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Abstract
Modeling probability distributions for the long-term dynamics of electricity prices 
is of key importance to value long-term investments under uncertainty in the power 
sector, such as investments in new generating technologies. Starting from accurate 
modeling of the short-term behavior of electricity prices, we derive long-term sta-
tionary probability distributions. Then, investments in new baseload generating 
technologies, namely gas, coal and nuclear power, are discussed. In order to com-
pute the stochastic Net Present Value of investments in new generating technologies, 
the revenues from selling electricity in power markets as well as the costs which 
come from buying fuels at uncertain market prices must be evaluated over very 
long time horizons, i.e., over the whole lifetime of the plants. Starting from accu-
rate short-term stochastic models of fuel prices in addition to electricity prices, we 
provide long-run probability distributions which are used to compute revenues and 
costs incurring during the whole lifetime of the plants. Five sources of uncertainty 
are taken into account, namely electricity market prices, fossil fuel prices (natural 
gas and coal prices), nuclear fuel prices and CO

2
 prices. Our evaluation model is 

calibrated on empirical data to account for both historical market prices and macro-
economic views about future trends of electricity and fuel prices. The full probabil-
ity density of the stochastic Net Present Value is thus determined for each generation 
technology considered in this study.
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1  Introduction

Started at the beginning of the 1990s, the liberalization process of the electricity 
sector engaged several countries worldwide with the aim of transforming existing 
monopolistic markets into competitive markets. Such competitive markets were 
properly designed for allowing trades of electricity as a new commodity and were 
organized to discover equilibrium prices through demand and supply balancing. 
Electricity has, in fact, very peculiar characteristics [13]. It cannot be stored in 
an economically convenient way. Its transmission requires a constant balancing 
between injections to and withdrawals from the power grid. Moreover, electricity 
has a highly inelastic demand curve, strongly dependent on weather conditions 
(temperature, wind speed, precipitation, etc.). Supply is, in general, provided by 
low marginal costs generators but, in many cases, the mismatch between supply 
and demand, as for instance peaks in electricity demand, can be satisfied at very 
high costs [13, 50]. Given all this, it is not hard to understand how the liberalized 
marked interaction between demand and supply has dramatically increased the 
short-term volatility of power prices: shortages in electricity generation due to 
forced outages and/or grid congestions, peaks in electricity demand, fluctuations 
in hydroelectricity production, may result in unanticipated jumps in power prices 
and spikes of very high amplitude. These peculiarities have led to very erratic 
price dynamics not observed in any other commodity or financial market [48].

In the face of this, accurately modeling and forecasting electricity price 
dynamics becomes a crucial task for designing effective short-term trading strate-
gies and long-term investments in power generating technologies. Namely, at the 
corporate level short- and long-term electricity price forecasts are very important 
from the producer’s perspective [13, 53]. On one hand short-term price forecasts 
are of particular interest for defining bidding strategies [5] and scheduling pro-
duction in order to maximize trading profits or hedge financial risk [4, 49]. On 
the other hand price forecasts on longer time horizons, ranging from a few years 
to decades, are of strategic importance for valuing investments in new generating 
technologies and for power planning decision making of energy companies and 
policy makers. Providing a link between accurate short-term modeling and long-
term behavior of electricity prices is thus an important and necessary task.

Short-term price forecasting techniques are well developed in the literature, 
both for point and for probabilistic forecasting. A standard reference for price 
point forecasting is the in-depth review proposed by Weron [49]. Probabilistic 
forecasting consists of forecasting the whole price distribution or some related 
parts, as for example quantiles, at a time not too far in the future. Short-term 
probabilistic forecasting was recently reviewed by Nowotarski and Weron [40]. 
On the other side, long-run forecasting of electricity prices has not yet been 
investigated as much. This fact might be due to a limited understanding of the 
main drivers of the most important variables which affect electricity prices over 
long time horizons, as fossil fuel prices, environmental policies regarding CO2 
emissions, technological changes, smart grid evolution, etc. [47]. Although some 
methods for long-term point forecasting electricity prices and their volatilities are 
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proposed in the literature (see, e.g., [1, 15]), papers on probabilistic forecasting 
methods, in which the probability density function of electricity prices is fore-
cast, are few and they are mainly devoted to mid-term forecasting ranging from 1 
month to 1 year [2, 3]. A review on probabilistic mid- and long-term electricity 
price forecasting was discussed by Ziel and Steinert [54]. In the same paper, the 
Authors proposed also a probabilistic approach to forecast electricity prices for 
several months up to 3 years. However, valuing investments in new generating 
technologies requires to take into account forecasts of revenues from selling elec-
tricity at market prices and their volatilities for decades, i.e., over the whole life-
time of the plant. The present paper aims to fill this gap in the literature by intro-
ducing a new probabilistic approach to long-term forecasting in order to simulate 
revenues distributions over very long time horizons.

We propose a long-term forecasting methodology in which the long-run behavior 
of power prices is derived from the short-term dynamics. To this end, we will start 
from accurately modeling short-term random movements of electricity prices and 
we will end up to provide probability distributions in the long-run. In particular, we 
discuss three short-term stochastic models. In the first model, which we will name 
‘Model 1’, the dynamics of electricity prices is described by a mean-reverting dif-
fusion process. In the second model, i.e., ‘Model 2’, a mean-reverting jump-diffu-
sion process is used to describe the dynamics of prices. Finally, in the third model, 
i.e., ‘Model 3’, the dynamics of electricity prices is described by a mean-reverting 
two regime-switching Markov process. Mean-reversion is a very relevant feature of 
the electricity price behavior observed in power markets. First, it is responsible for 
reducing prices after a spike has occurred; second, it forces the stochastic compo-
nent of prices to fluctuate around some long-run mean, driving probability densities 
toward stationary long-run distributions. By the use of mean-reversion, the short-
term dynamics can be connected to the long-term behavior of power prices. Moreo-
ver, these models can be calibrated on historical data and can include a structural 
component in terms of forward looking information based on macroeconomic views 
about the future long-term evolution of electricity prices. In this way, the proposed 
approach develops a robust link between accurate short-term modeling and long-
term behavior of electricity prices. This is one of the novelty aspects of the present 
paper and the first main contribution to the literature.

Long-run forecasting is an important topic of research. When an electricity com-
pany plans to build new power plants, it needs long-term revenues and generation 
cost forecasts over the whole lifetime of the plants, basing its decision-making on 
some long-term metrics as, for example, the Net Present Value (NPV) of the invest-
ment [24]. The NPV criterion is a widespread method suitable for long-term eval-
uation [31, 45] that takes into account revenues from selling electricity in power 
markets and costs incurred during the whole lifetime of the plants. In addition, the 
stochastic NPV theory, which attributes to the NPV a probability distribution, pro-
vides a powerful tool to perform risk analysis of investments [45].

As a second contribution to the existing literature, we discuss an evaluation 
scheme for risky investments in new baseload generating technologies, namely fossil 
fuel (gas and coal) power plants and nuclear power plants, based on the stochas-
tic NPV as a long-term metric. The stochastic NPV is computed under accurate 
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modeling of the stochastic dynamics of the main factors affecting the profitability 
of the investment. In this regard, five sources of uncertainty are taken into account, 
namely electricity market prices, fossil fuel prices (natural gas and coal prices), 
nuclear fuel prices and CO2 prices. Market based CO2 pricing schemes (like the 
European Union Emissions Trading Scheme, EU-ETS) generate volatility in CO2 
prices [14, 38] through the interaction between demand and supply, thus introducing 
a new source of uncertainty which must be taken into account for valuing invest-
ments in power generation technologies [20]. These factors are the main financial 
risk sources in the electricity sector [15, 26]. Since the analysis is limited to base-
load technologies, quantity uncertainty has a minor effect and it is not taken into 
account. Regarding the nuclear source, we do not consider here the financial risk 
due to the social acceptance of this technology. The reason is that we assume that 
the investment evaluation is performed in a case in which the nuclear power genera-
tion is a well accepted technology. Although in principle construction costs could 
be stochastic, especially for nuclear power plants [27], we do not consider here this 
possibility. However, the model can be extended to account for uncertainty in all 
types of costs.

The novelty of this approach is to provide a model to value investments in new 
baseload generating technologies in a stochastic framework in which random move-
ments of electricity and fuel prices are accurately modeled both in the short- and in 
the long-term. The starting point of our analysis is modeling the short-term behavior 
and then investigate the long-term limit in order to compute stochastic revenues and 
costs during the whole lifetime of the plants. Regarding the electricity price dynam-
ics, we use the regime-switching Model 3 that better describes the random move-
ments of electricity prices observed in real markets with respect to Model 1 and 
Model 2 (as it is will shown in the following). From the costs side, fuel prices too 
are modeled according to well defined stochastic processes. In particular, since gas 
market prices exhibit mean-reversion and jumps, we use a mean-reverting jump-dif-
fusion model to capture the features of the short-term dynamics of gas prices. Coal 
and nuclear fuel prices do not show mean-reversion and we assume that their time 
evolution are both described by a Geometric Brownian Motion (GBM). As a further 
source of uncertainty, we will consider the possibility to include CO2 costs into the 
analysis. CO2 prices will be modeled according to a GBM. As suggested in the lit-
erature, the long-run analysis of investments in the power sector must integrate his-
torical data and future trends in market prices, including expert evaluations of future 
regulations and forthcoming technologies [19]. The evaluation model we propose 
can be calibrated on historical data on market prices and can incorporate a structural 
component in terms of macroeconomic views about future trends of electricity and 
fuel prices. This approach allows us to determine the probability density of stochas-
tic NPVs of new generating technologies and to perform risk analysis of investments 
in capacity expansion. The empirical analysis, based on cost data of new generating 
technologies collected from the ‘Annual Energy Outlook 2019’ [9] reveals that, with 
the exception of the gas generation, both coal and nuclear power generation show 
a negative expected NPV. This is an important result which can be useful for both 
investors and policy makers in their efforts to plan capacity expansion and future 
power system configurations. This is the third main contribution to the literature.
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It could be interesting to relate our approach to more structural approaches to 
long-term price setting and forecasting. For example, in the model proposed by 
Oliveira and Costa [41] a fictional microeconomic dynamics drives the market to an 
equilibrium, which is reached by groping and mutual learning by part of the market 
agents. Since the dynamics is fictional, no information can be given about the real 
dynamics which will go on inside the period studied. In the model proposed by De 
Vries and Heijnen [8], the specific aim is understanding how the dynamics of elec-
tricity generation capacity growth can be stimulated and controlled in time, within 
a long-term horizon. In this case, demand and supply changes are matched in time 
under different regulatory and legislation schemes, and under demand growth uncer-
tainty. Together, these two approaches can be taken as examples of possible ways to 
tackle with one of the most important facts behind long-term price valuation. Price 
forecasting on long time horizons means taking into account a capacity expansion 
problem and its impact on prices [6], especially in the presence of variable renew-
able energy (VRE) sources [52]. It is certainly not easy to include this feature into 
long-term forecasting models. In any case, making an econometrics of prices emerge 
from matching demand with supply is in the end deeply linked to our approach. In 
a different but twin way, the stochastic NPV assessment tries to model a decision 
process under uncertainty, yet without directly coping with the microstructure of the 
power market. In our approach, the effects of the microstructure are included in the 
phenomenology of historical power and fuel prices, and we indirectly include it by 
calibrating the model on empirical data related to historical market prices over long 
time horizons and on macroeconomic forward looking views about future trends of 
electricity, fuel and CO2 market prices.

The paper is organized as follows. Section 2 discusses the short-term dynamics of 
electricity prices. Some models are introduced and estimated on historical data from 
Palo Verde and PJM markets. In Sect. 3, the long-term behavior of electricity prices 
is investigated, and stationary probability distributions are derived and discussed. 
Section 4 introduces the stochastic NPV metric and its link with the stochastic Lev-
elized Cost Of Electricity (LCOE). Sections 5 and 6 concern the stochastic mod-
eling of revenues and costs respectively. In Sect. 7, a stochastic NPV based analy-
sis of investments in new generating technologies is provided. Section 8 concludes. 
Finally, “Appendix  ” provides some technical results about the time evolution of 
central moments in the jump-diffusion model.

2 � Modeling electricity price dynamics

Figure 1 depicts the time series of daily electricity prices observed between January, 
2009 and December, 2018 at the two US power markets of Palo Verde (US South-
west region) and PJM (US Northeast region). Daily prices are obtained as weighted 
averages of the 24 hourly market prices and are expressed in nominal dollars per 
megawatthour ( $/MWh). These electricity price time series are available at www.
eia.gov/elect​ricit​y/whole​sale and are freely downloadable.

Looking at Fig.  1, we note that electricity prices follow a very erratic dynam-
ics characterized by high volatility, jumps and pronounced spikes. Moreover, 

http://www.eia.gov/electricity/wholesale
http://www.eia.gov/electricity/wholesale
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multi-regime dynamics can be observed. In normal stable periods, prices fluctu-
ate around some long-run mean; in turbulent periods prices experience jumps and 
short-lived spikes. After a jump or a spike has occurred, a mean-reversion mecha-
nism forces back prices to fluctuate around some long-run mean. Accurate modeling 
power price dynamics means to take into account all these features.

Several continuous-time models for electricity prices were proposed in the litera-
ture. Since the seminal paper by Lucia and Schwartz [30], in which a mean-reverting 
diffusion process was proposed to model the power price dynamics at the Nord Pool 
market, the literature on this topics has grown exponentially. Mean-reverting jump-
diffusion processes and mean-reverting regime-switching models were extensively 
used to accurately describe the jumpy and the spiky behavior of electricity prices 
observed in power markets. In this section we focus on three models of these types, 
namely a mean-reverting diffusion model, a mean-reverting jump-diffusion model, 
and mean-reverting two regime-switching model.

Let us denote by P(t) the daily price at time t of one MWh of electricity, and by 
s(t) = lnP(t) its natural logarithm. We assume that s(t) is a linear superposition of a 
deterministic component, f(t), possibly accounting for trend and seasonality, and a 
random component, x(t), namely

Since electricity prices may be higher in winter time and in summer time, we 
express the deterministic component as

to describe the semiannual periodicity. A linear trend is included to account for 
expected inflation and possibly for a real escalation rate of power prices (positive 
or negative). The parameter � denotes the average number of observations per year. 
One can estimate the seasonal component parameters bj ( j = 0, 2,⋯ , 5 ) by fitting 
f(t) to market data using Ordinary Least Squares (OLS) techniques. Table 1 depicts 
the parameters estimates obtained in the Palo Verde and PJM power markets.

Figure 2 shows the time series of stochastic log-returns (hereinafter, log-returns) 
obtained as daily changes of the random component x(t), at Palo Verde market (left 

(1)s(t) = f (t) + x(t).

(2)f (t) = b0 + b1t + b2 cos
(
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Fig. 1   Historical behavior of power prices at Palo Verde market (left) and at PJM market (right) since 
January, 2009–December, 2018
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panel) and at PJM market (right panel). Descriptive statistics of log-returns are dis-
played in Table 2.

As mentioned in Sect.  1, and as it can be seen also in the figure, interplay 
between demand and supply generates a lot of volatility in nowadays power markets. 
Log-returns show large fluctuations with jumps and spikes, and non-normal, lepto-
kurtic empirical distributions. With the aim of capturing the features of log-returns 
observed in these markets, we discuss now three continuous-time stochastic models 
for the dynamics of x(t), called, respectively, Model 1, Model 2 and Model 3. The 
main features of these models are described below.

2.1 � Model 1

In Model 1, the dynamics of x(t) is described by the following mean-reverting diffu-
sion process,

where �0 is the mean-reversion parameter, �0 is the volatility, and w0(t) is a Wiener 
process. Although this model captures the mean-reverting behavior of power prices, 

(3)dx(t) = −�0x(t)dt + �0dw0(t),

Table 1   Parameter estimates of the deterministic component

b0 b1 b2 b3 b4 b5

Palo Verde 3.6022 −0.0933 × 10
−3 − 0.1553 − 0.8087 0.1065 − 0.5117

PJM 3.9192 −0.1364 × 10
−3 − 0.0196 0.5443 0.0930 − 0.6625
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Fig. 2   Historical behavior of log-returns at Palo Verde market (left) and at PJM market (right) since Jan-
uary, 2009–December, 2018

Table 2   Descriptive statistics of 
log-returns

Mean St. dev. Skewness Kurtosis

Palo Verde 0.0000 0.1320 0.5615 19.2915
PJM − 0.0001 0.1968 − 0.3272 10.8712
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it is not able to account for jumps and spikes. This limitation can be overcome by 
modeling power price dynamics with a jump-diffusion process.

2.2 � Model 2

In Model 2 the dynamics of x(t) is described by a mean-reverting jump-diffusion pro-
cess of the form

where q(t) is a Poisson process with constant intensity � . In Eq. (4) the random jump 
amplitude J is distributed as a Gaussian random variable with zero mean and stand-
ard deviation �J , i.e. J ∼ N(0, �2

J
) . We assume that the Wiener process, the Poisson 

process, and the jump amplitude are mutually independent processes. We remark 
that the zero mean jump amplitude was chosen according to the observed low values 
of the skewness present in the data (see Table 2). Nevertheless, the proposed analy-
sis is general and can be extended in a straightforward way to include jumps with 
arbitrary probability distributions (see “Appendix ”).

2.3 � Model 3

Model 3 consists of a regime-switching process with two regimes. Regime-switching 
processes add a further degree of freedom to the description of the dynamics of elec-
tricity prices. In our specific, they allow us to combine in one model periods of steady 
dynamics and of jumpy dynamics, depending on the realization of a stochastic two-
valued latent state variable of the system. We can thus make use of two different state-
dependent mean-reversion rates and include stochastic volatility. Model 3 is character-
ized by the following process,

The dynamics of the base regime (first line of Eq. 5) is described by a mean-revert-
ing diffusion process in order to account for the motion during stable periods. In 
contrast, the dynamics of the jumpy regime (second line of Eq. 5) is described by 
a mean-reverting jump-diffusion process. As in the two previous models, w0(t) and 
w1(t) are Wiener processes and q(t) is a Poisson process with constant intensity � . In 
Eq. (5) the random jump amplitude J is distributed as a Gaussian random variable 
with zero mean and standard deviation �J , i.e., J ∼ N(0, �2

J
) . We assume that the 

Wiener processes, the Poisson process, and the jump amplitude, are mutually inde-
pendent processes. The switching between regimes is driven by a hidden Markov 
process characterized by the following transition probability matrix,

(4)dx(t) = −�0x(t)dt + �0dw0(t) + Jdq(t),

(5)dx(t) =

{

−�0x(t)dt + �0dw0(t),

−�1x(t)dt + �1dw1(t) + Jdq(t).

(6)� =

(

1 − �dt �dt

�dt 1 − �dt

)

,
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where �dt denotes the transition probability of a switch from the base regime to the 
turbulent regime in the infinitesimal time interval [t, t + dt] , and �dt is the probabil-
ity of the opposite transition.

All these models were estimated on market data by maximum likelihood using 
the Euler discretization with time step �t equal to 1 day. In the case of Model 3, the 
Hamilton filtering technique [17, 18] was used. Estimation results are depicted in 
Table 3 for the Palo Verde market, and in Table 4 for the PJM. For each market, the 
parameters estimates, the log-likelihood (LL), and the value of the Schwartz crite-
rion (SC) are reported.

As it can be read from the last line of these tables the empirical analysis 
reveals that the regime-switching model describes the dynamics of electricity 
prices better than diffusion and jump-diffusion models. The Schwartz criterion 
indicates that the presence of jumps in the dynamics enhances the fit. Moreover, 
the added degrees of freedom coming from multiple mean-reversion rates and 
volatilities (i.e., for the base and the turbulent regime), makes regime-switching 
models more suitable to describe the dynamics of electricity prices observed in 
real markets [32, 37]. As expected, the mean-reversion parameter as well as the 
volatility parameter are lower in the base regime with respect to the turbulent 
one. The statistical analysis of simulated trajectories confirms that regime-switch-
ing models offer an interesting agreement with market data. Tables 5 and 6 dis-
play some parameters computed from simulated log-returns time series. Such val-
ues are computed averaging over ten thousands randomly generated paths using, 
respectively, Palo Verde and PJM estimates to be compared with the statistics 

Table 3   Palo Verde estimation 
results

Standard errors are between parentheses

Model 1 Model 2 Model 3

�
0

0.1094 0.0616 0.0301
(0.0058) (0.0073) (0.0050)

�
0

0.1283 0.0675 0.0549
(0.0032) (0.0020) (0.0016)

� 0.1230 0.2017
(0.0062) (0.0206)

�
J

0.3135 0.3693
(0.0117) (0.0298)

�
1

0.1469
(0.0123)

�
1

0.1168
(0.0063)

1 − � 0.9678
(0.0047)

1 − � 0.9393
(0.0274)

LL 1568.3 2259.9 2491.1
SC − 3120.9 − 4488.6 − 4919.7
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from original data shown in Table 2. We can observe that the statistical analysis 
of simulated trajectories shows an interesting agreement with market data in the 
case of Model 3.

We conclude this section by noticing that Palo Verde and PJM markets are 
characterized by very different values of the mean-reversion rate. In all the mod-
els which we discussed, mean-reversion parameters estimated on Palo Verde mar-
ket data are lower than those estimated on PJM market data. As we will see in the 
following sections, this fact has important consequences on the long-run behavior 
of electricity prices.

Table 4   PJM estimation results

Standard errors are between parentheses

Model 1 Model 2 Model 3

�
0

0.2075 0.1684 0.1213
(0.0092) (0.0123) (0.0077)

�
0

0.1863 0.1182 0.0968
(0.0034) (0.0050) (0.0059)

� 0.1589 0.1856
(0.0104) (0.0158)

�
J

0.3624 0.4317
(0.0325) (0.0250)

�
1

0.2643
(0.0234)

�
1

0.2022
(0.0059)

1 − � 0.9422
(0.0051)

1 − � 0.9057
(0.0051)

LL 662.9 988.2 1142.6
SC − 1310.1 − 1945.0 − 2222.5

Table 5   Statistics of simulated 
path log-returns obtained using 
Palo Verde estimated parameters

Standard deviations are between parentheses

Model 1 Model 2 Model 3

Mean − 0.0001 − 0.0001 − 0.0001
(0.0001) (0.0001) (0.0001)

St. dev. 0.1320 0.1308 0.1310
(0.0019) (0.0048) (0.0090)

Skewness 0.0015 0.0065 0.0025
(0.0496) (0.3592) (0.4734)

Kurtosis 2.9963 13.4739 17.2018
(0.0956) (1.3415) (2.7836)
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3 � Long‑term evolution of electricity prices

The long-term behavior of electricity prices can be investigated by studying the 
time evolution of the central moments of log-price distributions. Central moments 
are defined by

where �(t) = E[x(t)] denotes the expected value of the random variable x(t). In both 
Model 1 and Model 2 if x(0) = x0 is the initial condition of the process, �(t) is given 
by

In these two models, closed form solutions for central moments can be found. In 
particular, odd central moments are zero and the first two even moments are given 
by

and

in Model 1, and by

and

(7)Mn(t) = E
[(

x(t) − �(t)
)n]

,

(8)�(t) = x0e
−�t.

(9)M2(t) =
�2

2�

(

1 − e−2�t
)

,

(10)M4(t) = 3

[

�2

2�

(

1 − e−2�t
)]2

= 3M2(t)
2,

(11)M2(t) =
�2 + ��2

J

2�

(

1 − e−2�t
)

,

Table 6   Statistics of simulated 
path log-returns obtained using 
PJM estimated parameters

Standard deviations are between parentheses

Model 1 Model 2 Model 3

Mean 0.0000 0.0000 0.0000
(0.0001) (0.0001) (0.0001)

St. dev. 0.1968 0.1950 0.1970
(0.0028) (0.0056) (0.0084)

Skewness − 0.0018 − 0.0022 − 0.0053
(0.0462) (0.1961) (0.2431)

Kurtosis 2.9943 7.7619 9.5101
(0.0972) (0.7079) (1.2655)
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in Model 2. The proofs of the above equations as well as the proofs of the formulas 
presented in this section are provided in A.

It is well known that x(t) are normal variables for t > 0 in Model 1 [16], but they 
are not normal in Model 2, as it can be verified by the value of the kurtosis which 
is different from 3. In the limit t → ∞ , central moments converge toward stationary 
values that can be computed by using the recursive relationship

in Model 1, and by

in Model 2. The stationary value of the kurtosis is K = 3 in Model 1, and

in Model 2. Figure 3 depicts the time behavior of standard deviation and kurtosis, 
computed with estimated parameters at Palo Verde and PJM markets for both Model 
1 and Model 2.

In market data, probability distributions tend to be stationary in a few tens of 
days. After this time interval, the process random variables x(t) and x(s) become 
identically distributed for any time t and time s. The speed of convergence to the sta-
tionary distribution depends, of course, on the mean-reversion parameter. The con-
vergence is, therefore, faster for PJM market prices. Moreover, random variables x(s) 
and x(t) ( t ≥ s) become uncorrelated in a few tens of days. To show this, we notice 
that the autocorrelation function can be computed in a closed form in both models 
and reads,

in Model 1, and

in Model 2. For large s, i.e., after some tens of days, the autocorrelation function 
becomes stationary in both Model 1 and Model 2. It depends on the time difference, 
s − t , with a correlation coefficient which decreases exponentially,

(12)M4(t) =
3��4

J

4�

(

1 − e−4�t
)

+ 3M2(t)
2,

(13)M2n =
2n − 1

2�
�2M2(n−1)

(14)M2n =
2n − 1

2�
�2M2(n−1) +

�

2n�

n
∑

k=1

(2n)!

2kk!(2n − 2k)!
�2k
J
M2(n−k)

(15)K = 3 + 3
��4

J

�
(

�2 + �2
J

)2
,

(16)Cov
(

x(s), x(t)
)

=
�2

2�

[

e−�(t−s) − e−�(t+s)
]

,

(17)Cov
(

x(s), x(t)
)

=
�2 + ��2

J

2�

[

e−�(t−s) − e−�(t+s)
]

,
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in both Model 1 and Model 2. A more complicated structure arises when Model 
3 is considered and no closed form solutions for central moments can be found. 
Moreover, differently from Model 1 and Model 2, the time evolution of the central 
moments depends on the initial condition of the stochastic dynamics.

Figure  4 shows the time behavior of the mean, standard deviation, skewness 
and kurtosis (hereinafter, the first four moments) obtained by Monte Carlo simu-
lations using estimated parameters at Palo Verde and PJM markets respectively. 
Simulations were performed under two very different initial conditions, namely 
x(0) = 0 and x(0) = 3 . The first value was chosen equal to the long-run mean 
value of x(t), the second value was chosen very far from the long-run mean value 
(it corresponds to an electricity price greater than one thousand dollars). In both 
cases, standard deviation and kurtosis converge rapidly (in some tens of days) 
to their stationary values. The mean and the skewness converge rapidly to zero. 
The convergence is faster in the PJM market because of larger values of the mean 
reversion parameters. Moreover, random variables x(t) and x(s) ( s ≥ t) become 
uncorrelated in some tens of days. Figure 5 depicts the time behavior of the cor-
relation coefficient in the time interval of [0, 150] days simulated by using Palo 
Verde and PJM estimated parameters. In each panel, the blue line refers to the ini-
tial condition x(0) = 0 , and the red line to the initial condition x(0) = 3 . The third 
(yellow) line shows the time behavior of the stationary correlation coefficient. 
Of course, the stationary autocorrelation function does not depend on the initial 
condition of the dynamics. Due to higher mean-reversion values, both in the base 

(18)�(s, t) = e−�(t−s),
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regime and in the turbulent regime, the convergence toward zero correlation is 
faster for PJM market prices.

The discussed results are very useful to investigate the long-term behavior of 
electricity prices. Valuing investments in the power sector for new generating capac-
ity requires to take into account revenues from selling electricity on power market 
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for decades. We will see that such results can be used to conciliate accurate descrip-
tions of short-term behavior with long-term macroeconomic views about future 
trends of electricity prices.

4 � The stochastic net present value of power generation 
and the stochastic levelized cost of electricity

The stochastic Net Present Value (NPV) and the stochastic Levelized Cost Of Elec-
tricity (LCOE) are mathematical constructs that allow us to introduce risk into the 
evaluation process of investments in new generating technologies [28, 45]. As speci-
fied in the Introduction, we will consider in this paper five sources of risk, namely 
the risk associated to random movements of (1) electricity prices, (2) gas, (3) coal 
prices, (4) nuclear fuel and (5) CO2 prices.

To briefly introduce some basic concepts about stochastic NPV and LCOE, let 
us consider an investment project in a generating plant, financially seen as a cash-
flow stream defined on a yearly timetable (as depicted in Fig.  6). We denote by 
n = −N < 0 the construction starting time, and by n = 0 the end of construction 
time. The time n = 0 is also the starting time of the operations, and n = M ≥ 1 is the 
end of operations time. The cash-flow evaluation time is n = 0.

We suppose that there are k risk sources and we denote by � the risky sources 
stochastic path. The unlevered cash-flow generated by the project at time n, Fz

n
 , can 

be expressed as follows,

where Rz
n
(�) accounts for stochastic revenues from selling electricity, Cz

n
(�) for sto-

chastic costs, and Tn(�) for income taxes in the year n. Revenues, costs, and taxes 
incurring in the time interval [n − 1, n] are computed as lump sums and valued at 
time n. All these quantities are expressed in nominal terms. The cost term in Eq. 
(19) includes all the costs incurred during the whole the operational lifetime of 

(19)Fz
n
(�) = Rz

n
(�) − Cz

n
(�) − Tz

n
(�), n = 1, 2,… ,M,
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the plant, namely fixed and variable operation and maintenance (O&M) costs, fuel 
costs (not included in the variable O&M costs), waste management (for nuclear gen-
eration) and decommissioning costs. With regard to fossil fuels, costs can include 
externalities, i.e., environmental costs like CO2 market costs.

In the classic definition, the NPV of an investment in the generating technology z 
is determined by the difference between the present value of expected revenues and 
the present values of expected costs and taxes including pre-operations investment 
costs. NPV can be, then, determined by subtracting investment costs from the pre-
sent value of the unlevered cash-flow. To compute the present value, the unlevered 
cash-flow must be discounted at the Weighted Average Cost of Capital (WACC) 
nominal rate [46]. If we denote by r the nominal WACC rate on an annual basis, the 
NPV formula reads

In Eq. (20) Iz
0
 is the pre-operations nominal investment, starting at n = −N and end-

ing at n = 0 , computed as a lump sum, namely as

where Îz
n
 is the nominal amount of the construction cost allocated to year n. Follow-

ing the MIT [34, 35] analytical approach, yearly tax liabilities are computed by sub-
tracting costs and asset depreciation from sales revenues, thus getting

where Dz
n
 is the fiscal depreciation. Finally, revenues from electricity sales can be 

cast as follows,

where Qz is the amount of electricity generated by the technology z in 1 year1, and 
Pz
n
(�) is the (yearly averaged) unitary selling price of the electricity produced in the 

year n by the technology z. By substituting Eq. (19) into Eq. (20) and accounting for 
Eqs. (22) and (23), after some algebraic manipulations, we get

(20)NPVz =

M
∑

n=1

E
[

Fz
n
(�)

]

(1 + r)n
− Iz

0
.

(21)Iz
0
= Îz

−N
(1 + r)N +⋯ + Îz

−1
(1 + r) + Îz

0
,

(22)Tz
n
(�) = Tc

[

Rz
n
(�) − Cz

n
(�) − Dz

n

]

,

(23)Rz
n
(�) = QzPz

n
(�),

1  Qz is assumed to be constant over time and can be computed by multiplying the nameplate power 
capacity of the plant, Wz , by the capacity factor of that plant, CFz , and by the number of hours in 1 year 
(8760), i.e,

Q
z = 8760 × CF

z ×W
z

.
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where we posed

Equation (24) can be also used as a starting point to determine the Levelized Cost 
Of Electricity (LCOE) of a given technology.

By definition, the LCOE of the technology z, henceforth denoted by PLC,z , is that 
deterministic nonnegative real price of the electricity produced by the specific gen-
eration technology z, assumed constant over time, that makes the NPV equal to zero. 
The LCOE is hence a break-even reference unitary cost, i.e., the break-even cost per 
MWh of produced electricity2. To get the analytical form of PLC,z , let us pose

where i is the expected yearly inflation rate and nb labels the base year (which is 
used to transform real prices into nominal prices). By substituting Eq. (26) into Eq. 
(24) and equating NPVz to zero, we obtain

In order to include into the analysis the risk due to random movements of revenues 
and costs, we must extend the classic NPV metrics. Now we are going to define the 
stochastic NPV. Such a definition must satisfy the constraint that the classic NPV 
must coincide with the mean of the stochastic NPV, i.e.,

We hence define the stochastic NPV of the technology z as the random variable

(24)

NPVz = (1 − Tc)Q
z

M
∑

n=1

E
[

Pz
n
(�)

]

F0,n+

− (1 − Tc)

M
∑

n=1

E
[

Cz
n
(�)

]

F0,n + Tc

M
∑

n=1

Dz
n
F0,n − Iz

0
,

(25)F0,n =
1

(1 + r)n
.

(26)E
[

Pz
n
(�)

]

= (1 + i)n−nbPLC,z,

(27)PLC,z =

∑M

n=1
E
�

Cz
n
(�)

�

F0,n

Qz
∑M

n=1
(1 + i)n−nbF0,n

+
Iz
0
− Tc

∑M

n=1
Dz

n
F0,n

(1 − Tc)Q
z
∑M

n=1
(1 + i)n−nbF0,n

.

(28)NPVz = E
[

NPVz(�)
]

.

(29)

NPVz(�) = (1 − Tc)Q
z

M
∑

n=1

Pz
n
(�)F0,n

− (1 − Tc)

M
∑

n=1

Cz
n
(�)F0,n + Tc

M
∑

n=1

Dz
n
F0,n − Iz

0
.

2  LCOE represents the generating costs at the plant level (busbar costs) and does not include transmis-
sion and distribution costs and all possible network infrastructures adjustments [22, 34].
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Starting from the definition of the stochastic NPV of the technology z, it is straight-
forward to introduce the stochastic LCOE of the technology z. Let us denote by 
PLC,z(�) the stochastic LCOE of the technology z. PLC,z(�) is defined path by path 
as that nonnegative real price of the electricity produced by the specific generation 
technology z, assumed constant over time, that makes the stochastic NPVz(�) equal 
to zero. To get the analytical form of the stochastic LCOE, let us pose

thus obtaining from Eq. (29),

As in the case of the stochastic NPV, Eq. (31) shows that the mean of the stochastic 
LCOE coincides with the classic, deterministic LCOE.

By substituting Eq. (31) into Eq. (29) we can obtain a very useful relationship 
between the stochastic NPV and the stochastic LCOE of the generation technology z, 
namely

We remark that the relevant quantity for evaluating an investment in a generating 
technology is not the NPV itself (for which doubling the size of a plant would dou-
ble the NPV), but the unitary NPV, i.e., the NPV per unit of generated electricity. 
We can, therefore, introduce a ‘reduced stochastic NPV’ in the following form,

The reduced stochastic NPV can be cast in a much more expressive form. From Eq. 
(32) we namely get

where

Equation (34) clearly shows that break-even or profitability can be reached if and 
only if E

[

P̂z(𝜉)
]

≥ PLC,z (it means that the right quantity to be compared with the 
deterministic LCOE is E

[

P̂z(𝜉)
]

 ). For dispatchable baseload technologies, such as 

(30)Pz
n
(�) = (1 + i)n−nbPLC,z(�),

(31)
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n=1
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n
(�)F0,n
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(1 + i)n−nbF0,n

+
Iz
0
− Tc

∑M

n=1
Dz

n
F0,n

(1 − Tc)Q
z
∑M

n=1
(1 + i)n−nbF0,n

.

(32)NPVz(�) = (1 − Tc)Q
z

M
∑

n=1

[

Pz
n
(�) − PLC,z(�)(1 + i)n−nb

]

F0,n.

(33)NPVz

red
(�) =

NPVz(�)

(1 − Tc)Q
z
∑M

n=1
(1 + i)n−nbF0,n

.

(34)NPVz

red
(𝜉) = P̂z(𝜉) − PLC,z(𝜉),

(35)P̂z(𝜉) =

∑M

n=1
Pz
n
(𝜉)F0,n

∑M

n=1
(1 + i)n−nbF0,n
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nuclear, coal or combined-cycle gas turbines (CCGTs), which can have the same 
electricity output profile, Pz

n
 is a technology independent quantity, i.e.,

where Pb
n
 denotes the (yearly averaged) unitary selling price of the baseload genera-

tion in the year n. In such a case, Eq. (34) becomes

where

Very often in the literature, the classic LCOE is used as a metric to compare gen-
eration costs of different technologies [9, 22]. That is, the classic LCOE metric has 
been used as an alternative to the classic NPV metric. For baseload generation, an 
economic comparison through LCOE makes sense because, as shown by Eq. (37), 
the technology that maximizes the expected reduced NPV is the technology that 
minimizes LCOE. This close link between the LCOE methodology and the financial 
notion of NPV ‘has always heightened its appeal’ [22]. This simple metric allows for 
a straightforward comparison of technologies that have different sizes, different life-
times and different cost profiles in both regulated and liberalized electricity markets. 
However, in the case of Variable Renewable Energy (VRE) sources, such as wind or 
solar sources, P̂z

n
(𝜉) can be a technology dependent parameter. Namely, in liberalized 

markets the hourly electricity output profile of non-dispatchable technologies can 
significantly differ between each other, and the LCOE evaluation approach should 
be carefully used for comparative purposes. Well aware of this, some Authors tried 
to investigate timing impact of electricity generation from VRE sources [23, 43]. In 
any case, being the LCOE a break-even reference unitary cost, it is a useful refer-
ence cost metric which can be compared with expected electricity market prices for 
checking, on the basis of Eq. (34), if break-even can be reached.

The next sections will be devoted to compute stochastic revenues and costs. Our 
aim ere his to provide a model to evaluate long-run investments in new generation 
technologies under uncertainty through the stochastic NPV metric. Without loss of 
generality, in the following we assume that the evaluation time, n = 0 , coincides 
with the base year, nb.

5 � Modeling revenues

When modeling revenues, we assumed that the dynamics of electricity prices is 
described by Model 3, the more realistic model that well reproduces most of the 
observed features of market prices. This model was calibrated on past data, in a 
backward looking way, separating the deterministic component of Eq. (2) from the 

(36)Pz
n
(�) = Pb

n
(�),

(37)NPVz

red
(𝜉) = P̂b(𝜉) − PLC,z(𝜉),

(38)P̂b(𝜉) =

∑M

n=1
Pb
n
(𝜉)F0,n

∑M

n=1
(1 + i)n−nbF0,n

.
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stochastic component. Since we now want to include macroeconomic forward look-
ing information, we can replace in Eq. (2) the values of b0 and b1 related to the linear 
(affine) trend with new values that can account for macroeconomic views on the 
future long-term evolution of electricity prices. The �0 and �1 parameters will be 
determined in a such a way to match the expected long-run mean, the expected infla-
tion rate, and the expected real escalation rate of power prices. Such macroeconomic 
estimates can be found in the Annual Energy Outlook 2019 [9] provided by the US 
Energy Information Administration.

According to both classic and stochastic NPV approaches the revenues from sell-
ing electricity during the annual time interval [n − 1, n] must be computed as a lump 
sum valued at time n. Limiting our analysis to baseload generation, the revenues 
term of Eq. (37) can be computed assuming that Pb

n
 is the annual averages of daily 

market prices, i.e.,

where �0 and �1 account for a forward looking linear (affine) trend. Such parameters 
go to replace b0 and b1 . P0(tkn) denotes the electricity price at the kth day of the nth 
year, computed with b0 = b1 = 0 . The dependence on the path � will be henceforth 
omitted. To investigate the statistical properties of Pb

n
 , let us consider the detrended 

log-revenues process, hb
n
 , given by

Figure 7 shows the time behavior of the 1-year autocorrelation of hb
n
 as n varies on 

a 30-year time horizon, computed using estimated parameters at Palo Verde and 
PJM markets. Figure 8 depicts the time behavior of the first four moments of the 
detrended log-revenues process as as n varies on a 30-year time horizon.

We notice that the random variables hb
n
 ( n ≥ 1 ) are uncorrelated random variables 

with same mean, h̄b (about 0.06 at Palo Verde, and 0.05 at PJM), same standard 
deviation, �b (about 9.46% at Palo Verde, and 5.37% at PJM), zero skewness and 
kurtosis equal to three. Moreover, we performed some tests of normality, such as 
the Jarque-Bera test, the Kolmogorov-Smirnov test, the Anderson-Darling test and 

(39)Pb
n
= e�0+�1n

[

1

365

365
∑

k=1

P0(tkn)

]

,

(40)hb
n
= logPb

n
− �0 − �1n.

Fig. 7   One-year autocorrelation 
of the detrended log-revenues 
process
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the chi-square test on Monte Carlo generated samples with sample size of five thou-
sands trials. All these tests reveal that the hypothesis of normality for hb

n
 ( n ≥ 1 ) can-

not be rejected. As a consequence, we assume that hb
n
 ( n ≥ 1 ) are i.i.d. normal ran-

dom variable with mean h̄b and standard deviation �b , i.e., hb
n
∼ N(h̄b,𝛴2

b
) . This is 

an important result which is very useful to compute revenues from selling electricity 
on a long-term timescale.

Now we need to determine �0 and �1 . This can be done using macroeconomic 
views about the long-run behavior of power prices. We thus require that

where Ab is the current annual average of the electricity generation price, and

where � = ln(1 + i) and �b accounts for the view on the real escalation rate of power 
prices, i.e., �b = ln(1 + kb) with kb the expected real escalation rate of power prices. 
The Annual Energy Outlook 2019 [9] provides the following values, Ab = 64 $2018 
per MWh, i = 2.3% per annum, and kb = −0.5% per annum.

Finally, we point out that the above analysis could also have been carried out 
using Model 1 or Model 2, which are special cases of Model 3. However, the esti-
mate of the log-revenues standard deviation parameter, �b , could be affected by 
errors due to a naive choice of the short-term model. In fact, Model 1 underesti-
mates the log-revenues standard deviation (about 6.16% at Palo Verde, and 4.79% at 

(41)exp
(

𝛽0 + h̄b +
1

2
𝛴2

b

)

= Ab,

(42)�1 = � + �b,
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PJM) and, on the contrary, Model 2 overestimates such a parameter (about 10.93% at 
Palo Verde, and 5.94% at PJM). Although these values differ slightly in the case of 
PJM, such differences become large in the case of Palo Verde, especially for Model 
1. This fact has important consequences on the shape of the probabilistic distribu-
tion of the stochastic NPV leading to an incorrect assessment of the risk associated 
with the investment [28]. This would lead energy companies and policy makers to 
misjudge the risk associated with new investments in power generation. For these 
reasons, in the empirical analysis discussed in Sect. 7 we will use the standard devi-
ation value estimated on Palo Verde market data using Model 3.

6 � Modeling fuel price dynamics

To compute stochastic NPVs of new generating technologies we need to determine 
the stochastic behavior of fuel costs. In this section, we accurately model the sto-
chastic dynamics of fuels and CO2 prices which are the main sources of risk when 
power generating costs are considered.

6.1 � Modeling fossil fuel prices

Figure 9 shows the historical behavior of natural gas and coal prices. Our data set 
consists of time series of gas and coal prices at a monthly frequency since January, 
1999 until November, 2018. Prices are expressed in nominal dollars per mmBtu, 
i.e., nominal dollars per million Btus. Data refer to the cost of natural gas and coal 
receipts at electric generating plants, and they were downloaded from the US Energy 
Information Administration at site www.eia.doe.gov/total​energ​y/data.

Figure 10 shows the historical behavior of fossil fuel log-returns, calculated as 
monthly changes in the natural logarithm of monthly prices. Table  7 displays the 
descriptive statistics of fossil fuel log-returns.

The empirical analysis reveals that the time series of gas and coal log-returns do 
not show infra-annual seasonality and are almost uncorrelated (the correlation coef-
ficient in the period under investigation is about − 0.0052).
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Fig. 9   Historical behavior of fossil fuel market prices since January, 1999–November, 2018. Left panel: 
natural gas. Right panel: coal
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Geometric Brownian Motion (GBM) is often used in the literature to model fossil 
fuel price dynamics [21, 33]. However, looking at Fig. 10, it seems that such process 
cannot be able to fully capture the observed dynamics of gas log-returns. Evidence 
exists for a more complicated behavior of gas prices showing mean-reversion, jumps 
and stochastic volatility [15]. We propose, therefore, a stochastic model, in which 
the time evolution of of gas prices is described by a mean-reverting jump-diffusion 
model. In contrast, to describe the dynamics of coal prices we use a GBM stochastic 
process. Observed coal prices, in fact, do not show mean-reversion patterns in the 
period under investigation, and the kurtosis value (3.3687) is consistent with nor-
mally distributed log-returns.

6.1.1 � Modeling natural gas price dynamics

To model the gas price dynamics, let us denote by Pga(t) the gas market price at time 
t (the suffix ‘ga’ stands for ‘gas’), expressed in nominal dollars per mmBtu, and by 
sga(t) = lnPga(t) its natural logarithm. We assume that sga(t) can be decomposed as 
follows,

where bga
0

 accounts for a constant trend and xga(t) for the stochastic component of 
the dynamics. In the period under investigation, the gas price dynamics does not 
show any linear trend and the empirical analysis confirms this feature. We estimated 
b
ga

0
 on market data using Ordinary Least Squares (OLS) techniques, thus finding 

b
ga

0
= 1.5224 . Looking at the left panel of Fig. 9, it is worth to observe that US natu-

ral gas market went through important transitions in the sample period. In the early 
2000s, prices were trending upward as conventional US natural gas production was 

(43)sga(t) = b
ga

0
+ xga(t),
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Fig. 10   Historical behavior of fossil fuel log-returns since January, 1999–November, 2018. Left panel: 
natural gas. Right panel: coal

Table 7   Descriptive statistics of 
fossil fuel log-returns

Mean St. dev. Skewness Kurtosis

Gas 0.0026 0.1091 0.3132 4.6335
Coal 0.0022 0.0143 0.4007 3.3687
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declining over time, then the boom in unconventional gas production coincided with 
a persistent decrease in natural gas prices in the 2010s. Moreover, gas prices were 
trending upward again at the end of 2010s and macroeconomic projections to 2050 
show a persistent upward trend in prices [9]. Over very long time horizons such 
trend changes can be considered as random events and we account for them in the 
stochastic component of the dynamics through a mean-reversion mechanism in a 
jump-diffusion process. We assume, therefore, that the time evolution of the sto-
chastic component of the gas price dynamics, xga(t) , is described by the following 
stochastic differential equation,

where wga(t) is a Wiener process and qga(t) is a Poisson process with constant inten-
sity �ga . The random jump amplitude Jga is distributed according to a normal ran-
dom variable with zero mean and standard deviation �ga

J
 , i.e., J ∼ N

(

0, (�
ga

J
)2
)

 . We 
assume that the Wiener process wga , the Poisson process qga , and the jump amplitude 
Jga are mutually independent processes. The stochastic component of the dynamics 
was estimated on market data by maximum likelihood using the Euler discretization 
with time step �t equal to 1 month. Estimation results are depicted in Table 8.

The statistical analysis of simulated trajectories confirms that the jump-diffusion 
model offers an interesting agreement with market data. The first four moments of 
paths log-returns, obtained averaging over ten thousands paths randomly generated 
using estimated parameters, are displayed in Table 9.

In computing the stochastic NPV of gas generation, gas costs incurred in the 
annual time interval [n − 1, n] must be computed as a lump sum and valued at time 
n. We assume that such costs (per mmBtu) in the year n are determined as a monthly 
market price average, Pga

n  , given by

(44)dxga(t) = −�gaxga(t)dt + �gadwga(t) + Jgadqga(t),

(45)Pga
n
= e�

ga

0
+�

ga

1
n

[

1

12

12
∑

k=1

Pga(tkn)

]

,

Table 8   Estimation results of 
the stochastic component of the 
gas price dynamics

Standard errors are between parentheses

�ga �ga �ga �
ga

J

0.0408 0.0789 0.2532 0.1447
(0.0095) (0.0083) (0.0426) (0.0159)

Table 9   Statistics of simulated 
paths log-returns using 
estimated parameters

Standard deviations are between parentheses

Mean St. dev. Skewness Kurtosis

0.0030 0.1086 0.0033 4.6346
(0.0016) (0.0070) (0.3376) (0.9208)
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where �ga
0

 and �ga
1

 account for a forward looking linear (affine) trend, and tkn denotes 
the kth month of the nth year. The dependence on the path � has been omitted. The 
parameters �ga

0
 and �ga

1
 allow us to calibrate the model on macroeconomic views 

about the future trend of gas market prices.
To investigate the statistical properties of Pga

n  , let us consider the detrended log-cost 
process given by

Figure 11 shows the time behavior of the autocorrelation function (left panel) and 
the 1-year autocorrelation (right panel) of hgan  ( n ≥ 1 ) as n varies on a 30-year time 

(46)hga
n
= logPga

n
− �

ga

0
− �

ga

1
n.
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Fig. 11   The autocorrelation function of the detrended log-cost process (left panel), and the 1-year auto-
correlation function (right panel)
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horizon, computed with estimated parameters. Figure 12 depicts the time behavior 
of the first four moments of hgan  as n varies on a 30-year time horizon, computed with 
estimated parameters. We noticed that the random variables hgan  ( n ≥ 1 ) are corre-
lated random variables with a constant correlation coefficient, which is approxi-
mately equal to 0.7. After a transient period of about 3 year, such random variables 
are characterized by the same values of mean, h̄ga (about 0.02), and the same value 
of the standard deviation, �ga (about 0.35), zero skewness and kurtosis equal to 
three. Moreover, we performed some tests of normality such as the Jarque–Bera test, 
the Kolmogorov–Smirnov test, the Anderson–Darling test and the chi-square test on 
Monte Carlo generated samples with sample size of five thousands trials. All these 
tests reveal that the hypothesis of normality for hb

n
 ( n ≥ 1 ) cannot be rejected. We 

assume, therefore, that hgan  ( n ≥ 1 ) are correlated i.d. normal random variable with 
mean h̄ga and standard deviation �ga , i.e., hgan ∼ N(h̄ga,𝛴2

ga
) . This is a further impor-

tant result, useful to compute gas costs on a long-term horizon.
The calibration of the model on macroeconomic views about long-term behavior 

of gas prices can proceed as in the electricity case. Namely, we require that

where Aga is the current annual average of the gas price, and

where �ga accounts for the view on the real escalation rate of gas prices, i.e., 
�ga = ln(1 + kga) and kga is the expected real escalation rate of gas prices. The 
Annual Energy Outlook 2019 [9] provides the following values, Aga = 3.54 $2018 per 
mmBtu, and kga = 1.4% per annum. Such values are also reported in Table 10.

6.1.2 � Modeling coal price dynamics

To model the coal price dynamics, let us denote by Pco(t) the coal market price at 
time t (the suffix ‘co’ stands for ‘coal’), expressed in nominal dollars per mmBtu. 
We assume that the dynamics of Pco(t) is described by a GBM process of the type,

where wco(t) is a Wiener process. The volatility parameter is set at the value 0.0143 
on a monthly basis (see Table 7), i.e., �co = 0.05 on an annual basis. The drift coef-
ficient accounts for the expected inflation, � , and the expected real escalation rate 
of coal prices, �co = ln(1 + kco) , where kco is the expected real escalation rate of 
coal prices. The Annual Energy Outlook 2019 [9] provides the value kco = 0.2% per 
annum. Such value is also reported in Table 10. Since the correlation between coal 
market prices and power market prices is negligible [21], the Wiener process, wco(t) , 
is assumed to be independent from the stochastic processes driving the time evo-
lution of power prices and gas prices. Differently from mean-reverting processes, 

(47)exp
(

𝛽
ga

0
+ h̄ga +

1

2
𝛴2

ga

)

= Aga,

(48)�
ga

1
= � + �ga,

(49)
dPco(t)

Pco(t)
= (�co + �)dt + �codwco(t),
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Geometric Brownian Motion has not stationary solutions for the probability density 
function. Then, the coal cost evaluation in computing the stochastic NPV of coal 
plants is performed pointwise at the end of each year using Equation (49) with an 
initial condition given by the coal price value reported in Table 10.

6.2 � Modeling nuclear fuel prices

Our data set consists of a time series of nuclear fuel prices at an annual frequency 
since 1973 until 2017. Data can be downloaded from the US Energy Information 
Administration at site www.eia.doe.gov/opend​ata. Figure  13 shows the historical 
behavior of nuclear fuel prices (left panel) and their annual log-returns, calculated as 
annual changes in the natural logarithm of prices (right panel). Prices are expressed 
in nominal dollars per mmBtu.
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Fig. 13   Historical behavior of nuclear fuel prices (left panel) and log-returns (right panel) since 1973–
2017

Table 10   Technical assumptions

‘mill’ stands for 1/1000. Depreciation is developed according to the MACRS (Modified Accelerated Cost 
Recovery System) scheme

Units Gas Coal Nuclear

Nominal capacity factor 87% 85% 90%
Heat rate Btu/kWh 6600 8800 10461
Overnight cost $/kW 999 3747 6034
Fixed O&M costs $/kW/year 11.33 43.37 103.31
Variable O&M costs mill $/kWh 3.61 4.74 2.37
Fuel costs $/mmBtu 3.54 2.11 0.75
Fuel real escalation rate 1.4% 0.2% 0.2%
Decommissioning $/kW 50 200 1000
CO

2
 intensity Kg-C/mmBtu 14.5 25.5 0

Construction period # of years 3 4 6
Plant life # of years 30-40 30-40 30-40-60
Depreciation scheme MACRS,20 MACRS,20 MACRS,20

http://www.eia.doe.gov/opendata
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Let us denote by Pnu(t) the nuclear fuel price at time t (the suffix ‘nu’ stands for 
‘nuclear’). In the period under investigation log-returns do not show mean-rever-
sion, and we assume that the dynamics of nuclear fuel prices is described by a GBM 
process of the type

where wnu(t) is a Wiener process and �nu = ln(1 + knu) , being knu the expected real 
escalation rate of nuclear fuel prices. The Annual Energy Outlook 2019 [9] provides 
the following value knu = 0.2% per annum, as reported in Table 10. The Wiener pro-
cess, wnu(t) , is assumed to be independent from the stochastic processes driving the 
time evolution of power prices and fossil fuel prices.

The volatility parameter was estimated by maximum likelihood on the nuclear 
fuel dataset. We obtained the value �nu = 0.07 on an annual basis. As in the coal 
case, the nuclear fuel cost evaluation for computing the stochastic NPV of nuclear 
power plants is performed pointwise at the end of each year using Eq. (50) with an 
initial condition given by the nuclear fuel price value reported in Table 10.

6.3 � Modeling CO
2
 prices

Let us denote by Pca(t) the CO2 price at time t (the suffix ‘ca’ stands for ‘carbon’), 
expressed in nominal dollars per ton of CO2 . The dynamics of CO2 prices, is mod-
eled according to a GBM process of the type

where �ca is the carbon volatility and wca(t) is a Wiener process which is assumed 
to be independent from the stochastic processes driving the time evolution of 
power prices, fossil fuel prices, and nuclear fuel prices. However, the model can be 
extended to account for a possible correlation between CO2 prices and power prices. 
A CO2 price equal to 30 $2018 per ton of CO2 [7, 22] is assumed as initial condition 
of the CO2 price process. Regarding the volatility, we consider a CO2 price volatility 
�ca = 20% . These assumptions try to depict a realistic scenario in order to inves-
tigate the impact of CO2 volatility on the risk of investments in fossil fuel power 
plants [14]. The contribution of CO2 costs to the stochastic NPV is computed point-
wise at the end of each year.

7 � The stochastic NPV of generating electricity

Table 10 details technical data and costs used in the empirical analysis. The main 
data source is the ‘Annual Energy Outlook 2019’ [9]. In particular, the cost of 
new generating technologies are taken from ‘Capital Cost Estimates for Utility 
Scale Electricity Generating Plants’ [12] and ‘Cost and Performance Character-
istics of New Generating Technologies, Annual Energy Outlook 2019-January 

(50)
dPnu(t)

Pnu(t)
= (�nu + �)dt + �nudwnu(t),

(51)
dPca(t)

Pca(t)
= �dt + �cadwca(t),
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2019’ [10], both provided by the US Energy Information Administration. Data 
refer to a Conventional Natural Gas Combined Cycle (NGCC) facility for the gas 
technology, to an Ultra Supercritical Coal (USC) facility for the coal technology, 
and to an advanced PWR (Pressurized Water Reactor) nuclear power facility. All 
costs are denominated in year 2018 US dollars ( $2018 ). With the exception of the 
nuclear technology, decommissioning costs were set at about 5% of the overnight 
cost [22, 42]. For nuclear power plants we assumed a larger percentage of the 
overnight cost to account for decommissioning and radioactive waste disposal 
[39, 51]. Overnight costs are uniformly distributed on the construction period. 
In accordance to the Annual Energy Outlook 2019 (AEO 2019), we assumed an 
expected inflation rate i = 2.3% per annum, and a corporate tax rate Tc = 21% as 
specified in the Tax Cuts and Jobs Act of 2017. As in AEO 2019, all LCOE cal-
culations are performed using a nominal after-tax WACC rate of 7.0% per annum 
[9, 11].

Probabilistic distributions of stochastic LCOE and reduced NPV [equation 
(hereinafter NPV)] of new generating technologies can be obtained by using 
Monte Carlo techniques. Random paths for electricity prices, fuel prices, and CO2 
prices are generated according to dynamic models illustrated in the previous sec-
tion. Along such paths, LCOE and NPV values are computed by using LCOE 
and NPV formulas reported in Sect.  4. Numerical computations are performed 
without and with CO2 stochastic costs. In this last case, we assumed that macro-
economic views on the future evolution of power prices as well as their volatility 
are not influenced by the inclusion of carbon costs. Computations are performed 
under the hypothesis of zero correlation between (unitary) revenues and costs. 
This is not a strong assumption, even in the case of gas fired plants. The empirical 
analysis developed in the previous sections revealed that annual revenues are not 
correlated over time. On the other side, gas generation annual costs show a high 
positive correlation over time. This implies that, although gas and power prices 
could show some cointegration relationship [36], nevertheless the correlation 
between annual revenues and costs, if there is any, must be negligible. However, 
the model can be extended in a straightforward way to include such a correlation.

Figure  14 depicts simulated distributions of the stochastic LCOE (without 
and with CO2 costs) of baseload sources computed on a 30-year plant lifetime. 
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Figure  15 depicts simulated distributions of the stochastic NPV of baseload 
sources (without and with CO2 costs) computed on a 30-year plant lifetime.

Table  11 reports LCOE values for power generation from natural gas, coal, 
and nuclear sources, computed (without CO2 costs) over different plant lifetimes. 
Table  12 reports expected NPV values for power generation from natural gas, 
coal, and nuclear sources, computed (without CO2 costs) over different plant life-
times. All these distributions include forward looking views. With the exception 
of the gas technology, both coal and nuclear power generation show a negative 
expected NPV. Lengthening the plant lifetime does not modify this picture.
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computed over a 30-year plant lifetime

Table 11   Expected LCOE 
values

Gas Coal Nuclear

30-year 42.6 68.0 86.5
40-year 42.6 63.6 78.8
60-year – – 72.4

Table 12   Expected NPV values Gas Coal Nuclear

30-year 17.4 − 8.0 − 26.5
40-year 16.6 − 4.4 − 19.6
60-year – – − 14.1

Table 13   Statistics of stochastic NPV distributions of gas generation without CO
2
 costs (first row) and 

with CO
2
 costs (second row)

A 30-year plant lifetime is considered

Mean St. dev. p(NPV < 0)

17.4 4.3 0.1%

6.8 7.9 15%
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The inclusion of CO2 costs into the analysis worses the picture. However, in the 
case of a carbon cost of 30 $2018 per ton of CO2 , and a volatility �ca = 20% , the 
NPV of gas generation is still positive (about 6.8) even if the probability to get nega-
tive NPV is sensibly increased. Table 13 displays some statistics of stochastic NPV 
distributions for gas generation. Stochastic CO2 costs reduce the expected NPV 
and increase the standard deviation of the stochastic NPV distribution. As a con-
sequence, the probability to get negative NPV strongly increases (from 0.1 to 15% 
when stochastic CO2 costs are included). This can be an alert ring for the profitabil-
ity of the investment.

8 � Concluding remarks

In this paper we provided a general methodology for valuing long-term investments 
in the power sector. In particular, investments in new generating technologies (fos-
sil fuel and nuclear technologies) were analyzed and discussed. Stationary distribu-
tions of electricity and natural gas prices were used to determine long-term proba-
bilistic distributions of revenues and costs on the whole lifetime of the plants. This 
approach can be useful for power planning decision making of energy companies 
and policy makers. By providing the probability density of stochastic NPVs, the pro-
posed methodology allows the management to perform risk analysis of investments 
in capacity expansion by computing, for example, the Value at Risk (VaR) of a given 
investment, or the probability to obtain negative NPVs, which is in our opinion an 
important planning tool. Although our analysis was limited to baseload generation, 
it can be extended to peak-load generation and to VRE generating technologies in a 
straightforward way. In such cases, the proposed methodology allows us to include 
also uncertainty over capacity utilization. This will be the first direction of our future 
research.

We showed in the paper that, although the gas power generation seems to be the 
only viable option, nevertheless it is a very risky one [26]. The gas prices volatility 
is in fact very high and may cause large fluctuations around the expected NPV. In 
the presence of CO2 costs, the probability to get a negative value of the stochastic 
NPV of a gas fired plant is about 15% . Risk reducing strategies through diversifica-
tion of generating assets can be a very important solution. This was in fact the main 
reason for introducing stochastic NPV and stochastic LCOE. Electricity companies 
often own not just one among many dispatchable and non-dispatchable generation 
technologies, but mixtures of them, i.e., power generating portfolios. The approach 
proposed in this paper can be used to investigate the selection problem for power 
portfolios under uncertainty. In this regard, the stochastic NPV metrics as well as 
the stochastic LCOE metrics offer the possibility to perform portfolio risk analysis 
under general deviation measures, such as e.g., standard deviation and Conditional 
VaR Deviation (CVaRD) [25, 44]. Strategies that aim at reducing risk through diver-
sification, in fact, allow one to investigate the trade-off between the expected NPV 
and risk, as measured by the standard deviation or by the CVaRD of the stochas-
tic NPV. In this way, the management becomes able to define optimal generating 
portfolios. Although portfolio selection under uncertainty based on stochastic LCOE 
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was developed in the literature [27, 28] also in the presence of VRE sources [29], 
the portfolio selection problem based on stochastic NPV with accurate modeling of 
electricity and fuel price dynamics has not yet been developed. This will be the sec-
ond direction of our future research.

Appendix: The time evolution of central moments 
in the jump‑diffusion model

In this appendix, we provide a formal derivation of central moments time evolution 
of the jump-diffusion stochastic process described by the following stochastic dif-
ferential equation

where the jump amplitude J is an arbitrary random variable. The only assumption 
we make is that the Wiener process, w(t), the Poisson process, q(t), and the jump 
amplitude, J, are mutually independent processes.

Let us consider the zero-mean process,

where �(t) = E
[

x(t)
]

 . A closed form solution can be found for �(t) and reads

where x0 is the initial condition of the dynamics, i.e., x(0) = x0 . The zero-mean pro-
cess y(t) satisfies the following jump-diffusion stochastic differential equation,

Since the n-th central moment, Mn , is defined by

the time evolution of Mn(t) can be obtained by applying Itô’s Lemma to the process 
F(y) = yn , thus getting

for n ≥ 2 , being by definition M0(t) = 1 and M1(t) = 0 . Exact solutions for the first 
central moments can be easily computed, and read

(52)dx(t) = −�x(t)dt + �dw(t) + Jdq(t),

(53)y(t) = x(t) − �(t),

(54)�(t) = x0e
−�t +

�E
[

J
]

�

(

1 − e−�t
)

,

(55)dy(t) = −

[

�y(t) + �E
[

J
]

]

dt + �dw(t) + Jdq(t).

(56)Mn(t) = E
[

y(t)n
]

,

(57)
M�

n
(t) = − n�Mn(t) − n�E

[

J
]

Mn−1(t) +
n(n − 1)

2
�2Mn−2(t)

+ �

n
∑

k=1

(

n

k

)

Mn−k(t)E
[

Jk
]

,
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In the limit t → +∞ , they tend to their stationary values,

Higher order moments stationary values can be computed according to

for n ≥ 2 , being M0 = 1 and M1 = 0 . Finally, we notice that the autocorrelation 
function,

can be computed in a closed form. In fact, the time evolution of H can be derived 
from Eq. (55) thus getting

Solving Eq. (66) under the initial condition H(s, s) = M2(s) , we obtain

Formulas reported in Sect. 3 and referred to Model 1 can be obtained in the par-
ticular case J = 0 . Formulas referred to Model 2 can be obtained in the case 
J ∼ N(0, �2

J
) . In this last case, we recall that

(58)M2(t) =
�2 + �E

[

J2
]

2�

(

1 − e−2�t
)

,

(59)M3(t) =
�E

[

J3
]

3�

(

1 − e−3�t
)

,

(60)M4(t) =
�E

[

J4
]

4�

(

1 − e−4�t
)

+ 3M2(t)
2.

(61)M2 =
�2 + �E

[

J2
]

2�
,

(62)M3 =
�E

[

J3
]

3�
,

(63)M4 =
�E

[

J4
]

4�
+ 3M2

2
.

(64)Mn =
n − 1

2�
�2Mn−2 +

�

n�

n
∑

k=2

(

n

k

)

Mn−kE
[

Jk
]

,

(65)H(s, t) = Cov
(

x(s), x(t)
)

t ≥ s,

(66)H�(s, t) = −�H(s, t).

(67)Cov
(

x(s), x(t)
)

=
�2 + �E

[

J2
]

2�

[

e−�(s−t) − e−�(s+t)
]

.
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