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 NUMERICAL APPROXIMATION FOR FUNCTIONALS
 OF REFLECTING DIFFUSION PROCESSES*

 C. COSTANTINIt, B. PACCHIAROTTIP, AND F. SARTORETTO?

 Abstract. The aim of this paper is to approximate the expectation of a large class of functionals
 of the solution (X, () of a stochastic differential equation with normal reflection in a piecewise smooth
 domain of Rd. This also yields a Monte Carlo method for solving partial differential problems of
 parabolic type with mixed boundary conditions. The approximation is based on a modified Euler
 scheme for the stochastic differential equation. The scheme can be driven by a sequence of bounded
 independently and identically distributed (i.i.d.) random variables, or, when the domain is convex,
 by a sequence of Gaussian i.i.d. random variables. The order of (weak) convergence for both cases is
 given. In the former case the order of convergence is 1/2, and it is shown to be exact by an example.
 In the last section numerical tests are presented. The behavior of the error as a function of the final
 time T, for fixed values of the discretization step, and as a function of the discretization step, for
 fixed values of the final time T, is analyzed.

 Key words. stochastic differential equations with reflection, reflecting boundary conditions,
 Neumann boundary conditions, mixed boundary conditions, numerical schemes, weak convergence,
 Monte Carlo method

 AMS subject classifications. 60F17, 60J50, 60H30, 65C05

 PIT. S0036139995291040

 1. Introduction. Numerical evaluation of expectations of functionals of diffu-
 sion processes is an important issue in physical, chemical and engineering problems
 (see, for example, the classical books [4] and [17]). It also provides an approach to the
 solution of boundary value problems using parallel computers (see, for example, [14]).

 This paper proposes and analyzes an approximation for the expectation of a quite
 general functional of a reflecting diffusion process. In particular, this allows us to deal
 with pure Neumann and mixed boundary value problems.

 Let D be a bounded domain in Rjd with piecewise C1 boundary, and let b: [0, T] x
 D -> R d and : [0, T] x D -> R d (0 Rd' be continuous functions. Under suitable
 assumptions on D, b, and a, specified in section 2 (in particular, if D is convex or
 has a C2 boundary and b, a are uniformly Lipschitz continuous in space), it is well
 defined the diffusion process with coefficients b and a and normal reflection in D,
 starting at X? E D, i.e., a D-valued continuous stochastic process X = {XS}t<s<T,
 Xt = X?, for which there exist a (unique) continuous, increasing stochastic process
 ( = {J;s}t?<ST (local time) and a (unique) stochastic process n = {rnS}t<S<T, such
 that nr is a suitably normalized inward normal vector at X, E AD and the triple
 (X, (, n) satisfies

 (1.1) { dX8 = b(s, X,)ds + ?u(s, X,)dB, + n?id , t < s < T,

 { ts = faD(Xr)d<,r t < s < T,
 where B is a standard Brownian motion.

 *Received by the editors August 30, 1995; accepted for publication (in revised form) October 1,
 1996.
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 74 C. COSTANTINI, B. PACCHIAROTTI, AND F. SARTORETTO

 We consider a functional of X and ( of the form

 Ft,T(X, ) = 1T<?r f(XT) exp(YT + ZT)

 (1.2) +?T>Tg1(T,Xr) exp(Y-+?ZT)

 - ft 922(r, X,) exp(Yr + Zr) dr,

 where f: D -X R, g9: [0, T] x &1D -X R, 92: [0, T] x (&D - &1D) - > IR are continuous
 functions and

 (i) - inf{s: t < s < T, XS e 91D}, if {s: t < s < T, XS E 1D}$78 0,
 +00, otherwise,

 01D being a (possibly empty) closed subset of OD,

 (ii) Ys = f c(r, Xr)dr,
 (iii) Zs fsAt A(r, Xr)d rX

 with c: [0, T] x D -* R and A: [0, T] x (&D -1D) -* IR continuous, and A(r, x) > 0.
 Important special cases of E [Ft,T(X, ()] are the expectation of a function f of

 XT (corresponding to 01D = 0, hence T = +o?, 92 = c = A 0), the expectation
 of the local time ,T (obtained by setting &1D = 0, f = c = A = 0, 92 = 1),
 and the expectation of any compact support function g of the hitting time of 01D,
 (corresponding to T large enough, gi(t, x) = g(t), f = 9 c = A = 0).

 In addition, considering XO = x, E [Ft,T(X, ()] Et,= [Ft,T(X, ()] can be viewed
 as a representation of the (classical) solution u(t, x) of the backward partial differential
 equation with mixed boundary conditions

 { t (t, x) + (Ltu + cu) (t, x) = 0, in [0, T) x D,

 (1.3) u (T,x)= f(x), in Di
 u(t,x) =gi(t,x), in [0,T) x 01D,

 -( an-Au) (t, x) =92 (t, x), in [0, T) x (&D - 8D - D)

 where

 1 d &92U d 9
 Ltu(t,x) = E aij(t, x) (t, x) + Ebi(t, x),g (t,x),

 2i,j=1 axaj i=1i
 d'

 aij (t, x) E uik (t, X)Ujk (t, X)
 k=1

 &9D is the set of points x E AD for which there is not a unique unit inward normal
 vector n(x) (see section 2 for a precise definition). This is a well-known result for
 smooth boundary and pure Dirichlet or pure Neumann boundary conditions, which
 we extend to piecewise smooth boundary and mixed boundary conditions in section 2.

 The (classical) solution v(t,x) of the forward partial differential equation with
 mixed boundary conditions

 I vt(t, x) = (Ltv + cv)(t, x), in (0, T] x D,

 ( v(O,x) f(x), in D,

 v (t,X)-gi(t,x), in (O,T] x a1D,

 (1) (v _ Av) (t,X) = 92(t, x), in (0, T] x (OD- 9D-91D),

 can also be represented as the expectation of a functional of the form (1.2), provided X
 is replaced by the diffusion process X {XS}T-t<S<T, XT-t = x, with coefficients
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 APPROXIMATION FOR FUNCTIONALS OF REFLECTING DIFFUSIONS 75

 b(s, x) = b(T - s, x), &(s, x) = (T s, x); ( is replaced by the corresponding local
 time (; t is replaced by T - t; and the functions c(s, x), A(s, x), gi (s, x), i = 1, 2, are
 replaced by a(s, x) = c(T - s, x), A (s, x) = A(T - s, x), gt (s, x) = gi (T - s, x), i = 1, 2,
 respectively.

 In the time-homogeneous case (b, o, c, A, gj independent of the time variable)

 the expectation of (1.2) reduces to the expectation of FO,T-t(X, ) = FT-t(X,I),
 X being the diffusion process starting from X? at time 0 and ( being the cor-

 responding local time, and we have u(t, x) = Eo,x [FT-t(X,I)] Ex [FT-t(X,I )],
 v(t, x) = Eo,x [Ft(X,I )] = Ex [Ft(X,I )].

 Therefore, any approximation of Ft,T(X, ) yields a Monte Carlo method for
 solving (1.3) and (1.4). Our approximation of Ft,T(X, ) is based on the following
 discretization of (1.1):

 s0 = t, s = t +ph,

 Xh XO, h =0,

 P+,+lWh = hb(sp+I,X ) + v'hc(sp+i,X )z\p+1i
 kCh + Xh + lwh 8p?1 SP, P+ IW

 (1.5) Xh { < +1) if Xh 1 D,

 hPJ -[ h (if 5sh SSppl l (h + p I X +1 ), if XSP+1 Di
 CSp+1 { p ?(ki,h) if h

 X S = S, for SP < s < Sp+11

 p = 0, . . N - 1, Nh = T - t, N > 2, where ir denotes the normal projection on
 D and P is a function defined in section 2. Whenever there is a unique unit inward
 normal vector at 7r(w), P is simply given by

 P(W) = 17r(w) - Wl.

 {IAP+li} is a sequence of i.i.d. random variables, independent of XO, verifying suitable
 assumptions on their first three moments (see section 3), bounded if D is not convex.
 The choice of evaluating b and a at sp+1 allows us to require as little regularity of b
 and a in the time variable as possible (see the proof of Lemma 3.1). (Xh, Ih) is the
 solution of the Skorohod problem (see section 2) for Wh,

 Wh ~Xh + ZEP Ak.+lwh~, wh= Xh
 (1.6) S +1 so + Ek=0 Ak+l , 8 p SO

 W(h Wh) for sp < s < sp+,, p N - 1.

 As an approximation of Ft,T(X, I) we take

 FtT (Xh vh) ENVh f (XhN ) exp(Yh + ZhN)

 +EN>L,h gl (SVh IXxh) eXp(Y9hh + ZSh)

 (1.7) E12<Vh _(NAVh)-292(sp+,xXh +) exp(Yh +Zh )AP+14h

 -IN<,h 92(sN,XsN) exp(yh + Zh-1,)ANchX

 where Aip h = SSpp1- and
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 76 C. COSTANTINI, B. PACCHIAROTTI, AND F. SARTORETTO

 (i)vh= f min{p: 0 < p < N, XhP E 01D}, if {p: 0 < p? N, Xh e O1D} + 0,

 +00, otherwise,

 (ii) yIh = _C(sk+l?,Xhk)h, p 1, N, yh = y, yh y yh forsP < s <
 SP+,, P = ?, ... ., N,

 (iii) Zh = Z (sk+l,XPk?l)Ak+lthgk<vhl, p = 1, .*N, Zh = 0, Zsh
 Zh for s < s < SP+1,p P-, . ., N.

 In the case when 01D = 0, and hence T = =h ?,+00 by interpreting the integral
 T+

 in (1 2) as + 92 (r, Xr) exp (Yr- + Zr- )d r, one sees that

 (1.8) F T(Xh,hh) = Ft,T(Xh, h).

 In section 3 we show that if either i) the random variables A/p+,? are bounded, or
 ii) D is convex, b and a are time independent, and the random variables Ap+17r are
 Gaussian, then

 (1.9) sup _Et,x [Ft,T(X, i)]-Et,x [F T(Xh, hh)] - 0 for h -> 0.
 t<T,xED

 Under suitable smoothness assumptions on OD, b, a, f, c, A, and gi, i = 1,2, we prove
 (Theorems 3.4 and 3.6) in the former case that there is a constant C such that

 (1.10) SUp j- Et,x [Ft,T(X, )]-t,x [FPT(xh, h)1 | Cht /
 t<T,XED

 for h less than some h1, and in the latter case that for every e > 0 there is a constant
 CE such that

 (1.11) sup - t,h [Ft,T(X, ()]-Etx [Ft%(xh, (h)] ? < CE hl/2E.
 t<T,XED

 Finally, note that the operator Lt is not required to be uniformly elliptic or even
 nondegenerate and that the error bounds (1.10) and (1.11) are uniform in both time
 and space.

 Moreover, we show that the estimate (1.10) is tight. In fact, for a standard
 reflecting Brownian motion in an interval and a suitable functional FT, the left-hand
 side of (1.10) is bounded from below by a constant times h1/2 (Example 3.1).

 Discretization schemes for (1.1) have been recently considered in the literature.
 All the proposed schemes are modifications of the Euler scheme for a diffusion in Rld.
 (For approximation methods of stochastic differential equations in Rd, see [8] or [15].)

 In [20] Slomin'ski considers two strong approximations of (X,() in the time-

 homogeneous case: (Xh, h) defined by scheme (5) in [20] and (Xh h) defined by
 scheme (4) in [20]. In the case of a convex set D, the author derives the strong con-
 vergence rate (in the sense of [8]) of both approximations; namely, he shows that for
 every q E N there is a constant Cq such that

 (1.12) E sup I - X I2q] < Cq hq,
 -s<T

 and that for every e > 0, q E N, there is a constant Cq such that

 (1.13) ESUPI - h?_XC2ql < q/2-,
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 APPROXIMATION FOR FUNCTIONALS OF REFLECTING DIFFUSIONS 77

 which is improved to

 (1.14) E supX - X8 I2] < Cq' hq,

 if D is a convex polyhedron. For a half-space D, similar results were proved by

 Lepingle in [10] for Xh, and by Chitashvili and Lazrieva in [1] and Kinkladze in [7] for

 Xh. kh is obtained by approximating X in each time step by a reflecting Brownian

 motion with linear drift, obtained by freezing b and a. Therefore, this method cannot

 actually be implemented in a general convex domain, but in [11] Lepingle shows how
 it can be implemented in a half-space, an orthant, or a parallelepiped. The behavior

 of Xh is further analyzed in [21]. An approximation scheme for (X, () based on a

 penalty method is proposed in [13].

 (Xh,eh) coincides in law with (Xh, h) provided the Ap+z?i's are taken to be
 Gaussian. (1.13) or (1.14), together with

 (1.15) sup E [((h)qf < +?0 Vq E N,

 which follows from the results of Slomifnski in [20], imply (1.9). However, (1.13) (or
 (1.14)) and (1.15) can yield no estimate of the convergence rate of the left-hand side

 of (1.9): in fact, since (1.2) and (1.7) involve integrals in df and dfh, such an estimate
 would require an upper bound on the total variation of ( - ch.

 In contrast, here we focus on weak convergence of the scheme (1.5), combining the
 technique used by Talay in [22] and by Talay and Tubaro in [23] for a diffusion process
 in Rd, with results on the normal reflection Skorohod problem for cadlag paths. Our

 approach enables us to obtain the error bounds (1.10) and (1.11) for a large class of
 functionals including integrals with respect to d(, and in a large class of domains. In

 addition, it allows us to use random variables Ap+X7i with arbitrary law, which has
 advantages in the implementation of the scheme.

 The fact that h1/2 is the exact weak convergence rate of the scheme (1.5) with

 bounded A\p+i,'s is, in our opinion, one of the most interesting points of this paper.
 In fact, for a diffusion in Rd, the Euler scheme has strong convergence rate h1/2 but

 weak convergence rate h (see, for instance, [8]).
 In [16] two other weak discretization schemes of (1.1) are considered in domains

 with smooth boundary. These schemes differ from (1.5), in particular in the mecha-
 nism that approximates reflection on the boundary. One of them achieves the rate of
 convergence h, but, as pointed out by the author, is difficult to implement, while the
 other one is simpler, but has rate of convergence h/

 In section 2 some definitions and theorems on the Skorohod problem and on

 reflecting diffusions are briefly recalled and the above-mentioned extension for the
 representation of the solutions of (1.3) and (1.4) is derived. In section 3 we prove
 our main results. In section 4 numerical tests are presented and their outcomes are
 analyzed. The scheme (1.5) is applied to an example of diffusion in R2, previously
 considered in [23]. We take D = [-L, L] x [-L, L], with L = 1, 1.2, 10, and a functional

 FO,T(X, &) whose expectation can be computed exactly. m = 10,000 i.i.d. copies
 of (Xh, (h) starting at x = (1, 1) are simulated and the error Eo,x [Fo,T(X,)]-

 rn Zm> FOhT (Xh,i, (hi) is evaluated for different values of T and h. For each value
 of L and h, the evolution of the error with respect to T is shown. In particular, for
 L = 10, the simulated diffusion never hits the boundary and our results reproduce well
 those reported in [23]. For each value of L and some values of T the behavior of the
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 78 C. COSTANTINI, B. PACCHIAROTTI, AND F. SARTORETTO

 error with respect to h is considered: it appears to be consistent with the theoretical
 analysis of section 3. These numerical results are obtained by using pseudorandom

 variables Ap+z?1 uniformly distributed on a finite number of values. In the last part
 of section 4 some of these results are compared with the corresponding ones obtained

 by using Gaussian pseudorandom variables Ap+z??. The comparison shows that the
 CPU time consumed when using Gaussian pseudorandom variables is 1.2 times larger
 than the CPU time consumed when using discrete uniform pseudorandom variables,
 while the error raised using Gaussian variables is in general not smaller.

 2. Preliminaries. The Skorohod problem with normal reflection has been stud-
 ied chiefly by Tanaka in [24], for convex domains, and by Lions and Sznitman in [12]
 and Saisho in [18], for more general domains. These works deal with continuous paths.
 Extension of their results to cadlag paths are contained in [2], as a special case of re-
 sults on the Skorohod problem with oblique reflection, and in [19]. Here we follow [2]
 and [18].

 Let D be a bounded domain in Rd. Define the set Kx of inward normal vectors
 at x c AD by

 fx= {an: x > O, n c Ax,p for some p > O},

 fx,p= {n (E Rd: Inj = 1, B(x -pn, p) n D = 0}

 where B(x, p) = {y E Rd: IY- X < p}. We introduce two conditions on D.
 Condition A (uniform exterior sphere condition). There exists a constant po > 0

 such that JKx,po 74 0 Vx c OD.
 Condition B. There exist constants 6 > 0 and , E [1, oo) with the property that

 for every x E OD there is a unit vector ex such that

 ex n >; VinE u iVy Inj=1
 yEB(x,6)naD

 If D is convex or has a C2 boundary then Conditions A and B are verified. In
 particular, if D is convex, Condition A holds with po = +?o.

 Throughout this paper it will be assumed that D satisfies Conditions A and B.
 Remark 2.1. If Condition A is verified, then for every w , D such that the

 distance of w from D, d(w, D), is strictly less than po, there exists a unique normal
 projection ir(w) on D; i.e., there exists one and only one point ir(w) E D such that

 (2.1) 17r(w)-wl = d(w,D).

 ir(w) C OD and

 ir(w) - w E JV(w)

 In addition to Conditions A and B it will always be assumed that D has a piecewise
 C1 boundary. More precisely, we will suppose that

 I

 (2.2) D = n Di,
 i=l1

 where each Di verifies the uniform exterior sphere condition, and

 Di = {x: Gi(x) > 0}, &Di = {x: Gi(x)=O},
 Gi E C'(Rld), inDf 1, VGi(x) I > O, i=_ 1,.. 1.

 Let &,D be the set of points in OD that belong to &Di for more than one value of i,

 and, for x E SD, let {il(x), . .. ,ik(x)}J= {il, . .. ,ik}, 2 < k < I, be the unique set of
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 APPROXIMATION FOR FUNCTIONALS OF REFLECTING DIFFUSIONS 79

 indexes such that

 X E (n Dij) n ( n Di)

 Denoting by nii (x) the unit inward normal at x with respect to Dij,, it will be
 assumed that for every n E ix there exists a unique set of nonnegative measurable
 functions {la1 (n),.. . , k(n) } such that

 k

 (2.3) n = Z aj (n)ni (x).
 j=1

 Then there exists a positive constant a such that

 k

 (2.4) InH < ?Zaj(n) < alnl VnNx, xE 0D.
 j=1

 Define

 (2.5) Ax= n{nE x :=1aj(n)1} forx E 0&D,
 Xx = {n E : xn I= 1} forx ED-&8D.

 We now introduce the normal reflection Skorohod problem in a formulation de-
 vised for application in this work. Denote by D([t,T],Rd) (D([t,T],D)) the space

 of cadlag paths with values in Rd (respectively, D) and by I([t, T], IR+) the space of
 ciadlag increasing paths with values in R+.

 DEFINITION 2.1. A solution of the normal reflection Skorohod problem in D for
 w E D([t,T],Jd), wt E D, is a pair (x,(), x E D([t,T],D), ( E I([t,T],IR+), for
 which there exists a measurable function n such that nr E K , d<r-almost everywhere
 and the triple (x, ,, n) satisfies

 { xs =Ws+ft nrdr t < s <dT

 l(S = ft ED(Xr)d&,r t < s < T.

 Remark 2.2. The usual definition of the normal reflection Skorohod problem

 requires nr E JVXr Inr, = 1, rather than nr E ./1 . The reason why we take nr E J
 is that with this normalization the Neumann boundary condition in (1.3) extends

 automatically to 0sD. In fact, if the last equation of (1.3) is verified, then, by (2.3)
 and (2.5),

 d

 S 0 (t,x)ni -A(t,x)u(t,x) = 92(t,x) Vt E [O,T], n E r , x E OD-01D.

 However, there is a one to one correspondence between solutions of the normal re-
 flection Skorohod problem in the usual sense and in the sense of definition (2.2).
 Therefore all existence and uniqueness results carry over. Moreover, by (2.4) the es-
 timates of Theorem 2.2 below, proved in [2] with the usual definition of the Skorohod
 problem, carry over too.

 Under the Conditions A and B, in [18] it is proved that there exists a unique
 solution to the normal reflection Skorohod problem for every w E C([t,T],Rjd) (the
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 80 C. COSTANTINI, B. PACCHIAROTTI, AND F. SARTORETTO

 space of continuous paths with values in Rd). For a smaller class of domains, in [2] it is

 proved that there exists a solution for every w E D([t, T], Rd) such that SUpt<s<T Ws -

 Ws- I is bounded by a constant determined by D; in addition, for every c > 0 there
 exists c' > 0 such that for every w c E([t, T], Rd) verifying SUpt<s<T IwS - W < c'
 there exists a solution (x, () verifying SUpt<s<T IxS - I < c*

 THEOREM 2.2 (see [2] and Remark 2.2). For every w E VD([t,T],Rd) , C D
 there exist constants K(w, t, T), K'(w, t, T) such that for any solution (x, () of the

 normal reflection Skorohod problem in D for w such that SUPt<s<T x - ?xs- I < CO
 co being determined by D (co = +oo if D is convex), it holds that

 (2.6) SUPt1<r1<r2?<t2 lx(ri) -X(r2)1
 < K(w, t, T) supti<ri<r2<t2 |w(ri) - w(r2)j, t < tl < t2 < T,

 (2-7) (t2 - (t1 < K'(w,t,T) sup jw(ri) - w(r2)1, t < tl K t2 < T.
 tl <rl <r2 <t2

 K(w, t, T) and K'(w, t, T) are given by

 (2.8) K(w,t,T) - (T t-t)C K'(w,t,T) = (T t-T)C'

 where C, C', and M are constants depending only upon D and

 6w (M, t, T) = sup {6: gw (6, t, T) < M},

 w (6,t,T)= inf max sup lw(u)-w(r)j,
 {ri}EIP u ,rElri,ri+?)

 1P being the set of the partitions {ri} of [t, T] such that mini ri -ri+1 I > &. 6w (M, t, T)
 is bounded away from zero as w varies in a relatively compact subset of D([t, T], Rd).

 Note that (2.6) and (2.7) imply that for a continuous datum w, any solution (x, ()

 such that Supt<s<T xs8 - I < co is necessarily continuous.
 Remark 2.3. If w is a step function on [t,T], w- w,p for sp < s < sp+l, p-

 O, ..., N-1, t = sO < sl < - * < SN = T, such that maxp Iwp+8--wspI < Po, then
 there is one and only one solution of the Skorohod problem among the step functions

 on [t, T] that are constant on [sp, sp+?), p = O,... , N - 1. The solution is given by

 -f xsp + A/p+w, if xsp + Ap+lw E D,

 XSP+1 - { (x,p + AP+1w), if xsp + 4p+iw ? DI

 = f Is, if xsp +Ap+lw E D,
 GP + P (i (xsp + AP+ 1 w), xsP + AP+ 1 w) , if xsP + AP+iw C DI

 XS= x, ,,=(,p for sp<s<sp+j,p=0,...,N-1,

 where \p+iw = WS - W. and, for w V D,

 (2.9) P( ) |F (w)-wI for 7r(w) E OD-a8D,
 ( Ej aj (w(w) - w) for 7r(w) E &8D.

 Therefore, (Xh, th), defined recursively by (1.5), is a solution of the normal reflection
 Skorohod problem for Wh, defined by (1.6), almost surely. Note that, by (2.9), (2.1),
 and (2.4),

 (2.10) Ap+l h < aIAp+lWhL.
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 APPROXIMATION FOR FUNCTIONALS OF REFLECTING DIFFUSIONS 81

 Let (Q, F, (sF)t<s<T, P) be a filtered probability space, B be an Rd'-valued
 (YS)t<S<T-Brownian motion, and b: [t, T] x D --* ld, [t, T] x D Rd 0 Rd'
 be continuous functions.

 DEFINITION 2.3. A pair (X, () of (GF)t<8<T-adapted stochastic processes, X
 with paths in C([t, T], D), ( with paths in I([t, T], R+) is a (strong) solution of the
 stochastic differential equation (SDE) of coefficients b and a with normal reflection in

 D if it satisfies (1.1), for some adapted stochastic process n such that n8 E IVx, d<8-
 almost everywhere, almost surely. X is called a diffusion process with coefficients b
 and of and normal reflection in D, and ( is called local time.

 Remark 2.4. Of course, if (X, () is a solution of the SDE of coefficients b and o-
 with normal reflection in D, then (X, c) is a solution of the normal reflection Skorohod

 problem for W8 = i8 b(r, Xr)dr + itf a(r, Xr)dBr, almost surely.
 The following theorem is proved in [18] for b and a time-independent, but it

 extends to time-dependent b and o- as well.
 THEOREM 2.4 (see [18]). Assume Conditions A and B hold and suppose there

 exists a constant L > 0 such that

 (2.11) Ia(s, x) - a(s, y)I < L|x - y|, s E [t,T], x,y E D,
 (b(s,x)-b(s,y) I Lix-yi, s E [t,T], x,y E D.

 Then there exists one and only one solution of the SDE of coefficients b and a with

 normal reflection in D.
 In the sequel we will always assume that b and a satisfy (2.11). We conclude this

 section with some results about the solutions u and v of problems (1.3) and (1.4). By
 a classical solution of (1.3) or (1.4) we mean a solution in C1,2([0, T] x D).

 THEOREM 2.5. Let u and v be classical solutions of (1.3) and (1.4), respectively,
 and suppose either that D is convex or that u and v can be extended to functions
 in C12([0, T] x Rd) (see, for instance, Remark 2.5 below). Then, for every (t, x) E
 [0, T] x D, the following representations hold:

 a (i)

 (2.12) u(t, x) = Et,x [Ft,T(X, )],

 where (X,) is the solution of the SDE, of coefficients b and a with normal reflection
 in D, Xt x, and Ft,T(X, ,) is the functional defined by (1.2);

 . (ii)

 (2.13) v(t, x) = ET-t,x [FT-t,T(X,k)j

 where (X, () is the solution of the SDE of coefficients b(s, x) = b(T-s, x) and &(s, x) =
 oa(T - s, x) and normal reflection in D, XT_t = x. FT_t,T(X, ) is the functional
 defined by (1.2) with t replaced by T - t and the functions c(s, x), A(s, x), gj(s, x), i =
 1,2, replaced by c(s,x) = c(T - s,x), A(s,x) = A(T - s,x), gj (s,x) = g(T - s,x),
 i = 1, 2, respectively.

 Proof. Consider the assertion (i). When D has sufficiently smooth boundary,
 and pure Dirichlet or pure Neumann boundary conditions are considered, this is a
 well-known result, which can be found, for instance, in [3]. For the mixed boundary
 conditions considered here, it is enough to apply the proof for Dirichlet conditions to
 the reflecting diffusion X, i.e., to apply Ito's formula to the function y(s, x, y, z) =
 u(s, x) exp(y + z) , and to the stochastic process (X, Y, Z) with Y and Z defined as in
 (1.2). When D has a piecewise C1 boundary, the assertion follows from Remark 2.2
 and the fact that, under the present assumptions, Ito's formula still holds. Finally,
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 82 C. COSTANTINI, B. PACCHIAROTTI, AND F. SARTORETTO

 (ii) follows from the fact that u?(t, x) v(T - t, x) is a solution of a problem of the

 form (1.3) with coefficients b, &, a, A and data 91, 92, f. D
 When D has a C2 boundary, i.e.,

 D = {x: G(x) > O}, G E C2,

 AD =(. {x: G(x) = O}, infxEaD I V G(x)I > 0,

 the following theorems, given in [9], discuss existence, uniqueness, and regularity of
 the solutions of (1.3) and (1.4), at least for the pure Dirichlet and pure Neumann
 cases. We consider only (1.3), since (1.4) reduces to (1.3) by a time change. Let 1 > 0
 be a noninteger number and denote by H' (D) the space of functions f E CW (D) such

 that D[llf (with this notation we mean any derivative of order [1] with respect to
 the variables xI,. . X, Xd) is a H6lder continuous function of exponent I - [1] (see [9]).
 Analogously, let Hl/21 ([0, T] x D) denote the space of functions u with continuous
 derivatives DD u(t, x) for 2i + j < 1, such that D"D'u(t, x) for 2i + j [1] are
 H6lder continuous of exponent 1 - [1]. By the phrase "&D belongs to Hl' we mean
 that the function G in (2.14) belongs to H' Hl (RId). For a function ' defined on AD

 ([O, T] x AD), Ip) E Hl (&D) (,b E Hl/21 ([0, T] x AD)) means that b is the restriction to
 AD of a function in H' ({x: d(x, AD) < p}) (H'!2" ([O, T] x {x d(x, aD) < p})) for
 some p > 0.

 We say that the compatibility conditions of order m > 0 are fulfilled for the pure
 Dirichlet problem (&1D = AD) if

 (2.15) atk t=T

 where -/k are the functions defined recursively by

 f Vo = f,

 (2.16) j E ( k

 with

 d ~ ~ ad
 -(i)() =-2 E_ ,I: (T, x) ,9(x) _ gtji (T, x) , 7 (x) - 5-j (T, x)-y (x).

 Analogously, we say that the compatibility conditions of order m > 0 are fulfilled for
 the pure Neumann problem (&1D = 0) if

 (2.17) [ k(L an E_ atJ t=T 1D at t=T

 where -Yk are the functions defined in (2.16).
 THEOREM 2.6 (see [9]). Let &1D = AD. Suppose the coefficients b, o and the

 function c belong to H'/21 ([0, T] x D) and the boundary AD belongs to H1+2 for some
 1 > 0. Then for every f E H' 2(D), 91 E H'/2 1"+2((0,T] x &D) satisfying the
 compatibility conditions (2.15) of order [1/2] + 1, the problem (1.3) has one and only
 one solution in Hl/2+11+2 ([0, T] x D ).

 THEOREM 2.7 (see [9]). Let &1D = 0. Suppose &D belongs to H1+2 and the coeffi-
 cients b, a and the function c are in the class Hl/21 ([O, T] xD), A E H(1+1)/2,1+1([0, T] x
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 APPROXIMATION FOR FUNCTIONALS OF REFLECTING DIFFUSIONS 83

 AD), for some I > 0. Then, for every f C Hg+'(D), 92 C H(U+1)/21+1 ([O, T] x AD)
 satisfying the compatibility conditions (2.17) of order [(1 + 1)/2], the problem (1.3) has

 one and only one solution in H1/2+l l+2([0, T] x D ).
 Remark 2.5. If D is not convex, in Theorem 2.5 above and in section 3 we need

 to assume that the solutions u and v of (1.3) and (1.4) can be extended to functions
 in C1'2([O, T] x Rd). This is always true if OD and the coefficients and data are

 sufficiently smooth. In particular, if OD belongs to H1+2, for some 1 > 0, any function
 in H1/2+ Q1'2(0, T] x D) can be extended to a function in H'/2+ 1"2([O,T] x Rd)
 (Proposition 1.17 in [5]).

 3. Main results. Let X be the diffusion process with coefficients b and a and
 normal reflection in D (see Definition 2.3 and Theorem 2.4) and ( be the corresponding
 local time, and let (Xh, h), Xh - X- x, be defined by (1.5) for h small enough
 (h < ho, where ho is defined by (3.6) below). Let {Ap+17r} be a sequence of d'-
 dimensional i.i.d. random variables, on some probability space (Q, XF, P), such that

 (3.1) E [AP+171 -?)

 (3.2) E [(Ap+qiri) (Ap+1iq)] { o if j, #l i j,

 (3 3) E [I/\P+,T,13] < +()C
 In addition, if D is not convex, take Ap+1a7 bounded. Set

 (3.4) HN = max JAp+1771

 and

 (3.5) H = sup |AP+1n(W)1
 weQ

 if Ap+r17 is bounded.
 In this section, we will always assume that there exists a classical solution, u, of

 (1.3) (see, for instance, Theorems 2.6, 2.7) and, if D is not convex, that u can be
 extended to a function in C12 ([0, T] x IRd) (see Remark 2.5). The extended function
 will still be denoted by u, and any assumptions on u will be referred to the extension.
 Let

 (3.6) (5SUP[O,T] X D Jb(s, X) I + H SUP[o,T] XD I (S,)II) A l I

 (where po is the constant of Condition A in section 2), if D is not convex, and ho = 1, if
 D is convex. In all stateinents and computations, C and 0(T) will denote constants
 depending only on D, the coefficients, and the data of the problem. Consider the
 functionals Ft,T and FphT defined by (1.2) and (1.7), respectively.

 LEMMA 3.1. For h < ho, for every x C D, t E [0, T], it holds that

 |Et,x [Ft,T(X, ()]-Et,x [FtT(Xh, h)]

 < C(T)Et,x [EN>VhHN] a/h

 ( ) ~~+C(T)Et,x [HN(h] Vah

 +C(T) {1 + Et,x [Eh ] + Et,x [HN(h] + Et,x [HNk] } h

 + IEt,x [r(t, T, h)] I

 + JEt,x [R(t, T, h)] I I
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 where

 r(t, T, h)

 (3.8) NAVh_) (f>)l frU' [u (s, Xh) - U8(sp+, 1Xh)] exp (Yh ? Zh) ds,

 R(t, T, h)

 E (NAvh)-l dj+21 vhzj(pla + o Ap+1 V) (3-9) = h>[j? ZP=h> Zi7j1j ~0 +OjLspiVh)

 - fv~(Sp?i,<V?h)] Ap+iVihAp+vh,

 vi =-xi ) (ESP S:P ) P+ Vjh = Ap+,Xih for i=1, ..., d,

 Vd+1 =Y (Vs )d+l (1p), Ap+1V1 = Ap i yd

 Vd?2 = Z, (Vh )d+2 = (ZP ),Av P?1 V d2 = p+r Zh,

 So(t,v) = y(t,x,y,z) = u(t,x)exp (y + z), 0 < oh < 1,

 and C(T) is a constant depending only on T, D the coefficients of (1.1), and the data
 of (1.2).

 Proof. By applying Ito's formula for semimartingales to the function Wo(t, x, y, z) =
 u(t, x) exp (y + z), we have

 w(T A 81/hXThAs h ? TAsvh ZThAs h ) (t, X, 0, 0)

 (3.10) _ ftTASvh ) (s xh, yh Zh)ds

 h (NAVh )_1 rp (,p,h yh zh _(+ Ixh yh z h +V^ Ep=O L(p Sp+,' ?Sp+,' Sp+, (Sfl) Sp I Sp I -Sp)

 By expanding the summands in the right-hand side of (3.10) by Taylor's formula,

 introducing the notation uP = u(Sp+i, Xh up = U8(Sp?i, Xh4) Up = Uxi (Sp+?, Xh),
 up ixj = uxixj(Sp+i,XP)h bP = b(sp?i,Xh ), UP = o(sp?i,Xh ), CP = C(Sppl7xh
 AP= A(sp?,,Xsh), nP- ni(X4h), eP = exp (yh + Zh), uPs - u(sp+ Xh

 -Spf l -u S (s ?,Xs,), uS+ uXi(sp+,Xp1), uPj - = (Spp+l,X+,) )
 b(sp+i,Xs,) P?lu u(sp+lXp+1), cPu -c(sp Xh ) APx1 = UP' p+1
 n P+l= n (Xhpl)7 eP+1 = exp (Y8h+1 + Zh we get

 p(T A 5>h, VTAS h 7hTASVh Z Ash) W(t, X 0 0)

 = TA uh u(s Xh) exp (yh ? Zh)ds

 (NAVh)1j d

 h>1 CP UP3P+1XzS uu1PCPh - uP>AP+"AihX Pp+Xh
 p=O i=1

 (NAVh)_l d

 +2l> l 5 e 5{ A? c u3 l}
 p=O ij=l

 (NA Vh )_ d

 +gh >1 eP {uxP, A P+, X hcPh h-uP AP1 XihAP+ A p+l h Rp< v
 p=O g-
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 APPROXIMATION FOR FUNCTIONALS OF REFLECTING DIFFUSIONS 85

 (NA Vh)_1

 +?1lhi> E ep {uP(cP)2h2 - 2uPcPAP+lhAp+ljhEP<vh-
 2 p=O

 ?UP(Ap+l)2(Xp+l1h)2EP<vh_j } + R(t, T, h),

 where R(t, T, h) is given by (3.9). Recalling that we have set

 (3.11) A p+?Wh = hb(sp l I Xh ) + 4h(SPp1, Xh )p+11
 so that

 d

 S uxixj p+1X Ap+lXJ
 i,j=1

 d

 = S UXPix {<p?iWPhAp+iW3h + 2Ap+XpXlhn+lAP+lth
 i,j=1

 P+1 j+l eh+2

 we obtain, rearranging the terms,

 (p(T A SVh, XT h A YTASVh ZT/Sh) - W(t, X) 0, 0)

 =-JTASUh usu(s, X ) exp (yh + Zsh)ds

 (NAvh) _1 d d h

 +llvh>1 Z eP>J f \TApP,Wh + 2 Upij AWhp+Wj + UPVhAd
 (NAh> ) 1 - uAAP1P+v I-'?i-' -' PhS

 p=0 i=1 i,i=l

 + NI[vh?1 S d p< -1-5 ](A?~)
 (NAiA)-1 te1 ~uP(AP+l)2I1U-1i Al

 p=O =

 (NAVh)_1 d

 +1h>1 S ePc ?5uPxlWn h h+1 - UPAP AP+1 h
 p=O i=1

 (NAvh)_1 d d
 +2Evh>I E p L x) h x - ii P-? j= i,j=

 (NAVh _d J -1 d
 +-Rvh>l ePg uP (AP+' )2 P<h-l u,jp+n A+~

 p=O i=l

 (NAVh)t T
 +2:>h>1 Pc E eUpxi) hP W

 (NAv h) 1 f d (

 2 p=0~~~~~p=

 h>1~ ~ ec UP n+1 - uPPTpV-lA+~ +E h E E eP Lux i uPte<h pl
 p=o i=1

 +R(t, T h).

 Then, by adding and subtracting

 (NAVh )_1

 epuPh

 p=o
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 and

 Ith>?1 e _u x ni uP+VAEp <h-lJ A+?kh,
 P=0

 and by taking expectations, we have

 Et, [9(T AS,h, ,h jPA ,7h Z4t 9 X] -t, X, 00)

 z1Et,~ Lvh?l NAvh)~1 j [TAs,h XI) TA- u8s1i Xfl-epTyh Zds
 (NAv )1 spl

 =t,T vh>l | {u(s,Xt) -? u(sp+L,X)] exp( + ZX)ds

 ?}E~~~(,Mb th?>7e

 P=O

 ~ [av< h eNl {>7 u c(SN,l XPN )mb(XPN) -(NXNUXsN) )}Nhhl

 (NAvh)1 f d

 +Et, fflh>2l eP U,(p,Xh()pL, U14(S +1 xh

 ?Evh?i N PP P+I (p?

 St j=Ixn j

 +C(Sp+2, XLhV? )N(Sp+h, Xhl ) p<vh

 +! Flit-hl >7 0' > in" iSP ? S' 'pt+h2

 (NAvh-1 { 4 ) dt U(CP)2}

 +Et,x l>h> i (Sp+ Ih I(xhpO )nij(X

 F (NAvh ) 1 (d (

 +t[ 1 >7e{7p<h1 J ?ih

 +Etz LEa>l E e>p -A<s )US+ I( Xh )-gAp+lxjJpi

 tytphl~~~P+ S d d

 +2Et,x IN<,h> eN- ePi (S iX Usnj h A(SN, Ch )PUP(SNi Xh ANX

 (NAv h)1 d d

 +Et,X f,> > } ? nP+ UP UP+l) + UP Ap+l twh
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 APPROXIMATION FOR FUNCTIONALS OF REFLECTING DIFFUSIONS 87

 Therefore, taking into account that u is a solution of problem (1.3), and Remark 2.2,
 we get, by moving the appropriate terms to the left-hand side and rearranging the
 other ones,

 Et,x [Ft,T(X, E)]-t,x [FhT(Xh, Ih)]

 = -Et,x [N>Vh>l evh1 1 UXi (SNAVhlXXN h )ni(X h)LNAvhfh1 (a)

 + 2'Et x Vh>l1 Ep=o eP { I =1UXX niP+ lnJ+l _
 (b)

 uP(AP+l )2Ep<Vhl} (Ap+,fh)2]

 +Et,x [ h>1 E(NAVh)_l eP Ed n p+l

 Ed1 {Uxixj(sp+l, Xh + z04/Ap+1Xh) (c)

 (d)

 +2j= Zd iug.b S?uP(cP)2 } h2]

 ?IEt,z [IYVh?l ZEA_o ) epcP {uPAP+ll[p<,,hl -Zz=1 ug zrti1 } A\p+ilhh] (e)

 [IY? ZNA>L/)-1 epAp+l Ilp<vh -1 z;=1 {uxj (Sp+l XSp)

 (f)

 -Uxj(Sp?i, XhP +? hzXh) }A+ XhA1Xh 1

 whereO0< t9hp < 1, o < h<l1 and r(t, T, h) is defined by (3.8).
 We can now estimate the terms (a) through (f).

 (a) By (2.10), we have almost surely, for every p,

 (3.13) IA hI ? aIhb(sp,X ) + Sp

 and hence

 (a)I < C(T)E-,x [N hIhb(sVhX h ) ? hdbb

 < 0(T) {Pt,x=(N ? lh)h ? t [N>thHN1 \},

 where HN is defined by (3.4).
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 (b) By (3.13),

 |(b)| < C(T)Et, X =E(o ) (+1)]

 < C(T)E, [E (NAVh)_1 |hb(sp+1, Xh ) + \/7ho(s p+, XhA )Ap+, ? 1Ap+1 h]

 < C(T) {Et,x [Th] h + Et,x [HN(h] V/1}h

 (c) Taking into account that

 (3.14) \ <+1Xhl ? 21hb(sP+1,Xh ) + h(s

 we have

 |(c)| ? C(T)Eti, [p-0 !hb(sp+?,X1 ) + P+177AP+l

 < C(T) {Et,x [(h] h + Et,x [HNO] vh

 (d) I (d) I < C (T) h.
 (e) I (e) I < C(T)Et,x [(hT] h.
 (f) By (3.14):

 (f)I < C(T)Et,x [ZPN =o p?ixN2Ap?ih]

 ?0C(T) {Et,x [(h] h2 + Et,x [HNh] hv + Et,x [HN2h] h}

 This concludes the proof. [

 Remark 3. 1.

 (i) If 01D = 0, that is (1.3) is a pure Neumann problem, then (a) = 0 since
 vh - +oo.

 (ii) If ux, i, j =1,.. , d, is a Lipschitz continuous function of x we have

 |uxixj(Sp+1,Xp+l)_- Uxixj(Sp+1,IXh + +t9ihAp+iXh)| < C(T)JAp+1Xhj,

 and therefore,

 |(C)| I< C(T)Et,x [E(NAh)_ A p+1xhj2Ap+1Xh]

 < C(T) {Et,x [(h] h2 + Et,x [HN(h] hvh + t,x [HN2h] h}

 LEMMA 3.2.

 . (i)

 Sup _Et,x [r(t, T, h)] I 0 for h -O 0.
 t<T,xC-D

 If u, is a Hdlder continuous function of s of exponent 1/2 then, for h < ho,

 Sup IEt,X [r(t, T, h)] < C(T) vh.
 t<T,xC D
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 APPROXIMATION FOR FUNCTIONALS OF REFLECTING DIFFUSIONS 89

 If u, is a Lipschitz continuous function of s then, for h < ho,

 Sup _Et,x [r(t, T, h)] ? C(T)h.
 t<T,xED

 . (ii)

 sup lEt,x [R(t,T,h)] M O for h -+ O.
 t<T,xEfD

 If uxix,, i, j = 1,... ,d, is a Lipschitz continuous function of x, then, for
 h < ho,

 sup _Et,x [R(t, T, h)] I < C(T)v'h.
 t<T,xED

 Proof. (i) It is enough to observe that

 lEt,x [r(t, T, h)] ? < C(T) sup lus (S, Y) -us (S2 , Y) .
 t si < 82 < T

 - 821 < h
 y E D

 (ii) Setting

 4 -, h -p=pvvivj(Sp+lVh)_iv;(Sp+i,V8h + OLhAp+Vh)l,

 we have, by (3.13) and (3.14),

 TEt,x [R(t, T, h)] I

 * 1 EN-1 Ed _2 E x h,piA/p+lvhl2]

 < c>jEN-1 Zdj2- Et,x [if {piX+lxhl2 + h2 + (z p+lh)2}]

 < 0(T) - lEd+2 3j < [QIKf)] 1/3{h ? E ] h

 < C(T) maxo<p<N_1 Ei,j_1 Et,x [ ] ( 1ij

 We have, by (1.7), (3.12), and (3.13),

 [,h,p) 3]

 =-Et,x [Q?iKP)3 El Tp+i VhI <] + , [ J 1)EIE p+l VhI>1

 ? (T) {( f Vh(<,T,D x F)) + t,x (D.Af1Vh l> ?

 where F= [0oSUP[O,T]XD Ic(s,x)IT] x (-oo,0] is the range of (Vd+l,Vd+2) and

 lvv (j T D x F) = max sup sup ( -
 SE s[0,T] v,i E D x F

 IV - vl < 6
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 Therefore, by (3.13), (3.14), and (3.3),

 limsuphO SUPt<T,xED maxp >ij:1 Et,x [4),j

 ? C(T) iM sup60 rliM SUPh,O {( (8,T,D x F))

 + P (C(T) (h + VhIAP+1l) >? }

 = 0.

 If uxixj is a Lipschitz continuous function we have, again by (3.13) and (3.14),

 Et, [Q4)j ] < C(T)Etx IzP?iVh 3 < C(T) [h3/2 + EIAp+lq 3 h3/2,

 so that, by (3.3),

 SUP IEt,x [R(t, T, h)] < C(T)Vh7. 5
 t<T,xED

 Let

 2

 (3-15) hi ~~~~~~po A coAl
 (3.15) 4 ~ (sup[o~4 u T]xDlb(Qs,x)I +HSUP[O,T]XD |u(s,x)H Al,

 where co is the constant in Theorem 2.2 if D is not convex, and h1 = 1 if D is convex.
 LEMMA 3.3. If LAp+i?7 is bounded, then for any q E N

 sup sup Et,x [() q] = C(T) < +oo,
 h<hl t<T,xED

 where C(T) is a constant depending only on T, D, H, q, and the coefficients of (1.1).
 Proof. By Theorem 2.2 and Remark 2.3,

 - 6W (MI ti T) rsu2 [t,] I Wr2 Wrik1

 where Wh is defined by (1.5) and (1.6). Therefore

 SUp Et,x [(T) q
 t<T,xEDf

 I 1/2
 < C(T) sup _Et,x )W M ,T2q

 p

 t < Tsup Et max ha p ' < N _ ( k+17)
 t<T,XED [s p

 Let us prove

This content downloaded from 
������������151.100.101.44 on Thu, 15 Jul 2021 11:45:03 UTC������������� 

All use subject to https://about.jstor.org/terms



 APPROXIMATION FOR FUNCTIONALS OF REFLECTING DIFFUSIONS 91

 (i)

 h<hl t<T,xED 6Wh (M, t, T)2] <?+?,

 (ii)

 [ 1 ~~~~~~~~~~2q1
 sup sup Et' max Z'Vho(sk+1, Xh )zk+1r, <?+00.

 [o<?p<?p < N-1 k J

 Concerning (ii) we have, by (3.2) and the Burkholder-Davis-Gundy inequality,
 for any q E N,

 SUPt<T,XCED Etx [maxo<?p<p <N-1 EkZ p V'f (Sk+l, Xp )ZAk+l 2q]

 K C SUPt<T',XED ,f [maxo<p<N-1 E=0 Vho(Sk+1, X )Ak+l ]

 < CE [(_=O hlAk+1? 1)1]

 < C(TH2)q.

 For (i) we will show that

 su sup~DL , ( j )2q > u) du < 0c.
 h<hl t<T,XED O+ 6Wh (MI t, T)

 We have

 (P W (,t, T )2q > u) Pt'X (6Wh (MI t, T) <( ) )

 I1 Pt,X (6Wh (MI t, T) >( ) ) ?

 By definition (see Theorem 2.2)

 Pt x 6Wh (MI t,T) > () )>- Pt,z x h ((u t IT <M)

 > Pt,x (max sup < M
 i r,r' E[rt ,ri+ 1)

 for any partition {ri} of [t,T] such that mini(ri+1 -ri) > (1) /(2q). We choose a
 suitable partition; namely, we take m -1 [hu1(2q)]) where [ ] denotes the integer

 part, and ri = t + imh, i = O,.. ., [N/mr]- 1, r[N/m] = T. In this way, Wh has at
 most m - 1 jumps in [ri, ri+i) for i =, . .., [N/m] - 2 and at most 2m - 2 jumps in

 [r[N/m]-1, r[N/m]). Moreover,
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 92 C. COSTANTINI, B. PACCHIAROTTI, AND F. SARTORETTO

 max sup IWr -WJr, O<i<[N/m]-1 r,r'E[ri,ri+?)

 < 2 max sup JW -W J
 O<i<[N/m]-l rC [ri ,ri+,) I)r

 < C(T max max maIx Z~JSmk1Xh +)/'im+k+1TI { O<i<[N/m]-2 1<p<m-l E k FhO(Sim+k+l +im+k

 1/(2q)

 +~~~~

 p-i

 Let YSp denote the u-algebra generated by {Ak+lr}O?k?p1, for everyp-=1, ... .,N-i.
 By the Burkholder-Davis-Gundy inequality, for any q' c IN and for u larger than some

 tUq,qI independent of t, x, and h, we have

 Pt~ h~ Z a J (Sim+k+ l ,Xst+k ) /\im+k+ 17

 < ~~C(T)H2q'
 [Mull/(4q) -(1/ul)1/(4q) C(T)] 2q

 and

 pt,x (l <p max m Vh(S([N/m]_1)m+k+1l XN/]l) +k )kA([N/m]-l)m+k+lrl

 \1<v<N-[N/m]m+m-1 k=

 > Ml /4s)(1l/u)l/(~) C(T) (rn-i1) 1!2 |;( [N/m> - 1)m )

 < ~~C(T)H2q' - (1/u)1/(4q)C(T)]2'

 Therefore, for Buq,qu sufficiently large,

 M 1 '4q_ ( 1(4, C(T)2q'

 _ Uq,qI ?] .M1, 1q (1 1u1/(4q)C) | du.

 and ~ ~ ~ ,'L
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 APPROXIMATION FOR FUNCTIONALS OF REFLECTING DIFFUSIONS 93

 It is easy to show that the function

 f(u) = L1- (1-- -)C(T)H2q') )q'/(2q)

 is bounded for u > uq,q', so that for q' > 2q, the integral in the right-hand side is
 finite and independent of t, x, and h. 1

 THEOREM 3.4. If Ap+ir, is bounded, then

 sup -EEt,x [Ft,T(X, S)]-Ex [Ft v(Xh, (h)] 0 for h -O 0. t<T,xED

 If, furthermore, u, is a H6lder continuous function of s of exponent 1/2 and ux,xj,
 i, j = 1, d, is a Lipschitz continuous function of x, then, for h < h,

 SUp _ |Et,x [Ft,T(X, )]-Et,x [EFPT(xh, hh)] I C(T)h1/2, t<T,xED -',(

 where C(T) is a constant depending only on T, D, H, the coefficients of (1.1), and
 the data of (1.2).

 Proof. The assertions follow immediately from Lemmas 3.1, 3.2, and 3.3. U
 Example 3.1. In this example we prove that in general the estimate of Theorem

 3.4 cannot be improved. Let X be the reflecting Brownian motion in D = [-1, 1]
 (i.e., b = 0 and a = 1), ( be the corresponding local time, and consider the functional
 (1.2) with t O, T = 1, 01D = 0, f (x) = 1 - X2, C = A = 0, 2 2, that is,

 F1(X,) = 1- X2 - 2&1.

 In this case (1.3) takes the form

 u t(t, x) + 2uXX(t, x) = 0,

 (3.16) u(1, x) = 1- x2,

 I OD 2. An latD

 Since the assumptions of Theorem 2.7 are verified for every 1 > 0, (3.16) has one and
 only one classical solution, which is given by

 u(t, x) = t-x2.

 Let Xh and (h be defined by (1.5) with ZXp+177 uniformly distributed on {-1, 1}.
 Then, by (3.12) we have

 E7 [F1(X,()] - Ez [Flh (Xh, h)] = 1E [Zu8x(nP+1)2(AP+1h)21

 -N-1

 - -EX E (zAp+,(h)2

 Let h = 1/i2 for some i E N, i > 2. Then, if the starting point is x = 0,
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 94 C. COSTANTINI, B. PACCHIAROTTI, AND F. SARTORETTO

 hence

 -N-1

 Eo [F,(x,i)1 Eo [Fh (Xh, Ih)] = V/hEo Z (AP+, h)
 -p=O

 _Vh\EO [4h]-

 By the continuity properties of the Skorohod problem (see, for instance, [2, Corollary
 3.3]), (h converges in law to 41, for h -O 0. Therefore, by Lemma 3.3,

 Eo [1h] Eo[(l for h -O 0
 and

 IEo [F, (X, ()]-E [F X, Ih-4 0[4]+?

 Since Eo [(,] 51 0, this shows that the estimate of Theorem 3.4 is tight.
 LEMMA 3.5 (see [20, pp. 208 and 210]). If b and a are time independent, D is

 convex, and Ap+ir1 is a standard Gaussian random variable, then for any q E N

 sup sup Et,x ((h)q = Cq(T) < +o Vq >
 h<1 t<T,xED

 where 0q(T) is a constant depending only on T, D, q, and the coefficients of (1.1).

 THEOREM 3.6. If b and a are time independent, D is convex, and Xp+1i1 is a
 standard Gaussian random variable, then

 p _ |t,x [Ft,T(X, `)1- , [Ft%T(Xh, (h)1 | 0 for h 0.
 t<T,xED

 If, furthermore, us is a Holder continuous function of s of exponent 1/2 and uxaxi is
 a Lipschitz continuous function of x for i, j = 1, ... , d, then for every e > 0 there is

 a constant C6(T), depending only on T, D, the coefficients of (1.1), and the data of
 (1.2), such that, for h < 1,

 sup Et,x [Ft,T(X, E)1-t,x [Ft T(xh, (h )] < C (T)h1/
 t<T,xED

 Proof. For any q E N

 (3.17) E [(vhHNj)j < E [WB(hj T)2q] I

 where B is a standard Brownian motion and

 WB(h, T) sup lBs1-Bs2 1.
 0<S1 <S2 < T

 S2 - SI < h

 By Lemma 3 in the Appendix of [20], for every e > 0 there is a constant C' such that
 the right-hand side of (3.17) is bounded by C60-6. Then the assertion follows from
 Lemmas 3.1, 3.2, and 3.5. 0

 Remark 3.2. In Theorems 3.4 and 3.6 we have proved (1.9) by means of Lemma
 3.1, which requires that there exists a classical solution u of (1.3). However, at least
 in the pure Neumann case (01D - 0), giving up uniformity in t and x, (1.9) holds
 much more in general. In fact the stochastic process (Xh, th) defined by (1.5) always
 converges in law to the solution (X, () of the SDE of coefficients b and a with normal
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 APPROXIMATION FOR FUNCTIONALS OF REFLECTING DIFFUSIONS 95

 reflection in D. (This is proved in [20] if b and a are time independent, D is convex,
 and Ap+jir is a standard Gaussian random variable, while if Ap+1T7 is bounded it
 can be shown by standard weak convergence techniques and results on the Skorohod

 problem, such as, for instance, the ones in [2].) Then, for any f and 92, (1.9) (without
 uniformity in t and x) follows from Lemmas 3.3 and 3.5.

 4. Numerical tests. For our numerical tests we considered the two-dimensional

 diffusion process with the same coefficients as the first example in [23], namely,

 -X2~~ ~~~ 0 Sin(sl +X2 )\
 (4.1) b(s,x) = ( X2), (S)= ______0 )

 u(sx) COS(XI?X2) 0

 and normal reflection in D [-L, L] x [-L, L]. With the choice

 (4.2) 01D 0, f(x) = X2 + X2 c(s, x)- 0, A(s, x) = 0, g2(s, x) -2L,

 the functional (1.2) becomes

 (4.3) Ft,T(X, ) XT 12 + 2L&T-

 Since the domain [-L, L] x [-L, L] satisfies the assumptions made in section 2, by
 Theorem 2.5 the expectation of Ft,T(X, () is given by the solution of problem (1.3),

 which is, irrespectively of L > 0,

 (4.4) u(t, x) = x2 x2 + log(T + 1) - log(t + 1).

 The discretization scheme (1.5) has been implemented with pseudorandom variables

 {Ap+l}o<p<N-l uniformly distributed over {(-1, -1), (-1,1), (1, -1), (1, 1)}. The
 expectation of the functional FPhT(Xh, th) has been approximated by the arithmetic
 mean over m = 10,000 independent paths. The starting time t = 0 and the starting
 point x? = (1, 1) have been set, and the behavior of the error

 m

 (4.5) e(h, T) = Eo,xo [FO,T(X, )h- -X, F h,T(X , (hi)

 has been analyzed both with respect to T, for fixed h, and with respect to h, for

 fixed T. The values L = 10,1.2,1 have been considered. A large number of ex-

 periments were made, by performing double precision Fortran computations on the
 IBM RISC/6000-390 of the Dipartimento di Metodi e Modelli Matematici per le
 Scienze Applicate of the University of Padua. The workstation was equipped with an
 IBM AIX XL Fortran v. 02 compiler. The discrete uniform pseudorandom variables

 {AP+l1}O<p<-l were generated by using the routine DURAND from library ESSL
 (see reference [6]). The most significant results, which are discussed below, were ob-
 tained for 0 < T < 10 and for the values h - 0.000625, 0.00125, 0.0025, 0.005, 0.01,
 0.02 (some results for h = 0.04 are also reported).

 Figures 4.1 and 4.2 show the behavior of e(h,T) versus T, 0 < T < 10, when
 L = 10 is set. In this case the starting point x? = (1, 1) is so far from the boundary
 that none of the simulated paths hits OD before T = 10. For h = 0.01, the behavior
 of the error compares very well with that given for the same value of h in the second
 figure of the first example in [23]. The error is negative and is linearly decreasing
 with respect to T, a phenomenon which is explained in [23]. No other values of h
 are considered for the Euler scheme in [23]. The curves in Figure 4.1 exhibit large
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 0 1 2 3 4 5 6 7 8 9 10

 0.05 l I I I -0.05

 h=0.000625

 00oh= 00 1 25 0

 -0.05- ^ s5f'E<z*-0.05

 ................ ..........

 0.05 . --0.05

 h=0.0025

 -0.15 I -0.15

 0 1 2 3 4 5 6 7 8 9 10

 T

 FIG. 4.1. The error e(h, T) plotted vs T. L 10 is set. The least squares fitting straight lines
 are also shown.

 0 1 2 3 4 5 6 7 8 9 10

 0.0 I I I I I t -0.0

 h=0.005 .. . . . . . . .. . . . . . * .. . .. . .1.. - . .. . . ..... . . .. ... . -.. o .. .

 -0'2 I-...-.. --0.2 .

 - h=0.01 '
 -0.4- -. ' -0.4

 -0.6- . ' X --0.6

 - . . .. . . . . , . .- .... .. . . . . . . . . .. . .. . . . . . . . .. '... . . . . . ".. . . . .
 -0.8- -- - ---- h=0.02 -0.8

 -10 i [ --1.0
 0 1 2 3 4 5 6 7 8 9 10

 T

 FIG. 4.2. The error e(h, T) plotted vs T. L 10 is set. Note that the vertical scale is different
 from the one in Figure 1.

 oscillations. This is due to the fact that for small values of h the error deriving from

 approximating Elo,.o [FhT(Xh, ph)] by an arithmetic mean becomes relevant relative
 to the error deriving from approximating E0o,zo [FO,T(X, ()X by Eo,zo [FOT(Xh, (h)].

 Figures 4.3 and 4.4 show the behavior of the error e(h, T) versus T, 0 < T < 10,
 when L =1 is set. The initial point xo is now on the boundary, and thus the simulated
 trajectories undergo a large number of reflections at the beginning. Inspecting Figures
 4.3 and 4.4, we see that e(h, T) is positive and grows with T, for small values of T;
 as T becomes larger, either e(h, T) remains quite unchanged (when h = 0.00125,
 0.0025, 0.005), or it decreases, in the end oscillating around zero (for h = 0.000625),
 or approaching larger and larger negative values (h = 0.01, 0.02).

 Figures 4.5 and 4.6 show the behavior of the error e(h, T) when L- 1.2 is set, i.e.,
 the starting point x -(1, 1) is "near to," but not on the boundary, thus producing
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 0 1 2 3 4 5 6 7 8 9 10

 0.05 I _ I - -0.05
 h= 00025

 h 0.00125

 08~~~~~~~~~~~. . . . . . .. . . .. . . .. . ........ ... ....... ^ *.... . .. .

 0.0 0.0

 hF0.000625

 . . . . . . ... . .. .. .. .. .. .. . . . . . . .. .. . . . . . . .. .. . . .. . . . .. ... ... .
 - -0.05- . , -0.05

 .. . . . . .... . .. . . . . . .. . . . . . . . .... . . . . . . ....... .. . . . . ... . ......... . . . . . . ... .. . . . . . . . ... .... . . . .

 -0.1 --0. 1

 -0.15- T 1 r 1 i 1 r iri --0.15
 0 1 2 3 4 5 6 7 8 9 10

 T

 FIG. 4.3. The same as Figure 4.2, setting L = 1. Note that the vertical scale is the same as in
 Figure 4.1.

 0 1 2 3 4 5 6 7 8 9 10

 0.05-. 0.05

 h=0.005

 h=0.01

 . . . . . -0.0

 -0.1 - . . '.......'.' --0.1

 -0.15 i F j r T T iT --0.15
 0 1 2 3 4 5 6 7 8 9 10

 FIG. 4.4. The same as Figure 4.3. L = 1 is set.

 fewer reflections than in the previous case. A mixture of the behaviors detected for
 L = 1 and L = 10 can be recognized. In particular, when h = 0.01 (Figure 4.6),
 e(h, T) initially oscillates with T, but then starts to decrease and finally linearly runs
 toward larger negative values.

 Now let us study how e(h, T) changes with h.
 Figures 4.7, 4.8, 4.9, and 4.10 show the values of e(h, T) versus h = 0.000625,

 0.00125, 0.0025, 0.005, 0.01, 0.02, 0.04 for L = 1, 1.2, 10 and T = 2, 10. From (3.12)
 and from the results given in [23] we guessed that

 (4.6) e(h,T) -cl(T)h + c2(T)V'ih
 for suitable c1 > 0, c2 > 0.

 The dashed curves in Figures 4.7, 4.8, 4.9, and 4.10 are obtained by computing the
 coefficients cl and c2 in (4.6) by the least squares method (see Table 4.1). For T = 2,
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 0 1 2 3 4 5 6 7 8 9 10

 0.05 I ! 005

 h=0.0025:

 0.0 - 0.0

 h 0.000625

 h= h=0.00125 .

 ? -0.05- . ..... ~ ~.. . .... ... > . .... .............0 0 .-0.05

 .. .. . . ~~~~~~~~~~~~~~~~~~~~~~~~~..... .... .......

 -0.1 ~~~~~~~~~~~~~~~~~~~-0.1

 -0.15 i F I F i F I -0.15

 0 1 2 3 4 5 6 7 8 9 10

 T

 FIG. 4.5. The same as Figure 4.3, setting L 1.2.

 0 1 2 3 4 5 6 7 8 9 10

 0.05 - J ! J l I J L- L -0.05

 X.0 005

 -0.0 < o > ^ 'w~ s h=0.01

 -0.15 F I F I F I F -0.15

 0 1 2 3 4 5 6 7 8 9 10

 T

 FiG. 4.6. The same as Figure 4.3, setting L = 1.2.

 L 10, a negative c2 value was obtained, probably due to approximation errors.
 Computed values of e(h, T) and least squares smoothing compare well, suggesting
 that equation (4.6) provides a good qualitative analysis of the variation of the error
 with respect to h. We are currently working on a rigorous proof of (4.6) and studying
 how cl and c2-depend on T. c. andc2depend also on the domain D and the starting
 point xo, in particular, in this example, on the parameter L. The larger L is, the
 smaller C2 (T, L) should be with respect to cl (T, L). This could also explain why the
 error for L - 1 and L 0 1.2 is much smaller in absolute value, than for L 10, namely
 because, for L = 1 and L = 1.2, a compensation of errors occurs. Another explanation
 might be that every time the simulated path hits the boundary, the normal derivative
 of ut is evaluated exactly.

 The results shown up to now were obtained by generating pseudorandom variables
 { fp+i L1 } 0<paNi from a discrete uniform distribution. When Gaussian pseudoran-

This content downloaded from 
������������151.100.101.44 on Thu, 15 Jul 2021 11:45:03 UTC������������� 

All use subject to https://about.jstor.org/terms



 APPROXIMATION FOR FUNCTIONALS OF REFLECTING DIFFUSIONS 99

 0.0 0.01 0.02 0.03 0.04

 0.10- 0.1

 0.05 . -~ : ~ ..... . .. ... .... ..-[...-0.05
 --------------------- , L -1

 A K .... .. ..................... .........
 -.0.. ........... . ...... . ..... - -0.1

 -0.2- < - s @ e -0.2~L=1.

 -0.2 --0.
 2 1.

 -0.25 -00.15

 0.0 0.01 0.02 0.03 0.04

 h

 FIG. 4.7. Values of e(h, T) for h 0.000625, 0.00125, 0.0025, 0.005,0.01,0.02, 0.04, when T 2
 is set. The cases L - 1 (D symbols), L = 1.2 (A symbols), L = 10 (* symbols) are considered. The
 dashed curves are obtained by a least squares fit of the form (4.6).

 0.0 0.01 0.02 0.03 0.04

 0.5- I I. - I0.5

 0.0 . .. -0.0

 -0.5 .'.......0.5.........

 w ~ *-
 -.0-.... .' . .. . , . .. ' . ... .. .. . ........... ............... ........... ................................ --..0 . . . .

 .... .. .... . . ".........
 -1.0- : -1.0

 -2.0 I i '-2.0
 0.0 0.01 0.02 0.03 0.04

 h

 FIG. 4.8. The same as Figure 4.7 for T = 10, L 10. Note that the vertical scale is different
 from the one in Figure 4.7.

 dom variables are generated, more CPU time is consumed, but no gain in precision
 seems to be achieved. Table 4.2 shows the CPU time spent to compute the same
 quantities by using either uniform (columns labeled "su") or normal pseudorandom
 variables (columns labeled "SN"). The latter were obtained by calling the routine
 DNRAND of library ESSL (see reference [6]). The column labeled "SN/SU" in Table
 4.2 shows the ratios of the "SN" values divided by the "Su" values. We see that the
 overall CPU time consumed using normal pseudorandom variables is 1.2 times larger.
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 0.0 0.01 0.02 0.03 0.04

 0.5- L I L -0.5

 00 - -.............. -0.0

 4.6-0 .5..... ........... ................. . --0.5 UJ . ~ ~ ~~~~~~~ ' . .....

 -1.0- ' --1.0

 -1.5 . .. .......... ............. --1 .5

 -1 5 . ............... ......

 -2.0 r -2.0

 0.0 0.01 0.02 0.03 0.04

 h

 FIG. 4.9. The same as Figure 4.8, for T = 10, L = 1.2.

 0.0 0.01 0.02 0.03 0.04

 0.5- -0.5

 4.5- . ... . ... . ~~~~~~~ ~~~~~~ ~ ~~ ~~~~........... ........ ........ ........ ............ 5

 -1.0- --1.0

 -1.5- . ........................ --1.5

 -1 5 . ................. .. ..

 -2.0 -2.0

 0.0 0.01 0.02 0.03 0.04

 h

 FIG. 4.10. The same as Figure 4.8, for T = 10, L = 1.

 TABLE 4.1

 Coefficients cl and c2 of (4.6) computed by the least squares method with the data shown in
 Figures 4.7, 4.8, 4.9, 4.10.

 T _ 2

 L cl C2
 1.0 3.054368 0.652123

 1.2 3.614892 0.450973

 10.0 -4.501581 -0.179268
 ___ T = 10

 LI Cj C2
 1.0 9.1553 0.950793

 1.2 12.9672 0.877067

 10.0 46.3092 0.6567402
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 TABLE 4.2

 CPU time (in seconds) spent to perform numerical simulations up to T = 10 by generating

 uniform pseudorandom variables (su) or normal pseudorandom variables (SN). The ratios SN/SU

 are also shown. The cases L 1 and L 10 are considered.

 h su SN SN/SU
 0.000625 1508 1800 1.2

 0.00125 761 905 1.2

 0.0025 382 453 1.2

 0.005 191 228 1.2

 0.01 96 114 1.2

 0.02 48 58 1.2

 L = 10

 h Su SN SN /SU
 0.000625 1555 1841 1.2

 0.00125 777 925 1.2

 0.0025 388 461 1.2

 0.005 194 230 1.2

 0.01 97 115 1.2

 0.02 48 57 1.2

 TABLE 4.3

 Ratios AN/AU between the average absolute errors raised using pseudonormal (AN) or pseu-

 douniform variables (Au). T = 10; the cases L = 1, 1.2, 10 are considered. The mean ratios are
 also shown.

 h L = 1 L = 1.2 L = 10

 0.000625 0.1620E+1 0.2259E+1 0.7647E+0

 0.00125 0.2021E+1 0.4635E+1 0.1512E+1
 0.0025 0.1133E+1 0.8006E+0 0.7197E+0
 0.005 0.1754E+ 1 0.1516E+1 0.9997E+0

 0.01 0.3302E+1 0.1152E+1 0.1023E+1
 0.02 0.1106E+1 0.8953E+0 0.9463E+0

 mean 0.1823E+1 0.1876E+1 0.9942E+0

 For given h and L values, let us define the average absolute errors

 T/h T/h

 AN- T/hZ eN(h,ph)l, Au Z jeu(h,ph)j,

 where eN and eu denote the errors raised using normal and uniform pseudorandom

 variables, respectively. Table 4.3 shows the ratios AN/AU for T = 10, L = 1, 1.2, 10.

 In the case L - 1, the average absolute error obtained using pseudonormal variables

 can be up to three times that for pseudouniform variables, and the mean ratio (with
 respect to h) is 1.8. In the case L = 10 the ratios are practically equal to 1, when
 h > 0.005. The cases L = 10, h < 0.005 are peculiar: as was previously pointed out,

 in these cases the incidence of the error due to the approximation of an expectation by

 an arithmetic mean is relevant. The mean ratio is close to 1. When L = 1.2, the mean
 ratio is very close to that for L = 1, suggesting again that a poorer precision is likely

 to be obtained using pseudonormal variables. Summarizing, no gain in precision, or
 even a loss, is to be expected using pseudonormal variables instead of pseudouniform
 ones.

 Inspecting Table 4.2, we see that for each h < 0.02, the time reported for L =1 is
 smaller than in the case L = 10. This is surprising enough, because some additional

 CPU time is needed to compute the last two summands of (1.7) when a simulated
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 path hits the boundary, and many simulated paths hit the boundary when L = 1,

 while none hit when L = 10. Investigating further, we concluded that this result

 is due to the optimization strategies used on request by the IBM AIX XL Fortran

 compiler. The CPU times reported in Table 4.2 were obtained running the optimized

 code. Running the unoptimized compiled code needs up to three times the CPU

 seconds recorded in Table 4.2, and the computing time turns out to be larger when

 L = 1 than when L = 10.
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