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Abstract: In this paper, a new reliability measure, named sequential interval reliability, is introduced
for homogeneous semi-Markov repairable systems in discrete time. This measure is the probability
that the system is working in a given sequence of non-overlapping time intervals. Many reliability
measures are particular cases of this new reliability measure that we propose; this is the case for the
interval reliability, the reliability function and the availability function. A recurrent-type formula is
established for the calculation in the transient case and an asymptotic result determines its limiting
behaviour. The results are illustrated by means of a numerical example which illustrates the possible
application of the measure to real systems.
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1. Introduction

This paper is concerned with reliability indicators for semi-Markov systems. As it is
well known (see, e.g., [1–6]), semi-Markov processes represent an important modelling tool
for practical problems in reliability, survival analysis, financial mathematics, and manpower
planning, among other applied domains. The attractiveness of these processes comes from
the fact that the sojourn time in a state can be arbitrarily distributed, as compared to
Markov processes, where the sojourn time in a state is constrained to be geometrically or
exponentially distributed.

Several researchers have investigated the reliability measures of semi-Markov pro-
cesses. Examples of discrete-time semi-Markov processes with the associated reliability
measures and statistical topics can be found in, e.g., [7–10], who proposed a semi-Markov
chain usage model in discrete time and provided analytical formulas for the mean and vari-
ance of the single-use reliability of the system. The evaluation of reliability indicators for
continuous-time semi-Markov processes and statistical inference can be found in [11–15].
The readers interested in solving numerically continuous-time semi-Markov processes by
using discrete-time semi-Markov processes for solving continuous ones are referred to
[16–19].

In the present work, we propose a new measure for analysing the performance of
a system, called the sequential interval reliability (SIR). This generalises the notion of
interval reliability, as it is introduced in [20] for discrete-time semi-Markov processes and
further studied in [21,22]. In line with the work of [23], we are also interested in a general
definition that takes into account the dependence on what is called the final backward. It is
worth mentioning that interval reliability was first introduced and studied for continuous-
time semi-Markov systems in [24,25]. In those contributions, the interval reliability was
expressed in terms of a system of integral equation.

This measure computes the probability that a system is in a working state during a
sequence of non-overlapping intervals. This type of measure is of importance in several
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applications: in reliability, when a system has to perform during consequent time periods;
in extreme value theory, where we can be interested in the occurrence of an extreme event
during several time periods; in energy studies, where we are interested, for instance, in
the electricity consumption that is greater or below a certain threshold; and in financial
modelling, in order to create advanced credit scoring models, etc.

This article is structured as follows: in the next section, we introduce the basic semi-
Markov notions and notations and we also give the corresponding measures of reliabil-
ity. The main object of our study, namely sequential interval reliability, is introduced in
Section 3. Then, we first perform transient analysis, providing a recurrence formula for
computing the SIR. Second, we furnish an asymptotic result, as a time of interest that
extends to infinity. A numerical example is provided in Section 4, illustrating some aspects
of our theoretical work.

2. Discrete-Time Semi-Markov Processes and Reliability Measures

Let us consider a random system with finite state space E = {1, . . . , s}, s < ∞ and
let (Ω,A,P) be a probability space. We assume that the evolution in time of the system
is governed by a stochastic process Z = (Zk)k∈N, defined on (Ω,A,P) with values in E;
in other words, Zk gives the state of the system at time k. Let T = (Tn)n∈N, defined on
(Ω,A,P) with values in Z, be the successive time points when state changes in (Zk)k∈N
occur (the jump times) and let J = (Jn)n∈N, defined on (Ω,A,P) with values in E, be the
successively visited states at these time points. We denote by X = (Xn)n∈N∗ the successive
sojourn times in the visited states, i.e., Xn+1 = Sn+1 − Sn, n ∈ N. The relation between the
process Z and the process J of the successively visited states is given by Zk = JN(k), or,
equivalently, Jn = ZTn , n, k ∈ N, where:

N(k) := max{n ∈ N | Tn ≤ k} (1)

is the discrete-time counting process of the number of jumps in [0, k] ⊂ N.

Definition 1 (Semi-Markov chain SMC and Markov renewal chain MRC). If we have:

P(Jn+1 = j, Tn+1 − Tn = k|Jn = i, Jn−1, . . . , J0, Tn, . . . , T0) = P(Jn+1 = j, Tn+1 − Tn = k|Jn = i), (2)

then Z = (Zk)k is called a semi-Markov chain (SMC) and (J, T) = (Jn, Tn)n is called a Markov
renewal chain (MRC).

Throughout this paper, we assume that the MRC or SMC are homogeneous with
respect to the time in the sense that Equation (2) is independent of n. Thus, we will work
under the following assumption:

Assumption 1. The SMC (or, equivalently, the MRC) is assumed to be homogeneous in time.

It is clear that, if (J, T) is a MRC, then J = (Jn)n∈N is a Markov chain with state space
E, called the embedded Markov chain of the MRC (J, T) (or of the SMC Z).

Definition 2. For a semi-Markov chain, under Assumption 1, we define:

• The semi-Markov core matrix (qij(k))i,j∈E,k∈N, qij(k) = P(Jn+1 = j, Tn+1 − Tn = k|Jn =
i);

• The initial distribution (µi)i∈E, µi = P(J0 = i) = P(Z0 = i);
• The transition matrix (pij)i,j∈E of the embedded Markov chain J = (Jn)n, pij = P(Jn+1 =

j|Jn = i);
• The conditional sojourn time distribution ( fij(k))i,j∈E,k∈N, fij(k) = P(Tn+1 − Tn =

k|Jn = i, Jn+1 = j);
• The sojourn time distribution in a state (hi(k))i∈E,k∈N, hi(k) = P(Tn+1 − Tn = k|Jn =

i).
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Note that:

qij(k) = pij fij(k).

Remark 1. We would like to draw the attention to a specific terminological matter that we encoun-
tered in the literature of discrete-time semi-Markov processes with finite or countable state space
and that may lead to terminological confusion.

Some authors use the term “semi-Markov kernel” of discrete-time SM processes for P(Jn+1 =
j, Tn+1 − Tn = k|Jn = i) (see, e.g., [1,7,8,10,19,20,22]). Other authors use the term “semi-
Markov kernel” of discrete-time SM processes for P(Jn+1 = j, Tn+1 − Tn ≤ k|Jn = i) (see,
e.g., [21,23,26–28]), while the quantity P(Jn+1 = j, Tn+1 − Tn = k|Jn = i) can have several
names, for instance semi-Markov core matrix. In this article, we used this second terminology.

In the authors’ opinion, this terminological confusion stems from the following reasons:

1. On the one hand, when working in discrete time and calling P(Jn+1 = j, Tn+1 − Tn ≤
k|Jn = i), k ∈ N, the (discrete-time) semi-Markov kernel, this is achieved by using exactly
the same term as in continuous time, where P(Jn+1 = j, Tn+1 − Tn ≤ t|Jn = i), t ∈ R
represents the (continuous-time) semi-Markov kernel.

2. On the other hand, when working in discrete time and calling P(Jn+1 = j, Tn+1 − Tn =
k|Jn = i), k ∈ N, the (discrete-time) semi-Markov kernel, this is done by analogy with
continuous time, since for a discrete-time finite/countable state-space, a Markov or sub-Markov
kernel is determined by the behaviour on singleton events (the probability mass function defines
the distribution).

In any case, all this discussion is only a matter of notational convenience.

Clearly, a semi-Markov chain is uniquely determined a.s. by an initial distribution
(µi)i∈E and a semi-Markov core matrix (qij(k))i,j∈E,k∈N or, equivalently, by an initial distribu-
tion (µi)i∈E, a Markov transition matrix (pij)i,j∈E and conditional sojourn time distributions
( fij(k))i,j∈E,k∈N.

Our work will be carried out under the following assumptions:

Assumption 2. Transitions to the same state are not allowed, i.e., pii ≡ 0 for all i ∈ E.

Assumption 3. There are no instantaneous transitions, i.e., qij(0) ≡ 0 for all i, j ∈ E.

Clearly, Assumption 2 is equivalent to qii(k) = 0 for all i ∈ E, k ∈ N, and Assumption 3
is equivalent to fij(0) ≡ 0 for all i, j ∈ E; note that this implies that T is a strictly increasing
sequence.

For the conditional sojourn time distribution and sojourn time distribution in a state,
one can consider the associated cumulative distribution functions defined by

Fij(k) := P(Tn+1 − Tn ≤ k|Jn = i, Jn+1 = j) =
k

∑
t=1

fij(t);

Hi(k) := P(Tn+1 − Tn ≤ k|Jn = i) =
k

∑
t=1

hi(t).

For any distribution function F(·), we can consider the associated survival/reliability
function defined by

F(k) := 1− F(t).
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Consequently, we have:

Fij(k) := P(Tn+1 − Tn > k|Jn = i, Jn+1 = j) = 1−
k

∑
t=0

fij(t) =
∞

∑
t=k+1

fij(t);

Hi(k) := P(Tn+1 − Tn > k|Jn = i) = 1−
k

∑
t=0

hi(t) =
∞

∑
t=k+1

hi(t).

To investigate the reliability behaviour of a semi-Markov system, we split the space
E into two subsets: U for the up-states and D for the down-states, with E = U ∪ D and
E = U ∩ D = ∅. For simplicity, we consider U = {1, . . . , s1} and D = {s1 + 1, . . . , s}.

Two important reliability measures of a system are the reliability (or survival) function
at time k ∈ N, denoted by R(k), and the (instantaneous) availability function at time k ∈ N,
denoted by A(k), defined, respectively, by

R(k) := P(Z0 ∈ U, . . . , Zk ∈ U),

A(k) := P(Zk ∈ U).

If ever we condition on the initial state, we obtain the corresponding conditional
reliability (or survival) function at time k ∈ N given that {Z0 = i}, i ∈ U, denoted by
Ri(k), and the conditional (instantaneous) availability function at time k ∈ N given that
{Z0 = i}, i ∈ E, denoted by Ai(k), is defined, respectively, by

R(k) := P(Z0 ∈ U, . . . , Zk ∈ U | Z0 = i), i ∈ U,

A(k) := P(Zk ∈ U | Z0 = i), i ∈ E.

Let us now define the interval reliability, introduced in [20] as the probability that the
system is in up-states during a time interval.

Definition 3 (Interval reliability, conditional interval reliability, cf. [20]). For k, p ∈ N and
i ∈ E, the interval reliability IR(k, p) and conditional interval reliability IRi(k, p) given the event
{Z0 = i} are, respectively, defined by

IR(k, p) := P(Zl ∈ U, l ∈ [k, k + p]); (3)

IRi(k, p) := P(Zl ∈ U, l ∈ [k, k + p] | Z0 = i). (4)

For k, p ∈ N and i ∈ E, it is clear that we have the following properties of the interval
reliability and conditional interval reliability (cf. Proposition 1 and Remark 1 of [20]):

R(k + p) ≤ IR(k, p) ≤ A(k + p); (5)

IRi(0, p) = Ri(p); (6)

IRi(k, 0) = Ai(k). (7)

3. Sequential Interval Reliability

Let us consider a repairable system. In this section, we introduce a new reliability
measure that we will call sequential interval reliability. This will generalise the notion of
interval reliability presented before, in the sense that we are looking at the probability that
the system is in working mode during two or several non-overlapping intervals.

More precisely, let us consider t := (ti)i=1,...,N and p := (pi)i=1,...,N two time sequences
such that:

1. t1 > 0, ti < ti+1 for all i = 1, . . . , N − 1;
2. pi ≥ 0 for all i = 1, . . . , N;
3. ti + pi < ti+1 for all i = 1, . . . , N − 1.
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It is clear that, in this case, {[ti, ti + pi]}i=1,...,N is a sequence of non-overlapping real
intervals.

For a sequence t := (ti)i=1,...,N indexes k1, k2 ∈ N, k1 ≤ k2, we will also use the notation
tk1 :k2 := (ti)i=k1,...,k2 .

Definition 4 (Sequential interval reliability). Let (Zk)k∈N be a discrete time semi-Markov system
and let t := (ti)i=1,...,N and p := (pi)i=1,...,N , N ∈ N∗, be two time sequences such that {[ti, ti +
pi]}i=1,...,N is a sequence of non-overlapping real intervals. We assume that Assumptions 1–3 hold true.

1. We define the sequential interval reliability, SIR(N)(t, p), as the probability that the system is
in the up-states U during the time intervals {[ti, ti + pi]}i=1,...,N , meaning that:

SIR(N)(t, p) := P(Zl ∈ U, for all l ∈ [ti, ti + pi], i = 1, . . . , N); (8)

2. For v ∈ N and k ∈ E, we define the conditional sequential interval reliability, SIR(N)
k (v; t, p),

as the conditional probability that the system is in the up-states U during the time intervals
{[ti, ti + pi]}i=1,...,N , given the event (k, v) := {Z0 = k, B0 = v} = {JN(0) = k, TN(0) =
−v}, meaning that:

SIR(N)
k (v; t, p) := P(Zl ∈ U, for all l ∈ [ti, ti + pi], i = 1, . . . , N | Z0 = k, B0 = v) (9)

= P(k,v)(Zl ∈ U, for all l ∈ [ti, ti + pi], i = 1, . . . , N),

where Bt := t− TN(t) is the backward time process associated to the semi-Markov process.

Note that we have the obvious relationship between the sequential interval reliability
and the conditional sequential interval reliability:

SIR(N)(t, p) = ∑
k∈E

µkSIR(N)
k (0; t, p). (10)

For notational convenience, we will set:

SIR(N)
k (t, p) := SIR(N)

k (0; t, p) = P(Zl ∈ U, for all l ∈ [ti, ti + pi], i = 1, . . . , N | Z0 = k).

Remark 2. Under the previous notation, we have:

1. If ti + pi = ti+1− 1 for all i = 1, . . . , N− 1, and v = 0, then SIR(N)
k (0; t, p) = IR(t1, tN +

pN − t1);
2. If t1 = 0, ti + pi = ti+1− 1 for all i = 1, . . . , N− 1, k ∈ U and v = 0, then SIR(N)

k (0; t, p) =
Rk(tN + pN);

3. If pi = 0 for all i = 1, . . . , N, and v = 0, then SIR(N)
k (0; t, p) = Pk(Zti ∈ U, i =

1, . . . , N) =: SA(N)
k (t); this function denoted by SA(N)

k (t) can be called the sequential
availability function;

4. If there exists a j ∈ {1, . . . , N} such that ti = 0 for i < j and th = tj for h ≥ j, pi = 0 for all

i = 1, . . . , N, and v = 0, then SIR(N)
k (0; t, p) = A(tj), the availability function is computed

in tj.

3.1. Transient Analysis

We will now investigate the recursive formula for computing the sequential interval
reliability of a discrete-time semi-Markov system.

Proposition 1. Let (Zk)k∈N be a discrete time semi-Markov system, assuming Assumptions 1–3 hold
true and let t := (ti)i=1,...,N and p := (pi)i=1,...,N , N ∈ N∗, be two time sequences such that
{[ti, ti + pi]}i=1,...,N is a sequence of non-overlapping real intervals. Let v ∈ N be the value of the
backward process at time t = 0 and k ∈ E be the initial state. Then, the conditional sequential
interval reliability, SIR(N)

k (v; t, p), satisfies the following equation:
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SIR(N)
k (v; t, p) = g(N)

k (v; t, p) + ∑
r∈E

t1

∑
θ=1

qkr(v + θ)

Hk(v)
SIR(N)

r (0; t− θ11:N , p), (11)

where 11:N is a vector of 1s of length N, and g(N)
k (v; t, p) is given by

g(N)
k (v; t, p) := 1{k∈U}

[
Hk(tN + pN + v)

Hk(v)

+
t1+p1

∑
θ=t1+1

∑
r∈E

∑
m∈U

t1+p1−θ

∑
v′=0

qkr(v + θ)

Hk(v)
Rb

rm(v
′; t1 + p1 − θ)SIR(N−1)

m (v′; t2:N − 12:N(t1 + p1), p2:N)

+
N

∑
j=2

tj+pj

∑
θ=tj

∑
r∈E

qkr(v + θ)

Hk(v)
SIR(N−j+1)

r
(
0; (θ, tj+1:N − 1j+1:Nθ), (tj + pj − θ, pj+1:N)

)

+
N−1

∑
j=1

tj+1−1

∑
θ=tj+pj+1

∑
r∈E

qkr(v + θ)

Hk(v)
SIR(N−j)

r (0; tj+1:N − 1j+1:Nθ, pj+1:N)

, (12)

where 1{k∈U} is the indicator function of the event {k ∈ U} and Rb
ij(v; k) is the reliability with

final backward defined by

Rb
ij(v; k) := P(Zs ∈ U, for all s ∈ {0, . . . , k− v}, Zk = j, Bk = v | Z0 = i, TN(0) = 0). (13)

Proof. Before proceeding with the proof, let us introduce the notation:

Z(t, p) :=
(
Zt1 , . . . , Zt1+p1 , . . . , Zt2 , . . . , Zt2+p2 , . . . , ZtN , . . . , ZtN+pN

)
.

From the definition of the SIR, it is clear that

SIR(N)
k (v; t, p) = P(k,v)

(
Z(t, p) ∈ UN+∑N

i=1 pi
)

. (14)

Let us consider now the r.v. T1 and observe that the events {T1 > tN + pN}, {T1 < t1},
{T1 ∈ ∪N

j=1[tj, tj + pj]} and {T1 ∈ ∪N−1
j=1 [tj + pj + 1, tj+1 − 1]} are mutually exclusive.

Consequently, we can write (14) as follows:

SIR(N)
k (v; t, p) = P(k,v)

(
Z(t, p) ∈ UN+∑N

i=1 pi , T1 > tN + pN

)
+P(k,v)

(
Z(t, p) ∈ UN+∑N

i=1 pi , T1 < t1

)
+ P(k,v)

(
Z(t, p) ∈ UN+∑N

i=1 pi , T1 ∈ ∪N
j=1[tj, tj + pj]

)
+P(k,v)

(
Z(t, p) ∈ UN+∑N

i=1 pi , T1 ∈ ∪N−1
j=1 [tj + pj + 1, tj+1 − 1

)
. (15)

We need to compute the four terms of the right-hand side of (15); let us denote them
by RT1, RT2, RT3 and RT4, respectively.

First, through a straightforward computation, we obtain

RT1 = 1{k∈U}
Hk(tN + pN + v)

Hk(v)
. (16)

Second, using the double expectation formula and conditioning with respect to (J1, T1),
we immediately obtained the second term given by

RT2 = ∑
r∈E

t1−1

∑
θ=1

qkr(v + θ)

Hk(v)
SIR(N)

r (0; t− θ11:N , p). (17)

Third, using the double expectation formula, conditioning with respect to (J1, T1),
summing over all the possible values of T1 and splitting the computation according to the
interval to which T1 belongs, a quite long computation yields:
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RT3 = ∑
r∈E

qkr(v + t1)

Hk(v)
SIR(N)

r (0; t− t111:N , p)

+
t1+p1

∑
θ=t1+1

∑
r∈E

∑
m∈U

t1+p1−θ

∑
v′=0

qkr(v + θ)

Hk(v)
R f

rm(v′; t1 + p1 − θ)SIR(N−1)
m (v′; t2:N − 12:N(t1 + p1), p2:N)

+
N

∑
j=2

tj+pj

∑
θ=tj

∑
r∈E

qkr(v + θ)

Hk(v)
SIR(N−j+1)

r
(
0; (θ, tj+1:N − 1j+1:Nθ), (tj + pj − θ, pj+1:N)

)
. (18)

Furthermore, fourth, using the double expectation formula, conditioning with respect
to (J1, T1) and summing over all the possible values of T1, we obtain:

RT4 = 1{k∈U}
N−1

∑
j=1

tj+1−1

∑
θ=tj+pj+1

∑
r∈E

qkr(v + θ)

Hk(v)
SIR(N−j)

r (0; tj+1:N − 1j+1:N θ, pj+1:N). (19)

Substituting these four terms in (15), we obtain the recurrence formula given in (11)
and (12).

If no initial backward is considered, taking v = 0 in Equation (11), we immediately
obtain the following recursive formula for the sequential interval reliability of a discrete-
time semi-Markov system, given the initial state.

Corollary 1. Let (Zk)k∈N be a discrete time semi-Markov system, assuming Assumptions 1–3
hold true and let t := (ti)i=1,...,N and p := (pi)i=1,...,N , N ∈ N∗, be two time sequences such that
{[ti, ti + pi]}i=1,...,N is a sequence of non-overlapping real intervals. Then, the sequential interval
reliability, SIR(N)(t, p), satisfies the following equation:

SIR(N)
k (t, p) = g(N)

k (t, p) + ∑
r∈E

t1

∑
θ=1

qkr(θ)SIR(N)
r (t− θ11:N , p), (20)

where we have set g(N)
k (t, p) := g(N)

k (0; t, p).

The next result provides a formula for computing the reliability with the final back-
ward Rb

ij(v; k) defined in Equation (13).

Lemma 1. For a discrete time semi-Markov system (Zk)k∈N, under Assumptions 1–3, let us define
the entrance probabilities eij(n), i, j ∈ E, n ∈ N by eij(n) = the probability that the system that
entered state i at time 0 will enter state j at time n. Under the previous notations, the reliability
with the final backward Rb

ij(v; k) defined in Equation (13) is given by

Rb
ij(v; k) = H j(v)e

q̃
ij(k− v), (21)

where eq̃
ij(k− v) represents the entrance probabilities for the semi-Markov system (cf. [27]) associ-

ated with the semi-Markov core matrix:

q̃(k) =

 qUU(k) qUD(k) 1s−s1

01s1 0

, k ∈ N,

with qUU(k) and qUD(k) being the partitions of the matrix q(k) according to U ×U and U × D.

Proof. First, it can be easily seen that:

Rb
ij(v; k) = H j(v)P(Zk−v = j, Zk−v−1 6= j, Zs ∈ U, s = 0, 1, . . . , k− v | Z0 = i).
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Second, note that P(Zk−v = j, Zk−v−1 6= j, Zs ∈ U, s = 0, 1, . . . , k− v | Z0 = i), i, j ∈ E,
represent the entrance probabilities for the semi-Markov system associated to the semi-
Markov core matrix q̃(k). See also Proposition 5.1 of [1] for the use of the semi-Markov
system associated to the semi-Markov core matrix q̃(k) in reliability computation.

Third, in order to compute the entrance probabilities, one can use the recurrence
formulas (see [27]):

eij(n) = δijδ(n) +
s

∑
r=1

n

∑
m=1

pir fir(m)erj(n−m), (22)

where δij := 1 if i = j, δij := 0 if i 6= j, δ(n) := 1 if n = 0, δ(n) = 0 if n 6= 0.

Looking at the recurrence relationship given in Proposition 1 for computing the
conditional sequential interval reliability with initial backward SIR(N)

k (v; t, p), and taking
into account that, for N = 1, we obtain the interval reliability with the initial backward, and
see that we need a formula for computing the interval reliability with the initial backward,
denoted by IRk(v; t, p) and defined by

IRk(v; t, p) := P(Zl ∈ U, l ∈ [t, t + p] | Z0 = k, B0 = v). (23)

The next result provides a formula for computing this quantity.

Lemma 2. Under the previous notations, the interval reliability with initial backward IRk(v; t, p)
is given by

IRk(v; t, p) =
1

Hk(v)

[
Hk(v + t + p)1{k∈U} + ∑

j∈U

t+p

∑
θ=t

qkj(v + θ)Rj(t + p− θ)1{k∈U}

+ ∑
j∈E

t−1

∑
θ=1

qkj(v + θ)IRj(t− θ, p)

]
. (24)

Proof. The proof is a quite straightforward adaptation of a more general result presented
in [21].

The next result provides a series of inequalities between sequential interval reliability,
sequential availability, conditional reliability and conditional availability.

Proposition 2. Let (Zk)k∈N be a discrete time semi-Markov system, assuming Assumptions 1–3
hold true, and let k ∈ E and v ∈ N.

1. For any t1:N and p1:N , N ∈ N∗, such that {[ti, ti + pi]}i=1,...,N is a sequence of non-
overlapping real intervals, and for s ≤ N we have:

Rk(v, tN + pN) ≤ SIR(N)
k (v; t1:N , p1:N) ≤ SIR(N)

k (v; t1:s, p1:s) ≤ SA(N)
k (v; t1:N + p1:N)

≤ SA(s)
k (v; t1:s + p1:s) ≤ Ak(v; ts + ps). (25)

2. For any t1:N , a1:N and b1:N , N ∈ N∗, such that ai ≤ bi, i = 1, . . . , N, and {[ti, ti +
ai]}i=1,...,N and {[ti, ti + bi]}i=1,...,N are two sequences of non-overlapping real intervals,
then we have:

SIR(N)
k (v; t1:N , b1:N) ≤ SIR(N)

k (v; t1:N , a1:N). (26)
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3. For any t1:N , p1:N , x1:N , w1:N , N ∈ N∗, such that {[ti, ti + pi]}i=1,...,N and {[xi, xi +
wi]}i=1,...,N are two sequences of non-overlapping real intervals such that t1:N + p1:N =
x1:N + w1:N , and t1:N ≥ x1:N (element-wise), then we have:

SIR(N)
k (v; x1:N , w1:N) ≤ SIR(N)

k (v; t1:N , p1:N). (27)

Proof. For any k ∈ E and v ∈ N, let us define the set Ω(k,v) by

Ω(k,v) := {ω ∈ Ω | Z0(ω) = k, B0(ω) = v}.

The first point is obtained noticing that, for s ≤ N, we have:

{
ω ∈ Ω(k,v) | Zs ∈ U, ∀s = 1, . . . , tN + pN

}
⊆
{

ω ∈ Ω(k,v) | Z(t1:N , p1:N) ∈ UN+∑N
i=1 pi

}
⊆
{

ω ∈ Ω(k,v) | Z(t1:s, p1:s) ∈ Us+∑s
i=1 pi

}
⊆
{

ω ∈ Ω(k,v) | Z(t1:N + p1:N , 01:N) ∈ UN
}

⊆
{

ω ∈ Ω(k,v) | Z(t1:s + p1:s, 01:s) ∈ Us
}
⊆
{

ω ∈ Ω(k,v) | Zts+ps ∈ U
}

.

Applying the probability on this chain of inequalities and taking into account the
definitions of reliability, sequential reliability, availability and sequential availability, we
obtain the inequalities given in (25).

In order to prove the second point, we first observe that ai ≤ bi, i = 1, . . . , N, implies
that the two sequences of non-overlapping real intervals {[ti, ti + ai]}i=1,...,N and {[ti, ti +
bi]}i=1,...,N are such that [ti, ti + ai] ⊆ [ti, ti + bi], i = 1, . . . , N. Thus, we have:

{
ω ∈ Ω(k,v) | Z(t1:N , b1:N) ∈ UN+∑N

i=1 bi
}
⊆
{

ω ∈ Ω(k,v) | Z(t1:N , a1:N) ∈ UN+∑N
i=1 ai

}
,

which implies that SIR(N)
k (v; t1:N , b1:N) ≤ SIR(N)

k (v; t1:N , a1:N), so we obtain (26).
To prove the last point, since t1:N ≥ x1:N and t1:N + p1:N = x1:N + w1:N , we have that

[ti, ti + pi] ⊆ [xi, xi + wi], i = 1, . . . , N. Consequently, we have:

{
ω ∈ Ω(k,v) | Z(x1:N , w1:N) ∈ UN+∑N

i=1 wi
}
⊆
{

ω ∈ Ω(k,v) | Z(t1:N , p1:N) ∈ UN+∑N
i=1 pi

}
,

which implies that SIR(N)
k (v; x1:N , w1:N) ≤ SIR(N)

k (v; t1:N , p1:N), so we obtain (27).

3.2. Asymptotic Analysis

We can investigate the asymptotic analysis of sequential interval reliability
SIR(N)

k (v; t1:N , b1:N), by letting t1 tend towards infinity. The next result given in Theorem 1
answers this question.

Let t := (ti)i=1,...,N and p := (pi)i=1,...,N , N ∈ N∗, be two time sequences such that
{[ti, ti + pi]}i=1,...,andN is a sequence of non-overlapping real intervals. Let us denote by
li := ti − ti−1, i = 2, . . . , N.

Theorem 1. Let us consider an ergodic semi-Markov chain such that Assumptions 1–3 hold true
and the mean sojourn times mi in any state i are finite, mi < ∞, i ∈ E, where mi is the mean time
of the distribution (hi(k))k∈N, i ∈ E. Then, under the previous notations, we have:

lim
t1→∞

SIR(N)
k (v; t, p) = lim

t1→∞
SIR(N)(t, p) =

1
∑i∈E ν(i)mi

∑
j∈U

ν(j) ∑
t1≥0

g(N)
j (t, p), (28)

where (ν(i))i∈E represents the stationary distribution of the embedded Markov chain (Jn)n∈N.

Before giving the proof of this result, we first need some preliminary notions and results.
First, let us recall some definitions related to the matrix convolution product. Let us

denote byME the set of real matrices on E× E and byME(N) the set of matrix-valued
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functions defined on N, with values inME. For A ∈ ME(N), we write A = (A(k); k ∈ N),
where, for k ∈ N fixed, A(k) = (Aij(k); i, j ∈ E) ∈ ME. Let I ∈ ME be the identity matrix
and 0 ∈ ME be the null matrix. Let us also define I := (I(k); k ∈ N) as the constant
matrix-valued function whose value for any nonnegative integer k is the identity matrix,
that is, I(k) := I for any k ∈ N. Similarly, we set 0 := (0(k); k ∈ N), with 0(k) := 0 for
any k ∈ N.

Let A, B ∈ ME(N) be two matrix-valued functions. The matrix convolution product
A ∗ B is the matrix-valued function C ∈ ME(N) defined by

Cij(k) := ∑
r∈E

k

∑
l=0

Air(k− l) Brj(l), i, j ∈ E, k ∈ N, (29)

or, in matrix form:

C(k) :=
k

∑
l=0

A(k− l)B(l), k ∈ N.

It can be easily checked whether the identity element for the matrix convolution
product in discrete time exists, and whether it is unique and given by δI = (dij(k); i, j ∈
E) ∈ ME(N) defined by

dij(k) :=

 1, if i = j and k = 0,

0, elsewhere,

or, in matrix form:

δI(k) :=

 I, if k = 0,

0, elsewhere.

The power in the sense of convolution is straightforwardly defined using the previous
definition of the matrix convolution product given in (29). For A ∈ ME(N), a matrix-
valued function and n ∈ N, the n-fold convolution A(n) is the matrix-valued function
recursively defined by

A(0)
ij (k) := dij(k) =

 1, if i = j and k = 0,

0, elsewhere,

A(1)
ij (k) := Aij(k),

A(n)
ij (k) := ∑

r∈E

k

∑
l=0

Air(l) A(n−1)
rj (k− l), n ≥ 2, k ∈ N,

that is:
A(0) := δI, A(1) := A and A(n) := A ∗A(n−1), n ≥ 2.

Second, let us introduce two sets of functions that will be useful for our study. Thus,
let us define:

A :=
{

f : {(t, p) ∈ NN ×NN | ti ≤ ti+1, i = 1, . . . , N − 1} → R
}

(30)

and, for l ∈ NN−1, p ∈ NN :

Bl,p :=
{

f̃ : N→ R | f̃ (t1) = f̃ (t1; l, p)
}

, (31)



Mathematics 2021, 9, 1997 11 of 18

where, by writing f̃ (t1; l, p), we mean that the function f̃ is a function of the variable t1,
while l, p are some parameters.

Let us consider a map between the two sets, Φ : A → Bl,p defined by

Φ( f (t, p)) := f̃ (t1; l, p), (32)

where li := ti − ti−1, i = 2, . . . , N.
The map Φ allows to represent a function f (t, p) ∈ A as an element of the set Bl,p,

that is to say as a parametric function of one variable, namely t1. One can easily check that
Φ is bijective and linear.

The last point before giving the proof of Theorem 1 will be to introduce a new matrix
convolution product, important for our framework, and to see the relationship with the
classical matrix convolution product.

Definition 5. Let A ∈ ME(N) be a matrix-valued function and let b = (b1, . . . , bs) be a vector-
valued function such that every component br ∈ A, r ∈ E. The matrix convolution product ∗ is
defined by

(A∗b)k(t, p) := ∑
r∈E

t1

∑
θ=1

Akr(θ)br(t− θ11:N , p),

or, in matrix form:

(A∗b)(t, p) :=
t1

∑
θ=1

A(θ)b(t− θ11:N , p).

The next result will give a relationship between this new introduced matrix convolu-
tion product (cf. Definition 5) and the classical one defined in (29).

Proposition 3. Let q ∈ ME(N) be a semi-Markov semi-Markov core matrix and let f =
( f1, . . . , fs) be a vector-valued function such that every component fr ∈ A, r ∈ E. Then:

Φ((q∗f)(t, p)) = (q ∗ f̃)(t1; l2:N , p).

Proof. From the additivity of the map Φ, we have:

Φ((q∗f)(t, p))k = ∑
r∈E

t1

∑
θ=1

Φ(qkr(θ) fr(t− θ11:N , p)) = ∑
r∈E

t1

∑
θ=1

qkr(θ) fr(t− θ11:N , p)

= ∑
r∈E

t1

∑
θ=1

qkr(θ) f̃r(t1 − θ; l2:N , p) = (q ∗ f̃)k(t1; l2:N , p).

Proof of Theorem 1. First of all, it is important to notice that we have:

lim
t1→∞

SIR(N)
k (v; t1:N , p1:N) = lim

t1→∞
SIR(N)(t1:N , p1:N),

provided that this limit exists. Consequently, since our interest now is in a limiting result,
in order to investigate the asymptotic behaviour of SIR(N)

k (v; t1:N , p1:N) as t1 goes to ∞
we can consider the initial backward v = 0. Thus, the expression of sequential interval
reliability that we will take into account in the next computations will be SIR(N)(t1:N , p1:N),
that is recurrently obtained through Relation (20).

The main idea of this proof is to consider SIR(N)
k as a function of the variable t1 and

also on other additional parameters; then, we will apply the Markov renewal theory (cf. [1])
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to this function of t1. Using Proposition 3 and applying the function Φ defined in (32) to
the left and right hand sides of Equation (20), we obtain:

S̃IR
(N)

(t1; l2:N , p) = g̃(t1; l2:N , p) + q ∗ S̃IR
(N)

(t1; l2:N , p), (33)

where S̃IR
(N)

:= Φ(SIR(N)) and g̃ := Φ(g).
It is clear that Equation (33) is an ordinary Markov renewal equation (MRE) in variable t1,

with parameters (l2:N , p). The solution of this MRE is well known (cf. [1]) and it is given by

S̃IR
(N)

(t1; l2:N , p) = (ψ ∗ g̃)(t1; l2:N , p), (34)

or element-wise, using Proposition 3:

S̃IR
(N)
k (t1; l2:N , p) = ∑

r∈E

t1

∑
θ=1

ψkr(θ)gr(t− θ11:N , p), (35)

where the matrix-valued function ψ = (ψ(k); k ∈ N) is given by

ψ(k) =
k

∑
n=0

q(n)(k), k ∈ N. (36)

Since S̃IR
(N)
k (t1; l2:N , p) = Φ(SIR(N)

k (t, p)) = SIR(N)
k (t, p), we obtain:

SIR(N)
k (t, p) = S̃IR

(N)
k (t1; l2:N , p) = ∑

r∈E

t1

∑
θ=1

ψkr(θ)gr(t− θ11:N , p). (37)

Consequently:

lim
t1→∞

SIR(N)(t, p) = lim
t1→∞

S̃IR
(N)
k (t1; l2:N , p).

Let us now compute the second limit using the key Markov renewal Theorem (cf. [1]).
First, we observe that:

g̃k(t1; l2:N , p) = gk(t, p) = P(k,0)(Zl ∈ U, for all l ∈ [ti, ti + pi], i = 1, . . . , N, T1 > t1)

≤ P(k,0)(Zl ∈ U, l ∈ [t1, t1 + p1], T1 > t1) = gk(t1, p1) ≤ Rk(t1 + p1).

Using this result, we have:

∑
t1≥0
| g̃k(t1; l2:N , p) |≤ ∑

t1≥0
Rk(t1 + p1) = E(k,0)(TD),

where TD is the lifetime of the system. Thus, we are under the hypotheses of the key
Markov renewal theorem and we obtain:

lim
t1→∞

SIR(N)(t, p) = lim
t1→∞

µψ ∗ g̃(t1; l2:N , p)

= ∑
i∈E

µi ∑
j∈U

1
µjj

∑
t1≥0

g(N)
j (t, p) =

1
∑i∈E ν(i)mi

∑
j∈U

ν(j) ∑
t1≥0

g(N)
j (t, p),

where µjj is the mean recurrence time to state j for the semi-Markov chain.

4. A Numerical Example

In this section, we will present a numerical example considering a semi-Markov model
that governs a repairable system. The setting is as follows: the state space is E = {1, 2, 3},
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the operational states are the first two, U = {1, 2}, and the non-working state is the last
one, D = {3}.

The transitions of the repairable semi-Markov model are given in the flowgraph
of Figure 1.

State 1

State 2State 3

f12 (.)

f21 (.)

f23(.)

f 31
(.)

Figure 1. Semi-Markov model.

The transition matrix p of the EMC J and the initial distribution µ are given by

p =


0 1 0

0.8 0 0.2

1 0 0

, µ = (1, 0, 0).

Now, let Xij be the conditional sojourn time of the SMC Z in state i given that the next
state is j (j 6= i). The conditional sojourn times are given as follows:

X12 ∼ Geometric(0.2),

X21 ∼ discrete Weibull(0.8, 1.2),

X23 ∼ discrete Weibull(0.6, 1.2),

X31 ∼ discrete Weibull(0.9, 1.2),

In the following figures, we investigate the semi-Markov repairable system in terms
of the proposed reliability measures studied in Section 3.

Figure 2 illustrates the conditional sequential interval reliability for two time intervals
moving equally through the time with the same length (one time unit). That is the probabil-
ity that the system will be operational in the time intervals (k, k + 1) and (k + 2, k + 3) for
k ∈ {1, 2, 3, 4, 5, 6, 7, 8}. We have to note that, as the time k passes, then the system tends to
converge to the asymptotic sequential interval reliability SIR(2)(0; t, p) = 0.6603, as given

in Theorem 1. Furthermore, the sequential interval reliability SIR(2)(0; (k, k + 2), (1, 1)) is
equal to the conditional one SIR(2)

1 (0; (k, k + 2), (1, 1)) due to the fact that the only possible
initial state is the first one. The point here is to study the probability of a system being
operational during different time periods with the same working duration and a fixed time
distance between them, equal to one time unit.

Then, Figure 3 examines the probability that the system is working during two time
periods, with same working duration (equal to one time unit) and increasing the time
distance between them. We considered the first interval to be fixed equal to (1, 2) and the
other moving apart with step 1 each time and be (k + 2, k + 3) for k ∈ {1, 2, 3, 4, 5, 6, 7, 8}.
It can be easily seen that the probability of the system will be still working in both time
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intervals and is a decreasing function of time k, which means that the two time intervals are
far enough apart for the system to be operational. Note that the probability of the system
starting from the non-working state 3 to be in the up-states is sufficiently small.

As in all the previous cases, the concept of the initial backward did not play a role in
the simulations (Figures 2 and 3), and in Figure 4, the sequential interval reliability with
the initial backward v = 10 is examined. The first time interval is considered as fixed,
(1, 2), and the other one is moving apart with step 1 each time and it is (k + 3, k + 4) for
k ∈ {1, 2, 3, 4, 5, 6, 7, 8}.

From the point of view of real applications, the proposed reliability measures can
be applied to a huge variety of physical phenomena which they characterised from time
dependence. In the literature, a lot of research works are presented for modelling a variety
of such phenomena via semi-Markov processes, from financial [23] to power demand [29].
D’Amico et al. ([23,26]) proposed a semi-Markov model and associated reliability measures
for constructing a credit risk model that solves problems arising from the non-Markovianity
nature of the phenomenon. Further developments and recent contributions on this aspect
are provided in [28,30,31].

The characteristics of semi-Markov chains which allow for no-memoryless sojourn
time distributions, permit considering the duration problem in an effective way. Indeed, it
is possible to define and compute different probabilities of changing state, default probabil-
ities included, taking into account the permanence of time in a rating class. This aspect is
crucial in credit rating studies because the duration dependence of transition probabilities
naturally translates in many financial indicators, which change their values according to
the time elapsed in the last rating class, see, e.g., [32].

Mathematics 2021, 1, 0 14 of 18

1 2 3 4 5 6 7 8
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time k

Se
qu

en
ti

al
In

te
rv

al
R

el
ia

bi
lit

y

SIR(2)1 (0; (k, k + 2), (1, 1))

SIR(2)2 (0; (k, k + 2), (1, 1))

SIR(2)3 (0; (k, k + 2), (1, 1))

Figure 2. Sequential interval reliability plot with equally moving intervals

them. We considered the first interval to be fixed equal to (1, 2) and the other moving apart
with step 1 each time and be (k + 2, k + 3) for k ∈ {1, 2, 3, 4, 5, 6, 7, 8}. It can be easily seen
that the probability of the system will be still working in both time intervals is a decreasing
function of time k, which means that the two time intervals are far enough for the system
being operational. Note that the probability that the system starting from the non-working
state 3 to be in the up states is sufficiently small.

As in all the previous cases the concept of the initial backward did not play a role
in the simulations (Figures 2 and 3), in Figure 4 the sequential interval reliability with
initial backward v = 10 is examined. The first time interval is considered as fixed, (1, 2),
and the other one is moving apart with step 1 each time and it is (k + 3, k + 4) for k ∈
{1, 2, 3, 4, 5, 6, 7, 8}.

From the point of view of real applications, the proposed reliability measures can
be applied in a huge variety of physical phenomena which they characterized from time
dependence. In the literature, a lot of research works are presented for modelling a variety
of such phenomena via semi-Markov processes, from financial [12] to power demand [25].
D’Amico et al. ([11,12]) proposed a semi-Markov model and associated reliability measures
for constructing a credit risk model that solves problems arising from the non-Markovianity
nature of the phenomenon. Further developments and recent contributions on this aspect
are provided in [28–30].

The characteristics of semi-Markov chains, which allows for no-memoryless sojourn
time distributions, permits considering the duration problem in an effective way. Indeed,
it is possible to define and compute different probabilities of changing state, default
probabilities included, taking into account the permanence of time in a rating class. This
aspect is crucial in credit rating studies because the duration dependence of transition
probabilities naturally translates in many financial indicators, which change their values
according to the time elapsed in the last rating class, see e.g., [13].

In the case of financial modelling (see, e.g., [5]), the presented results could be applied
in order to create advanced credit scoring models. A financial asset, like a government
bond, usually takes a “grade” based on the reliability of the country to pay the debt (also
known as creditworthiness). These grades affect highly the interest rates of the country’s
debt and they are clear separated. Let us consider the following set of states, from a simple
point of view, as the ratings:

Figure 2. Sequential interval reliability plot with equally moving intervals.
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apart

Figure 3. Sequential interval reliability plot with intervals moving apart.
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Figure 4. Sequential interval reliability plot with the initial backward (v = 10) and intervals moving apart.

In the case of financial modelling (see, e.g., [33]), the presented results could be
applied in order to create advanced credit scoring models. A financial asset, similarly to
government bond, usually takes a “grade” based on the reliability of the country to pay
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the debt (also known as creditworthiness). These grades strongly affect the interest rates
of the country’s debt and they are clearly separated. Let us consider the following set of
states, from a simple point of view, as the ratings:

E = {A, B, C}.
If the country bond receives a rating in the set U = {A, B}, this means that it is

thought to be creditworthy and can borrow money from the markets with reasonable
interest rates. On the contrary, if the rating is within the set D = {C}, then the country
cannot borrow money from the markets due to very high interest rates caused from its
problems for repaying the debt. D’Amico et al. [23] proposed flexible reliability measures
based on semi-Markov processes for constructing a credit risk model that solves the
problems arising from the non-Markovianity nature of the phenomenon. Following that
work, the measures proposed in the present paper can be applied in the same way as
follows:

• The conditional sequential interval reliability with final backward SIR(N)
k (v; t, p)

gives the probability that the bond remains creditworthy in a sequence of different
time intervals {[ti, ti + pi]}i=1,...,N given its current rating and assuming a secondary
process Bt. This measure allows us to estimate the credit risk of the asset for different
time periods and at the same time by knowing the complete trajectory of the system
due to the backward process Bt.

• The sequential interval reliability SIR(N)(v; t, p) which gives the probability that
the bond remains creditworthy in a sequence of different time intervals {[ti, ti +
pi]}i=1,...,N without taking into account the current rating. To implement this measure,
we have to know the initial probability of the system being in each state.

It became clear that these measures have applications in a variety of stochastic phe-
nomena due to their flexibility and their ability to significantly extend our knowledge
about the process evolution. They can solve problems and provide answers for systems
that can shift from failure to operational states, from a probabilistic point of view. Finally,
they can be considered as generalisations of the classical measures of reliability for semi-
Markov processes.

5. Concluding Remarks

This paper presents a new reliability indicator, called sequential interval reliability
(SIR), which is evaluated for a discrete-time homogeneous semi-Markov repairable system.
This indicator includes as particular cases several functions that are frequently used in
reliability studies, such as the reliability and availability functions, as well as the interval
reliability function.

The paper contains new theoretical results on both the transient and the asymptotic
cases. More precisely, a recurrent-type equation is established for the calculation of the
SIR function in the transient case and a limit theorem establishes its asymptotic behaviour.
These results generalise corresponding known results for standard reliability indicators.
The possibility to apply our results to real systems is shown by implementing a numerical
example where the theoretical results are illustrated from a practical point of view. The
paper leaves unresolved several aspects among which an important role is played by the
application of the proposed indicator in different applied problems involving the use of
real data.
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