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Activation of b- and c-carbonic anhydrases from pathogenic bacteria with
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William A. Donaldd, Adriano Mollicaa and Claudiu T. Supuranb,d

aDepartment of Pharmacy, “Gabriele d’Annunzio” University of Chieti-Pescara, Chieti, Italy; bDepartment of Neurofarba, Universit�a degli Studi di
Firenze, Sezione di Scienze Farmaceutiche e Nutraceutiche, Sesto Fiorentino, Florence, Italy; cIstituto di Bioscienze e Biorisorse, CNR, Napoli,
Italy; dSchool of Chemistry, University of New South Wales, Sydney, New South Wales, Australia

ABSTRACT
Six tripeptides incorporating acidic amino acid residues were prepared for investigation as activators of
b- and c-carbonic anhydrases (CAs, EC 4.2.1.1) from the pathogenic bacteria Vibrio cholerae, Mycobacterium
tuberculosis, and Burkholderia pseudomallei. The primary amino acid residues that are involved in the cata-
lytic mechanisms of these CA classes are poorly understood, although glutamic acid residues near the
active site appear to be involved. The tripeptides that contain Glu or Asp residues can effectively activate
VchCAb and VchCAc (enzymes from V. cholerae), Rv3273 CA (mtCA3, a b-CA from M. tuberculosis) and
BpsCAc (c-CA from B. pseudomallei) at 0.21–18.1mM levels. The position of the acidic residues in the pep-
tide sequences can significantly affect bioactivity. For three of the enzymes, tripeptides were identified
that are more effective activators than both L-Glu and L-Asp. The tripeptides are also relatively selective
because they do not activate prototypical a-CAs (human carbonic anhydrases I and II). Because the role of
CA activators in the pathogenicity and life cycles of these infectious bacteria are poorly understood, this
study provides new molecular probes to explore such processes.
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Introduction

Carbonic anhydrases (CAs, EC 4.2.1.1) are ubiquitous enzymes that
interconvert carbon dioxide and bicarbonate1–9. There are seven
genetically distinct CA families known to date in organisms across
the phylogenetic tree. The a-CAs are widespread in vertebrates (in
the form of a multitude of isoforms, including 15 in humans)1,2,
prokaryotes, and simpler eukaryotes (such as protozoa, fungi and
some bacteria)3–6. The b- and c-class enzymes are widespread in
bacteria and archaea, but are not found in eukaryotic organ-
isms7–9. CA inhibitors (CAIs) show pharmacologic applications in
pathologies in which the activity of these enzymes is dysregulated
(in humans), such as edema10, glaucoma11, neurologic diseases
(epilepsy, etc.)12, obesity13, and some tumors14, and many sul-
phonamide or sulphamate CAIs have been in clinical use for deca-
des15. In contrast, investigation of activators of these enzymes
(CAAs) have been relatively limited2. Recently, the potential to use
of CAAs as pharmacological agents for pathologies related to cog-
nitive impairment has been demonstrated, which may result in
innovative memory therapies16.

The CA catalytic mechanism is represented by Equations (1)
and (2), where “E” corresponds to enzyme.

H2O

EZn2þ�OH� þ CO2 () EZn2þ�HCO�
3 () EZn2þ � OH2 þ HCO�

3 (1)

EZn2þ � OH2 () EZn2þ�HO� þ Hþ (2)

First, a reactive metal hydroxide species nucleophilically attacks a
CO2 molecule that is bound in a hydrophobic pocket within the
active site of the enzyme to form a metal-bound bicarbonate17.
Typically, zinc is the metal ion in the active sites of most CA
classes, although Cd(II) and Fe(II) may also work for some CAs1.
The bicarbonate can be readily replaced by an incoming water
molecule to generate an acidic metal-bound water molecule. In
the rate-determining step, a proton is transferred from the metal-
coordinated water molecule to the reaction medium to reform the
metal-hydroxide species18,19. In all CA classes that have been
investigated in detail to date, the rate-determining step is assisted
by amino acid residues that are positioned in the active site
pocket to favor the proton-transfer process1–4,18–21. For a-CAs that
have been the most extensively studied CAs, the proton shuttling
residue is a His placed in the middle of the active site pocket
(His64, CA I numbering system)18. However, this proton-transfer
process is less well understood in all other CA classes. For b-CAs,
His and Tyr residues (His92 and Tyr88, Coccomyxa CA number-
ing)20 may act as proton shuttle residues. For c-CAs, Ferry’s
group21 reported that one or two Glu residues (Glu84 and Glu62,
Cam numbering system; Cam is the enzyme from Methanosarcina
thermophila)21 act as proton shuttles in the catalytic cycle. In the
presence of activators (A in Equation (3), enzyme-activator
complexes can be formed19, and the proton transfer reaction is
intramolecular and more efficient than intermolecular transfer to
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buffer molecules, which conventionally occurs in the absence of
activators (Equation (3)).

EZn2þ � OH2 þ A () ½EZn2þ � OH2 � A�
() ½EZn2þ�HO� � AHþ� () EZn2þ�HO� þ AHþ

enzyme–activator complexes

(3)

CAAs have been investigated in detail for human (h) a-CAs, by
means of X-ray crystallography, kinetic and spectroscopic meth-
ods19,22–24, and several drug design studies have also been
reported24–27. However, no drug-design CAA studies are available
for bacterial, b- and c-CAs. These enzymes have only recently
been started to be investigated for their activation with amines
and amino acids28–31. The design of bioactive molecules that
modulate these enzymes may be useful for controlling the intra-
and extracellular pH of microorganisms, which can play crucial
roles in the life cycles of pathogenic microorganisms. Here, we
report such a study for investigating whether tripeptides incorpo-
rating acidic amino acid residues do show activating effects
against b- and c-class CAs from pathogenic bacteria such as Vibrio
cholerae (the enzymes included in the study were VchCAb and
VchCAc), Mycobacterium tuberculosis (Rv3273, also called mtCA3,
one of the three b-CAs from this bacterium was considered here)
and Burkholderia pseudomallei (BpsCAc, a c-CA from this patho-
genic organism was used for our investigations)28–31. The amino
acids used for obtaining these tripeptides, apart for the acidic
ones (Glu and Asp) included aromatic (His, Phe and Tyr), hydroxy
(Ser and Thr) as well as aliphatic (Ile) residues, in order to investi-
gate the role that such structural elements may induce to the CA
activating effects.

Materials and methods

Chemistry

All solvents and coupling reagents were purchased from VWR
(Radnor, PN, USA). Fmoc amino acids and Fmoc-Rink-amide MBHA
resin (0.68mmol/g) were purchased from Chem-Impex (Wood
Dale, IL, USA) and IRIS Biotech GmbH (Marktredwitz, DH, Germany)
respectively. OtBu was chosen as orthogonal protection on Tyr,
Thr, Ser, Asp and Glu side chains, Boc protecting group for His
side chain and Trt for Asn and Gln side chains. The peptides were
synthesized by Fmoc-SPPS (standard solid phase peptide synthesis)
using TBTU/HOBt for coupling reactions and piperidine 20% solu-
tion in DMF for Fmoc group deprotection as previously
described32.

Purification of compounds was carried out by RP-HPLC using a
Waters XBridge Prep BEH130 C18, 5.0lm, 250� 10mm column at
a flow rate of 4.0ml/min on a Waters Binary pump 1525, and a lin-
ear gradient of H2O/acetonitrile 0.1% TFA ranging from 5% aceto-
nitrile to 95% acetonitrile for 35min. The purity of all final TFA
salts was confirmed by NMR analysis, ESI-LRMS, and analytical RP-
HPLC (C18-bonded 4.6� 150mm) at a flow rate of 1ml/min, using
as eluent a gradient of H2O/acetonitrile 0.1% TFA ranging from 5%
acetonitrile to 95% acetonitrile in 30min and was found to be
�95% (Rt reported in Table 1). Nuclear magnetic resonance (NMR)
spectra of the final compounds were recorded on a Varian Inova
300MHz spectrometer using DMSO-d6 as solvent. The mass spec-
trometry (MS) system used consisted of an LCQ (Thermo Finnigan)
ion trap mass spectrometer (San Jose, CA, USA) equipped with an
electrospray ionization (ESI) source. The capillary temperature was
set at 300 �C and the spray voltage at 4.00 kV. The fluid was nebu-
lized using nitrogen (N2) as the sheath and auxiliary.

General procedures for the tripeptide synthesis

Loading of the first amino acid
The resin was treated with a 20% piperidine solution in DMF
(2�15min) and then washed with DMF/MeOH/DCM. Then, the
Fmoc protected amino acid (3 equiv) was dissolved in DMF (3ml).
TBTU (3 equiv) and DIPEA (6 equiv) were added and the resulting
mixture was added to the resin. The Kaiser test was used to check
the reaction. When complete, the resin was washed with DMF/
MeOH/DCM.

Amino acids couplings
3 Equiv. of amino acid was dissolved in DMF (3ml) together with
TBTU (3 equiv.) and DIPEA (6 equiv.). Then the resulting mixture
was added to the resin. The Kaiser test was used to check the
reaction. When complete, the resin was washed with DMF/
MeOH/DCM.

Cleavage and purification
The resin was treated with TFA/H2O/TIPS 95:2.5:2.5 (5ml for 1 h)
and filtered. The solution was concentrated to 1ml and precipi-
tated in 10ml of cold Et2O. The suspension was centrifuged and
washed three times with fresh Et2O. The crude solid was dried in
high vacuum and purified on RP-HPLC.

Characterization data for new compounds. TFA�NH2-Tyr-Phe-Asp-
NH2 (1): 81% yield; Rt (HPLC)¼ 12.44min. 1H NMR (DMSO-d6) d:
8.78 (1H, d, NH Phe), 8.44 (1H, d, NH Asp), 7.92 (3H, s, NH3

þ),
7.26–7.16 (7H, m, NH2 Aspþ 5H Phe aromatics), 7.14 (2H, s, NH2

Asp amide), 7.03 (2H, dd, Tyr aromatics), 6.66 (2H, dd, Tyr aro-
matics), 4.58–4.52 (2H, m, CHa PheþCHa Tyr), 3.85 (1H, m, CHa

Asp), 3.04 (1H, dd, CHb Phe), 2.98–2.52 (1H, dd, CHb Pheþ 2H, m,
CH2

b Tyr); MS calcd: 442.19, found: 443.31.
TFA.NH2-His-Phe-Glu-NH2 (2): 57% yield; Rt (HPLC)¼ 11.57min.

1H NMR (DMSO-d6) d: 8.80 (3H, s, NH3
þ), 8.64 (1H, d, NH Phe), 7.32

(1H, d, NH Glu), 7.24 (1H, s, CHs His), 7.15 (2H, s, NH2 Glu amide),
7.07 (1H, d, NH His), 6.90 (1H, d, CHp His), 4.59 (1H, m, CHa Phe),
4.20 (1H, m, CHa His), 3.96 (1H, m, CHa Glu), 3.08–2.83 (2H, m,
CH2

b Phe), 2.73–2.52 (2H, m, CH2
b His), 2.41–2.20 (2H, m, CH2

b

Glu), 1.81–1.68 (2H, m, CH2
c Glu). MS calcd: 430.21, found: 431.41.

TFA.NH2-Glu-Ile-Thr-NH2 (3): 83% yield; Rt (HPLC)¼ 11.78min.
1H NMR (DMSO-d6) d: 8.54 (1H, d, NH Thr), 8.12 (3H, s, NH3

þ), 7.92
(2H, s, NH Ile), 7.11 (2H, s, NH2 Thr amide), 4.15 (1H, d, CHa Ile),
4.11 (1H, d, CHa Thr), 3.98 (1H, quint, CHb Thr), 3.85 (1H, m, CHa

Glu), 2.27 (2H, t, CH2
b Glu), 1.87 (2H, m, CH2

c Glu), 1.72 (1H, m,
CHb Ile), 1.43 (1H, m, CHc Ile), 1.07 (1H, m, CHc Ile), 0.96 (3H, d,

Table 1. Characterization data for the new peptides.NH2-Xaa1-Xaa2-Xaa3-NH2

1–6 (TFA salts).

Compounds Xaa1 Xaa2 Xaa3 Rt (HPLC)
a min. MS calcd. MS found

1 Tyr Phe Asp 12.44 442.19 443.31
2 His Phe Glu 11.57 430.21 431.41
3 Glu Ile Thr 11.78 360.41 361.56
4 Gln Asp Ser 11.11 347.14 348.25
5 Asn Asp Ser 11.08 333.13 334.18
6 Glu Phe Glu 11.70 422.43 423.51
aAnalytical RP HPLC: C18 linear gradient of H2O/acetonitrile 0.1% TFA starting
from 5% acetonitrile to 95% acetonitrile in 30min (solvent ramp: from 0 to
5min: 5% ACN; from 5 to 20min: 80% ACN; from 20min to 25min: 20% ACN;
from 25min to 30min: 5% ACN).
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CH3 Thr), 0.94 (3H, d, CH3 Ile), 0.84 (3H, t, CH3
d Ile). MS calcd:

360.41, found: 461.56.
TFA.NH2-Gln-Asp-Ser-NH2 (4): 87% yield; Rt (HPLC)¼ 11.11min.

1H NMR (DMSO-d6) d: 8.79 (1H, d, NH Asp), 8.15 (3H, s, NH3
þ), 7.98

(1H, d, NH Ser), 7.17 (2H, s, NH2 Gln), 7.11 (2H, s, NH2 Ser amide),
4.64 (1H, m, CHa Asp), 4.13 (1H, m, CHa Ser), 3.52 (1H, m, CHa Gln),
2.75–2.56 (2H, m, CH2

b Asp and CH2
b Ser), 2.21 (2H, t, CH2

b Gln),
1.91 (2H, m, CH2

c Gln). MS calcd: 347.14, found: 348.25.
TFA.NH2-Asn-Asp-Ser-NH2 (5): 84% yield; Rt (HPLC)¼ 11.08min.

1H NMR (DMSO-d6) d: 8.76 (1H, d, NH Asp), 8.08 (3H, s, NH3
þ), 7.94

(1H, d, NH Ser), 7.71 (1H, s, NH2 Asn), 7.31 (1H, s, NH2 Asn), 7.15
(2H, s, NH2 Ser amide), 4.61 (1H, m, CHa Asp), 4.14–3.62 (4H, m,
CHa Ser, CHa Asn, CHa Ser and OH Ser broad singlet at 3.863), 2.73
(2H, m, CH2

b Asp), 2.69–2.48 (4H, m, CH2
b Asn, CH2

b Ser). MS calcd:
333.13, found: 334.18.

TFA.NH2-Glu-Phe-Glu-NH2 (6): 77% yield; Rt (HPLC)¼ 11.70min.
1H NMR (DMSO-d6) d: 8.61 (1H, d, NH Phe), 8.32 (1H, d, NH Glu),
8.05 (3H, s, NH3

þ Glu), 7.31–7.19 (5H, m, Phe aromatics), 7.08 (2H,
s, NH2 Glu amide), 4.58 (1H, m, CHa Phe), 4.19 (1H, m, CHa Glu),
3.73 (1H, m, CHa Glu), 3.07 (1H, dd, CHb Phe), 2.75 (1H, dd, CHb

Phe), 2.31–2.23 (4H, m, 2CH2
b Glu), 1.93–1.76 (4H, m, 2CH2

c Glu).
MS calcd: 422.43, found: 423.51.

CA enzyme activation assay

An Sx.18Mv-R Applied Photophysics (Oxford, UK) stopped-flow
instrument has been used to assay the catalytic activity of various
CA isozymes for CO2 hydration reaction33. Phenol red (at a concen-
tration of 0.2mM) was used as indicator, working at the absorb-
ance maximum of 557 nm, with 10mM Hepes (pH 7.5) or TRIS (pH
8.3) as buffers, 0.1M Na2SO4 (for maintaining constant ionic
strength), following the CA-catalysed CO2 hydration reaction for a
period of 10 s at 25 �C. Activity of the a-CAs was measured at pH
7.5 whereas that of the b-class enzymes at pH 8.3 in order to avoid
the possibility that their active site is closed34. The CO2 concentra-
tions ranged from 1.7 to 17mM for the determination of the kinetic
parameters and activation constants. For each activator at least six
traces of the initial 5–10% of the reaction have been used for
determining the initial velocity. The uncatalysed rates were deter-
mined in the same manner and subtracted from the total observed
rates. Stock solutions of activators (10mM) were prepared in dis-
tilled-deionized water and dilutions up to 1 nM were done there-
after with the assay buffer. Activator and enzyme solutions were
pre-incubated together for 15min (standard assay at room tem-
perature) prior to assay, in order to allow for the formation of the
E–A complex. The activation constant (KA), defined similarly with
the inhibition constant KI, can be obtained by considering the clas-
sical Michaelis–Menten equation (Equation (4), which has been fit-
ted by non-linear least squares by using PRISM 3:

v ¼ vmax= 1þ KM= S½ � 1þ A½ �f=KA
� �� �

(4)

where [A]f is the free concentration of activator.
Working at substrate concentrations considerably lower than

KM ([S]	 KM), and considering that [A]f can be represented in the
form of the total concentration of the enzyme ([E]t) and activator
([A]t), the obtained competitive steady-state equation for deter-
mining the activation constant is given by Equation (5):

v ¼ v0 � KA=
(
KA þ

�
½A�t � 0:5

n
ð½A�t þ ½E�t þ KAÞ

�ð½A�t þ ½E�t þ KAÞ2 � 4½A�t � ½E�t
�1=2o) (5)

where v0 represents the initial velocity of the enzyme-catalysed
reaction in the absence of activator35–38.

Results and discussion

Chemistry

Here, we designed the tripeptides 1–6 with amidated C-termini
that incorporate at least one acidic amino acid (Asp and Glu) resi-
due at various positions in the sequence (Table 1). In the
sequence assemblage, we focused on our previous observation
that single acidic amino acids like Asp and Glu act as powerful
activators of selected bacterial CAs, in view of the fact that both
possess the –COO� functionality that can participate in the proton
transfer process28–31. Aromatic amino acids such as Phe and Tyr
were also found to have significant activating abilities on the CAs
belonging to pathogenic bacteria28–31. Thus, we considered three
groups of compounds: (i) a pair of tripeptides that share the ter-
minal dipeptide motif Asp-Ser, i.e. H-Gln-Asp-Ser-NH2 (4) and H-
Asn-Asp-Ser-NH2 (5); (ii) H-Tyr-Phe-Asp-NH2 (1), H-His-Phe-Glu-NH2

(2), and H-Glu-Phe-Glu-NH2 (6), all containing a central Phe, and
characterized by Tyr, His, and Glu, respectively, as amino-terminals,
and Glu or Asp at the carboxy-end; and (iii) H-Glu-Ile-Thr-NH2 (3),
which features a Glu residue at the N-terminal position. Peptides
1–6 were efficiently synthesized by following routine SPPS proce-
dures32, and obtained in the amidated form as TFA salts. Their
main analytical data (HPLC and MS) are reported in Table 1. The
complete characterization is shown in section 2.

CA activation studies

The six peptides activated the enzymes from pathogenic bacteria
investigated here (Table 2), i.e. the b- and c-CAs from V. cholerae
(VchCAb and VchCAc), the Rv3273 CA (also called mtCA3, a b-CA
from M. tuberculosis) and BpsCAc (a c-CA from B. pseudomallei).
These four pathogens produce serious diseases in humans, and
understanding factors connected to their invasion, colonization
and virulence, and how these factors are influenced by modulators
of CA activity, may be relevant to developing new therapeutic
strategies devoid of the extensive drug resistance that has ultim-
ately emerged for most clinically used anti-infective drugs28–31.

In Table 2, the activation constants of tripeptides 1–6, and
some amino acids for four bacterial enzymes and the ubiquitous
isoforms hCA I and II are shown. The six amino acids were
included in this study for comparative reasons. The activation hCA
I and II by these six amino acids were measured previously23,24.
The activation constants of L-Phe and L-His for the four enzymes
from pathogenic bacteria were also recently reported28–31.

The following structure–activity relationship (SAR) can be
obtained from the data in Table 2:

(i) VchCAb was effectively activated by tripeptides 1–6 with
activation constants ranging between 0.21 and 7.16 mM. The most
effective activator was 4 (GlnAspSer), whereas the least effective
one was 5 (AsnAspSer). Thus, the extra methylene group in Gln
compared to Asn resulted in tripeptide 4 more effectively activat-
ing this enzyme by 34 times compared to 5 (Table 2).
Other effective activators against this enzyme include tripeptides 2
and 3 that incorporate a Glu residue in the sequence. However,
the tripeptide with two Glu residues (6) was less effective as an
activator compared to 2 and 3. It is interesting that L-Glu is a very
effective VchCAb activator (KA of 0.69 mM), whereas L-Gln, L-His and
L-Phe are much less effective activators (Table 2). L-Asp is moder-
ately potent as an activator (KA of 9.87 mM), but L-Asn is not.

(ii) The other b-CA investigated here, Rv3273, was less sensitive
to these activators compared to that from V. cholerae enzyme; i.e.
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tripeptides 1–6 had KAs in the range of 4.32 to 18.1mM for this
CA. The most effective activator was 3 (GluIleThr), whereas the
least effective was 5 (AsnAspSer). Tripeptide 2 was the next most
effective activator after 3. These latter two peptides both have
one Glu residue, albeit in opposing positions (amino-terminal vs
carboxy-terminal). Considering the simple amino acid derivatives
of Table 2, L-Glu was in this case ineffective as an activator
whereas the remaining amino acids were moderately potent to
weak activators (activation constants from 10.0 to 30.6 mM).

(iii) VchCAc was activated by tripeptides 1–6 with KAs ranging
between 2.74 and 14.7 mM. The most effective activator was 6,
which incorporates two Glu residues in the sequence, followed by
2, which has one such carboxy-terminal residue. The remaining tri-
peptides were less effective activators, with KAs> 10 mM (Table 2).
For this isoform, the best activators were the simple aromatic
amino acids L-His and L-Phe (KAs of 0.73–1.01 mM) whereas L-Asp,
L-Asn, L-Glu and L-Gln showed activities in the range of
6.37–9.21 mM. Thus, the SAR is rather challenging to delineate for
this enzyme and with this series of activators.

(iv) BpsCAc was efficiently activated by tripeptides 1–6 with
KAs ranging between 0.95 and 10.1 mM. The best activators were 5
and 2 (KAs of 0.95 and 1.63mM, respectively), which do not share
much in similarity except that in both sequences there is one
acidic amino acid residue, Asp in 5, and Glu in 2. The most inef-
fective activator was 1, which does not incorporate such a residue.
However, it is interesting to note that L-Asn with a KA of 0.98 mM
was the most effective activator among the simple amino acids
considered in the study. Indeed, this latter activation constant was
one order of magnitude lower than that for L-Asp, whereas such
an important difference is not seen for the L-Glu/L-Gln pair
(Table 2).

(v) A very interesting observation is the fact that the human
isoforms hCA I and II were not at all activated by tripeptides 1–6
investigated here (KA> 50mM), although they are highly activated
by some of the amino acids, such as L-His, and L-Phe. hCA II is in
fact sensitive only to these two amino acids, whereas hCA I is also
activated by L-Asp, L-Asn, L-Glu (but not L-Gln) and of course, L-His
and L-Phe (there are X-ray crystal structures for adducts of hCA I/II
with some of these two amino acids, which proved in detail the
activation mechanism of a-Cas)23,24.

Conclusions

We discovered a very interesting class of tripeptide activators for
bacterial b- and c-class CAs, which do not interfere with the

activity of the off-target, human isoforms hCA I and II. These acti-
vators incorporate aromatic amino acid residues, as well as acidic
(Asp and Glu) residues in their sequence which may have roles in
the rate-determining proton-transfer processes in the catalytic
mechanism of these enzymes. The activity of the tripeptides differ
both across the two classes of enzymes and between particular
members of each class from different pathogens, such as V. chol-
erae, M. tuberculosis and B. pseudomallei. Overall, these tripeptides
may be useful as tools for investigating the role of these enzymes
in key bacterial processes such as invasion, colonization and
pathogenicity, which are currently poorly understood.
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