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Abstract: This paper presents a study on Singular Value
Decomposition (SVD) of pressure coefficients hyperbolic
parabolic roofs. The main goal of this study is to ob-
tain pressure coefficient maps taking into account spa-
tial non-uniform distribution and time-depending fluctu-
ations of the pressure field. To this aim, pressure fields
are described through pressure modes estimated by us-
ing the SVD technique. Wind tunnel experimental results
on eight different geometries of buildings with hyperbolic
paraboloid roofs are used to derive these pressure modes.
The truncated SVD approach was applied to select a suffi-
cient number of pressure modes necessary to reconstruct
the measured signal given an acceptable difference. The
truncated pressure modes are fitted through a polynomial
surface to obtain a parametric form expressed as a func-
tion of the hyperbolic paraboloid roof geometry. The su-
perpositions of pressure (envelopes) for all eight geometry
were provided and used to modify mean pressure coeffi-
cients, to define design load combinations. Both symmetri-
cal and asymmetrical pressure coefficient modes are used
to estimate thewindaction and to calculate the vertical dis-
placements of a cable net by FEM analyses. Results clearly
indicate that these load combinations allow for capturing
large downward and upward displacements not properly
predicted using mean experimental pressure coefficients.

Keywords: hyperbolic paraboloid roofs, pressure modes,
singular value decomposition, wind tunnel tests, cables
net

1 Introduction
Cable nets andmembrane roofs are tensile structures com-
monly used to cover large spans as sports arenas and mu-
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sic halls [1–4]. They are very light and widely employed in
roof systems requiring only perimetric structural supports.
They owe their appeal to lightness, cost-effectiveness, and
aesthetics. However, different types of tensile roof sys-
tems (e.g., cantilevered roofs [5–7], grandstand roofs [6–8],
hanging tensile roofs [9, 10], and cable domes of theGeiger
type [11]) are exposed to wind loads and therefore can ex-
hibit large aerodynamic response.

Common cable nets have a hyperbolic paraboloid
shape with two orders of parallel cables, upward and
downward. The two orders of cables have two different
functions, stabilizing and load-bearing, depending on the
acting loads. Under gravitational loads, upward cables
are load-bearing and downward ones are stabilizing while
under wind suction upward actions, the opposite is true.
These types of roofs are well-performing in high seismic
hazardareas because theirmass is very lowand fundamen-
tal periods very high. On the other hand, due to their light-
ness, they are sensitive to wind and snow actions [12–15].

Cable net roofs are sensitive to asymmetrical load con-
ditions such as a non-uniform wind or snow distributions.
These asymmetrical load conditions may result in over-
loaded and unloaded areas leading to detrimental effects
for cable structures because unloaded cables can lose their
tensionwith an excessive decrease in their stiffness. In con-
trast, overloaded cables can collapse reaching their mate-
rial stress limit. The last condition is dangerous because
the harmonic steel, commonly employed in cables, is char-
acterized by a brittle behavior.

Concerning the wind action, the proper estimation of
the spatial distribution of mean pressure coefficients on
the roof surface is pivotal. However, this is not sufficient to
capture asymmetrical load combinations given by the not-
correlated superposition of load peaks. One of themost se-
vere effects due to the time-depending fluctuation and spa-
tial depending variability is the asymmetrical occurrence
of upward and downward load peaks, whichmakes impor-
tant to also consider the time-depending fluctuations in
the design process. Nowadays, effects induced by random
fluctuations of the wind loads are generally neglected [30–
33].

The probabilistic approach to estimate maxima and
minima [34–38] gives a satisfactory estimation of peak val-
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ues but it does not provide any information about the peak
spatial distribution and/or time depending correlation.

In Wind Engineering, different numerical approaches
were used to obtain a decomposition of the wind pres-
sure random signal into its time-depending fluctuation
and spatial variability. For instance, ProperOrthogonal De-
composition (POD) [38] is commonly applied to investigate
the effect of randomly fluctuating wind pressures on roofs.
Several applications have shown its satisfactory applica-
tion, e.g., [38–43]. The POD approach is based on a sig-
nal decomposition generally computed with the Singular
Value Decomposition (SVD) [44]. In particular, the left sin-
gular vector representing the fluctuation information, the
singular valuesmatrix that content kinetic energy informa-
tion and, finally, the right singular vector (a.k.a., pressure
modes) containing the spatial distribution of the experi-
mental pressure signals were estimated through SVD. The
Truncated Singular Value Decomposition (TSVD) allows
storing selected pressuremodes to reconstruct the original
signal with satisfactory accuracy.

Concerning hyperbolic paraboloid roofs, an exten-
sively experimental wind tunnel campaign was carried
out [16–18] and results were incorporated in [19] that fills
the existing gap in international codes, e.g., [20–29]. The
numerical techniques described above can be applied to
experimental pressure fieldsmeasured in wind tunnels on
paraboloid roofs to investigate the time-depending fluctu-
ation and spatial variability. In particular, these wind tun-
nel measurements can be used to discuss the importance
of asymmetrical pressure distribution that is usually ne-
glected in the design phases.

This paper presents an analysis of random pressure
fields on hyperbolic paraboloid roofs based on experimen-
tal results given by [16]. The TSVD approach was applied
to select a sufficient number of modes necessary to recon-
struct the measured values given an acceptable difference.
The truncated pressure modes are fitted through a polyno-
mial surface to obtain a parametric form expressed as a
function of the hyperbolic paraboloid roof geometry. The
superpositions of pressure modes (envelopes) were pro-
vided for all eight geometries and used to modify mean

pressure coefficients trends. Finally, the polynomial fit-
ting of selected pressure modes is used to estimate en-
velope and asymmetrical pressure coefficients. Both en-
velope and asymmetrical pressure coefficient modes are
used to estimate the wind action and to calculate the ver-
tical displacements of a cable net by FEM analyses. Re-
sults clearly indicate that these load combinations allow
for capturing large downward and upward displacements
not properly predicted using mean experimental pressure
coefficients.

2 Experimental setup and mean
pressure coeflcients trends

Experimental tests on hyperbolic paraboloid roofs were
carried out in the CRIACIV (Inter-University Research Cen-
tre on Wind Engineering and Building Aerodynam-
ics) open circuit boundary layer wind tunnel in Prato
(Italy) [16–19]. Tests refers to scaled models (scale: 1:100)
of buildings covered with hyperbolic paraboloid roofs.
The geometrical characteristics of the scaled models are
summarized in Figure 1.

Figure 1: Geometrical characteristics of the scaled models

Tests were performed considering (i) four different
plan shape (square, rectangular, circular, and elliptical
plan) (ii) two different curvatures (low and high), and (iii)
four different total heights. Sixteen different geometries
were investigated. The testswere repeated for sixteenwind

Table 1: Geometrical sample, dimensions in m. For the definition of the different variables refer to Figure 1

λl = 1
100 G1 G2 G3 G4 G5 G6 G7 G8

l1 80.00 80.00 80.00 80.00 40.00 40.00 40.00 40.00
l2 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00
f1 2.67 2.67 4.44 4.44 2.67 2.67 4.44 4.44
f2 5.33 5.33 8.89 8.89 5.33 5.33 8.89 8.89
H 21.33 34.66 26.66 39.99 21.33 34.66 26.66 39.99
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Figure 2: Thiessen polygons for square (a) and rectangular (b) plan roofs

Figure 3:Mean pressure coeflcients of square plan geometries with θ = 0∘ [16]
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Figure 4:Mean pressure coeflcients of square plan geometries with θ = 90∘ [16]

Figure 5:Mean pressure coeflcients of rectangular plan geometries with θ = 0∘ [16]
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Figure 6:Mean pressure coeflcients of rectangular plan geometries with θ = 90∘ [16]

angles by rotating themodel around the vertical axis in the
test chamber.

In the following, only eight different geometries will
be used in the analysis: square (i.e., G1...4) and rectangular
(i.e., G5...8) plan shape. Three wind angles will be consid-
ered, θ = 0∘, 45∘, and 90∘, respectively. Table 1 gives the
geometrical dimensions of the height scaled models. Each
model was equipped with 89 pressure-taps for the square
plan shape and 95 for the rectangular one.

Experiments were performed with a sampling fre-
quency equal to 252 Hz for a time length equal to 29.77 s
(a total of 7504 experimental points for each strain gauge),
using a suburban velocity profile [16–18]. The roof surface
was divided into Thiessen polygons around each pressure
taps assuming constant pressure coefficients for each area.
Minima and maxima pressure coefficients were estimated
according to [34–38]. Figure 2 showspressure tapsdistribu-
tions on the square (i.e., 89 pressure taps) and rectangular
(i.e., 95 pressure taps) plan roofs.

A summary of the mean pressure coefficients for the
height geometries (see Table 1) is reported in Figures 2-
5. In particular, Figures 3 and 4 show the pressure coeffi-
cients distribution of square plan geometries (i.e., G1...4)
for θ = 0∘ (Figure 3) and 90∘ (Figure 4). Similar consider-

ations apply to the case θ = 45∘; accordingly, this case is
omitted in the following for sake of brevity. Figures 5 and 6
show the pressure coefficients distribution of rectangular
plan geometries (i.e., G5...8) for θ = 0∘ (Figure 5) and 90∘

(Figure 6). Henceforth, positive pressure coefficients indi-
cate suction (i.e., upward action). The interested reader is
referred to [16] for a detailed description of the methods
and results reported in Figures 3–6 and also for the case
θ = 45∘.

3 Singular value decomposition of
experimental pressure
coeflcients fields

3.1 Methodology

In linear algebra, the Singular Value Decomposition (SVD)
of a matrix is a factorization of that matrix into three ma-
trices. This value has some interesting algebraic proper-
ties and conveys important geometrical and theoretical in-
sights about linear transformations. It also has some im-
portant applications in data science [38–43]. SVD takes a
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Figure 7: Normalized S estimated using [46] for the first five for all geometries listed in Table 1 and for θ = 0∘ (left) and θ = 90∘ (right)

rectangular matrix defined as A, where A is a n · p matrix
in which the n rows represent the discrete time steps, and
p columns each pressure tap [45]. The SVD theorem states:

An·p = Un·n · Sn·p · VTp·p (1)

where the Un·n columns are the left singular vectors; Sn·p
has singular values and is diagonal (mode amplitudes);
and VTp·p has rows that are the right singular vectors [44].

Calculating the SVD consists of finding the eigenval-
ues and eigenvectors of An×p × ATn·p and ATn·p · An·p. The
eigenvectors of ATn·p · An·p make up the columns of Vp·p,
the eigenvectors of An·p ·ATn·p make up the columns of Un·p.
The singular values in Sn×p are also square roots of eigen-
values from An·p ·ATn·p or ATn·p ·An·p. The singular values are
the diagonal entries of the Sn·p matrix and are arranged in
descending order. The singular values are always real num-
bers. If matrix An·p is a real matrix, then Un·n and Vp·p are
also real.

The SVD numerical approach is commonly used to
compute the Proper Orthogonal Decomposition (POD)
modes of a random signal. In POD, fluid variables are writ-
ten as a linear combination of some global modes [38–43].
The purpose of the analysis is to find the deterministic co-
ordinate function ϕ (x, y), which best correlates with all
the elements of a set of randomly fluctuating wind, pres-
sure fields. ϕ (x, y)maximizes the projection from the ran-
domly fluctuatingwind pressure field, p (x, y), to the deter-
ministic function, ϕ (x, y).

The singular values matrix, S, is a [7504 · 89] eigen-
value matrix for roof with a square plan and a [7504 · 95]
for roofwith a rectangular plan. It is a diagonalmatrixwith
a [89 · 1] non-zero values diagonal vector [45].

Each row of S diagonal vector contains information
about the kinetic energy of each pressuremode. If the data

matrix is real, as it is in this case, the singular valuematrix
and the eigenvalue matrix are the same. The representa-
tion of the normalized S estimated using [46] for the first
five modes, is illustrated in Figure 7. It can be seen that for
all geometries listed in Table 1 and for twowind angles (i.e.,
θ = 0∘ and θ = 90∘), values for the first mode are 6 to 14
times bigger than others.

3.2 Pressure modes spatial distribution

The eigenvector squared matrix, V, is a [89 · 89] matrix
for the roof with a square plan and a [95 · 95] for the roof
with a rectangular plan [16]. Columns are pressure modes
while rows are pressure taps. Figures 8-11 show the first
pressure mode for all geometries listed in Table 1, for both
θ = 0∘and θ = 90∘, where ν is the i-th pressure mode
(a vector [89 · 1] for square plan or [95 · 1] for rectangular
plan). As it was expected, the first pressuremode is similar
to the mean pressure coefficients illustrated in Figures 2-5.
Figures 8-11 show a significant difference between θ = 0∘

and θ = 90∘ and between roofs with square plan and rect-
angular plan.

Figures 8a and 8b show a very similar trend indicat-
ing that for roof with a square plan, pressure mode #1 is
not influenced by the model total height, H (see Figure 1).
Similar considerations can be done for Figures 8c and 8d.
A similar tendency is noted for θ = 90∘ (Figures 9 and 10);
this is particular evident for geometries G1 (Figure 9a) and
G2 (Figure 9b). A negligible difference is noted between ge-
ometries G3 (Figure 9c) and G4 (Figure 9d). On the other
hand, the model curvature affects the pressure mode #1.
The comparison between Figures 8a and 8c and Figures 8b
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Figure 8: Pressure mode #1 for square plan with θ = 0∘ and geometry G1 (a), G2 (c), G3 (b), G4 (d), referring to Table 1

Figure 9: Pressure mode #1 for square plan with θ = 90∘ and geometry G1 (a), G2 (c), G3 (b), G4 (d), referring to Table 1
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Figure 10: Pressure mode #1 for rectangular plan with θ = 0∘ and geometry G5 (a), G6 (c), G7 (b), G8 (d), referring to Table 1

Figure 11: Pressure mode #1 for rectangular plan with θ = 90∘ and geometry G5 (a), G6 (c), G7 (b), G8 (d), referring to Table 1
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and 8d shows marked differences in the detachment and
the middle of the roof zones.

A significant difference is noted for pressure mode #1
in roofs with a rectangular plan (Figures 10 and 11). In
the case of the roof with rectangular plan, the model to-
tal height, the roof curvature and the wind angle affect the
pressure mode #1 shape. Comparing Figures 9a and 9b a
significant difference in the detachment zone is observed.
For flatter roofs with rectangular plan shape (G5 and G6)
themodel with a bigger total height, presents larger values
of pressuremode#1 in the detachment zone and a valley in
the middle of the roof zone (Figure 10b). Differently, when
themodel has amore curved roof (G7 and G8) and a bigger
total height, a convexity in the middle of the roof zone is
observed (Figure 10d).

Amore evident difference is observed between G7 and
G8, (Figure 11c and Figure 11d) for θ = 90∘. G7 has a
total height, H, smaller than G8 and presents a convex
trend (Figure 11c) from the detachment zone. Differently,
G8 shows a concavity along the flow direction (along l1).

3.3 Envelope of the pressure modes

The upper and lower envelopes are calculated to obtain a
synthetic representation of the entire database for square
and rectangular plan shapes. For each θ and all normal-
ized pressure modes, an upper and lower envelope was
calculated for all eight geometries, as it is illustrated in Fig-
ure 12. Specifically, the i-th pressure mode of all eight ge-

ometries (Table 1) was overlapped and then the upper and
lower surface were selected and finally fitted by a polyno-
mial surface.

Upper and lower pressure mode envelopes were fitted
through a 95% level of confidence polynomial surface to
obtain a smooth trend as a function of pressure tap loca-
tions:

𝛾 (x, y) = q1 + q2x + q3y + q4x2 + q5xy + q6x2 (2)
+ q7x2y + q8xy2 + q9x3

where 𝛾 (x, y) is the polynomial surface, q1, . . . , q9 are the
constants, and x and y are the horizontal axes in the l1 and
l2 directions (see Figure 1), respectively. The fitting was
performed by using the data at each centroid of Thiessen
polygons. Two envelopes surfaces (maxima and minima
envelopes) were obtained from each i-th pressure mode
and they are named ENV # i-th {maxima; minima}. It is
noteworthy that eigenvectors (i.e., pressure modes trends)
are normalized to 1 and −1 and that they are referred to x

l1
and to y

l2 variable abscise and ordinate.
The following procedure was adopted: pressure

modes trends for all eight geometries were normalized in
the range from−1 to 1 and theywere overlapped (Figure 12);
the upper and lower envelopes (ENV # i-th {maxima; min-
ima}) were estimated; the upper and lower envelope sur-
faces were fitted by a polynomial surface according to
Eq. 2; the fitting surfaces were converted as a multiplier,
𝛾 (x, y), of the experimental mean pressure coefficients
(Figures 2-4) as Cp (x, y) · 𝛾 (x, y). This approach allows
to fully preserving the bigger downward or upward ex-

Figure 12: Example of envelope of the maxima and minima Normalized eigenvectors for θ = 0∘, pressure mode #1
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Figure 13: Examples of envelope pressure modes, 𝛾 (x, y), for θ = 0∘

Table 2: Polynomial surface fitting coeflcients for envelope pressure modes (Eq. (2), Figure 13)

ENV
maxima minima

θ = 0∘ #1 #2 #3 #4 #5 #1 #2 #3 #4 #5
q1 0.80 0.32 0.26 0.30 0.39 0.43 −0.03 0.02 −0.01 −0.08
q2 0.02 0.04 0.03 −0.04 0.08 0.02 0.01 0.01 0.00 0.05
q3 −0.91 −1.14 −0.99 −0.12 −0.56 0.69 0.69 0.70 0.35 0.30
q4 0.19 −0.20 0.31 1.28 1.25 0.08 −0.16 0.01 −1.11 −2.14
q5 0.00 0.05 0.02 −0.01 0.03 −0.03 −0.01 −0.01 −0.01 0.03
q6 −1.21 0.55 0.84 0.33 −0.02 −4.88 −2.90 −2.86 −2.98 −2.09
q7 −1.22 0.02 1.28 3.81 −8.73 0.17 0.46 0.31 4.90 3.64
q8 −0.20 −0.34 −0.28 0.44 −0.78 −0.19 −0.10 −0.06 −0.02 −0.39
q9 10.99 14.33 12.97 7.02 14.10 −13.12 −11.26 −11.76 −10.90 −9.78

θ = 90∘ #1 #2 #3 #4 #5 #1 #2 #3 #4 #5
q1 0.81 0.62 0.75 0.81 0.78 0.22 −0.44 −0.56 −0.57 −0.35
q2 0.04 0.07 0.02 0.01 0.06 0.00 0.06 0.01 0.01 0.04
q3 0.34 −0.52 −0.56 −0.19 0.36 0.93 0.26 0.71 0.18 0.35
q4 −1.07 −1.87 −0.56 −1.51 −2.07 0.46 0.92 1.99 0.17 0.40
q5 0.02 0.07 0.03 0.00 0.02 −0.03 −0.04 0.00 0.01 0.01
q6 −0.40 1.03 −0.51 −0.82 −0.29 −3.73 −2.42 −2.13 −1.56 −1.76
q7 −1.40 0.05 1.69 0.06 1.22 −0.26 −5.14 −3.21 0.37 −1.28
q8 −0.35 −0.50 −0.12 −0.11 −0.55 −0.08 −0.72 −0.12 −0.12 −0.36
q9 2.75 8.41 7.25 6.47 1.34 −14.29 −4.35 −6.60 −5.66 −6.51
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Figure 14: Examples of design pressure coeflcient combination, Cp × 𝛾, for θ = 0∘

perimental values and to reduce values around this with
the purpose to obtain a local bigger difference between
pressure taps. In the following, the modified pressure
coefficients are named envelope pressure coefficients dis-
tribution.

Figure 13 shows maximum and minimum envelopes
for pressure mode #1 and #4, for geometry G1 with θ = 0∘.
Table 2 gives all polynomial coefficients for the first five
maxima and minima combinations for θ = 0∘ and 90∘.

Figure 14 shows two examples of Cp (x, y) · 𝛾 (x, y) for
pressure modes #1 and #4, geometry G1, and wind angle
θ = 0∘. Env#1 maxima shows a maximization of pressure
coefficients in the middle of the roof zone. On the other
hand, ENV#1-minima gives a minimization of pressure co-
efficients in the middle of the roof zone. The effect of this
pressure coefficients trend on the static response of a typ-
ical roof with a hyperbolic paraboloid shape, cable net,
in terms of vertical displacements corresponds to maxima
downwards displacements in this roof zone [47–50].

4 Synthetic representation of the
pressure coeflcients

4.1 Pressure coeflcients reconstruction
through the truncated singular value
decomposition (TSVD) approach

As discussed in Section 3, the pressure coefficients for one
geometry (i.e., [7504 · 89 for square plan roofs) and [7504
· 95] for rectangular plan roofs) can be synthetically de-
scribed using SVD. In particular, full time-histories can be
reconstructed using only the first N pressure modes, ac-
cording to the TSVD approach. Surrogate pressure coeffi-
cients time histories matrix, CpS, (i.e., [7504 · 89], square
plan roofs) or [7504 · 95], (i.e., rectangular plan roofs), can
be obtained as:

CpS = US · SS · VS
T

(3)

whereVST is the transposeof the surrogate eigenvectorma-
trix reduced to [89 · N] or [95 · N], with the columns corre-
sponding to modes from #1 to N . SS is the diagonal of the
surrogate singular value matrix, reduced to a [89 · N] or
[95 · N] vector in which only the first N values are nonzero
numbers, corresponding to modes from #1 to #N. The sin-
gle element (eigenvalue) of SS is named here λm, where m
denotes the mth mode. Finally, the surrogate left singular
vectors matrix, US, is a [7504 · 89] or [7504 · 95] matrix.



Pressure modes for hyperbolic paraboloid roofs | 237

Figure 15: Example of CN trend (a) and pressure coeflcients series by TSVD for the case of geometry G1, θ = 0∘ (b)

The sufficient number of modes for the reconstruction
can be estimated by:

Cm = λm∑︀89,95
m=1 λm

(4)

CN = 100 ·
(︃
1 −

N∑︁
m=1

cm

)︃
(5)

where Cm is the proportion of the mth mode, and it de-
notes the ratio of λm to the sum of the eigenvalues, 89 and
95 mean number of pressure taps. CN is the cumulative
proportion, which is the percentage of the error level of
the fluctuating wind pressure reconstructed according to
Eq. (3), using N modes.

Figure 15a shows an example of the variation of CN
with respect to N for the case G1, θ = 0∘. Figure 15b
shows an example of pressure coefficients time history re-
construction by TSVD varying N from 2 to 50. Results show
that for 20 ≤ N ≤ 50 error level of the fluctuating pres-
sure in percentage is smaller than 10% (Figure 15a). Simi-
lar considerations can be done for all geometries andwind
angles investigated. It can be concluded that CpS can be
reconstructed using only the first 20 pressure modes hav-
ing error level of thefluctuatingpressure smaller than 10%,
which can be considered acceptable to simulate the exper-
imental pressure coefficients time history.

4.2 Synthetic representation of the mean
pressure coeflcients through the
randomization of PSD

A further parametrization of SVD results was computed
through the fitting of US (i.e., surrogate matrix U obtained

by TSVD) columns Power Spectral Density (PSD) with the
purpose to store a synthetic representation of matrix US.
Figure 16a shows an example of the PSD fitting for the case
G1 and θ = 0∘. The PSD was fitted according to:

PSD (f ) = x1e−x2 f + x3e−x4 f (6)

where f is the frequency. The coefficients x1, . . . , x4 are
constant permit to reconstruct US. For all pressure taps of
each geometry and wind angle, coefficients x1, . . . , x4 are
fitted through a polynomial surface as a function of x and
y coordinates on the roof. This synthetic representation is
useful for designers to estimate the PSD of a generic point
on the roof. The reconstructed by fitting US is named USF .

Figure 16 shows an example of PSD fitting and Fig-
ure 16b shows the variability of the PSD (f ) for all pressure
taps on G1 for θ = 0.

In this case, PSD can be used to reconstruct the ex-
perimental mean pressure coefficients, Cp,mean, neglect-
ing phase information. First, PSD (f )s is converted to am-
plitude A (f ) as:

A (f ) =
√︀
2 · PSD (f ) (7)

Then, a frequency domain signal z (f ) is calculated as:

z (f ) = A (f ) e[iφ(f )] (8)

whereφ (f ) is a randomphase in the frequency domain giv-
ing each spectral component a random phase uniformly
distributed between 0 and 360∘ and where i is the imagi-
nary number, i =

√
−1. Finally, z (f ) is used in the inverse

FFT (IFFT) algorithm for positive valued (one-sided) func-
tions:

US
F
= IFFT [z (f )] (9)
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Figure 16: Eigenvalue #1 of the time history (a), and PSD (b). (G1, θ = 0∘)

Figure 17: Example of spatial variation of coeflcient x1, Eq. (2), for the case G1, θ = 0∘ (a) and comparison between Cp,mean by experiments
and by USF

Quantities x1,..4 in Eq. (2) were obtained for all geome-
tries given in Table 1. The coefficients x1,..4 of all the pres-
sure taps illustrated in Figure 2 are fitted through a 95%
level of confidence polynomial surface of degree two in x
and degree three in y, according to:

xi (x, y) = p1 + p2x + p3y + p4x2 + p5xy + p6x2 (10)
+ p7x2y + p8xy2 + p9x3

where xi (x, y) is the polynomial surface, p1, . . . , p9 are
the constants, and x and y are the centroid of each
Thiessen polygon. An example of xi (x, y) is illustrated in
Figure 17a for the case of geometry G1, θ = 0∘.

The nine coefficients of the fitting polynomial for all
four coefficients x1,..4 defined in Eq. (6), for all geometries
listed in Table 1 and all three wind angles investigated, are
given in Appendix A.

The surrogated and fitted eigenvalues, USF, the surro-
gated singular values SS and the surrogated eigenvectors,
VS, are used to reconstruct the surrogated pressure coeffi-
cients time histories, CpS,F according to Eq. (3) fromwhich
it is possible to recalculate mean pressure coefficients in
accordance with the Principal Component Analysis (PCA)
approach [44].

In this case, using only one pressuremode and a surro-
gated and fitted left singular vectors matrix, the difference
between the mean experimental pressure coefficients and
the mean surrogated pressure coefficients is smaller than
13% for all geometries and wind angles investigated. Ta-
ble 3 gives the error in percentage for all geometries and
wind angles investigated.
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Table 3: Relative error in percentage between experimental values
and by TSVD values

% θ = 0∘ θ = 45∘ θ = 90∘

G1 1.4 0.1 3.9
G2 2.5 0.1 3.3
G3 4.1 0.1 10.4
G4 6.1 0.1 7.5
G5 6.0 9.5 3.8
G6 4.9 0.1 2.8
G7 12.3 0.3 4.1
G8 12.5 0.1 0.8

5 Mean pressure coeflcients
modification through upper
pressure modes asymmetrical
trends

The pressure modes distribution discussed in Section 3
can be considered as a synthetic spatial representation of
the wind action on the roof and the singular values are the
weights of each pressure mode. Even if pressure maps for
mode #1 (Figures 8-11) shows a very similar trend to mean

pressure coefficients (Figure 5), the upper modes show a
different distribution, as illustrated in Figure 18.

Examples of upper pressure modes for geometry G1
with θ = 0∘ are shown in Figure 18. For this specific geom-
etry and wind angle, modes #3 and #5 are asymmetrical
and mode #2 is diagonal. The modes variability is related
to the time depending fluctuation of pressure coefficients.
Comparing trends for all 20modes (based on TSVD), it was
observed that the majority of modes are asymmetric. This
indicates that the asymmetrical pressure distribution of
wind loads should be considered during the design. This
contrasts with Codes, Standards and literature suggesting
the use of the only symmetric distribution of pressure co-
efficients (Figure 5), [16–18].

For the case of cable nets and membrane roofs, asym-
metrical load conditions represent the most severe load
combination because the local instability can occur due to
the unloading of the internal cable tension (Figure 19). For
this reason, asymmetrical load combinations in the design
phase are the worst scenario compared with symmetrical
combinations.

In order to provide asymmetrical wind distributions,
the proposed procedure consists in multiplying the pres-
sure coefficients by normalized pressure modes.

Normalized upper modes were used to obtain asym-
metrical pressure coefficients distribution, Cp,mean·ν, to es-
timate asymmetrical wind action load combinations. The

Figure 18: Examples of upper pressure modes for geometry G1 with θ = 0∘. The black arrows indicate the upward or downward curvature
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Figure 19: Cable deformation under uniformly and non-uniformly load distribution

Figure 20: Examples of asymmetrical pressure coeflcient combination, Cp,meanν, for geometry G1 and θ = 0∘

mean pressure coefficients calculated from the randomiza-
tion of PSD (see Section 4.2) are used to provide asymmet-
rical combinations. Figure 20 shows some examples ob-
tained by modes #2 - #5, for geometry G1 and θ = 0∘. Ex-
amples illustrated in Figure 20 show a non-uniformly dis-
tributed positive (i.e., downward pressure) and negative
(i.e., upward pressure, suction) pressure coefficients.

6 FEM analyses
The case with geometry G1 and θ = 0∘ is used in the fol-
lowing to estimate the vertical displacements using a FEM
model. The cable wheelbase, i, was assumed to be equal
for the upward anddownward cables and equal to 2m. The
upward and downward cable cross-sections were defined

using the radii ϕ1 and ϕ2, respectively. Here, ϕ1 = 0.02
m and ϕ1 = 0.01m are assumed. The cables have equiva-
lent cable Young Modulus, E, equal to 1.65 × 105 MPa. The
permanent load of the membrane was assumed to be 0.05
kN/m2. The dead load owing to the cable weight was as-
sumed equal to 0.1 kN/m2.

The wind action using both envelope combinations
(see Figure 13) and asymmetrical combinations (see Fig-
ure 20) was estimated as W = 0.5ρU2Cp, where ρis the
air density assumed equal to 1.25 kg/m2 and U is the wind
velocity at the roof level. U is assumed equal to 30m/s (i.e.,
the maximum given by [19]).

Structural analyseswere performed on the FEMmodel
(Figure 21a) using TENSO [51] nonlinear geometrical anal-
ysis program. This software can execute a dynamic step-
by-step integration of a nonlinear three-dimensional struc-
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Figure 21: Cable net FEM analyses: FEM model (a), vertical displacements by using experimental mean pressure coeflcients (b)

Figure 22: Cable net vertical displacements by FEM analyses by proposed pressure wind load combinations given by modified mean pres-
sure coeflcients trends
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ture with geometric nonlinearities. The cables are dis-
cretized as straight cable segments. The global stiffness
matrix is updated at each load step by assembling the stiff-
ness sub-matrices of the elements, which are updated to
consider the strain observed in theprevious time step, thus
accounting for geometric nonlinearity effects.

TENSO solves for the static equilibrium of the struc-
ture under dead, gravity, and construction loads (before
wind loads application) by nonlinear static analysis. Two
methods are used simultaneously: step-by-step incremen-
tal method and a ‘subsequent interaction’ method with
variable stiffness matrix (secant method). The Newmark–
Beta method with Rayleigh damping is used for numerical
integration of the dynamic equations [51].

Figure 21 shows the static deformation of the cable net
obtained by experimental mean pressure coefficients and
Figure 22 shows results obtained by envelope and asym-
metrical combinations.

Results show that envelope combinations obtained by
minima pressure modes and asymmetrical combinations
predict larger upward and downward displacements com-
pared with the case when mean pressure coefficients are
employed.

The maximum value of vertical displacement upward
given by experimental mean pressure coefficients is about
0.4 m in the flow detachment zone. No significant down-
ward vertical displacements are estimated using mean ex-
perimental values of pressure coefficients. Contrarily, the
proposed envelope and asymmetrical distribution of pres-
sure coefficients have given 0.6mupward and 0.8mdown-
ward.

These results highlight the importance of the use of
the modified mean pressure coefficients in the design pro-
cess to properly capture the displacements induced by the
wind on hyperbolic paraboloid roofs. Besides, these re-
sults highlight the large underestimation in terms of dis-
placements usingmeanpressure coefficients as commonly
suggested by Standards and Codes of Practice.

7 Conclusions
Amodification ofmeanpressure coefficients onhyperbolic
paraboloid roofs was obtained from the SVD on data com-
ing from wind tunnel tests. The proposed approach was
applied on eight different geometries of buildings covered
with a hyperbolic paraboloid shape with two different cur-
vatures (i.e., one flatter and one more curved), two differ-
ent plan shape (i.e., square and rectangular shape) and
four different total height. The prototypes represent cable

nets structure made of cables and a membrane. Three dif-
ferent wind angles were investigated, 0∘ (parallel to down-
ward cables), 45∘, and 90∘ (parallel to upward cables).

Experimental models were equipped with 89 (for
square plan geometries) and 95 (for rectangular plan ge-
ometries) pressure taps. Singular values (i.e., eigenvalues),
left singular vectors and right singular vectors (i.e., pres-
sure modes) were estimated from wind pressure random
processes measured from wind tunnel tests. For the cases
investigated, twenty selected pressure modes are suffi-
cient to reconstruct pressure coefficients time history with
an error smaller than around 13%. The selected pressure
modes were fitted through a polynomial surface. Normal-
ized and fitted pressure modes were overlapped to obtain
envelopes.

Surrogatedmean pressure coefficients were estimated
through randomization of the fitted Power Spectral Den-
sity (PSD) of the left singular vectors and they were mul-
tiplied by normalized envelope pressure modes to obtain
envelope load combinations. Finally, asymmetrical upper-
pressure modes were normalized and multiplied by surro-
gated mean pressure coefficients to obtain asymmetrical
load combinations.

Finally, envelope and asymmetrical pressure coeffi-
cients were used to estimate wind loads combinations.
Static FEM analyses were performed on a case of study
to estimate vertical displacements. It was observed that
upward vertical displacements induced by envelopes and
asymmetrical load combinations are larger than values es-
timated using experimental mean pressure coefficients.
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A Appendix A
The nine coefficients of the fitting polynomial for all four coefficients x1,..4 defined in Eq. (6) are given in Tables A4
and A5 for square plan models and rectangular plan models, respectively, for all geometries and all three wind angles
investigated.

Table A4: Polynomial surface fitting coeflcients (i.e., ·10−3) for square plan geometry

G1
θ = 0∘ θ = 45∘ θ = 90∘

x1 x2 x3 x4 x1 x2 x3 x4 x1 x2 x3 x4
p1 0.4 90.9 −0.4 92.1 0.5 117.1 −0.5 72.0 0.2 65.3 −0.2 203.6
p2 0.0 0.1 0.0 −0.8 0.0 0.0 0.0 −0.2 0.0 0.0 0.0 −3.2
p3 0.0 2.5 0.0 0.1 0.0 0.1 0.0 −1.8 0.0 2.9 0.0 −13.2
p4 0.0 0.0 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
p5 0.0 0.0 0.0 −0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1
p6 0.0 0.0 0.0 0.1 0.0 0.0 0.0 0.1 0.0 0.0 0.0 0.1
p7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
p8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
p9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

G2
θ = 0∘ θ = 45∘ θ = 90∘

x1 x2 x3 x4 x1 x2 x3 x4 x1 x2 x3 x4
p1 0.3 82.0 −0.3 190.5 0.4 94.9 −0.4 64.8 0.3 90.5 −0.3 72.7
p2 0.0 −0.3 0.0 1.1 0.0 0.1 0.0 −0.5 0.0 −0.3 0.0 0.3
p3 0.0 0.6 0.0 15.6 0.0 0.0 0.0 0.5 0.0 1.7 0.0 −0.2
p4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1
p5 0.0 0.0 0.0 0.1 0.0 0.0 0.0 −0.1 0.0 0.0 0.0 0.0
p6 0.0 0.0 0.0 0.1 0.0 0.0 0.0 0.1 0.0 0.0 0.0 0.1
p7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
p8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
p9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

G3
θ = 0∘ θ = 45∘ θ = 90∘

x1 x2 x3 x4 x1 x2 x3 x4 x1 x2 x3 x4
p1 0.3 89.9 −0.3 208.3 0.3 96.1 −0.3 147.9 0.2 48.0 −0.2 87.8
p2 0.0 −0.3 0.0 −1.3 0.0 0.0 0.0 −4.3 0.0 −0.6 0.0 1.7
p3 0.0 1.1 0.0 4.6 0.0 −0.1 0.0 2.9 0.0 3.2 0.0 −1.8
p4 0.0 0.0 0.0 −0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1
p5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
p6 0.0 0.0 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.2
p7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
p8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
p9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

G4
θ = 0∘ θ = 45∘ θ = 90∘

x1 x2 x3 x4 x1 x2 x3 x4 x1 x2 x3 x4
p1 0.3 87.7 −0.3 121.2 0.3 95.0 −0.3 90.6 0.0 0.0 0.0 0.0
p2 0.0 −0.3 0.0 −0.9 0.0 0.0 0.0 0.1 0.0 0.0 0.0 0.0
p3 0.0 2.2 0.0 0.6 0.0 0.2 0.0 −1.2 0.0 0.0 0.0 0.0
p4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
p5 0.0 0.0 0.0 −0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
p6 0.0 0.0 0.0 0.1 0.0 0.0 0.0 0.1 0.0 0.0 0.0 0.0
p7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
p8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
p9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
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Table A5: Polynomial surface fitting coeflcients (i.e., ·10−3) for rectangular plan geometry

G5
θ = 0∘ θ = 45∘ θ = 90∘

x1 x2 x3 x4 x1 x2 x3 x4 x1 x2 x3 x4
p1 0.3 47.6 −0.3 140.2 0.4 90.3 −0.4 133.3 0.3 88.2 −0.3 37.9
p2 0.0 −0.4 0.0 1.8 0.0 −0.1 0.0 −8.3 0.0 −0.4 0.0 −3.2
p3 0.0 2.9 0.0 −4.9 0.0 −0.3 0.0 19.5 0.0 1.6 0.0 5.1
p4 0.0 0.0 0.0 −0.1 0.0 0.0 0.0 0.1 0.0 0.0 0.0 −0.1
p5 0.0 0.0 0.0 0.1 0.0 0.0 0.0 −0.6 0.0 0.0 0.0 −0.3
p6 0.0 0.0 0.0 0.1 0.0 0.0 0.0 0.2 0.0 0.0 0.0 0.4
p7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
p8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
p9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

G6
θ = 0∘ θ = 45∘ θ = 90∘

x1 x2 x3 x4 x1 x2 x3 x4 x1 x2 x3 x4
p1 0.3 87.7 −0.3 121.2 0.3 95.0 −0.3 90.6 0.0 0.0 0.0 0.0
p2 0.0 −0.3 0.0 −0.9 0.0 0.0 0.0 0.1 0.0 0.0 0.0 0.0
p3 0.0 2.2 0.0 0.6 0.0 0.2 0.0 −1.2 0.0 0.0 0.0 0.0
p4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
p5 0.0 0.0 0.0 −0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
p6 0.0 0.0 0.0 0.1 0.0 0.0 0.0 0.1 0.0 0.0 0.0 0.0
p7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
p8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
p9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

G7
θ = 0∘ θ = 45∘ θ = 90∘

x1 x2 x3 x4 x1 x2 x3 x4 x1 x2 x3 x4
p1 0.4 51.4 −0.4 75.8 0.4 92.4 −0.4 106.5 0.3 57.5 −0.3 81.1
p2 0.0 −0.5 0.0 2.9 0.0 −0.2 0.0 2.5 0.0 −0.3 0.0 −0.4
p3 0.0 2.8 0.0 −2.4 0.0 −0.5 0.0 4.7 0.0 2.8 0.0 −2.9
p4 0.0 0.0 0.0 0.2 0.0 0.0 0.0 0.1 0.0 0.0 0.0 0.0
p5 0.0 0.0 0.0 −0.1 0.0 0.0 0.0 0.2 0.0 0.0 0.0 −0.1
p6 0.0 0.0 0.0 0.1 0.0 0.0 0.0 0.1 0.0 0.0 0.0 0.2
p7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
p8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
p9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

G8
θ = 0∘ θ = 45∘ θ = 90∘

x1 x2 x3 x4 x1 x2 x3 x4 x1 x2 x3 x4
p1 0.3 58.0 −0.3 56.5 0.4 91.0 −0.4 111.8 0.4 86.5 −0.4 141.9
p2 0.0 −0.3 0.0 −11.9 0.0 0.2 0.0 0.5 0.0 −0.4 0.0 −1.9
p3 0.0 2.8 0.0 6.6 0.0 0.1 0.0 2.0 0.0 2.0 0.0 0.4
p4 0.0 0.0 0.0 −0.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 −0.1
p5 0.0 0.0 0.0 −0.8 0.0 0.0 0.0 0.1 0.0 0.0 0.0 0.0
p6 0.0 0.0 0.0 0.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1
p7 0.0 0.0 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
p8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
p9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
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