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Abstract: Landslide susceptibility is one of the main topics of geomorphological risk studies. Un-
fortunately, many of these studies applied an exclusively statistical approach with little coherence
with the geomorphodynamic models, resulting in susceptibility maps that are difficult to read. Even
if many different models have been developed, those based on statistical techniques applied to
slope units (SUs) are among the most promising. SU segmentation divides terrain into homogenous
domains and approximates the morphodynamic response of the slope to landslides. This paper
presents a landslide susceptibility (LS) analysis at the catchment scale for a key area based on the
comparison of two GIS-based bivariate statistical methods using the landslide index (LI) approach.
A new simple and reproducible method for delineating SUs is defined with an original GIS-based
terrain segmentation based on hydrography. For the first time, the morphometric slope index (MSI)
was tested as a predisposing factor for landslides. Beyond the purely statistic values, the susceptibility
maps obtained have strong geomorphological significance and highlight the areas with the greatest
propensity to landslides. We demonstrate the efficiency of the SU segmentation method and the
potential of the proposed statistical methods to perform landslide susceptibility mapping (LSM).

Keywords: landslide susceptibility; GIS; geo-statistics; landslide hazard; conditioning factors selec-
tion; DEM; geomorphometry; slope units; landslide susceptibility index; ROC curves

1. Introduction

Landslide susceptibility (LS) can be defined as the probability that a landslide will
occur in a given area based on terrain conditions without any temporal consideration [1].
It follows the principle that future slope failures are more likely to occur under the same
conditions that have triggered past and present slope failures [2]. Certain terrain conditions
can be considered as predisposing factors for the development of landslides. Triggering
factors are temporary conditions that can directly cause landslides (e.g., earthquakes, rapid
snow melt, and heavy rain). Landslide susceptibility maps are produced by considering
conditioning factors only, whereas landslide hazard maps consider both predisposing and
triggering factors [2].

Many models for landslide susceptibility mapping (LSM) have been developed using
different methods, scales, and evaluation criteria [3], from knowledge-driven to process-
and statistical-based models [4]. The most common and effective approaches in terms
of the readability and usability of the output maps are based on more or less complex
mathematical and statistical techniques, including (amongst others) logistic regression,
neural network analysis, data overlay, index-based, and weight of evidence analyses, as
well as machine learning (see [3] for a complete and up-to-date review). They require
the a priori definition of the landslide inventory and predisposing factors and a rigorous
procedure to calibrate and validate the models [5,6]. However, the complexity of the
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elaboration methodology often prevents or at least makes their reproduction and appli-
cation to different areas difficult. The most used mapping unit for LSM is the grid [3],
which is in a matrix form, can be easily obtained in GIS, and is simple to handle for data
processing. However, grid cells are not associated with geological–geomorphological
environments, as they cannot represent the physiographic conditions of terrain. A more
representative segmentation method comprises the unique condition units (UCUs) [7],
which are homogenous domains with morphodynamically constrained spatial limits [8].
They maximize the internal homogeneity and the external heterogeneity of the selected
parameters and therefore better approximate the morphodynamic response of the slope to
the occurrence of landslides [9]. A particularly powerful segmentation method is based
on geomorphological features, such as slope units (SUs), which are obtained by splitting
the two halves of subcatchments and considering the slope gradient and aspect [10]. Some
studies have demonstrated the efficiency of this kind of terrain segmentation, which can
even outperform grid-based models [11–13]. One of the main strengths of SU segmentation
is that the obtained landslide susceptibility maps are more readable and directly linked to
the terrain structure [14].

The topic of landslide susceptibility has been the object of numerous scientific studies,
many of which have an exclusively statistical approach focused on comparing a number
of different techniques on the same dataset without a discussion of the meaning of the
predictive relationships or of their coherence with morphodynamic models. It is necessary
to translate the models into forecast maps that are useful for administrators as an effective
tool for risk management.

The aim of this study was to obtain a landslide susceptibility map at the catchment
scale for a key area (populated, with active slope failures), based on simple statistical
methods and SUs segmentation, characterized by a strong geomorphological significance.
The entire elaboration procedure was based on a multidisciplinary approach in which
LiDAR-derived digital terrain model (DTM) analysis, digital orthophoto interpretation,
and GIS processing were combined with direct field surveys and past geomorphological
map analysis.

We constructed a new simple and reproducible method for delineating SUs with an
original GIS-based terrain segmentation method based on hydrographic features. The SUs
were chosen to be large enough to contain the entire alimentation area of a landslide or a
portion of that but small enough to be the reference slope area of a single landform.

We performed LS analysis by comparing two GIS-based statistical methods. We chose
to apply bivariate statistical methods based on the landslide index approach [15], originally
developed for grid-cell analysis, by adapting the equations. These two methods are simple
and intuitive, and the advantage of using bivariate statistics is that they immediately reveal
the relation of the predisposing variables with the propensity for landslides.

We selected the Piomba Stream basin, in Central Italy, as the test area. This is a
strongly anthropized area, and the hillslopes are particularly prone to slope failures due to
the geomorphological and geological features. This area has been studied for many years
as an important site for the interaction of both human pressure and slope morphometry on
erosion processes (e.g., [16–19]). Recent studies have focused on the role of precipitation
on landslides in this area and evidenced that rainfall is the main triggering factor [20,21].
However, no studies have applied LS modeling.

The predisposing factors were selected after an intense and prolonged field survey in
order to choose the most effective factors based on field evidence, picking the parameters
most commonly used in the literature for evaluating LS [22,23]. We considered only
one parameter for each terrain characteristic, avoiding redundancies, which could have
generate overlapping effects and interrelationships that are difficult to discriminate [3].
Moreover, we tested the use of the morphometric slope index (MSI) [24] as a predisposing
morphometric factor for landslides and the possibility of considering MSI as an alternative
to the slope gradient and other slope morphometric variables. It is a single effective
parameter for slope morphometry and is the result of the geomorphological dynamics, as it
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highlights all those processes that have changed the morphological structure of the terrain
over time. It reflects the history of the slope and its modeling.

The entire LS analysis was framed within an experimental design that combined
statistical methods, predisposing factors, and the areal threshold of landslides. The main
outcomes of this research demonstrate the efficiency of the SU segmentation method and
the potential of the proposed statistical methods for determining the LSM, producing
easy-to-read susceptibility maps. Beyond the purely statistical values, the proposed models
adhere to the geomorphological significance of the terrain and highlight the areas with the
greatest landslide propensity.

2. Materials and Methods
2.1. Study Area

The Piomba Stream is located in the hilly coastal area of the Central-Eastern Apennines
(Abruzzo Region, Italy; Figure 1). This W–E-elongated basin flows from Mt. Giove (747 m
a.s.l.) to the Adriatic Sea, near the town of Silvi (PE). The drainage pattern is mostly trellis-
like and subordinately dendritic, with few small tributary channels. The main tributary is
Fosso del Gallo in the hydrographic left side.
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Figure 1. Geographical location of the study area in Italy (a) and northern Abruzzo (b); DTM of the Piomba and Fosso del
Gallo basins (c).

The area is characterized by a Mediterranean climate with a sub-temperate littoral
regime [25]. Mean annual temperatures are generally between 12.5 and 15.5 ◦C, and the
mean annual rainfall is between 600 and 800 mm. Precipitation increases toward the
mountains with a trend not proportional to the elevation. The maximum rainfall is in
autumn, with a secondary maximum in spring. Summers are rather dry, especially near
the coast and on the hills with lower elevation.

The study area belongs to the outermost eastern sector of the Apennine chain, which
features a NE-verging thrust belt geometry, dissected by several younger normal faults.
The piedmont areas are mainly affected by extensional basins to the west and buried thrusts
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overlain by homocline plateau, mesa, and cuesta landscapes to the east [26]. The sediment
outcrops are mainly foredeep siliciclastic sequences belonging to the Plio–Pleistocene suc-
cession, which become progressively younger moving toward the Adriatic Sea and are
arranged according to a homocline slightly dipping towards the NE. They are mainly com-
posed by clayey/sandy-clayey sediments, often interbedded with clastic deposits (sands
and conglomerates with lenticular geometry, sometimes very thick) at various stratigraphic
heights. In the areas near the coast, the hills’ summits are covered by thick deposits of
sands, gravels, and conglomerates of fluvial–deltaic and coastal environments [27,28]. At
the highest elevations of the foothills, clayey marl and marly clay alternate at sandy and
clayey levels. They belong to three main geological formations [29]: the Laga Formation
(Messinian–Lower Pliocene p.p.), which includes the older and innermost turbiditic se-
quence (the westernmost part of the Piomba basin); the Cellino Formation (lower Pliocene),
which includes a younger and more external foredeep turbiditic sequence (the central part
of the Piomba basin); and the Mutignano Formation (upper Pliocene–lower Pleistocene),
the post-orogenic sequence deposited within the Periadriatic Basin (the easternmost part of
the Piomba basin) (Figure 2). The homoclinal valleys are engraved along the clayey levels
with marked asymmetry. The rivers, which flow according to the regional topographical
gradient from W to E, have a cuesta morphology [17].
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The geomorphological evolution of the area was strongly influenced by the outcrop-
ping lithology, the tectonic structure, and the regional uplift, and by climatic- and sea-level
changes [27]. This produced the relative sea-level changes and local base level changes
(negative in the long term in comparison to today’s sea level). The present landscape was
shaped by the Pleistocene–Holocene geomorphological dynamics. During the Pleistocene,
the rapid uplift and the alternation in climatic phases produced the deepening of the hydro-
graphic systems and the dismantling of the summit conglomerate, which led to the outcrop
of the clayey substrate [26]. Fluvial and slope processes were recorded in a complex se-
quence of continental deposits (post-orogenic) overlying the bedrock [30]. In the Holocene,
fluvial, gravitational, and anthropic processes allowed the landscape to be shaped espe-
cially through mass movements (slides, flows, and falls), badlands, gully and rill erosion,
slope remodeling, and de- and reforestation due to agricultural practices [16,17,19,20]. The
mass movements and landslides are mostly active and recent, and the main triggering
factor is high precipitation, the effect of which has combined with the general drainage
dissection, terrain morphology (particularly slope gradient and concavity [21]), and land
use [20].

2.2. Landslide Susceptibility Analysis

The data necessary to complete the landslide susceptibility analysis were obtained
by means of a multidisciplinary approach that included geomorphological field survey,
remote sensing (air photo analysis), DTM processing, and institutional open data. We used
color aerial photos, regional topographic maps (Carta Tecnica Regionale, CTR, 2007) and
DTMs provided by the Cartographic Office of the Abruzzo Region (Table 1) to derive the
morphological and hydrological variables (i.e., the geometry of SUs, landslide inventory,
land use, and drainage density). This improved the feasibility and repeatability of the anal-
ysis and will lead to future improvements with multitemporal analysis for the investigation
of the trends in landslide susceptibility. The aerial photos were obtained with LiDAR
flights, which were orthorectified and georeferenced with a pixel resolution of 0.2 m. The
CTRs were produced using photogrammetrical techniques from the digital orthophotos
at a 1:10,000 scale. The DTMs were LiDAR-based with a 10 m cell-size resolution. The
geological and geomorphological variables were obtained through the field survey with
the support of the Hydrogeological Setting Plan of Abruzzo Region (Piano per l’Assetto
Idrogeologico, PAI) [31] and the Italian Landslides Inventory (Inventario dei Fenomeni
Franosi in Italia, IFFI) [32] maps.

Table 1. Sources of input data.

Geodatabase Layers Derived from Scale Data Source

Landslide inventory

Field survey 1:10,000 This paper
Color aerial photos 1:10,000 Abruzzo Region (2009)

PAI 1:25,000 Autorità di Bacino (2005)
IFFI 1:25,000 ISPRA (2007)

Predisposing factors
Bedrock lithology Field survey 1:10,000 this paper

Land use/land cover Corine Land Cover 1:10,000 CLC (2018)
Deposit thickness DTM Borehole analysis 10 m cell-size Abruzzo Region (2015)

Slope aspect DTM 10 m cell-size Abruzzo Region (2015)

Drainage density
DTM 10 m cell-size Abruzzo Region (2015)
CTR 1:10,000 Abruzzo Region (2007)

Color aerial photos 1:10,000 Abruzzo Region (2009)
Slope gradient DTM 10 m cell-size Abruzzo Region (2015)
Morphometric

slope index DTM 10 m cell-size Abruzzo Region (2015)

The input data were collected in a geodatabase built in the GIS environment and
organized in two categories: landslide inventory and predisposing factors (Table 1). All the
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parameter processing and morphometrical analyses were performed in ArcGIS (ArcMap®

10.1, ESRI, Redlands, CA, USA). The data analysis was performed via bivariate statistics by
comparing the results of the two landslide indexes. The SUs were considered as mapping
units of the LS models.

2.2.1. Landslide Inventory

The landslide inventory was compiled through an integrated approach combining
field and remote investigations. In the preliminary phase, pre-compiled regional maps
were analyzed: PAI [31] and IFFI [32]. Afterward, the remote observation from aerial
photographs allowed us to map the surface distribution of the landforms with GIS software.
Finally, all the landforms were observed and measured in the field for ground-truthing.

A detailed geomorphological field survey was performed between spring 2017 and
autumn 2019. In particular, from January to April 2017, heavy rainfall activated numerous
shallow mass movements that were investigated in the field survey. The final product
was the Geomorphological Map of Torrente Piomba catchment at a 1:10,000 scale (resized
in a schematic map in Figure 3), from which the landslide inventory map and some
predisposing factors maps were derived. The landslide inventory includes active/dormant
features, inventoried in the GIS-based geodatabase, which are classified according to the
Varnes [33] classification of landslides.

2.2.2. Predisposing Factors

The predisposing factors for landslides were chosen in relation to the terrain mor-
phometry, geology and geomorphology, hydrology, vegetation, and anthropic features.
The selection was based on field evidence, expert knowledge of the study area, a method-
ological approach from previous studies, and local data availability [22,23,34]. Seven
controlling factors were considered from those that showed the greatest influence on land-
slides: bedrock lithology (L), land use/land cover (LULC), deposits thickness (T), slope
aspect (A), drainage density (D), slope gradient (S), and morphometric slope index (MSI).
Each factor was subdivided into different classes that represent their entire variability,
according to the accuracy and scale of the data source. For the categorical factors (L and
LULC), the majority class within the SU was considered. The numerical factors (D, S, and
MSI) were calculated from vector layers (polygons, polylines) applying the appropriate
formula. The slope aspect (A) was derived from the DTM, and the median was calculated
in order to consider the most prevalent value in each SU. The deposit thickness (T) was
extrapolated from morphometric variables and then subdivided into qualitative classes.
Afterward, A and T were considered categorical variables.

Bedrock lithology (L). The bedrock lithology was selected as it is recognized to be one
of the most important factors in LSM because it influences the slope stability, the size and
the type of landslides, and subsequently the susceptibility degree [35,36]. In our study,
the bedrock lithology map was derived from the field-based geomorphological map. We
followed a lithotechnical approach, moving from a lithological basis and grouping the
geological units into four classes of rock types (Figure 4a): fluvial deposit, sandstone and
conglomerate, clay, and alternating sand and clay. Each SU was assigned the prevailing
class in terms of areal distribution.
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Figure 4. Schemes of the distribution of the landslide-predisposing factors in the studied basin: (a) bedrock lithology derived
from field survey; (b) land use/land cover derived from the Corine Land Cover maps; (c) deposit thickness extrapolated by
a linear relation from the slope; (d) slope aspect derived from the DEM; (e) drainage density derived from the Regional
Topographic Maps of Abruzzo Region; (f) slope gradient derived from the average slope of the SU; (g) MSI calculated from
a combination of morphometric features from the DEM.
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Land use/land cover (LULC). The importance of LULC in slope stability is recog-
nized in particular for areas subjected by a strong anthropic impact [16,37,38], such as the
piedmont areas of Central Italy. The variability in vegetation cover can directly influence
the soil infiltration capacity and consequently the slope stability [39]. Moreover, natural
or artificial changes in LULC can weaken and destabilize the slopes. In our study, the
LULC was derived from the Corine Land Cover project—Level 3 [40] and implemented
through the analysis of orthorectified aerial photos. Nine types of LULC are relevant in
the study area (Figure 4b): vineyards, olive groves, complex cultivation patterns, land
principally occupied by agriculture with significant areas of natural vegetation, annual
crops associated with permanent crops, broad-leaved forest, non-irrigated arable land,
transitional woodland shrub, and sparsely vegetated areas.

Deposits’ thickness (T). The thickness of superficial deposits (i.e., mainly continental
colluvial and slope deposits in the study area) was selected as it is recognized to be
one of the strongest factors influencing surface processes determining infiltration rates,
overland flows, and water storage potential [41,42]. These thickness data were derived
from direct observations (e.g., boreholes) or from indirect estimation. In the study area,
direct observations were not available in sufficient amounts to derive an extensive deposit
thickness map to be able to predict their depth with an accuracy compatible with the
requirements of LSM [43]. The available data were concentrated into small, urbanized
areas, and could not be extrapolated for the entire basin. In these cases, an indirect
geostatistical analysis can be applied to estimate the thickness through DEM-derived
morphometric variables [43,44]. Therefore, we extrapolated T by using the equation
developed by Sciarra et al. [45] for an area with similar bio-geo-climatic conditions. This is
a linear pixel-based relation that links T to the local slope (tan β):

D = −6.34 tan β + 5.49. (1)

The few data from direct measurements were used to check the values of T. The depths
were validated by comparing the direct measurement data with the values of the estimation
via the formula and making sure that the measured value was within the range of the
estimated value. The most prevalent value of T was extracted in each SU as a median value
via the zonal statistics. We divided T into two classes (Figure 4c) to discriminate between
absent/very shallow and deep deposits (≤2 m and >2 m, respectively).

Slope aspect (A). The role of the slope aspect in slope stability is debated since different
studies have reported opposite outcomes ([46] and references therein). Some results
suggested that A is an important predisposing factor for superficial landslides in clayey
deposits and is correlated with other factors such as bedrock structure [46,47]. As already
stated, we derived A from the DTM and calculated its median value in each SU using the
Zonal Statistics tool. Then, we grouped the eight main directions with an angle step of 45◦

(N, NE, E, SE, S, SW, W, and NW) (Figure 4d).
Drainage density (D). The drainage density is a traditional hydrological parameter

that was developed by Horton [48] and represents the degree of fluvial dissection. It
is strictly influenced by the slope gradient and the lithology. We selected D because it
influences the slope stability and highlights hydrological critical conditions or critical
fluvial erosion [49–51]. D is expressed as the length of the drainage network per unit area
and calculated as the ratio between the total stream length and the basin area. The value
of D can be influenced by the mapping scale and strictly depends on the channel head’s
source area [50]. We derived the drainage network as a vector layer from the Regional
Topographic Maps of the Abruzzo Region at a 1:5000 scale (CTR, 2007) at the same scale
as the other predisposing factors and verified and implemented this through aerial photo
analysis. The hydrographic layers are LiDAR-based and accurate enough with respect to
the terrain morphometry. Then, we calculated D for each SU. This factor was classified
into five classes using the natural break algorithm (Figure 4e), with each corresponding
to a certain range of D values (in this case, the ranges are 0, 0.0001–1.2, 1.2–2.5, 2.5–5, and
5–9.7 km−1).
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Slope gradient (S). The slope gradient is the main morphometric variable that affects
the slope stability at different scales (e.g. [3,52,53], amongst many others). It controls not
only slope-gravity-induced processes but also hydrological processes, runoff, soil erosion,
weathering, vegetation cover, and human activities, which in turn influence slope stability.
We calculated S using the Add Surface Information tool, which attributed the average
percentage of the slope to each SU and then transformed it into degrees. This factor was
divided into four classes (0◦–10◦, 11◦–15◦, 16◦–20◦, and >20◦; Figure 4f).

Morphometric Slope Index (MSI). The morphometric slope index (MSI) was recently
introduced as a unique reference index to study the influence of pre-incision slope mor-
phometry on the evolution of drainage networks and mass movements within Italian
badlands and small clayey basins [19,24,54,55]. It groups the main (linear and areal)
morphometric features of a morphological unit with the formula:

MSI = L · RC · A3D/A2D (2)

where L is the length, RC is the circularity ratio, A3D is the three-dimensional surface
area, and A2D is the plane surface area. In this study, we used MSI to characterize all
morphometric features of the SUs and provide a more complete alternative to the use of S.
It considers the slope’s gradient (expressed through the relationship between the 3D and 2D
area), shape, and size (length and width). The single parameters were calculated as vector
(polygon) characteristics via specific tools in ArcGIS (Minimum Bounding Geometry for L,
Interpolate Shape/Add Surface Information for A3D, Calculate Geometry for A2D, and the
perimeter p used for RC = 4πA2D/p2). MSI was subdivided into eight classes (Figure 4g)
by modifying the natural break algorithm ranges (11–35, 35–50, 50–90, 90–170, 170–230,
230–300, 300–400, and >400 m).

2.2.3. Mapping Units

In this study, we used the SUs as mapping units to assess landslide susceptibility. The
SUs were derived using the Arc Hydro toolbox in ArcGIS, with little or no handling by
the operator.

As a base layer, the LiDAR-based DTM with a 10 m resolution was used from the
Abruzzo Region geodatabase (Figure 1). The step-by-step procedure to delineate the SUs
is shown in Figure 5. The first phase was the terrain preprocessing, in which the DTM
was corrected to clearly identify the drainage cells. The second phase was the terrain
processing, in which the sub-basins were delineated and then divided into two by the main
streams, in order to obtain the two halves of the catchment. To carry out this operation, the
main drainage lines were extended until they intersected the watershed divides using the
Longest Flow Path for Catchments tool. Subsequently, this longest flow path was used to
cut the hydrographic unit into two SUs. Then, the aspect was derived via its median value
in each SU using the Zonal Statistics tool. Using an iterative procedure, the smaller areas
were aggregated to the larger adjacent ones, and the neighboring units in the same aspect
range were joined. In this way, only the SUs greater than 10,000 m2 with a uniform aspect
were maintained.
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2.2.4. Landslide Susceptibility Methods

To perform the LSM of the study basin, we chose to test two GIS-based bivariate
statistical methods and to compare their results to establish which is the most powerful
method for predicting landslides. The first is the landslide susceptibility index (LSI)
developed by Romeo et al. [56] according to Lee and Min [57]; the second is a simplified
version of LSI named the landslide index (LI) developed by Sciarra et al. [45]. The advantage
of these methods is to provide an immediate measure of the role played by each factor and
related classes on landslide susceptibility [56]. Both methods were designed to work on
raster data and have been modified and adapted so that they can also be used on vector
data. They measure a percentage-weighed sum of the predisposing factors ranging from 0
(least influence) to 100 (most influence). The complete workflow of the statistical analysis
is shown in Figure 6.
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Landslide Susceptibility Index (LSI)

Originally, the LSI was created for raster-based LSM and was calculated by summing
the ratio between the number of cells in which landslides occur and the number of cells in
which landslides did not occur for each class of a factor. We transformed this calculation
for the SU-based LSM into the ratio between the landslide area and the non-landslide area
in the SUs for each class of a factor.

LSI is defined as the ratio between a and b, expressed in the following equation:

LSIi = a/b,
a = A(fi)/A (F),
b = A(si)/A(S).

(3)

The parameter a is the ratio between the landslide surface of each class (A(fi)) and the
total landslide surface in the study area (A (F)), while parameter b is the ratio between the
non-landslide area of each class (A(si)) and the total non-landslide area in the study area
(A(S)). LSI was calculated for all the classes of each factor and then normalized to compare
the data:

LSInor,i = LSIi/LSIi(max) × 100. (4)

where LSInor represents the value of LSI for each class (i) of a factor divided by the
maximum LSI value in the same factor and multiplied by 100. It quantifies the impact of
the classes taken individually.
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The total LSI was obtained from the combination of the LSInor for each SU:

LSItot = ∑ (LSInor,i × wj)
wj = LSInor,i(min)/∑ LSInor,i(min).

(5)

LSItot is given by the sum of the LSInor of each factor multiplied by the weight of
the factor (wj). The weight of a factor is expressed as the ratio between the value of the
minimum LSInor of the classes and the sum of the minimum LSInor of all the factors. LSItot
expresses the propensity for failure due to the weighted combination of the considered
predisposing factors.

LSItot was assigned to each SU and the corresponding values w3re classified according
to the Jenks’ method (natural breaks). Five susceptibility classes were created: very high,
high, moderate, low, and very low.

Landslide Index (LI)

The LI was created to work in raster-based LSM, in the same manner as LSI. In this
case, however, we applied the equation to the SU-based LSM as it is because LI is calculated
as the ratio between the landslide area of each class (i) and the total surface of the class:

LIi = A(fi)/Ai. (6)

The values obtained for the classes of each factor were normalized to 100:

LInor,i = LIi/LIi(max) × 100 (7)

where LIi represents the value of the LI for each class, which is divided by the maximum LI
value within the same factor and multiplied by 100. The total landslide index was obtained
by the sum of the LInor of each factor divided by the total number of factors (N):

LItot = ∑ LI(nor,i)/N (8)

This expresses the propensity for instability due to the mathematical combination
of predisposing factors. Furthermore, in this case, the SUs were classified and mapped
according to the natural breaks method into five levels of susceptibility: very high, high,
moderate, low, and very low.

2.2.5. Training and Validation

The training and validation phases were performed using the success rate and predic-
tion rate curves to test the model accuracy and prediction skills.

For the training phase, the whole area of the basin of the T. Piomba without the
basin of the Fosso del Gallo was considered as the test area (Figure 1), from which the
susceptibility model was developed to determine the performance of the model. The
calibration of the models was constructing by creating the ROC curves as plot charts, in
which the cumulative percentage of the SU area for each susceptibility level is reported on
the x-axis and the cumulative percentage of landslide areas for each susceptibility level is
reported on the y-axis. To evaluate the reliability of the statistical method, the area under
the curve (AUC) was calculated. The AUC can range between 0 (invalid) and 1 (high
reliability). Generally, the model is considered valid if AUC ≥ 0.7 [58]. The calculation of
AUC allows us to compare different models.

For the validation phase, the Fosso del Gallo sub-basin was chosen as the validation
area (Figure 1). This allowed us to evaluate whether the models can work even in areas
other than those in which it was created and thus to test its capacity to predict future
landslides. Once the model was obtained, it was applied to the validation area according
to the same susceptibility levels, and its predictive performance was measured through the
calculation of the AUC of the ROC curves.
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2.2.6. Experimental Design

The research was organized in a 2 × 3 × 2 experimental design (Table 2) combining
the statistical methods (2×), the combination of predisposing factors (3×), and the areal
threshold of landslides (2×). Both statistical methods, LSI and LI (2×), were applied with
different combinations of factors (3×), where one considered all the seven factors and the
other two considered only one morphometric factor (alternatively S or MSI) together with
the other six. This was carried out to test the hypothesis that MSI alone is sufficient to
describe the morphometric characteristics of the SU, without the need to consider other
factors, such as S. Furthermore, for each application, two models (2×) were employed
according to the areal threshold of landslides: one considering all the mapped landslides
and the other considering the SUs with less than 2% of the area covered by landslides as
free of landslides [59]. A total of 12 landslide susceptibility maps were generated and then
compared through the training and validation procedure to establish which achieved the
best performance in terms of reliability and prediction skills.

Table 2. Scheme of the experimental design of the study.
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no LSI_1
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LSI_3
w3

LSI_5
w5 LI_7 LI_9 LI_11

>2% LSI_2
w2

LSI_4
w4

LSI_6
w6 LI_8 LI_10 LI_12

L, LULC, T,
D, A, S, MSI

L, LULC, T,
D, A, S

L, LULC, T,
D, A, MSI

L, LULC, T,
D, A, S, MSI

L, LULC, T,
D, A, S

L, LULC, T,
D, A, MSI

Factor combination

3. Results
3.1. Landslides

In the landslide inventory map (Figure 7), a total of 265 landslides were reported,
covering an area of 15.5 km2, corresponding to 14.8% of the basin (105 km2). Many of the
landslides occurred on cultivated sites, and their morphological evidence was modified or
removed by farming practices. Therefore, the pre-existing PAI and IFFI inventories allowed
us to identify the correct location of some of the mapped landforms whose boundaries
were correctly traced during the field activity and the air-photo analysis. In addition, more
recent landslides were mapped during the field activity and the air-photo analysis. As
observed after the rainfall events, the main triggers of mass wasting in the study area were
heavy rainfalls, which caused the activation or the reactivation of most of the landslides.

The majority of the landslides were of the flow type (223 out of 265). In the areas in
which they occurred, the substrate was mainly clayey, favoring their (re-)activation in the
rainy periods due to water infiltration. There were 24 rotational landslides, leading to a
number of counterslopes mostly set at the foot of the concave sliding surfaces. All the
16 complex landslides had a rotational component, and most of them were located near the
source area of T. Piomba. A single landslide with a translational component was located
on the right bank of the Fosso del Gallo. There was also a rockfall on the left bank of the
Fosso del Gallo below the town of Atri, involving the summit conglomerates.
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complex landslide with rotational component (#162); (b) rotational landslide (#251); (c) flow-type
landslide (#26).

3.2. Characterization of the SUs

The T. Piomba basin was divided into 613 Sus (Figure 8): 518 in the test area and 95
in the validation area. In the test area, the smallest SU was 0.012 km2, the largest was
1.05 km2 (mean = 0.17 km2, median = 0.118 km2), and most of the SUs were between 0.012
and 0.4 km2 (96.3%). In the validation area, the smallest SU was 0.015 km2, the largest
was 1.8 km2 (mean = 0.2 km2, median = 0.117 km2), and most of the SUs were between
0.015 and 0.4 km2 (91.6%). This suggests that SU sizes were comparable in the test and
validation areas.
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In test area, the number of SUs with landslides amounted to 259; while considering an
areal threshold of 2% of landslides, the total was 251. In the validation area, the number
of SUs with landslides amounted to 40; while considering the areal threshold of 2% of
landslides, the total was 37. Each SU was assigned a class of factors.
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3.3. Landslide Susceptibility Models

The LSI and LI statistical methods were applied to the six different situations of the
experimental design combining areal threshold and predisposing factors (Table 2). A total
of 12 susceptibility maps were obtained: 6 maps for each statistical method. The models
were coded by adding a consecutive number as a suffix to LSI and LI. The susceptibility
maps were arranged into five classes, and LSItot values were divided by means of natural
breaks each time (Figures 9 and 10, Tables A7 and A8).

3.3.1. LSI Models

The LSI bivariate statistics described the influence of the classes of each factor
(Tables A1 and A3). Most of the landslides developed in SUs with alternating sand and
clay bedrock and broad-leaved forests (and subordinately olive groves), with a high
deposit thickness (>2 m), northern aspect (primarily NW, and subordinately N and NE),
low D (primarily 0.0001–1.2 km−1, and in general below 5 km−1), medium-high slope
gradient (16–20◦, and in general above 11◦), and high MSI (>400 m). This is valid if we
consider the areal threshold of 2% for the landslide surface.

The weighted equation for LSItot was different for each case because the weights of the
factors (Tables A2 and A4) assume different values according to the influence of the factor.
In any case, the models produced similar results in terms of the relative importance of the
factors. D, MSI, and T were the most influential factors; A and S were moderately influential;
and L and LULC were the least influential. Comparing the models that considered both MSI
and S (LSI_1 and LSI_2), MSI was always found to be the most influential morphometric
variable. In the cases in which MSI was not included in the analysis (LSI_5 and LSI_6), the
influence of S was found to be secondary. In the cases where S was not included in the
analysis (LSI_3 and LSI_4), the influence of MSI was even higher.

In general, the susceptibility maps (Figure 9, Table A7) show that the SUs with very
high and high susceptibility were mainly located on the right hydrographic side of the T.
Piomba. The SUs with moderate susceptibility were located on the left side. The SUs with
low and very low susceptibility were mainly located on the left side and in the areas close
to the mouth.

3.3.2. LI Models

The LI bivariate statistics describe the influence of the factor classes and not the relative
importance of the factors because the equation for LItot depends on the number of factors,
assuming that they have the same weight (Tables A5 and A6). The relative influence of
the classes is similar to the LSI models, as well as the distribution of the susceptibility in
the SUs. There were only small differences among the models concerning the absolute
values of the indices and not their relative relationship. The most influential factor classes
were alternating sand and clay bedrock and broad-leaved forests (and subordinately olive
groves) with a high deposit thickness, a NW aspect (and subordinately N and NE), low
D (<5 km−1), medium-high slope gradient (>11◦), and high MSI (>400 m). Very-high-
and high-susceptibility SUs were mainly located on the right hydrographic side of the T.
Piomba, while moderate susceptibility SUs were on the left side, and low and very low
susceptibility SUs were on the left side and close to the mouth (Figure 10, Table A8).

3.3.3. Training and Validation

The training and validation procedure was performed via the ROC curves (Figure 11),
as already described. The AUC values of the LSI models were between 0.65 and 0.67.
Therefore, the model training accuracies were between 65% and 67%. The AUC values of
the validation set were between 0.66 and 0.69, reaching a prediction accuracy between 66%
and 69%. Not one of the LSI models reached the minimum threshold of the AUC value for
reliability, with values slightly below 0.7 [58]. The LSI model with the highest AUC values
was LSI_1, which considered all the parameters and all the landslides without the areal
threshold of landslides.
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The AUC values of the LI models were between 0.69 and 0.71. Therefore, the training
accuracies were between 69% and 70%. The AUC values of the validation set were between
0.67 and 0.68, reaching a prediction accuracy between 67% and 68%. Almost all LI models
reached the minimum threshold of the AUC value for reliability, with values around
0.7 [58]. The LI models with the highest AUC values were LI_7 and LI_8, which considered
all the parameters, with and without the areal threshold of landslides.

In general, the LI models reached the highest validity, with the best performance for
models LI_7 and LI_8. Concerning the different combinations of predisposing factors, the
models with higher validity were those that considered all the parameters, while the areal
threshold of landslides had no influence.

4. Discussion

In this study, we applied the LS method in a given study area (Piomba basin, Central
Italy), providing a simple and straightforward way to statistically analyze the propensity
for landslide based on the distribution of the predisposing factors. A multidisciplinary
approach was applied that combined LiDAR-derived DTM analysis, aerial photo inter-
pretation, GIS processing, past geomorphological maps analysis, and direct field surveys.
This approach allowed us to obtain an up-to-date and reliable landslide inventory map
and to select the predisposing factors with the appropriate accuracy and resolution. The
use of remote sensing data provided us the possibility to validate the field survey in order
to obtain ground-truth maps; moreover, the comparison of the present (field) with the
past (aerial photos and DTM) terrain features highlighted the main changes in the terrain,
allowing us to more efficiently detect and delimit the landforms.

The study area was segmented into SUs by developing an original GIS-based proce-
dure starting from the terrain hydrography. The landslide index [15] approach via bivariate
statistics was applied by adapting the grid-cell analysis to the vector analysis.

The outcomes of the statistical analyses can be summarized as follows:

- The two statistical methods applied (LSI and LI) can be used interchangeably because
both of them describe the relative influence of each class of each factor;

- The method that reached higher statistical validity is the LI method (the simplified
version of LSI), which resulted in a slightly higher value of AUC;

- With regards to the accuracy level, the models’ performance is sufficient for only a
few of the factors and is almost equivalent for the two statistical methods (LI and LSI);

- The best predictive models were LI_7 and LI_8 (created with the LI statistical method
considering all the parameters with and without the areal threshold of landslides,
respectively), reaching a prediction accuracy of 71%;

- The results of the different models are substantially in agreement when detecting the
factor classes that have primary importance for the development of landslides in the
study area: the landslides are mainly located on slopes characterized by alternating
sand and clay, occupied by broad-leaved forests, with NW aspect, gradient between
15◦ and 20◦, MSI values greater than 400 m, and low D (between 0.0001 and 1.2 km−1);

- The only significant difference observed between the two methods is the distribution
of susceptibility classes in the study area; in particular, the very high susceptibility
class characterizes a greater number of SUs in LSI maps than in LI maps;

- The LS models created by considering the complete landslide inventory do not differ
from those that consider the landslides with an areal threshold of 2%, probably because
there are few landslides under the threshold of 2% and these landslides do not affect
the results;

- There are no differences between the models created by considering six factors (alterna-
tively with S or MSI) rather than seven, indicating that MSI is effective in representing
the morphometric characteristics of the SU: it includes a more effective quantification
of the slope features related to the geomorphological processes distribution on the SUs;
S characterizes the SUs only through the value of the gradient (in degrees), while MSI
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includes a set of morphometric parameters such as slope, shape, and size. This result
confirms previous studies on the validity of MSI as morphometric factor, e.g., [50].

From a statistical point of view, no further information is needed to explain the results.
However, this distribution can be better understood if the relationships between landslides
and predisposing factors are analyzed in detail from a geological and geomorphological
point of view. Some general considerations can be extrapolated from the local level (i.e.,
study case) focusing on the geomorphological implication of the statistical results.

Considering the morphometrical setting, the most influential classes of S were found
in general to be above 11◦, with a slight predominance of the 16–20◦ class. This indicates
that intermediate and high slope gradients (>11◦) can lead to the formation of landslides
in the study area, and few landslides form on low gradient hillslopes (<11◦). The most
influential class of MSI has an MSI value >400 m, with secondary classes of 230–300 m and
301–400 m. For SUs with an equal slope gradient, these classes correspond to longer and
wider hillslopes, which hold most of the landslide area. Generally, longer hillslopes are
also wider, which can induce the formation of flow-type and rotational landslides on soft
clay–sand bedrock, such as the Apennine hills [16,60]. The effect is directly controlled by
the water infiltration capacity and terrain saturation associated with the specific hydrogeo-
logical and lithological setting. The presence of local aquifers in sand sequences confined
by undelaying clay deposits [16] and the subsequent high values of neutral pressure can
result in increasing flow-type landslides [61].

The slope gradient values are connected to the geo-lithological context of the study
area, which is mainly constituted by soft lithologies (clay, and alternating sand and clay).
In the study area, low-gradient (i.e., ≤10◦) SUs correspond to alluvial deposits, while
medium-high-gradient (i.e., >11◦) SUs correspond almost equally to the clay, alternating
sand and clay, and sandstone/conglomerate layers. The presence of thick layers of sands
within the clay can allow the slope to have a higher slope gradient. Moreover, the slope
can be linked to the thickness of slope deposits derived from a linear relation with the local
slope [45]: T is higher when S is lower [43].

The drainage density is different within the SUs: in many SUs, the value of D is
0 km−1, indicating the absence of streams within the SUs; a number of SUs have a D value
>5 km−1; and most of the SUs have D values in classes ranging from 0.0001 to 5 km−1. The
primary influential class was that with lower D values (0.0001–1.2 km−1), but all the classes
with a D value <5 km−1 had almost the same probability of being affected by landslides.
Therefore, there is no distinctive class of D that influences the landslide proneness in the
study area. This outcome can again be linked to the geo-lithological setting: in an area with
a quite uniform distribution of lithological units (mainly constitutes by soft lithologies),
the distribution of D is also uniform and reflects the landslide proneness in relation to the
landslide types (flows and rotational).

Considering the LULC factor, it is homogeneous and poorly differentiated in the study
area; therefore, its effect can only be local. The most influential class was found to be the
broad-leaved forests. This is related to the fact that they occur only on small portions of
the basin, mainly located in the upstream area. Almost all the SUs with this prevalence
are affected by landslides. The secondary LULC class was found to be olive groves; in
this case, the landslide clusters in the SUs also fall within this type of cultivation. The
territory is principally occupied by sparsely vegetated areas, complex cultivation, and land
principally occupied by agriculture, with significant areas of natural vegetation, which
were found to have a low impact on the occurrence of landslides. However, in these areas,
the superficial evidence of landslides can be modified by human intervention, especially by
agricultural practices, which, in many cases, can temporarily obliterate the landforms [16].
Moreover, the construction and the maintenance of the country roads in some cases can
affect the predisposition of a slope to small landslides or, vice versa, on the obliteration of
the superficial signs of the landslides.

Regarding the slope aspect, the most relevant orientation was found to be NW, and
secondarily NE and N. This parameter has often been correlated with the effect of thermal
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excursions and the more humid and wet condition of clayey sediments and superficial
colluvial deposits with respect to the southern-facing hillslopes affected by wet/dry cy-
cles [46]. However, in our case, the link between landslide distribution and slope aspect
is more probably connected to the local bedrock structural setting, as already mentioned
in previous studies [46,47]. In particular, in the main (homoclinal) valley, the cuesta struc-
ture caused the north-facing slopes (N, NE, and NW) to have a dip direction and the
south-facing slopes (S, SE and SW) to have an anti-dip direction, while in the secondary
(cataclinal) valleys, the E-facing and the S-facing slopes show a cross-dip direction. Gener-
ally, dip slopes have a greater propensity for landslides, while anti-dip slopes have greater
stability. In this case study, the slope aspect can be considered an indirect factor of bedrock
local geological structure [46].

Considering the other geomorphological processes that occur in the study area and
that were included in the Geomorphological Map (Figure 3), some interesting consider-
ations can be noted. In many cases, the SUs with a higher MSI and S (and subsequently
lower T) correspond to the side slopes of badland basins. In general, they have a steep and
rough morphology (which is quantified by high MSI values). This is due to the badland
erosion process (i.e., linear incision inside the main gullies) [18,23,62] over drainage basins
and slopes with a dense hydrographic network, and is favored by the lithology, in which
the presence of thick layers of sands within the clay can allow the conservation of a high
slope gradient. This determines that the corresponding SUs have also high D values (e.g.,
>5): in these cases, the main geomorphological processes are linear erosion (rill erosion,
gully erosion, and piping) with a secondary role of the very shallow landslides (i.e., mud
flows), which tend to fill the main channel [19,54].

The predisposing factors that reached higher importance in the statistical analysis are
not necessarily the most important in the general geomorphological analysis, and vice versa.
This is the case for D and L if we consider the LSI models. In this specific study area, they are
poorly statistically significant due to the homogeneity of the terrain features, indicating that
the predisposing factors are spatially associated, and their importance is dependent on local
terrain features. From a geomorphological perspective, the most important predisposing
factors are the geolithological features (L), to which other parameters are related. The
morphometrical (MSI and S), morphological (A), and hydrographic (D) parameters are
directly linked to the lithology of the terrain, which in turn is indirectly linked to other
geological characteristics, such as the geological structure.

5. Conclusions

The results of this research study, through the creation of an up-to-date and detailed
geomorphological map of the Piomba Stream basin, led to the development of an LSM
that shows the areas most prone to landslides. The work was based on a multidisciplinary
approach that combined direct field surveys, past geomorphological maps, LiDAR-derived
DTM analysis, digital orthophotos interpretation, and GIS processing. The use of remote
sensing data and applications can allow the landslide susceptibility assessment to be
improved, in particular for the landslide inventory’s creation and the predisposing factors,
ensuring the ground truth of the field-based mapping.

Two statistical GIS-based bivariate statistical methods were applied based on the
landslide index approach [15] through the simple transpositions of raster methods into
vectors. An original and simple method for delineating the SUs was presented that is
fully consistent with the physiography of the terrain and the conceptual image of the
segmentation of the landscape into SUs [9,14]. Furthermore, the morphometric parameter
MSI was successfully considered as a predisposing factor in LS analysis for the first time.
The outcomes confirm the possibility of using MSI as the only morphometric factor in
landslide susceptibility analysis, which was shown to be more representative of the slope’s
morphometry compared to S, especially in relation to the distribution of linear and areal
erosion processes on the SUs.



Remote Sens. 2021, 13, 4280 22 of 29

The results of the statistics reached an adequate level of accuracy. An in-depth anal-
ysis and discussion of the results was conducted to link the outcomes of the statistical
analysis to the geological and geomorphological features of the study area from a geomor-
phological point-of-view. The relationships between the predisposing factors and their
consistency with the morphodynamic models were highlighted: the predisposing factors
are strictly related with each other and with the local terrain features. We confirm that
the geo-lithological factors are the main drivers for landslides in the study area, whether
we consider them directly or indirectly as variables of the statistical models [3,4]. The
predisposing factors used in the landslide susceptibility model of the Piomba Stream
basin are spatially associated [4,58], and their importance is strictly dependent on local
terrain characteristics [23,63]. These considerations can be extended to other basins of
the Periadriatic foothills area, which has similar characteristics in terms of geological and
geomorphological features.

This study highlighted the importance of examining the outcomes of the statistical
analysis in a geomorphological perspective. The most important variable in the models
is the lithology, which is directly related to the morphometry (MSI and S), morphology
(A), and the hydrography (D) of the terrain and indirectly related the geological structure.
However, some parameters play a priority role in the statistical analysis but a secondary
role if we consider their geomorphological importance, and vice versa. This is the case
with D and L, mainly due to the local conditions related to the homogeneity of the terrain
features in the study area.

The observed similar statistical relevance values confirmed that both the LS methods
(LI and LSI) have similar predictive skills [58] and can be used interchangeably. They
provide quantitative indications, supported by geomorphological observations, of the
propensity to landslide, reaching an adequate validation level. They must be further
expanded and investigated, but surely can be useful if associated with some geomorpho-
logical considerations, in particular concerning the influence of one parameter on the others
and the local terrain characteristics. The approach used in this study may be applied to sim-
ilar morpho-geo-climatic areas and contexts, such as the Adriatic hilly area, as confirmed
by previous work [45].
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Appendix A

Table A1. Values of the parameters for deriving the LSI for the models LSI_1–LSI_3–LSI_5.

LSI Method—All the Landslides (LSI_1–LSI_3–LSI_5)
Factor ID Class a b LI LInor Area_SU (km2)

Bedrock
1 Fluvial deposit 0.005 0.066 0.068 2.942 4.867
2 Sandstone and conglomerate 0.037 0.042 0.876 37.761 3.504
3 Clay 0.833 0.838 0.995 42.855 71.821
4 Alternating sand and clay 0.126 0.054 2.321 100 5.6

Aspect
1 N 0.036 0.024 1.489 65.199 2.206
2 NE 0.322 0.196 1.643 71.953 18.487
3 E 0.119 0.137 0.870 38.099 11.492
4 SE 0.110 0.134 0.817 35.786 11.186
5 SE 0.067 0.178 0.375 16.409 13.801
6 SW 0.022 0.075 0.297 13.008 5.759
7 W 0.086 0.151 0.570 24.967 12.096
8 NW 0.239 0.104 2.284 100 10.763

Land cover and land use
1 Non-irrigated arable land 0.159 0.331 0.480 12.343 26.079
2 Vineyards 0.001 0.010 0.078 2.008 0.707
3 Olive groves 0.083 0.033 2.480 63.746 3.535

4 Annual crops associated with
permanent crop 0.020 0.063 0.317 8.154 4.806

5 Complex cultivation 0.433 0.280 1.550 39.830 26.062

6 Land principally occupied by
agriculture 0.130 0.167 0.776 19.944 13.841

7 Broad-leaved forest 0.159 0.041 3.891 100 5.105
8 Transitional woodland shrub 0.006 0.014 0.452 11.610 1.102
9 Sparsely vegetated areas 0.008 0.061 0.138 3.554 4.554

Drainage density (km−1)
1 0 0.405 0.401 1.009 94.760 34.467
2 0.0001–1.2 0.211 0.199 1.065 100 17.207
3 1.2–2.5 0.208 0.198 1.048 98.473 17.154
4 2.5–5 0.165 0.169 0.977 91.775 14.476
5 >5 0.010 0.032 0.318 29.895 2.487

MSI
1 11–35 0.017 0.016 1.042 46.494 1.406
2 36–50 0.036 0.033 1.107 49.389 2.865
3 51–90 0.108 0.188 0.574 25.608 15.071
4 91–170 0.253 0.333 0.758 33.821 27.520
5 171–230 0.157 0.147 1.072 47.852 12.736
6 231–300 0.142 0.108 1.320 58.914 9.714
7 301–400 0.110 0.096 1.148 51.214 8.429
8 >400 0.176 0.079 2.241 100 8.049

Slope (◦)
1 0–10 0.015 0.102 0.147 11.832 7.616
2 11–15 0.279 0.272 1.026 82.824 23.418
3 16–20 0.450 0.364 1.239 100 32.351
4 >20 0.256 0.262 0.975 78.729 22.405

Deposits thickness (m)
1 0–2 0.002 0.006 0.259 25.832 0.486
2 >3 0.995 0.994 1.001 100 85.260
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Table A2. Factors’ weights for the models LSI_1–LSI_3–LSI_5.

LSI Method—All the Landslides (LSI_1–LSI_3–LSI_5)

Factor w (6 Factors) w (5 Factors) w (5 Factors)

Bedrock 0.026 0.030 0.034
Aspect 0.117 0.131 0.152

Land cover and land use 0.018 0.020 0.023
Drainage density 0.269 0.301 0.350

MSI 0.230 0.258 /
Slope 0.106 / 0.138

Deposits thickness 0.232 0.260 0.302

Table A3. Values of the parameters for deriving the LSI for the models LSI_2–LSI_4–LSI_6.

LSI Method—Landslides Area > 2% (LSI_2–LSI_4–LSI_6)

Factor ID Class a b LI1 LI1nor Area_SU (km)

Bedrock
1 Fluvial deposit 0.005 0.066 0.069 2.878 4.867
2 Sandstone and conglomerate 0.036 0.042 0.862 35.961 3.504
3 Clay 0.830 0.838 0.990 41.331 71.821
4 Alternating sand and clay 0.129 0.054 2.396 100 5.6

Aspect
1 N 0.036 0.024 1.489 65.199 2.206
2 NE 0.322 0.196 1.643 71.953 18.487
3 E 0.119 0.137 0.870 38.099 11.492
4 SE 0.110 0.134 0.817 35.786 11.186
5 S 0.067 0.178 0.375 16.409 13.801
6 SW 0.022 0.075 0.297 13.008 5.759
7 W 0.086 0.151 0.570 24.967 12.096
8 NW 0.239 0.104 2.284 100 10.763

Land cover and use
1 Non-irrigated arable land 0.159 0.331 0.480 12.343 26.079
2 Vineyards 0.001 0.010 0.078 2.008 0.707
3 Olive groves 0.083 0.033 2.480 63.746 3.535
4 Annual crops associated with

permanent crop 0.020 0.063 0.317 8.154 4.806
5 Complex cultivation 0.433 0.280 1.550 39.830 26.062

6 Land principally occupied by
agriculture 0.130 0.167 0.776 19.944 13.841

7 Broad-leaved forest 0.159 0.041 3.891 100 5.105
8 Transitional woodland shrub 0.006 0.014 0.452 11.610 1.102
9 Sparsely vegetated areas 0.008 0.061 0.138 3.554 4.554

Drainage density (km−1)
1 0 0.405 0.401 1.009 94.760 34.467
2 0.0001–1.2 0.211 0.199 1.065 100 17.207
3 1.2–2.5 0.208 0.198 1.048 98.473 17.154
4 2.5–5 0.165 0.169 0.977 91.775 14.476
5 >5 0.010 0.032 0.318 29.895 2.487

MSI
1 11–35 0.017 0.016 1.042 46.494 1.406
2 36–50 0.036 0.033 1.107 49.389 2.865
3 51–90 0.108 0.188 0.574 25.608 15.071
4 91–170 0.253 0.333 0.758 33.821 27.520
5 171–230 0.157 0.147 1.072 47.852 12.736
6 231–300 0.142 0.108 1.320 58.914 9.714
7 301–400 0.110 0.096 1.148 51.214 8.429
8 >400 0.176 0.079 2.241 100 8.049

Slope (◦)
1 0–10 0.015 0.1025 0.146 11.832 7.616
2 11–15 0.279 0.2719 1.026 82.824 23.418
3 16–20 0.450 0.3635 1.239 100 32.351
4 >20 0.256 0.2622 0.975 78.729 22.405

Deposits thickness (m)
1 0–2 0.001 0.007 0.200 23.590 0.503
2 >3 0.256 0.2622 0.975 78.729 85.242
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Table A4. Factors’ weight for the models LSI_2–LSI_4–LSI_6.

LSI Method—Landslides Area > 2% (LSI_2–LSI_4–LSI_6)
Factord w (6 Factors) w (5 Factors) w (5 Factors)

Bedrock 0.026 0.030 0.035
Aspect 0.120 0.136 0.159

Land cover and use 0.019 0.021 0.025
Drainage density 0.260 0.292 0.343

MSI 0.244 0.274 /
Slope 0.112 / 0.148

Deposits thickness 0.220 0.247 0.290

Table A5. Values of the parameters for deriving the LI for the models LI_7–LI_9–LI_11.

LI Method—All the Landslides (LI_7–LI_9–LI_11)
Factor ID Class LI2 LI2nor Area_SU (km)

Bedrock
1 Fluvial deposit 0.013 4.183 4.867
2 Sandstone and conglomerate 0.140 46.768 3.504
3 Clay 0.156 52.169 71.821
4 Alternating sand and clay 0.299 100 5.6

Aspect
1 N 0.216 72.597 2.206
2 NE 0.234 78.523 18.487
3 E 0.139 46.613 11.492
4 SE 0.132 44.156 11.186
5 S 0.065 21.800 13.801
6 SW 0.052 17.517 5.759
7 W 0.096 32.083 12.096
8 NW 0.298 100 10.763

Land cover and use
1 Non-irrigated arable land 0.082 19.548 26.079
2 Vineyards 0.014 3.407 0.707
3 Olive groves 0.315 75.165 3.535
4 Annual crops associated with permanent crop 0.056 13.255 4.806
5 Complex cultivation 0.223 53.273 26.062
6 Land principally occupied by agriculture 0.126 30.012 13.841
7 Broad-leaved forest 0.419 100 5.105
8 Transitional woodland shrub 0.077 18.440 1.102
9 Sparsely vegetated areas 0.025 5.964 4.554

Drainage density (km−1)
1 0 0.158 95.726 34.467
2 0.0001–1.2 0.165 100 17.207
3 1.2–2.5 0.163 98.723 17.154
4 2.5–5 0.162 97.994 14.476
5 >5 0.052 31.607 2.487

MSI
1 11–35 0.162 55.155 1.406
2 36–50 0.170 58.005 2.865
3 51–90 0.096 32.761 15.071
4 91–170 0.123 42.003 27.501
5 171–230 0.166 56.669 12.698
6 231–300 0.197 66.992 9.714
7 301–400 0.175 59.773 8.429
8 >400 0.294 100 8.049

Slope (◦)
1 0–10 0.026 14.157 7.616
2 11–15 0.160 85.657 23.418
3 16–20 0.187 100 32.351
4 >20 0.153 81.938 22.405

Deposits thickness (m)
1 0–2 0.045 29.22 0.486
2 >3 0.157 100 85.247
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Table A6. Values of the parameters for deriving the LI for the models LI_8–LI_10–LI_12.

LI Method—Landslides Area > 2% (LI_8–LI_10–LI_12)
Factor ID Class LI2 LI2nor Area_SU (km)

Bedrock
1 Fluvial deposit 0.012 4.090 4.867
2 Sandstone and conglomerate 0.136 44.695 3.504
3 Clay 0.154 50.385 71.725
4 Alternating sand and clay 0.305 100 5.637

Aspect
1 N 0.216 72.755 2.206
2 NE 0.230 77.271 18.449
3 E 0.137 46.200 11.492
4 SE 0.131 43.969 11.186
5 S 0.065 21.763 13.801
6 SW 0.052 17.420 5.759
7 W 0.095 31.784 12.096
8 NW 0.297 100 10.744

Land cover and use
1 Non-irrigated arable land 0.082 19.509 26.028
2 Vineyards 0.014 3.407 0.707
3 Olive groves 0.292 69.657 3.535
4 Annual crops associated with permanent crop 0.055 13.016 4.806
5 Complex cultivation 0.223 53.198 26.055
6 Land principally occupied by agriculture 0.125 29.735 13.841
7 Broad-leaved forest 0.419 100 5.105
8 Transitional woodland shrub 0.077 18.431 1.102
9 Sparsely vegetated areas 0.021 5.096 4.554

Drainage density (km−1)
1 0 0.157 96.037 34.416
2 0.0001–1.2 0.164 100 17.207
3 1.2–2.5 0.162 99.025 17.154
4 2.5–5 0.155 94.873 13.743
5 >5 0.048 29.537 2.660

MSI
1 11–35 0.162 56.628 1.406
2 36–50 0.170 59.534 2.865
3 51–90 0.095 33.201 15.071
4 91–170 0.122 42.759 27.501
5 171–230 0.165 57.854 12.698
6 231–300 0.196 68.629 9.714
7 301–400 0.175 61.116 8.429
8 >400 0.286 100 8.049

Slope (◦)
1 0–10 0.026 14.317 7.616
2 11–15 0.159 86.242 23.380
3 16–20 0.184 100 32.331
4 >20 0.152 82.304 22.405

Deposits thickness (m)
1 0–2 0.037 23.59 0.486
2 >3 0.157 100 85.247

Table A7. Thresholds between the susceptibility classes for the models created with the LSI method.

LSI_1 LSI_2 LSI_3 LSI_4 LSI_5 LSI_6

Very low 0.00–60.67 0.00–59.96 0.00–54.98 0.00–56.01 0.00–69.69 0.00–68.08
Low 60.68–70.33 59.97–69.55 54.99–69.33 56.00–68.10 70.00–80.72 68.09–79.90

Moderate 70.34–75.25 69.56–74.74 69.34–74.77 68.11–73.74 80.73–85.45 79.91–84.85
High 75.26–81.38 74.75–81.07 74.78–81.50 73.75–80.68 85.46–90.82 84.86–90.49

Very high 81.39–100 81.08–100 81.51–96.63 80.69–100 90.83–100 90.50–100
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Table A8. Thresholds between the susceptibility classes for the models created with the LI method.

LI7 LI8 LI9 LI10 LI11 LI12

Very low 0.00–54.31 0.00–54.32 0.00–50.21 0.00- 50.21 0.00–56.16 0.00–56.16
Low 54.32–64.24 54.33–64.14 50.22–60.11 50.22–60.11 56.17–67.39 56.17–67.39

Moderate 64.25–70.96 64.15–70.95 60.12–67.37 60.12–67.37 67.40–73.68 67.40–73.68
High 70.97–78.73 70.96–78.73 67.38–75.19 67.38–75.19 73.69–82.19 73.69–82.19

Very high 78.74–100 78.74–100 75.20–100 75.20–100 82.20–100 82.20–100
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