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Keywords: Locally conformally Kähler manifold, holomorphic submersion, Vaisman
manifold.
2010 Mathematics Subject Classification: 53C55.

Abstract

A locally conformally Kähler (LCK) manifold is a complex manifold covered by
a Kähler manifold, with the covering group acting by homotheties. We show that if
such a compact manifold X admits a holomorphic submersion with positive dimen-
sional fibers at least one of which is of Kähler type, then X is globally conformally
Kähler or biholomorphic, up to finite covers, to a Vaisman manifold (i.e. a mapping
torus over a circle, with Sasakian fibre). As a consequence, we show that the product
between a compact non-Kähler LCK and a compact Kähler manifold cannot carry
a LCK metric.

1 Introduction and statement of results

Locally conformally Kähler (LCK) manifolds are Hermitian manifolds (M,g, J) such that
the fundamental two-form ω = g ◦ J satisfies the integrability condition

dω = θ ∧ ω, for a closed one-form θ,

where θ is called the Lee form.
This definition is known to be equivalent with a covering space M̃ of (M,J) to carry a

global Kähler metric Ω with respect to which the covering group Γ acts by holomorphic
homotheties (see [GOPP], and [DO], [OV2] for a recent survey). As such, the LCK
structure defines a character associating to each covering transformation its scale factor:

χ : Γ−→ R
+, χ(γ) =

γ∗Ω

Ω
. (1.1)

If θ is exact, the manifold is called globally conformally Kähler (GCK) and is of
Kähler type.

In a LCKmanifold, if θ is moreover parallel with respect to the Levi-Civita connection
of the LCK metric, the manifold is called Vaisman. Compact Vaisman manifolds are
mapping tori over the circle with fibers isometric with a Sasakian manifold (see [OV1]).
The topology of compact Vaisman manifolds is very different from the topology of Kähler
manifolds, e.g. their first Betti number is always odd.

1Partially supported by CNCS UEFISCDI, project number PN-II-ID-PCE-2011-3-0118.
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Almost all compact complex surfaces in class VII are LCK and many of them (e.g.
diagonal Hopf, Kodaira) are Vaisman (see [Be], [Br]). In higher dimensions, main ex-
amples are diagonal Hopf manifolds (which are Vaisman), non-diagonal Hopf manifolds
(non-Vaisman, see [OV5]), Oeljeklaus-Toma manifolds (see [OT, PV]).

On a Vaisman manifold X, the Lee field θ♯ (the g-dual of θ) is analytic and Killing
and hence generates a complex, totally geodesic foliation F = {θ♯, Jθ♯}. If F is regular
(and in this case the manifold X itself is called regular), then X admits a holomorphic
submersion (which is moreover a principal bundle map) over a projective orbifold. But,
in general, very little is known about the existence of holomorphic submersions from
compact LCK manifolds (papers like [IOV], [MR] assume the existence of the submersion
and are mainly concerned by the structure it imposes on the total space or on the base
and by the geometry of the fibres).

In this note, we partially solve the existence problem. Our principal result is the
following:

Theorem. Let X be a compact complex manifold which admits a homolorphic submer-
sion π : X −→B with positive-dimensional fibers. Assume one of the fibers of π is of
Kähler type. If X has an LCK metric g, then g is GCK or X is biholomorphic to a
finite quotient of a Vaisman manifold.

This result is very general, it does not assume that the submersion relate in any way
the Riemannian geometries of the total and base spaces (which is not even supposed to
exist).

There is no natural product construction in the category of LCK manifolds, because
CO(m) × CO(n) 6⊂ CO(m + n). The following by-product of the Theorem (already
proven differently in [T]) is therefore an useful information:

Corollary 1. Let X1,X2 be compact regular Vaisman manifolds. Then X1×X2 carries
no LCK metric.

But more can be said. Applying the above Theorem to the projection of the first
factor of a product X × Y where X is a compact LCK (non-Kähler) manifolds and Y is
compact Kähler, one obtains:

Corollary 2. The product of a compact LCK non-Kähler manifold with a compact
Kähler manifold admits no LCK metric.

2 Proof of the Theorem

The main ingredient is the following “lemma on fibrations”.

Lemma. Let X be a compact complex manifold which admits a homolorphic submersion
π : X −→B with positive-dimensional fibers. If X has an LCK metric g whose Lee form
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θ is (cohomologically) a pull-back, [θ] = π∗([η]), [η] ∈ H1(B), then g is GCK.
Proof. The proof is basically the same as in [OVV], but since the statement is a little
bit different, we include the details here.

First, let us fix some notations. If M is any manifold and α ∈ H1(M) is arbitrary,
we will denote by α∗ : H1(M,Z)−→ R the morphism given by

α∗([γ]) =

∫

γ

α.

Notice that in our setup we have
η∗ ◦ π∗ = θ∗

where π∗ : H1(X,Z)−→H1(B,Z) is the map induced at homology by π.
Moreover, we will denote by Mab its maximal abelian cover, whose fundamental

group is just [π1(M), π1(M)]. Observe that the deck group of Mab over M is H1(M,Z).
Now let K = ker(η∗); it is a subgroup of H1(B,Z) so letting B = Bab/K we see

H1(B,Z) ∼= H1(B
ab,Z)/K. In particular, the pull-back η of η to B is exact, since η∗ ≡ 0.

Now let X = B ×B X, i.e.

X −−−−→ X

π





y





y

π

B −−−−→ B

Then X is a cover of X and the fibers of the induced map π : X −→B are the same
as the fibers of π, thus π is proper as well. Let θ be the pull-back of θ to X. Since
[θ] = π∗([η]) we see that θ is also exact, as η is exact. This implies that the pull-back g
of g to X is globally conformal to a Kähler metric ω.

Assume now that g is not GCK. Then there exists a deck transformation ϕ of X
acting on ω by a non-isometric homothety:

ϕ∗(ω) = ̺ · ω, ρ 6= 1. (2.1)

Let F be any fiber of π. Since F is also a fiber of π, it is compact, hence its volume
Volω(F ) is finite. Let F ′ = ϕ(F ). Then F ′ is also a fiber of π and since ω is Kähler we
have

Volω(F ) = Volω(F
′).

But from (2.1) we get
Volω(F ) = ̺dimC(F )Volω(F

′),

a contradiction.

Proof of the Theorem. We shall prove the following facts:

1) If the fibers are at least 2-dimensional, then g is GCK.

2) If the fibers are 1-dimensional and their genus is not 1, g is again GCK. And finally
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3) If the fibers are 1-dimensional and their genus is 1, then X is biholomorphic to a
GCK manifold or to a finite quotient of a Vaisman manifold.

To prove 1), let F0 be a fiber of Kähler type and let F be any fiber of π. Also, let i0
and i be the respective immersions of the fibres in X. As B is arcwise connected, from
Ehresmann’s theorem, it follows that F and F0 have the same homotopy type, which
implies the exact sequence

0 −−−−→ H1(B)
π∗

−−−−→ H1(X)
i∗

−−−−→ H1(F ).

But Vaisman proved ([Va]) that if a compact LCK manifold of dimension at least 2 is of
Kähler type, then the LCK metric is actually GCK. Hence, if F0 has dimension at least
2, it follows that i∗0([θ]) = 0. From the exact sequence above, we see [θ] is a pull-back,
and hence the above Lemma implies that g is GCK.

To prove 2), observe that if the genus of F is 0 then π∗ is an isomorphism between
H1(B) and H1(X), so the Lemma applies again.

If the genus is at least 2, we argue as follows. First, by Uniformization Theorem,
after a conformal change of g we may assume g|F has (negative) constant curvature.
On the other hand, by [PV] we get that [θ]|F is the Poincaré dual of the character χ
of g|F (see (1.1) for the definition of the character). But this character is trivial, since
the Riemannian universal cover of (F, g|F ) is the Poincaré half-plane with the metric
of negative constant curvature whith respect to which every homothety is an isometry.
Hence [θ]|F = 0, and so again [θ] is a pull-back from B.

We now prove 3). As the j−invariant is a holomorphic map and B is compact, we
see that all the fibers are isomorphic and hence, by Fischer-Grauert theorem [FG], the
map π is a locally trivial fibration. Hence X has a finite cover X ′ which is a principal
elliptic bundle and the fiber F acts holomorphically on X ′. In particular, every S1 ⊂ F
acts holomorphically on X ′. Hence, if X ′ is not GCK, then by a result in [OV3] there
exists a Kähler covering with Kähler metric given by an automorphic global potential.
On the other hand, compact LCK manifolds with such coverings where shown to be
complex deformations of Vaisman manifolds [OV4].

Finally, let us give the

Proof of Corollary 1. Assume the product X1 × X2 has a LCK structure. As X1

and X2 are regular compact Vaisman manifolds, they are total spaces of holomorphic
submersions πi : X1 −→Bi, i = 1, 2 onto (compact Hodge) manifolds B1, B2 with fibers
elliptic curves F1, F2. But then

π : X1 ×X2 −→B1 ×B2, π(x1, x2) = (π1(x1), π2(x2))

is a holomorphic submersion with typical fiber F1 × F2 which is a 2-dimensional torus
and is of Kähler type. As the first Betti number of a compact Vaisman manifold is
odd, b1(X1 ×X2) is even and we see that X1 ×X2 is not biholomorphic to a Vaisman
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manifold. Then, from the above Theorem it follows that X1×X2 is of Kähler type. But
this forces X1,X2 to be of Kähler type as well, which is absurd.

3 Appendix on elliptic bundles and elliptic curves

A. Let us first recall some facts about elliptic bundles. Fix a genus one curve E and
let E0 = (E,O) be the elliptic curve obtained by fixing some arbitrary point O ∈ E.
Fixing O allow us to give a group structure on E. The group of automorphisms Aut(E)
is given by the extension

0−→ Trans(E) −→ Aut(E) −→ Aut(E0)−→ 0

where Trans(E) is the subgroup of Aut(E) given by translations and Aut(E0) is the
group of automorphisms of E fixing O. Now the group Aut(E0) is usually Z2 (and
consists of the antipodal map x 7→ −x) except for some cases when Aut(E0) is finite
of order 4 or 6 (these particular kind of elliptic curves are called “curves with complex
multiplication”). See [BHPV, p. 143].

For an arbitrary complex manifold M let PBunE(M) respectively BunE(M) be the
set of principal bundles, respectively the set of elliptic bundles on M with fiber E. The
above exact sequence implies

0−→ PBunE(M)−→ BunE(M)−→H1(M,Aut(E0))

See again [BHPV, p. 143].
As Aut(E0) is a finite group, we see that for any elliptic bundle X −→M there is

a finite cover M ′ of M such that X ′ = X ×M M ′ is a principal bundle, in other words
any elliptic bundle has a finite cover which is an elliptic principal bundle (see [BHPV,
p. 147]).

B. We now recall some classical facts about the j-invariant. Let E = C/〈1, τ〉, τ ∈ C,
Im τ > 0 be a framed elliptic curve. Its j-invariant is the complex function

j(E) = j(τ) = 1728
g32(E)

∆(E)
,

where

g2(E) = g2(τ) = 60
∑

(m,n)∈Z\{0}

(m+ nτ)−4,

g3(E) = g3(τ) = 160
∑

(m,n)∈Z\{0}

(m+ nτ)−6,

these two series being known to be absolutely convergent, and

∆(E) = g32(E)− 27g24(E).
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From the very definition, the j-invariant is an analytic function of τ .
If now π : X −→ T is an analytic family of elliptic curves, one defines J : T −→ C by

J(t) = j(Et). As T is a manifold and hence locally simply connected, we may suppose
the analytic family to be analytically framed. This implies that J is analytic, as a
composition of the analytic maps τ 7→ j(τ) and the period map t 7→ τ(t).
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