

2. Ionising Radiation: Radioresistance and Radiosensitivity

When atoms disintegrate, energy is released in the form of ionising radiation, which
includes electromagnetic waves (e.g., gamma rays, X-rays) and particles (neutrons, alpha
and beta particles). They can have a sufficient level of energy to result in ionisation of
atoms and molecules [17]. When an organism is exposed to ionising radiation, the energy is
absorbed by the atoms of the biomolecules in the cells, which become ionised or excited [18].
This can result in the formation of free radicals and reactive oxygen species (ROS) [19]. This
build-up of ROS can then lead to several types of cellular damage in the form of genetic
effects with direct alterations of DNA integrity, epigenetic effects with modifications of the
DNA, or what are known as bystander effects [20], as further defined below.

To better understand the distinction between targeted and nontargeted effects of
ionising radiation, it is necessary to consider the biological responses not just of the
irradiated cells, which will mainly be killed, but particularly of the surviving cells in the
close vicinity that have not undergone direct irradiation. Genomic instability is seen as the
appearance of genetic abnormalities in the “offspring” of both the surviving irradiated cells
and their close neighbours. They may exhibit adaptive responses, which are characterised
by changes in their radiation susceptibility—in a protective manner—following the initial
dose of radiation (i.e., the challenge dose). This may also apply to the cells previously
exposed to one or more low doses of radiation [14] since it was seen that exposure to any
radiation dose is pivotal in terms of risks [15]. Indeed, carcinogenesis is characterised by a
multistage process where different target genes undergo modifications of their expression
after radiation exposure in a dose-dependent manner. DNA repair genes, proto-oncogenes,
and tumour suppressor genes shall be responsible for the deregulation of the cell cycle and
the alteration of the apoptotic pathway [16,17]. In addition, the expression of small non-
coding RNAs is affected by ionising radiation [18]. As indicated above, the main cellular
effects of ionising radiation can be divided into three groups: genetic effects, epigenetic
effects, and bystander effects (Figure 1).

2.1. Genetic Effects

The direct genetic effects arising from radiation-induced DNA lesions are single-strand
breaks or double-strand breaks, which lead, respectively, to the activation of the DNA
repair process and apoptosis [21,22]. Furthermore, accumulation of ROS can also lead to
indirect effects of ionising radiation that can cause structural and functional defects of
the cellular nucleic acids, proteins, and lipids. This intracellular damage accumulation
can lead to tumour development due to the increased DNA mutation rate [23]. In other
cases, ROS-mediated oxidation can result in chromosomal rearrangements and errors in
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recombination processes [21,22] or damage to mitochondrial DNA. All these events have
important roles in the development of secondary malignancies after radiotherapy [24].
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and radioresistance; upon a moderate IR dose, p53 is not able to correctly repair damaged DNA, 
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resulting in radiosensitivity.→ = activation; → = consequentiality; ↑ = overexpression. 
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Figure 1. Genetic effects, epigenetic effects, and bystander effects of ionising radiations. The role of
p53 depending on the IR dose is as follows: in response to a low IR dose, p53 induces cell survival
and radioresistance; upon a moderate IR dose, p53 is not able to correctly repair damaged DNA,
leading to carcinogenesis; upon a high IR dose, p53 is not able to repair irretrievably damaged DNA,
resulting in radiosensitivity. → = activation; → = consequentiality; ↑ = overexpression.

2.2. Epigenetic Effects

Low ionising radiation doses can induce epigenetic effects at the cellular level through
the involvement of ROS, and they can also promote carcinogenesis [25]. The main epige-
netic modifications are DNA methylation of CpG islands of the gene promoter regions, with
inhibition of gene expression [26] and histone acetylation with gene overexpression [27,28].

2.3. Bystander Effects

The signals that arise from radiation-induced bystander effects can be transmitted
through tissues by means of direct intercellular contacts, similarly to local paracrine effects,
or by means of the more remote actions of molecules, similarly to endocrine effects [29].
Ionising radiation can thus induce mutations not only within the nontargeted surround-
ing cells, but also in distant tissues [30]. This can be due to communication between cells
through their gap junctions [30], various ligands and their receptors [31], and other released
factors (e.g., ROS, interleukin (IL) 1, and transforming growth factor-β1) and their recep-
tors [32,33]. Indeed, carcinogenesis induction has been proved for nearby unirradiated
cells [34].

Overall, cell response to ionising radiation depends on the balance between cell cycle
progression, DNA repair, and apoptosis [35]. P53 plays a key role here, as the cell cycle
arrest induced in response to DNA damage can allow DNA repair or induce apoptosis [36].
This depends further on the dose of the ionising radiation, whereby low doses can allow
DNA repair, which induces cell protection (i.e., radioresistance), while high doses trigger
apoptosis, and hence cell death (radiosensitivity) [37].
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Radiation-induced bystander effects appear to be correlated to tumour induction
through enhanced radioresistance or increased cell proliferation [38]. Here, nitric oxide
(NO) has a crucial role as it is produced and released by irradiated cells and it is able to act
on nonirradiated bystander cells [39]. Moreover, the NO effects depend on the radiation
dose as while NO can be cytotoxic and thus cause DNA damage leading to cell death,
it can also be cytoprotective by protecting cells from apoptosis. The pro- or antitumoral
properties of NO depend on local concentration, exposure time, redox state of the cell and
its compartmentalization [38,40].

Thus, cells can respond to a low or priming dose of radiation by acquiring radioresis-
tance as defined by the so-called radiation-induced adaptive response [41]. Based on this
evidence, bystander effects can make cells radioresistant [42]. This appears to be caused by
stimulation of the genes involved in DNA repair [43] and suppression of p53-dependent
responses [44].

3. CREB Family Members and CREB-Binding Proteins

CREB is a basic region/ leucine zipper motif (bZIP) transcription factor as it contains
a leucine zipper domain that facilitates dimerization and mediates its DNA binding [45,46].
The CREs to which these CREB dimers bind have the sequence TGACGTCA [47]. The
phosphorylation of CREB at Ser133 promotes its binding to the coactivator CREB-binding
protein (CBP), which facilitates transcription [48] as this binding promotes chromatin loos-
ening through histone acetylation [49]. This pathway is involved in several biochemical
metabolic cell processes, including glucose homeostasis, cell survival, proliferation, dif-
ferentiation, apoptosis, memory, and learning [50]. The CREB/ATF transcription factors
include three genes that are homologous: CREB itself, cAMP response element modulator
(CREM), and ATF-1 [51]. Their gene products are thus three highly homologous proteins:
CREB, CREM, and ATF-1. The CREB/ATF family to date includes CREB-1, CREB-2 (re-
cently named ATF-4), CREB-3, CREB-5, CREM, ATF-1 (also known as TREB36), ATF-2 (also
known as CRE-BP1), ATF-3, ATF-5 (also known as ATFX), ATF-6, ATF-7, and B-ATF [52].
As indicated above, they have bZIP domains, the sequences of which define their formation
of homodimers or heterodimers. These heterodimers can include not just those with other
CREB/ATF members, but also those with other bZIP-containing proteins, such as activator
protein-1 (AP-1), C/EBP, and the Fos, Jun, and Maf proteins [53].

CREB, CREM, and ATF-1 have been characterised, and they are known to regulate
gene transcription through their binding to CREs. In contrast, the properties of the struc-
turally and functionally more distant ATF-2, ATF-3, and ATF-4 are not yet fully understood,
although they are stress response proteins [54,55]. ATF-3 has been indicated as an adaptive
response gene activated by several cell signals, which include those of the cytokines and
genotoxic agents, and physiological stress [56]. ATF-3 has also been implicated in host
defence systems against invading pathogens and cancer development [57,58]. ATF-3 ex-
pression is ubiquitous in all tissues, and it is localised in the nucleus; in the absence of cell
stress, ATF-3 levels remain low [56]. However, ATF-3 is rapidly induced under cell stress,
including during hypoxia, DNA damage, and heat or cold shock [56]. In contrast, in neu-
ronal cells, ATF-4 has been shown to migrate from the cytoplasmic leaflet into the nucleus
following activation of γ-aminobutyric acid receptors. ATF-4 has thus been suggested to
be involved in neuronal plasticity, whereby it appears to couple receptor activity to gene
expression [59].

Human CBP and its paralogue p300 are generally functionally interchangeable, al-
though they each also have their own unique functions [60]. They have multiple domains
for binding to over 40 transcription factors, and they are multifunctional adaptor proteins
that have acetyl transferase activities for transcription factors and histones [61]. They are
also important for cell cycle progression and cell differentiation where they can interact
with components of the RNA polymerase II holoenzyme, with transcription factors, nuclear
hormone receptors and their coactivators [62]. They have been shown to support normal
cell differentiation and cell cycle arrest through interaction with GATA-1 (transcription
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activator/repressor); however, they can also promote cell cycle progression through in-
teractions with c-Myb (transcription activator) and PU.1 (Ets family transcription factor).
Several mutations have been described for the transcription factor-binding domains of
these genes across different tumours [63].

Following identification of the molecular mechanisms through which CREB acts
as an inducible regulator of such transcription factors, CREB has become the focus of
many investigations, particularly with its involvement in various signalling pathways
under both normal and pathological conditions. Furthermore, CREB interacts with other
nuclear factors through its transactivation domain, which includes the Q2 domain, a
constitutively active glutamine-rich domain, and the kinase-inducible domain that is
regulated by cellular kinases. The interaction of the Q2 domain with TATA-binding
protein-associated factors promotes constitutive activation, while the kinase-inducible
domain promotes isomerisation through recruitment of coactivators CBP and p300 to
gene promoters, with activation seen only following phosphorylation of Ser133 by specific
cellular kinases [64].

4. NF-κB and p53: Two Crucial CREB-Related Transcription Factors

Most tumour cells show high levels of constitutive NF-κB activity, with increased
cell survival promoted through antagonism of apoptotic pathways [65]. A key role of the
NF-κB pathway is the promotion of the innate immune response through transcription of
proinflammatory mediators, including chemokines, cytokines, antimicrobial peptides, and
adhesion molecules [66,67]. The NF-κB family members include NF-κB1 (p50, p105), NF-
κB2 (p52, p100), RelA (p65), c-Rel, and RelB [68]. Activation of NF-κB can occur through
phosphorylation and proteolysis of the inhibitor of κB (IκB) or through an IκB-independent
pathway [69] and as a stress-sensitive transcription factor. In fact, NF-κB is involved in
regulation of the expression of stress-responsive genes [70]. In the nucleus, the interaction
between the NF-κB family member RelA and CBP or p300 is required to promote NF-κB-
dependent transcription of genes that induce proinflammatory responses. The RelA subunit
activity involved in this interaction is potentiated by CBP and p300 [71]. P300 regulates
cell sensitivity and has a proapoptotic function following cell damage [72]. The correlation
between NF-κB and phosphorylated CREB is due to their interaction with CBP/p300 in the
same region [73]. Consequently, this competition would lead to CREB-dependent inhibition
of NF-κB activity [74]. In addition, CREB can induce an NF-κB-dependent antiapoptotic
response in macrophages, which promotes macrophage survival and thus enhances the
immune response [75].

Substantial evidence points to a critical role of the p300/CBP coactivators in p53
responses to DNA damage [76]. Interestingly, p53 was the prototype to demonstrate that
p300, CBP, and the associated P/CAF acetylase can acetylate nonhistone transcription
factors [77]. Both p300 and CBP can interact with p53, but only p300 appears to be
involved in p53 stabilisation after DNA damage and p53-dependent apoptosis. The tumour
suppressor protein p53 has key roles in prevention of the development of cancers, and
it is inactivated in many human malignancies [78]. Indeed, p53 regulates expression of
the genes involved in cell cycle control and apoptosis induction [79] and at the same time
can induce transcription of DNA repair enzymes to promote cell survival [80]. It can
be stimulated by cell stresses, such as oxidative stress, hypoxia, ionising radiation, and
carcinogens [81], and its levels rise after DNA damage, whereas they are low in both normal
and neoplastic cells under normal physiological conditions [82]. The uncovering that the
TP53 gene physiologically expresses, in a tissue-dependent manner, several p53 splice
variants (isoforms) provides an explanation for its pleiotropic biological activities [83]. In
fact, among the different isoforms of p53, some have oncogenic potential, while others
show oncosuppressor properties or, in some cases, can have both functions, depending
on the cellular context [22]. The p53 family of proteins also includes p63 and p73 that can
induce apoptosis by mediating cell cycle arrest at G2/M and G1/S [84]. Importantly, TP53
is deactivated in most of the human solid tumours due to missense mutations and deletions
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that impair its transcriptional function [85]. In cancer, the presence of p53 mutants leads to
gain-of-function phenotypes due to increased cell growth and cell motility, coupled with
carcinogenesis and chemoresistance [86]. The gain-of-function phenotype arises through
chromatin changes following histone acetylation, which results in interactions between the
STAT1/STAT2 complex and CBP/p300 on the NF-κB2 promoter [87].

5. CREB Family Members: An Active Role in Tumours

Several recent studies are proposing CREB/ATF and the related nuclear transcription
factors as potential prognostic biomarkers [88]. It is well-known that CREB expression me-
diated by phosphorylation is essential for major cell survival functions [88]. Tumour cells
have developed various mechanisms to achieve constitutive activation of CREB, including
gene amplification, chromosome translocation, and inactivation of tumour suppressor
genes, leading to uncontrolled proliferation of cells [89]. Therefore, it is hypothesised
that CREB is directly involved in the pathogenesis of a variety of cancers (Table 1), in-
cluding hematological malignancies [90]. CREB is often overexpressed in hematopoietic
tumours [88,89,91], and its implication in the radiation response of lymphoid neoplastic cell
lines has been demonstrated [92,93]. Overexpression of CREB is known to be associated
with increased cell proliferation and migration and reduced apoptosis, processes that are
both directly and indirectly linked to malignant transformation of cells [94]. In human
melanoma, CREB and ATF-1 have been reported to act as survival factors and favour
tumour growth and metastasis [95,96]. During the progression of melanoma, CREB and
ATF-1 show changes in their expression, along with the loss of the AP-2α transcription
factor: indeed, CREB expression correlates directly with metastatic transformation [96],
whereas ATF-1, which is absent in normal melanocytes, is then expressed in the metastatic
melanoma cells [97]. In different cell types, CREB and ATF-1 have been shown to act as
negative regulators of apoptosis as these proteins appear to rescue cells from apoptotic
death through upregulation of Bcl-2 expression, with binding of CREB and ATF-2 to a CRE
domain within the Bcl-2 promoter (Figure 2).
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Figure 2. Different PKC isoforms respond to DNA damage in different ways: while PKCδ ac-
cumulates in the nucleus and induces apoptosis, other PKCs act on Bcl2/P-Bad and on P-CREB
to promote cell survival. - - -→ = response to DNA damage; —> = activation; —> = inhibition;
—> = consequentiality.



Life 2021, 11, 1437 7 of 16

Table 1. Overexpression of the CREB/ATF family members and the related transcription factors:
granulocyte–macrophage colony-stimulating factor (GM-CSF); activating protein 2 alfa (AP-2α);
B-cell lymphoma 2 (Bcl-2); G-protein-coupled receptor 81 (GPR81); microRNA 1297 (mir-1297);
P-glycoprotein (P-gp); G-protein-coupled receptor kinase 3 (GRK-3α). ↑ = increased expression;
↓ decreased expression.

↑ CREB/ATF Cofactors Type of Cancer

CREB ↑ GM-CSF Acute myeloid leukaemia (AML)
CREB ↑ GM-CSF Acute lymphoblastic leukaemia (ALL)

CREB/ATF-1 ↓ AP-2α, ↑ Bcl-2 Human melanoma
CREB ↑ GPR-81 Breast cancer

CREB-1 ↓ miR-1297 Gastric cancer
CREB ↑ Bcl-2, P-gp Hepatocellular carcinoma (HCC)
CREB ↑ GRK-3α Pancreatic cancer
CREB ↑ GRK-3α Lung cancer
CREB ↑ GRK-3α Neuroendocrine prostate cancer (NEPC)

CREB also has an important role in breast cancer through its interactions with tumour-
promoting G-protein-coupled receptor 81 (GPR81), which is involved in the promotion
of angiogenesis and breast cancer cell survival in the tumour microenvironment [98]. For
instance, in the MCF7 breast cancer cell line, GPR81 activation has been shown to promote
CREB phosphorylation, and thus the nuclear translocation of the active form of CREB.
PI3K/Akt suppression was shown to block this GPR81-induced activation of CREB and
subsequently inhibit expression of the proangiogenic mediator amphiregulin (AREG) and
thus angiogenesis. Therefore, the pathway that involves PI3K/Akt and CREB can promote
tumour-associated angiogenesis [98].

High constitutive expression of CREB has been observed in the immortalised Jurkat
T lymphocyte cell line [99]; therefore, CREB might sustain the proliferation of lymphoid
leukaemia cells. Indeed, the involvement of CREB in the pathogenesis of myeloid and
lymphoid leukaemia has already been demonstrated [100]. Interestingly, a recent study
revealed the association between CREB1 overexpression with metastasis, tumor stage,
and poor outcomes in gastric cancer [101]. Moreover, CREB has an important role in the
progression of hepatocellular carcinoma (HCC) by promoting angiogenesis and resistance
to apoptosis [102]. It is possible that CREB confers drug resistance to HepG2 cells through
activation of the human multidrug resistance 1 (mdr1) gene and consequent increase in
P-glycoprotein (P-gp) [103], along with activation of the bcl-2 antiapoptotic gene [104].
In neuroendocrine prostate cancer, the CREB/G-protein-coupled receptor kinase (GRK)
3 axis promotes neuroendocrine differentiation of the prostate cancer cells, whereas CREB
activation is mediated by GRK3. Hence, it appears that GRK3 represents a drug target
for the treatment of patients with aggressive prostate cancers [105]. Moreover, GRK3 has
oncogenic roles in different human cancers including prostate cancer [106], acute myeloid
leukaemia [107], and pancreatic cancer [108], and its activity can be regulated by CREB in
lung cancer [109]. Thus, in these human cancers, overexpression, or increased activity of
CREB promotes disease progression [100].

6. CREB Family Members and Related Transcription Factors in Radiotherapy of Solid
Tumours and Leukaemia
6.1. Cell Responses to Ionising Radiation

Ionising radiation is responsible for the loss of cell proliferation and for cell death
by apoptosis or necrosis. Of note, there are two types of apoptosis: fast apoptosis, which
occurs during the interphase, before cell division, and after the G2 block that is induced by
radiation; and late apoptosis, which occurs after one or more cell divisions [110]. Some cells,
such as lymphocytes, thymocytes, and intestinal crypt cells, are particularly radiosensitive,
and when they are irradiated, they undergo fast apoptosis; when mouse leukaemia cells
are irradiated, they experience G2 block, and mainly undergo apoptotic death [111].



Life 2021, 11, 1437 8 of 16

As a response to genomic stress, activation of p53 can result in cell cycle arrest or cell
death by apoptosis, and this can also contribute to DNA repair processes [112]. The mouse
double minute (Mdm) 2 protein is a crucial regulator of p53. In mice, inactivation of the
mdm2 gene shows early embryonal lethality [113]. Mdm2 has a dual relationship with p53.
When Mdm2 binds to p53, this can inhibit the transcriptional function of p53, which also
results in complete elimination of p53 by proteolytic degradation. At the same time, p53 can
bind the mdm2 gene, which stimulates its transcription. Therefore, this defines a negative
feedback loop that appears to serve to rapidly terminate the p53 response after effectively
dealing with the p53-activating stress signal [114]. Various mechanisms have been pro-
posed to explain the p53 fluctuations that are observed in cell populations [115]. However,
considering the continuous effects on cells of acute ionising radiation, the complex cell
responses that can be activated to fight against DNA damage still need to be addressed
further at the level of the single cell. For oncogenes and toxins that have p53 regulatory
functions, their degradation kinetics can be used to quantitatively predict outcomes of
the cell responses to DNA damage induced by different doses of ionising radiation [116].
The retinoblastoma protein (Rb) and CBP/p300 have more complex influences on the
p53/MDM2 interactions. Here, the binding of Rb to MDM2 prevents the MDM2 desta-
bilisation of p53 while the Rb/MDM2 complex continues to bind to p53 and inhibits the
transactivation mediated by p53 [117]. Thus, this indicates how the p53 inhibition and
destabilisation functions of MDM2 can be individually deciphered. Regarding CBP/p300,
these coactivators of p53 are also required for p53 degradation mediated by MDM2. When
MDM2 lacks its p300-binding domain, it can no longer destabilise p53, although the MDM2
and p53 binding appears not to be affected [118].

There are further proteins that are involved in cell responses to ionising radiation,
such as PKC family members [92,119]. PKCs are serine/threonine kinases and comprise
(at least) 12 different isozymes. PKCδ releases a 40 kDa fragment by proteolysis when
cells are exposed to ionising radiation and also to DNA-damaging drugs that leads to
apoptosis [120]. Furthermore, in response to irradiation, activated PKCs regulate P-Bad,
Bcl-2, and CREB to prevent apoptosis and induce pro-survival signalling [121]. PKCs also
translocate into the nucleus to phosphorylate its targets [122,123] (Figure 2).

6.2. CREB and Other Factors in Radioresistance and Radiosensitivity

Radiotherapy is designed to induce DNA double-strand breaks, which would then
lead to elimination of cancer cells via apoptosis [124]. However, the efficacy of radiotherapy
treatment against cancers also depends on the toxic side effects, which can impede dose
escalation. Furthermore, as indicated above, cancer cells might instead develop radioresis-
tance through mechanisms related to DNA repair responses. When cells are exposed to
ionising radiation, there is activation of transcription factors like AP-1 and NF-κB [125]. The
consequent induction of specific genes and synthesis of their protein products might then
provide the cells with radiation resistance. When the constitutive levels of NF-κB are high,
cells also show relatively high resistance to radiation therapy [126]. The Daudi and Ramos
cell lines (human Burkitt lymphoma) show sensitivity to relatively low radiation doses (i.e.,
1–5 Gy), with reduced cell viability due to necrosis and apoptosis, and the cell cycle blocked
in the G2/M phase [93]. The less radiosensitive Ramos cells show expression of a mutated
form of p53 and a constitutively activated NF-κB pathway. These cells are sensitive to
an ionising radiation dose of 3 Gy, where they show an early increase in the expression
of CREB and a dose-dependent upregulation of expression of NF-κB [93]. Interestingly,
increased cellular levels of CREB have proapoptotic effects, while NF-κB upregulation can
be linked to necrosis, at least in vitro and after 3 Gy ionising radiation [93].

Concerning the regulation of NF-κB, normally, its nuclear translocation and activation
are prevented by the “super-repressor” IκB, but stimuli such as TNFα and ionising radiation
can degrade, and thus remove, IκB, leaving NF-κB free to translocate into the nucleus
and activate its target genes [127]. Therefore, as NF-κB is activated in several types of
cancer, this might provide the cells with intrinsic radioresistance or promote radioresistance.
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Indeed, NF-κB activity induced by ionising radiation appears to enhance the survival of
K562 human leukaemia cells [14]. Furthermore, in breast carcinoma cell lines, a link has
been reported for constitutive NF-κB activity, basal apoptosis, and radiosensitivity [128].
This indicates that the higher levels of NF-κB seen for human tumours can both suppress
apoptosis and promote radioresistance. Inhibition of the NF-κB expression generally
increases the apoptotic response when cells are under radiation therapy [129], and as
indicated above, NF-κB expression is upregulated in certain tumour cells in response
to radiation, and to chemotherapeutic drugs [130]. Instead, K562 leukaemia cells have
shown a different strategy for resistance to apoptosis induced by ionising radiation that is
modulated through protein kinase C (PKC) δ and NF-κB [14].

CREB has an active role in prostate cancer, where radiation therapy is the first-line
treatment [131]. In the human prostate, neuroendocrine cells represent one of three types
of epithelial cells [132]. These neuroendocrine cells can promote growth of the surrounding
tumour cells through their release of neuropeptides [133]. Along with CREB, a role for
ATF2 has been indicated in prostate cancer. Indeed, it has been hypothesised that ATF2 acts
as a shuttling protein as it moves between the cytoplasm and the nucleus [134]. Ionising
radiation can induce reversible differentiation of neuroendocrine cells, which leads to
the loss of their neuroendocrine properties. Here, CREB and ATF2 might have opposing
effects as it appears that accumulation of ATF2 in the nucleus antagonises the signalling
pathway involved in the phosphorylation of CREB that is induced by ionising radiation.
After exposure to ionising radiation, the differentiated cells show increased proliferation,
thus losing their neuroendocrine-like properties [135]. In this case, radiotherapy also gives
tumour cells the possibility to survive the treatment and contribute to tumour recurrence.

Radioprotection of human leukaemia cell lines can also be linked to the stability of
peroxiredoxins (Prx) [136]. They are a very large and conserved family of small peroxidases
that conserve the thioredoxin-dependent catalytic activity that protects cells from oxidative
damage produced by H2O2, organic hydroperoxides, and peroxynitrite [137]. The effects of
ionising radiation in leukemia cells are of oncologic interest since high doses of whole-body
gamma radiation can be employed before bone marrow transplantation. However, PrxII
expression levels have been correlated with radioresistance or administration of certain
anticancer drugs in radioresistant solid tumours, including breast cancer, glioblastoma,
and head and neck cancer, as well as in tissue isolated from head and neck patients who do
not respond to radiation therapy [138].

6.3. CREB and Related Transcription Factors as Possible Targets in the Treatment of Tumours

CREB appears to be a therapeutic target for cancer treatment due to its role in the
development, maintenance, and progression of tumours [94]. This was also suggested by
the downregulation of the inducible cyclic AMP early repressor (ICER) in bone marrow cells
from patients with acute myeloid leukaemia, where altered CREB expression was observed.
There are several different ways in which the CREB function might be inhibited in tumour
cells [94]. First, a dominant-negative CREB mutant, known as KCREB, can be used to inhibit
transcription of CREB, which arises through the formation of heterodimers of KCREB with
wild-type CREB. In metastatic tumour cells in vitro and in vivo, KCREB has been shown to
reduce the metastatic potential [95]. Secondly, CRE “decoy” oligonucleotides might inhibit
CREB gene transcription and tumour growth [139]. Thirdly, silencing of CREB expression
might reduce anchorage-independent growth of tumour cells, along with cell cycle arrest.
This would lead to apoptosis accompanied by enhanced tumour immunogenicity [140].
Finally, many kinase inhibitors can be used to inhibit the CREB and CBP interactions with
their CREs [141].

Pharmacological inhibition of IKK-NF-κB might also represent an interesting approach
to potentiate the apoptotic effects of irradiation. Indeed, a suppressor of the IKK complex
was reported to make lung cancer cell lines more apoptosis-susceptible following their
irradiation [142]. Furthermore, curcumin, which interferes with activation of the inhibitor
of NF-κB kinase (IKK), showed greater radiation-induced apoptosis against PC-3 prostate
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cancer cells [143]. Instead of targeting NF-κB itself, the effector genes of NF-κB might
represent better drug targets for the enhancement of radiosensitivity on the basis that in
tumour cells that are radioresistant, activation of these genes might be predominant. In an
investigation of genes that are upregulated in human keratinocytes following long-term
irradiation, Chen et al. (2002) [112] reported that six genes showed upregulation as putative
targets for NF-κB. By using a mutant IκB, three of these genes, cyclin B1, cyclin D1, and
human inhibitor of apoptosis protein (HIAP) 1, were downregulated, while the other three
upregulated genes, Bcl-2-associated athanogene (BAG) 1, thyroid transcription factor (TTF),
and fibronectin, were not downregulated. The genes that were downregulated following
NF-κB inhibition are associated with significantly decreased cell survival, and thus they
might have crucial roles in radioresistance.

For hepatocyte malignancy in HCC, radiotherapy is the most common treatment
choice [144]. Unfortunately, as both cancer and healthy cells are killed, this treatment
comes with multiple side effects for the cells. However, as Fuchs-Tarlovsky (2013) [145]
reported, administration of antioxidant nutrients prior to or combined with radiation
therapy protected nontumour cells against the free radicals generated to kill the tumour
cells during the irradiation.

P53 can also be considered as a target in anticancer therapies that use different small
molecules that have been shown to restore the function of wild type p53. One of these is
the cis-imidazoline analogue nutlin-3 which prevents p53 degradation and was shown
to induce apoptosis in p53-deficient colorectal carcinoma cells and in an HCC cell line
through p73 activation [146,147]. Previous preclinical studies showed the therapeutic use
of nutlin-3 for haematological malignancies, including acute myeloid leukaemia [148],
acute lymphoblastic leukaemia [149], and B cell chronic lymphocytic leukaemia [150]. In a
human head and neck cancer cell line, the small molecule known as RITA (reactivation of
p53 and induction of tumour cell apoptosis) that blocks the interaction between p53 and
MDM2 was shown to restore the function of p53 and induce tumour cell apoptosis [151].
Indeed, there are several other small molecules that are used in therapies for tumours
where p53 mutations have led to loss of the p53 DNA-binding function. For example,
PRIMA (p53 reactivation and induction of massive apoptosis) 1 reactivates p53 and induces
apoptosis [152]. Then, a small molecule with a similar structure to PRIMA-1 known as
PRIMAMET (APR-246) can also induce tumour cell apoptosis either alone or in combination
with other chemotherapeutics. Furthermore, in multiple myeloma, MIRA (mutant p53
reactivation and induction of rapid apoptosis) 1 can restore the p53 function and p53-
induced cancer cell apoptosis with a higher potency than PRIMA-1 [153]. Then, there is the
small molecule RETRA (reactivation of transcriptional reporter activity) which not only
restores the p53 function, but also increases the level of Tap73, a structural homologue of
p53. However, the essential problem with these small molecules is the need for selective
actions (in terms of restoration of the p53 function) that are directed only to the cancer cell.

7. Conclusions

Radiotherapy is the standard treatment of choice for patients with solid tumours and
haematological malignancies although it induces the death not only of malignant cells,
but also of healthy cells. However, cells can escape apoptotic death through activation of
various survival factors. One of these factors is CREB, which is upregulated in various
tumours treated with radiotherapy. This CREB upregulation leads to increased cell pro-
liferation, reduced apoptosis, and enhanced cell migration and contributes to metastatic
transformation of cells, as well as to angiogenesis. Along with CREB, ATF and NF-κB are
also upregulated in different types of malignancies. Considering this, ionising radiation
can also become a potential carcinogen, and thus it is important to consider the doses
used. In addition, although the key role of CREB is evident in this context, it should not be
considered the only therapeutic target. Indeed, further studies are needed to clarify other
molecular players involved in mediating tumour radioresistance to identify novel, more
efficient combined treatments designed on an individual patient and tumour basis.
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