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ON QUATERNION ALGEBRAS OVER SOME EXTENSIONS OF

QUADRATIC NUMBER FIELDS

VINCENZO ACCIARO, DIANA SAVIN, MOHAMMED TAOUS,
AND ABDELKADER ZEKHNINI

Abstract. Let p and q be two positive primes. Let ℓ be an odd positive prime
integer and F a quadratic number field. Let K be an extension of F such that
K is a dihedral extension of Q of degree ℓ over F or K is an abelian ℓ-extension
unramified over F assuming ℓ divides the class number of F . In this paper, we
obtain a complete characterization of division quaternion algebras HK(p, q)
over K.

1. Introduction

Let F be a field with char(F ) 6= 2 and let a, b ∈ F\{0}. The generalized quater-
nion algebra HF (a, b) is the associative algebra generated over the field F by two
elements i and j, subject to the relations i2 = a, j2 = b and ij = −ji.

Quaternion algebras turn out to be central simple algebras of dimension 4 over
F . A basis for HF (a, b) over F is given by {1, i, j, ij}.

It can be shown that every four dimensional central simple algebra over a field
of characteristic 6= 2 is a quaternion algebra.

If x = x11+x2i+x3j+x4k ∈ HF (a, b), with xi ∈ F , the conjugate x of x is defined
as x = x11−x2i−x3j−x4k, and the norm of x as n(x) = xx = x2

1−ax2
2−bx2

3+abx2
4.

If the equations ax = b, ya = b have unique solutions for all a, b ∈ A, a 6= 0,
then the algebra A is called a division algebra. If A is a finite-dimensional algebra,
then A is a division algebra if and only if A has no zero divisors. In the case of
generalized quaternion algebras there is a simple criterion that guarantees them to
be division algebras: HF (a, b) is a division algebra if and only if there is a unique
element of zero norm, namely x = 0.

Let L be an extension field of F , and let A be a central simple algebra over F .
We recall that A is said to split over L, and L is called a splitting field for A, if
A⊗F L is isomorphic to a full matrix algebra over L.

Several results are known about the splitting behavior of quaternion algebras
and symbol algebras over specific fields [4, 5, 7, 11, 12].

Explicit conditions which guarantee that a quaternion algebra splits over the
field of rationals numbers, or else is a division algebra, were studied in [3].

In [1] we studied the splitting behavior of some quaternion algebras over qua-
dratic fields. Then, in [2] we extended the previous results to the composite of
quadratic number fields.
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Traditionally, in order to decide whether a quaternion algebra is a division al-
gebra or it splits, one either looks for the primes which ramify in the algebra or
otherwise one has to appeal to Hasse’s norm theorem which allows to reduce the
problem to computations of local Hilbert symbols [13, 14]. Very recently, Goldstein
[8] tried to combine these two techniques.

In this paper, as we did in our previous papers [1, 2], we adopt the former
approach, i.e we study the ramification of certain integral primes, and we obtain
a nice characterization of quaternion division algebras HK(p, q) solely in terms of
quadratic residues, assuming that p and q are positive primes and K is a dihedral
extension of Q of prime degree over an imaginary quadratic field. The layout of the
paper is the following. In Section 2 we state some preliminary results which we will
need later. In Section 3 we apply these results to study quaternion algebras over
dihedral extensions K of Q of prime degree l over an imaginary quadratic field.

2. Preliminary results

In this section we recall some basic results concerning quaternion algebras. Un-
less otherwise stated, when we say “prime integer” we mean “positive prime inte-
ger”.

Let K be a number field and let OK be its ring of integers. If v is a place of
K, let us denote by Kv the completion of K at v. We recall that a quaternion
algebra HK(a, b) is said to ramify at a place v of K - or v is said to ramify in
HK(a, b) - if the quaternion Kv-algebra Hv = Kv ⊗HK(a, b) is a division algebra.
This happens exactly when the Hilbert symbol (a, b)v is equal to −1, i.e. when the
equation ax2 + by2 = 1 has no solutions in Kv. We also recall that the reduced
discriminant DHK(a,b) of the quaternion algebra HK(a, b) is defined as the product
of those prime ideals of the ring of integers OK of K which ramify in HK(a, b). The
following splitting criterion for a quaternion algebras is well known [3, Corollary
1.10]:

Proposition 2.1. Let K be a number field. Then, the quaternion algebra HK(a, b)
is split if and only if its discriminant DHK(a,b) is equal to the ring of integers OK

of K.

If OK is a principal ideal domain, then we may identify the ideals of OK with
their generators, up to units. Thus, in a quaternion algebra H over Q, the element
DH turns out to be an integer, and H is split if and only if DH = 1.

The next proposition gives us a geometric interpretation of splitting [7, Propo-
sition 1.3.2]:

Proposition 2.2. Let K be a field. Then, the quaternion algebra HK(a, b) is split
if and only if the conic C(a, b) : ax2+ by2 = z2 has a rational point in K, i.e. there
are x0, y0, z0 ∈ K such that ax2

0 + by20 = z20 .

The next proposition due to Hasse relates the norm group of extensions of the
base field to the splitting behavior of a quaternion algebra [7, Proposition 1.1.7]:

Proposition 2.3. Let F be a field. Then, the quaternion algebra HF (a, b) is split

if and only if a is the norm of an element of F (
√
b).

For quaternion algebras it is true the following [7, Proposition 1.1.7]:

Proposition 2.4. Let K be a field with char K 6= 2 and let a, b ∈ K\{0}. Then
the quaternion algebra HK(a, b) is either split or a division algebra.
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In particular, this tells us that a quaternion algebraHQ(a, b) is a division algebra
if and only if there is a prime p such that p|DHQ(a,b).

It is known [10] that if a prime integer p divides DH(a,b) then it must divide 2ab,
hence we may restrict our attention to these primes. In other words, in order to
obtain a sufficient condition for a quaternion algebra H

Q(
√
d)(p, q) to be a division

algebra, it is important to study the ramification of the primes 2, p, q in the algebra
HQ(p, q). The following lemma from the classical book by Alsina [3, Lemma 1.21]
gives us a hint:

Lemma 2.5. Let p and q be two primes, and let HQ(p, q) be a quaternion algebra
of discriminant DH .

i. if p ≡ q ≡ 3 (mod 4) and ( q
p
) 6= 1, then DH = 2p;

ii. if q = 2 and p ≡ 3 (mod 8), then DH = pq = 2p;
iii. if p or q ≡ 1 (mod 4) , with p 6= q and (p

q
) = −1, then DH = pq.

We recall that a small ramified Q-algebra is a rational quaternion algebra having
the discriminant equal to the product of two distinct prime numbers. The following
necessary and sufficient explicit condition for a small ramified Q-algebra HQ(p, q)

to be a division algebra over a quadratic field Q(
√
d) was proved in [1]:

Proposition 2.6. Let p and q be two distinct odd primes, with p or q ≡ 1 (mod 4)

and (p
q
) = −1. Let K = Q(

√
d) and let ∆K be the discriminant of K. Then the

quaternion algebra H
Q(

√
d)(p, q) is a division algebra if and only if (∆K

p
) = 1 or

(∆K

q
) = 1.

When q = 2 and p is a prime such that p ≡ 3 (mod 8), then, according to Lemma
2.5 the discriminant DHQ(p,q)

is equal to 2p, so HQ(p, q) is a division algebra. The

next proposition, which was proved in [1], shows what happens when we extend the

field of scalars from Q to Q(
√
d):

Proposition 2.7. Let p be an odd prime, with p ≡ 3 (mod 8). Let K = Q(
√
d)

and let ∆K be the discriminant of K. Then H
Q(

√
d)(p, 2) is a division algebra if and

only if (∆K

p
) = 1 or d ≡ 1 (mod 8).

When p and q are primes both congruent to 3 modulo 4 and ( q
p
) 6= 1 then,

according to Lemma 2.5(i) the discriminant DHQ(p,q) is equal to 2p, so HQ(p, q) is
a division algebra. The next proposition which also was proved in [1], tells us when
the quaternion algebra H

Q(
√
d)(p, q) is still a division algebra:

Proposition 2.8. Let p and q be two odd prime integers, with p ≡ q ≡ 3 (mod 4)

and ( q
p
) 6= 1. Let K = Q(

√
d) and let ∆K be the discriminant of K. Then the

quaternion algebra H
Q(

√
d)(p, q) is a division algebra if and only if (∆K

p
) = 1 or d

≡ 1 (mod 8).

3. Main results

Let’s ask ourselves now what happens when we consider a quaternion algebra
over a Galois extension K of Q, with nonabelian Galois group of order 2l, where l
is an odd prime integer. For this purpose, we recall the following result, which can
be found as an exercise in [11, p. 77]:
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Remark 3.1. Let K/F be a finite extension of fields of odd degree, and let a, b ∈
F\{0}. Then the quaternion algebra HK(a, b) splits if and only if HF (a, b) splits.

Let us first consider the case Gal(K/Q) ∼= S3, i.e. the dihedral group D3. The
following three propositions will deal with this case:

Proposition 3.2. Let ǫ be a primitive third root of unity, and put F = Q (ǫ). Let
α ∈ K\{0, 1} be a cubicfree integer, put K = F ( 3

√
α) and let p, q be two distinct odd

prime integers such that (p
q
) = −1 and p or q ≡ 1 (mod 4). Then the quaternion

algebra HK(p, q) is a division algebra if and only if (−3
p
) = 1 or (−3

q
) = 1.

Proof. Clearly F = Q (ǫ) = Q
(

i
√
3
)

is an imaginary quadratic number field and
[K : F ] = 3. Moreover, K/Q is Galois and Gal(K/Q) ∼= S3. According to Remark
3.1 and Proposition 2.4, HK(p, q) is a division algebra if and only if HF (p, q) is a
division algebra. By Proposition 2.6, this can happen if and only if (−3

p
) = 1 or

(−3
q
) = 1. �

Proposition 3.3. Let ǫ be a primitive third root of unity, and put F = Q (ǫ). Let
also α ∈ K\{0, 1} be a cubicfree integer, put K = F ( 3

√
α) and let p be an odd

prime integer such that p ≡ 3 (mod 8). Then the quaternion algebra HK(p, 2) is a
division algebra if and only if (−3

p
) = 1.

Proof. The proof is obtained from the proof of Proposition 3.2 by replacing Propo-
sition 2.6 with Proposition 2.7. �

Proposition 3.4. Let ǫ be a primitive third root of unity, and put F = Q (ǫ). Let
α ∈ K\{0, 1} be a cubicfree integer, put K = F ( 3

√
α) and let p and q be distinct

odd prime integers with ( q
p
) 6= 1 and p≡q≡ 3 (mod 4). Then the quaternion algebra

HK(p, q) is a division algebra if and only if (−3
p
) = 1.

Proof. The proof is obtained from the proof of Proposition 3.2 after replacing
Proposition 2.6 with Proposition 2.8. �

In what follows, let ℓ be an odd positive prime integer and F a quadratic number
field. Let K be an extension of F defined as follows: K is a dihedral extension of Q
of prime degree ℓ over F , orK is an abelian ℓ-extension unramified over F assuming
ℓ divides the class number of F (so [K : F ] = ℓn which is odd, with n ∈ N∗). The
existence of such a K containing F is guaranteed, in the second case, by class field
theory, but the first one is a tipical problem in inverse Galois theory. The following
result from [9, p. 352-353] guarantees us that such a K indeed exists (for the first
case):

Theorem 3.5. For any prime ℓ and any quadratic field F = Q(
√
d) there exist

infinitely many dihedral fields K of degree 2ℓ containing F .

If the quaternion algebra HF (p, q) is a division algebra, we would like to know
when HK(p, q) is still a division algebra. The following three propositions will allow
us to achieve this task:

Proposition 3.6. Let F be a quadratic field and ∆F its discriminant. Let K be
an extension of F defined as above. Let p and q be distinct odd prime integers,
with (p

q
) = −1, and p or q ≡ 1 (mod 4). Then the quaternion algebra HK(p, q) is

a division algebra if and only if
(

∆F

p

)

= 1 or
(

∆F

q

)

= 1.
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Proof. Note first that the degree [K : F ] is odd, since it is equal to ℓ or ℓn with
n ∈ N

∗. According to Remark 3.1 and Proposition 2.4, HK(p, q) is a division
algebra if and only if HF (p, q) is a division algebra. By Proposition 2.6, this can

happen if and only if
(

∆F

p

)

= 1 or
(

∆F

q

)

= 1. �

Proposition 3.7. Let d 6= 1 be a squarefree integer and let F = Q(
√
d) be a

quadratic number field and ∆F its discriminant. Let K be an extension of F defined
as above. Let p ≡ 3 (mod 8) be an odd prime integer. Then the quaternion algebra

HK(p, q) is a division algebra if and only if
(

∆F

p

)

= 1 or d ≡ 1 (mod 8).

Proof. The proof is obtained from the proof of Proposition 3.6, after replacing
Proposition 2.6 with Proposition 2.7. �

Proposition 3.8. Let d 6= 1 be a squarefree integer and let F = Q(
√
d) be a

quadratic number field and ∆F its discriminant. Let K be an extension of F defined
as above. Let p and q be distinct odd prime integers with ( q

p
) 6= 1 and p ≡ q ≡ 3

(mod 4). Then the quaternion algebra HK(p, q) is a division algebra if and only if
(

∆F

p

)

= 1 or d ≡ 1 (mod 8).

Proof. The proof is obtained from the proof of Proposition 3.6 after replacing
Proposition 2.6 with Proposition 2.8. �

We conclude our discussion with the main theorem of the paper:

Theorem 3.9. Let d 6= 1 be a squarefree integer and ℓ an odd positive prime
integer. Let F = Q(

√
d) be a quadratic number field and ∆F its discriminant.

Let K be a dihedral extension of Q of prime degree ℓ over F or K is an abelian
ℓ-extension unramified over F whenever ℓ divides the class number of F . Let p and
q be two distinct odd prime integers. Then the quaternion algebra HK(p, q) is a
division algebra if and only if one of the following conditions is verified:

1. p or q ≡ 1 (mod 4), (p
q
) = −1, and

(

∆F

p

)

= 1 or
(

∆F

q

)

= 1;

2. p ≡ 3 (mod 8), and
(

∆F

p

)

= 1 or d ≡ 1 (mod 8);

3. p ≡ q ≡ 3 (mod 4), ( q
p
) 6= 1, and

(

∆F

p

)

= 1 or d ≡ 1 (mod 8).
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