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Abstract: Key features of chronic lymphocytic leukemia (CLL) are defects in the immune system and
the ability of leukemic cells to evade immune defenses and induce immunosuppression, resulting in
increased susceptibility to infections and disease progression. Several immune effectors are impaired
in CLL, including T and natural killer (NK) cells. The role of T cells in defense against CLL and in
CLL progression and immunotherapy has been extensively studied. Less is known about the role of
NK cells in this leukemia, and data on NK cell alterations in CLL are contrasting. Besides studies
showing that NK cells have intrinsic defects in CLL, there is a large body of evidence indicating
that NK cell dysfunctions in CLL mainly depend on the escape mechanisms employed by leukemic
cells. In keeping, it has been shown that NK cell functions, including antibody-dependent cellular
cytotoxicity (ADCC), can be retained and/or restored after adequate stimulation. Therefore, due
to their preserved ADCC function and the reversibility of CLL-related dysfunctions, NK cells are
an attractive source for novel immunotherapeutic strategies in this disease, including chimeric
antigen receptor (CAR) therapy. Recently, satisfying clinical responses have been obtained in CLL
patients using cord blood-derived CAR-NK cells, opening new possibilities for further exploring
NK cells in the immunotherapy of CLL. However, notwithstanding the promising results of this
clinical trial, more evidence is needed to fully understand whether and in which CLL cases NK
cell-based immunotherapy may represent a valid, alternative/additional therapeutic option for this
leukemia. In this review, we provide an overview of the current knowledge about phenotypic and
functional alterations of NK cells in CLL and the mechanisms by which CLL cells circumvent NK
cell-mediated immunosurveillance. Additionally, we discuss the potential relevance of using NK
cells in CLL immunotherapy.

Keywords: chronic lymphocytic leukemia; NK cells; NK cell receptors; NK cell alterations; CLL
immune evasion; NK cell-based immunotherapy

1. Introduction

Chronic lymphocytic leukemia (CLL) is the most common adult leukemia in the
Western world and is characterized by the accumulation of clonal CD5+/CD19+ B cells
in peripheral blood, lymph nodes, spleen and bone marrow [1,2]. Leukemic cells in CLL

Int. J. Mol. Sci. 2021, 22, 6665. https://doi.org/10.3390/ijms22136665 https://www.mdpi.com/journal/ijms

https://www.mdpi.com/journal/ijms
https://www.mdpi.com
https://orcid.org/0000-0002-5630-9862
https://orcid.org/0000-0002-2001-8000
https://doi.org/10.3390/ijms22136665
https://doi.org/10.3390/ijms22136665
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/ijms22136665
https://www.mdpi.com/journal/ijms
https://www.mdpi.com/article/10.3390/ijms22136665?type=check_update&version=1


Int. J. Mol. Sci. 2021, 22, 6665 2 of 31

display a highly biological heterogeneity due to genetic and epigenetic alterations and
microenvironment stimuli [3]. This feature results in a highly variable clinical course, in
terms of presentation, outcome and therapy responses, with some patients displaying an
indolent disease who do not require therapy and other patients showing a rapidly pro-
gressive disease despite early treatment [4]. In recent years, the development of targeted
therapies, such as the inhibitors of B cell receptor (BCR) signaling and of B cell lymphoma
2 (Bcl-2) protein, has changed the treatment landscape of CLL [5]. However, despite their
remarkable antitumor activity, targeted agents have shown some limitations, including
the development of drug resistance and the low efficacy in high-risk patients [6,7]. More
recently, combined therapies including the Bruton’s tyrosine kinase (BTK) inhibitor ibruti-
nib and the Bcl-2 inhibitor venetoclax, with or without anti-CD20 monoclonal antibodies
(mAbs), have shown promising results in high-risk and older patients with CLL, although
an extended follow-up of the trials to assess long-term outcomes has not been done [8–10].
Therefore, additional treatments are necessary to obtain deeper responses and overcome
drug resistance in CLL.

CLL is characterized by an acquired dysregulation of the immune system and the
ability of leukemic cells to circumvent immune recognition and elimination which result in
increased risk of infections, decreased antitumor surveillance and tumor progression [11,12].
Particularly, T cells have been shown to have several dysfunctions, including impaired
cytotoxicity, proliferation and ability to form immune synapses [13,14].

Novel immunotherapeutic approaches, such as chimeric antigen receptor (CAR) trans-
duced T cells and immune checkpoint blockade, have shown impressive activity in other
lymphoid malignancies [15–17] but discouraging results in CLL [18–20], mainly due to
defects in the effector T cells [13,14]. Therefore, it is necessary to study the therapeutic
potential of other immune effector cells for more effective immunotherapeutic strategies.

Natural killer (NK) cells can evoke potent antitumor activity [21,22]. This function
is largely mediated by combined signaling through a variety of activating and inhibitory
receptors which recognize specific ligands expressed on tumor cells [23]. NK cells can
also kill tumor cells by antibody-dependent cellular cytotoxicity (ADCC), mediated by the
CD16 receptor (FcγRIIIa), which recognizes the fragment crystallizable (Fc) portion of IgG
bound to the target cell [24]. A competent ADCC by NK cells is important for its significant
role in the therapeutic efficacy of various specific mAbs, such as anti-CD20 mAbs used for
treating different B cell malignancies, including CLL [25–28]. The important role of NK
cells in defense against tumors and leukemia is well documented by the success achieved
in the T-depleted, haploidentical hematopoietic stem cell transplantation (haplo-HSCT)
setting to cure high-risk acute leukemia [29,30]. The benefit of this therapeutic approach
is mainly due to the graft-versus-leukemia (GvL) effect of donor NK cells, arising from
grafted stem cells and/or infused with the graft.

Despite their important role in antitumor immunity, the functions of NK cells in CLL
are not yet well defined, and data on the expression of NK receptors and the functionality
of NK cells in CLL patients are controversial. Defects in NK cell cytotoxicity in CLL
were first described decades ago [31–33], although several studies have reported that NK
cell functions, including ADCC, are unaffected in CLL [34,35] or restored after cytokine
treatment [36–41]. Notably, if in CLL, NK cell functions are retained or restored by an
adequate stimulation, NK cells might be exploited for novel immunotherapeutic strategies,
such as those based on NK cells genetically modified with chimeric antigen receptors
targeting tumor antigens (CAR-NK cells), or on engineered soluble molecules bridging
activating receptors on NK cells to tumor antigens. Recently, a clinical trial evaluating cord
blood-derived CAR-NK cells in a small number of patients with relapsed or refractory
CLL has shown satisfactory responses, encouraging further studies on NK cells in the
immunotherapy of CLL [42].

In this review, we analyze the alterations of NK cells in CLL and the mechanisms by
which CLL cells evade NK immune surveillance. Additionally, we address recent advances
on the immunotherapeutic potential of NK cells for CLL.



Int. J. Mol. Sci. 2021, 22, 6665 3 of 31

2. Overall View on NK Cells
2.1. Role of NK Cells in the Immune System

NK cells are components of the innate immune system with an important role in
antitumor and antiviral defense [21,22,43] and belong to group 1 innate lymphoid cells
(ILCs). Group 1 ILCs also include ILC1s, which, along with group 2 and group 3 ILCs,
represent the innate counterpart of the different CD4+ T helper cell populations [44]. ILC1s
include various subsets having different localizations and functional activities and some
common characteristics with NK cells, such as the production of interferon γ (IFNγ) [45].

NK cell activities (degranulation, cytotoxicity and cytokine release) are finely regulated
by the balance between activating and inhibitory germline-encoded receptors expressed on
NK cell surface [23,46]. In normal conditions, NK cells are inactive due to the binding of
inhibitory receptors with a spectrum of classical and nonclassical human leukocyte anti-
gen (HLA)-class I molecules constitutively expressed on autologous “self” cells (missing
self-hypothesis) [47–49]. Tumor-transformed, virus-infected or stressed cells downregulate
or lack HLA-class I alleles, thus boosting the NK cell-mediated killing due to the engage-
ment of NK activating receptors with ligands preferentially expressed on target cells and
absent or weakly expressed on normal cells [50–52]. Once activated, NK cells mediate
cytotoxicity by releasing cytotoxic granules containing perforins and granzymes and pro-
ducing proapoptotic cytokines, such as IFNγ and tumor necrosis factor α (TNFα) [53,54].
NK cells can also kill targets by activating the signaling pathway of TNF family death
receptors through the expression of Fas ligand and TNF-related apoptosis-inducing ligand
(TRAIL) [55]. Additionally, NK cells can indirectly mediate antitumor responses by pro-
ducing inflammatory cytokines that link the innate and adaptive immune responses [56].
Cytokines can also modulate NK cell activity by transmitting either activating (IL-2, IL-12,
IL-18, IL-15, IL-21, IL-27 and type I IFN) or inhibitory signals, such as transforming growth
factor β (TGFβ) and IL-10 [57–60].

Although NK cells have traditionally been considered components of the innate
immune system due to the lack of receptor gene rearrangement, there is increasing evidence
that they share many characteristics with adaptive lymphocytes. NK cells develop from the
same common lymphoid progenitor that gives rise to T and B cells [61]. Similar to T and B
cells, NK cells require common γ chain-dependent cytokines for their development and
homeostasis [62,63], their responsiveness is tuned through an “education” or “licensing”
process analogous to T cell development in the thymus [64–66] and, strikingly, they show
memory-like features [67].

In humans, two main NK cell subsets were originally identified on the basis of the
intensity of CD56 and CD16 surface expression. The two subsets are differently distributed
in peripheral blood (PB) and tissues: CD56dim/CD16pos (CD56dim) are predominant in
PB, while CD56bright/CD16neg (CD56bright) are more abundant in tissues. CD56bright NK
cells are relatively immature and poorly cytolytic, secrete cytokines (primarily IFNγ and
TNFα) and undergo intensive proliferation in response to IL-2 or IL-15 [68,69]. By contrast,
CD56dim NK cells are terminally differentiated and display a strong cytolytic activity and a
rapid cytokine secretion capability upon activation [68,70].

In both humans and mice, NK cells show some common features with ILC1, but
also substantial differences [71]. One key characteristic distinguishing ILC1s from NK
cells is localization. NK cells recirculate between tissues and blood, whereas ILC1s re-
side in tissues, including liver, small intestine, thymus, uterus and salivary glands [72].
This different behavior correlates with the expression of distinct homing and adhesion
molecules [71]. NK cells and ILC1s have also distinct developmental requirements. In
mice, it has been shown that NK cell development depends on the transcription factor
eomesodermin (Eomes) [73,74], whereas ILC1s require various transcription factors, in-
cluding T-bet, Hobit and Eomes, depending on the tissue localization [75,76]. Whether
NK cells and ILC1s derive from a common progenitor or different progenitors remains
unclear. Previous studies have proposed that NK cells branch off the ILC development
at the stage of the early innate lymphoid progenitor, whereas ILC1s derive from the later
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common helper innate lymphoid progenitor, which gives rise to mature ILCs but has lost
NK cell potential [77,78]. However, a common progenitor for NK cells and ILC1s has also
been recently identified [79]. Another difference between NK cells and ILC1s is that these
latter are supposed to be less cytotoxic than NK cells, based on the differential expression
of granzymes and perforins [73]. However, given the high expression of TRAIL in ILC1s,
cytotoxic mechanisms cannot be excluded in certain conditions.

All these observations suggest that it is very difficult to distinguish NK cells from
ILC1s. This depends not only on the heterogeneity of cell populations but also on the
plasticity of ILC1s, which may change their functional capability in a given microenvi-
ronment, particularly at tumor sites under the influence of cytokines [80]. Interestingly,
it has been shown that TGF-β, present in the tumor microenvironment, can mediate NK
cell conversion to ILC1s with proangiogenic and immune-tolerant features [81], result-
ing in transitional phenotypes and functions between NK cells and ILC1s, which further
complicate their discrimination. As consequence, given that ILCs have been investigated
only during the last 10 years, we cannot exclude that previous studies on NK cells may
have overlooked the contributions of ILC1s. In the context of cancer, an inappropriate
discrimination between these two cell types might also have led to erroneous conclusions
regarding the specific impact of their targeting on tumors. Given the difficulties in dis-
tinguishing NK cells from ILC1s, novel approaches should be developed to better define
NK/ILC1 identity in normal and pathological conditions. In this regard, a compelling
study of Colonna’s group used single-cell RNA sequencing to elucidate gene signatures
of mouse ILC1-NK cells from tissues, tumors and the circulation [82]. Strikingly, these
authors identified unique transcription factors, phenotypic markers and metabolic features
that distinguish tissue-resident NK cells and ILC1s from circulating NK cells, providing
the guide for future spatial transcriptomic and immunohistochemical analyses [82].

NK cells have important functions in the immune system. Concerning the role of
NK cells against pathogens, studies on healthy individuals and individuals with NK cell
deficiencies have shown that NK cells are involved in the control of several infections,
including Epstein–Barr virus (EBV) [83,84], herpes simplex [85], human immunodeficiency,
influenza and hepatitis C viruses [43,86]. Additionally, there is evidence that NK cells
can react to cytomegalovirus (CMV) infection and prevent CMV reactivation following
allogeneic stem cell transplantation [87].

The involvement of NK cells in defense against cancer began to emerge when these
cells were discovered, given their ability to kill tumor cell lines in vitro [88]. Thereafter,
several studies have confirmed NK cell-mediated killing of other types of tumor cell lines
in vitro and in experimental mouse models [89,90], where NK cells have been shown
to be involved in rejection responses against induced and spontaneously developing
tumors [91,92]. Over the years, it has become evident that NK cells are involved in tumor
immunosurveillance [21]. Studies on animal models indicate that knockout of key NK cell
activating receptors leads to a higher incidence of tumor formation compared to controls
with wild-type expression of the receptors [93,94].

In humans, clinical follow-up studies have shown that individuals with low NK cell
function early in life have an increased risk of cancer compared with matched controls [95].
Conversely, high density of tumor-infiltrating NK cells has been linked with a good prog-
nosis in different carcinomas [96]. Additionally, clinical observations have indicated that a
ligand repertoire on acute myeloid leukemia (AML) blast favoring NK cell activation is
positively correlated with a better outcome of patients undergoing chemotherapy [97]. NK
cells have also been shown to eliminate cancer stem cells, a subset of cells with self-renewal
ability involved in the generation and evolution of tumors [98]. However, the critical role
of NK cells in targeting human tumors emerges from the seminal studies of Velardi’s group
on haplo-HSCT against AML [29,30], which have paved the way for intense research on NK
cell-based cancer immunotherapy. In this context, as endogenous NK cells are defective in
both solid tumors [99,100] and hematological malignancies [101,102], several efforts have
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been made to discover strategies for restoring and/or bolstering NK cell functions or for
providing patients with functional NK cells [103].

2.2. NK cell Receptors and Ligands and Their Role in Regulating NK Cell Activity

NK cell functions are regulated by distinct receptors which upon interaction with spe-
cific ligands expressed on target cells integrate activating and inhibitory signals triggering
or blocking NK cell cytotoxicity [23,46]. Major activating NK cell receptors are the natural
cytotoxicity receptors (NCRs), type I molecules of the immunoglobulin-like (Ig) family, hav-
ing a transmembrane domain associated with immunoreceptor tyrosine-based activation
motif (ITAM)-bearing signaling proteins, namely FcεRIγ, CD3ζ and DAP12 [104]. NCRs
include NKp30 and NKp46, which are constitutively expressed on NK cells, and NKp44
which is acquired upon activation [104]. Several NCR ligands have been identified. All
NCRs can recognize heparan sulfate glycosaminoglycans (HSGs), significantly upregulated
in the surface of tumor cells [105], and viral hemagglutinins (HAs) [106]. Important NKp30
ligands are the B-7 family member B7-H6, absent on healthy cells but highly expressed by
a wide range of tumor cells [107], and HLA-B-associated transcript 3 (BAT3), also known
as Bcl2-associated athanogene 6 (BAG6), which can be released by tumor cells inducing
either NK cell activation or suppression [108,109]. NKp44 can recognize a splice variant
of mixed-lineage leukemia 5 (21spe-MLL5), absent in the normal tissues but expressed
in a variety of hematopoietic and nonhematopoietic tumors [110]. An additional NKp44
ligand is the proliferating cell nuclear antigen, a nuclear/cytoplasmic factor that can be
expressed on the membrane of cancer cells and upon binding with NKp44 induces NK
cell inhibition due to immunoreceptor tyrosine-based inhibitory motifs (ITIMs) located in
the NKp44 cytoplasmic tail [111]. NKp44 also binds soluble ligands, including (i) platelet-
derived growth factor (PDGF)-DD, which activates NK cells and NK cell-mediated release
of proinflammatory cytokines and chemokines [112] and (ii) nidogen-1, a glycoprotein
involved in the adhesion of cells with the extracellular matrix, which, once released by
tumor cells, may prevent the NK cell-mediated attack, representing an immunosuppressive
mechanism [113]. Other soluble NCR ligands have been identified, such as the complement
factor P (CFP), also known as properdin, which is recognized by NKp46 [114]. In particular,
it has been shown that CFP binds to a recombinant NKp46 Fc-fusion protein by inducing in
NKp46 reporter cells an alternative signaling pathway that does not induce degranulation,
but secretion of the chemokine XCL1 [114]. XCL1 has a direct antimicrobial activity [115]
and has been shown to recruit dendritic cells capable of antigen cross-presentation for
CD8+ T cell activation during bacterial and viral infections [116]. These findings suggest
that microbes opsonized with CFP can stimulate NKp46-mediated antibacterial activity of
NK cells.

Another major NK activating receptor is the NKG2D homodimer, a type II and
C-type lectin-like molecule, which recognizes major histocompatibility complex (MHC)
class I-related glycoproteins A and B (MIC-A and MIC-B) and six non-MHC-encoded
UL16-binding proteins 1–6 (ULBP1-6), molecules restrictedly expressed in benign cells but
upregulated in stressed and transformed cells [117]. However, tumor cells have developed
several mechanisms to circumvent NKG2D-mediated recognition, including the release
of soluble ligands [118–120], the negative regulation of NKG2D ligand expression at the
post-transcriptional level [121] and the secretion of immunosuppressive cytokines that
reduce NK cell surface expression of NKG2D [122]. NK cells also express costimulatory
receptors that cooperate with NCRs and NKG2D by amplifying NK cell activation. Among
them, DNAX accessory molecule 1 (DNAM-1) recognizes the poliovirus receptor (PVR) and
nectin-2 expressed on various acute leukemias by inducing antitumor activity [123]. Other
coreceptors include members of the signaling lymphocytic activation molecule family,
such as NK-T-B-antigen (NTB-A), which displays homophilic interactions, and 2B4, which
binds to CD48. High levels of CD48 and NTB-A have been found in EBV-infected B cells
and lymphomas [124]. NK cells also express the coreceptor CD59 [125] and the adhesion
molecule LFA-1, important for a polarized degranulation [126]. Additional activating
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receptors of NK cells are specific for HLA-class I molecules and include the CD94/NKG2C
heterodimers, consisting of type II proteins of the C-type lectin family, and the killer
cell Ig-like receptors (aKIRs) [127]. Ligands for only some of these receptors have been
identified. CD94/NKG2C binds with low affinity to HLA-E, a nonclassical HLA-class I
molecule characterized by limited polymorphism [128]. aKIRs are specific for epitopes
shared by distinct groups of HLA-class I allotypes. Specifically, KIR2DS1 and KIR2DS2
recognize HLA-C C2 and HLA-C C1 allotypes, respectively; KIR2DS4 recognizes HLA-C
bearing either C1 or C2 epitopes and only one HLA-A allotype; KIR3DS1 binds to HLA-B
allotypes bearing Bw4 epitope [129,130]. Additionally, a potent activating receptor of NK
cells is CD16, which mediates ADCC [24,27]. This receptor is of great clinical relevance
for cancer immunotherapy and is widely exploited to enhance the antitumor NK cell
activity using mAbs or engineered bispecific and trispecific constructs directed to tumor
antigens [131,132].

In NK cells, inhibitory signals are mainly mediated by HLA-class I-binding recep-
tors which regulate NK cell function and prevent NK cell-mediated damage to healthy
tissues [47,65,66]. These receptors include inhibitor members of the KIR family (iKIRs)
and the CD94/NKG2A heterodimer recognizing classical and nonclassical HLA-class I
molecules, respectively. Both these types of receptors are involved in NK cell education, a
functional maturation process that allows self-inhibited NK cells to become cytotoxic after
interaction with cells lacking self HLA-class I expression but expressing ligands for activat-
ing NK receptors [48,49,65,66]. Strikingly, similarly to HLA molecules, iKIRs are encoded
by a polygenic and polymorphic KIR gene family [133], which segregate independently
of HLA-class I genes leading to diverse compound genotypes [134]. These characteristics
influence the possible KIR/HLA interactions and lead to a great heterogeneity of NK cell
phenotypes among different individuals [68,135,136]. Combinations of HLA-class I and
KIR variants may also influence resistance to infections, susceptibility to autoimmune
diseases and outcome after hematopoietic stem cell transplantation (HSCT) [134].

In humans, the main iKIRs include KIR2DL1, which binds to HLA-C C2 allotypes;
KIR2DL2 and KIR2DL3, which recognize HLA-C C1 and two specific HLA-B allotypes;
KIR3DL1, which is specific for HLA-B and some HLA-A allotypes sharing the Bw4 epi-
tope; and KIR3DL2, which binds to some specific HLA-A allotypes [130]. KIR2DL4 is an
atypical receptor that has both activating and inhibitory signaling domains and binds to
the nonclassical HLA-class I molecule HLA-G [137].

CD94/NKG2A recognizes HLA-E with high affinity [128] and represents an important
target for checkpoint inhibitor cancer immunotherapy [138]. An additional HLA-specific
inhibitory receptor is the Ig-like transcript 2 (ILT2), also named CD85j, leukocyte Ig-like
receptor B1 (LILRB1) or LIR-1, which interacts with classical (HLA-A, HLA-B, HLA-C)
and nonclassical (HLA-G) HLA-class I molecules [139]. NK cells, similarly to T cells, also
express other inhibitory checkpoints responsible for maintaining immune cell homeosta-
sis [140]. One of them is the programmed death-1 (PD-1) receptor which binds to its ligands
PD-L1 and PD-L2 [141,142]. These latter are expressed at low levels on healthy tissues
but upregulated on various tumor types, including hematological malignancies, where
a high expression is associated with poor prognosis [143]. Other inhibitory checkpoints
of NK cells include (i) T cell Ig and ITIM domains (TIGIT) and CD96/Tactile, which bind
to PVR and nectin-2 by competing with the costimulatory receptor DNAM-1 [144,145];
(ii) T cell Ig and mucin domain-containing protein 3 (TIM-3), whose main ligand is galectin-
9 [146]; and (iii) lymphocyte-activation gene 3 (LAG-3), a receptor homologous to CD4
that recognizes HLA-class II molecules and whose effects on NK cell functions are not yet
well defined [147]. Receptor–ligand interactions regulating NK cell activity are shown in
Figure 1.
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3. NK Cells in CLL
3.1. NK Cell Functions and Dysfunctions

Impaired cytolytic activity of NK cells in patients with CLL was first described in
the early 1980s and was mainly attributed to intrinsic NK cell defects in cytotoxic ma-
chinery [31–33]. Later studies showed that autologous NK cells are unable to eliminate
CLL cells not only due to their intrinsic defects but also due to immune escape mecha-
nisms developed by leukemic cells [148–152]. By contrast, other authors reported that
peripheral NK cells from CLL patients have the major phenotypic characteristics of com-
petent NK cells and are functional in terms of degranulation, cytokine production and
ADCC [34]. Additionally, there is evidence showing that CLL-derived NK cells retain intrin-
sic functionality, given that it can be restored by adequate activating signaling, including
cytokines such as IL-2, IL-15, IL-21 and IL-27 [36–41,153], and anti-CD20 mAbs that induce
ADCC [34,37,39,40,153,154]. Therefore, NK cells, given their preserved ADCC function
and the reversibility of their defects, represent attractive effectors for immunotherapy
in CLL [155]. In addition, there are studies showing that the expression of HLA-class I
molecules on CLL cells is downregulated in 65–80% of patients [156,157], allowing CLL
cells to escape from specific T lymphocyte surveillance and be targeted by NK cells.

Despite the impaired activity of NK cells in CLL, it has been shown that the number
of NK cells is increased in the peripheral blood of CLL patients compared to healthy
individuals and predicts good prognosis [158–161]. Conversely, other studies did not find
any correlation between high NK cell numbers and CLL prognosis [162], whereas other
authors showed that the expanded NK cells exhibit enhanced susceptibility to activation-
induced cell death and express elevated levels of CD27, which is normally associated
with an expansion of immature NK cells or a decline in mature NK cells [163]. One
cause of the discrepancies in NK cell functionality in CLL may be CMV infection, which
induces a reconfiguration of the phenotype and functions of the NK cell compartment,
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characterized by an adaptive expansion of mature NK cells expressing high levels of the
activating receptor CD94/NKG2C [164,165]. Discrepancies in NK cell functions in CLL
may also depend on different patient and healthy donor cohorts, varied criteria of patient
selection, different experimental stimuli activating NK receptors or ADCC responses and
the methods used. Altogether, these observations show that the role of NK cells against
CLL has not been fully understood, underlining the need to better define NK cell functions
and dysfunctions in this leukemia.

3.2. Alterations in NK Cell Receptor–Ligand System

Dysregulation and imbalance of activating and inhibitory NK cell receptors could be
one of the main reasons for NK cell impairment in CLL. Therefore, particular attention
has been focused on the alterations in the NK cell receptor–ligand system and their role in
regulating the NK cell-mediated response against CLL cells. Several studies have shown
that NK cells of CLL patients have a decreased expression of different activating receptors,
such as NKp30, NKp46, NKG2D and DNAM-1, compared with healthy donors and that
this altered phenotype is accompanied by an impaired cytotoxic activity, degranulation and
killing of target cells [37,39,161–163,166]. Conversely, Costello et al. found that expression
levels of NKp30, NKp40 and NKp46 are similar in NK cells of CLL patients and healthy
donors, but analysis of different groups of CLL patients showed that lower levels of
NKp30 and NKp44 are associated with poor prognostic factors [35]. Even the decrease
in NKG2D expression on CLL-derived NK cells has been found more marked in patients
with advanced and progressive disease, suggesting that CLL cells may play a role in
downregulating NKG2D expression [162]. This observation is consistent with studies
showing that coculture of CLL cells with NK cells from healthy donors decreases NKG2D
expression, NK cell cytotoxicity and IFNγ production, indicating that CLL cells are able to
hamper NK cell functions and create a hyporesponsive phenotype and further supporting
that the reduced cytotoxicity of CLL-derived NK cells is not due to intrinsic defects in
their effector programs [39]. Based on the evidence that CLL cells release high amounts
of TGFβ, which has also been found in CLL patient serum [167], and that TGFβ reduces
NKG2D expression on NK cells of healthy donors [166], it is plausible that TGFβ released
by CLL cells represents a mechanism downregulating NKG2D expression on NK cells
and consequently impairing NK cell activity. Additionally, in CLL, TGFβ as well as
the immunosuppressive IL-10 can be also released by regulatory T cells and myeloid-
derived suppressor cells, key players of immune dysfunctions in CLL [168,169]. Another
mechanism that negatively impacts the activity of NK cells in CLL is the low expression
on leukemic cells of the ligands for NK cell activating receptors, which is mainly due to
the shedding of the ligands released as soluble molecules [148,152,170,171]. This event
prevents tumor cell recognition by NK cells [37], representing an escape mechanism not
only in CLL but also in several other malignancies [109,118]. The shedding of the ligands for
the NK activating receptors in CLL and its role in impairing NK cell antileukemic activity
is discussed in the next paragraph. Regarding the activating receptor CD94/NKG2C,
whose expression has been found to be significantly increased in NK cells of normal
individuals after CMV infection [164,165], a recent study has shown that CLL patients
exhibit a reduced percentage of CD94/NKG2C+ NK cells compared with healthy donors,
which is independent of CMV serostatus but is related to the exposure to leukemic cells,
given its association with higher lymphocytosis [172]. These data are discordant with
previous studies showing that in CLL patients, there is an expansion of CD94/NKG2C+
NK cells which is driven by CMV instead of the leukemic cells [39,173].

Concerning the NK cell inhibitory receptors, it has been shown that CD94/NKG2A
hampers NK cell cytotoxicity against CLL cells through the binding to HLA-E molecules [174],
which are highly expressed on the CLL cell surface [37,174,175]. In agreement, it has been
shown in other malignancies that the binding of HLA-E to CD94/NKG2A induces signals
that suppress cytokine secretion and direct cytotoxicity of effector cells against malignant
cells, playing an important role in the tumor escape [138]. Studies to better define the
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inhibitory functions and the clinical relevance of HLA-E in CLL have revealed the presence
of soluble HLA-E (sHLA-E) in the plasma of CLL patients [175]. In particular, these studies
have shown that high levels of sHLA-E are associated with early disease progression and
treatment requirement and impair the function of NK cells by skewing them towards an
immunosuppressive phenotype. Additionally, sHLA-E correlates with the expression of
the specific HLA-E*01:03 allele, which suggests that both HLA-E genotype and plasma
sHLA-E levels are potential biomarkers for identifying CLL patients with a high risk of
early disease progression and provides the first functional clues for HLA-E-mediated
immune response modulation in CLL [175].

Studies on inhibitory KIRs in CLL-derived NK cells have reported that the expression
levels of KIR2DL2/3 and KIR3DL1 are similar in NK cells from CLL patients and healthy
individuals and remain stable during disease progression [34,37]. Conversely, a weak
decrease in the expression of KIR2DL1, which recognizes group-2 HLA-Cw alleles, has
been found in CLL patients with an unfavorable prognosis [34], and this association
is probably due to the higher frequency of its ligand HLA-Cw*06 in CLL cohorts than
in healthy controls [176,177]. These phenotypic features of NK cells do not completely
explain NK cell dysfunction in CLL. McFarlane et al. reported that the impaired activity of
NK cells in CLL is associated with a striking reduction in the frequency and viability of
NK cells expressing KIR2DL1 and/or KIR3DL1, which progressively lose their functions
over disease course [163]. These results suggest that mature KIR-expressing NK cells can
respond to the high circulating CLL burden but undergo activation-induced apoptosis
favoring the expansion of nonfunctional NK cells.

It has also been reported that NK cells from CLL patients, particularly those with
advanced disease, overexpress the ILT2/CD85j inhibitory receptor [178,179], while CLL
cells abnormally express its ligand HLA-G, which has been found to be associated with poor
prognosis and to suppress NK cell-mediated cytotoxicity [149,179,180]. Indeed, blockade of
either ILT2/CD85j or membrane-bound HLA-G with the corresponding neutralizing mAbs
increases NK cell cytotoxicity against CLL cells [149,178]. Additionally, plasma samples
from CLL patients have been reported to contain increased levels of soluble HLA-G and to
be capable of dampening the viability and cytotoxic function of NK ceWe lls from healthy
donors in vitro [181]. The role of membrane-bound and soluble HLA-G forms as a strategy
of CLL cells to evade immune defenses is discussed in further detail in the next paragraph.
As an additional mechanism that may affect NK antitumor activity in CLL, in line with
data observed in conventional T cells, the immune checkpoint TIM-3 was found to be
aberrantly expressed on the NK cell compartment of CLL patients and associated with
poor prognostic factors [161]. In this context, recent studies have shown that CLL cells from
patients with advanced clinical stage exhibit high mRNA levels of galectin-9, the ligand
of TIM-3 [182]. In addition, the serum levels of galectin-9 have been found significantly
increased in CLL patients compared with the control group and have been associated with
poor cytogenetic and serum prognostic factors and treatment failure [183]. It has been
shown in other malignancies that sustained TIM-3 expression on NK cells can lead to an
exhausted/dysfunctional phenotype of NK cells that is rescued by TIM-3 blockade [184].
It is well known that interaction between PD-1 expressed on T cells of CLL patients and
its ligand PD-L1 expressed on CLL cells strongly impairs T cell functions, inducing an
exhausted T cell phenotype [185,186]. Despite the evidence that PD-L1 expression in other
tumor cells results in functional NK cell impairment [187] and that CLL cells express high
levels of PD-L1 [182,188], the involvement of the PD-1/PD-L1 axis in regulating NK cell
functions in CLL patients remains to be defined.

3.3. Escape of CLL Cells from NK Cell Antitumor Activity

CLL cells employ multiple mechanisms to evade NK cell immune surveillance. One
of them relies on the ability of tumor cells to release from their surface, through proteolytic
shedding, the ligands for the activating receptors expressed on NK cells [120]. In other
malignancies, it has been shown that soluble ligands counteract the immune surveillance
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by both NK and T cells by promoting the endocytosis and degradation of their receptors
expressed on the surface of the effector cells, which thus are unable to recognize and
eliminate tumor cells [119,189,190]. Additionally, soluble ligands impair the ability of NK
cells to self-renew in the tumor host, thus perturbing NK cell homeostasis [191]. Given that
NK cells play a key role in shaping adaptive immunity by providing IFNγ and priming
dendritic cells, soluble ligands strongly impair tumor immunity. Soluble ligands detected
in the plasma of cancer patients have also been identified as prognostic factors [117].

In the CLL context, Reiners et al. have shown that the soluble NKp30 ligand BAG6/BAT3
detected in the plasma of CLL patients suppresses NK cell cytotoxicity and even downreg-
ulates the expression of CD16 and CD56 on NK cells of healthy donors [148]. The same
authors have also demonstrated that BAG6, when expressed on the surface of exosomes, is
able to activate NK cell cytotoxicity, suggesting that exosomal BAG6 can represent a compo-
nent of “induced self-activation” of NK cells and that a dysregulated balance of exosomal
vs. soluble BAG6 expression may cause CLL evasion from NK cells [148]. Plasma of CLL
patients also contains higher levels, compared with healthy donors, of other factors known
to compromise NK cell function, such as macrophage migration inhibitory factor [192] and
the soluble NKG2D ligands MIC-B and ULBP2 [148]. Additionally, plasma levels of soluble
BAG6/BAT3, MIC-B and ULBP2 are further increased in advanced disease stages, suggest-
ing a role as prognostic factors [148]. The prognostic significance of soluble MIC-A, MIC-B
and ULBP2 in CLL has been confirmed in other studies which have shown that among
these ligands, soluble ULBP2 is the most important prognostic marker to identify early-
stage patients with risk of disease progression [170]. A comprehensive analysis of NKG2D
ligand expression in CLL and other leukemias has shown that soluble NKG2D ligands in
patient sera reduce NKG2D expression on NK cells, resulting in impaired NK antileukemic
activity, which depends on the levels of surface-expressed NKG2D ligands [119].

HLA-G expression on the CLL cell surface can represent an additional mechanism
by which these tumor cells escape the immune response [149]. HLA-G is a nonclassical
HLA-class I molecule that is normally expressed in tissues where the immune system needs
to be constantly suppressed, including fetal tissues, adult immune-privileged organs and
cells of the hematopoietic lineage [193]. Upregulation of HLA-G in cancer contributes to
serious immunosuppression, because besides inhibiting NK cell cytotoxicity, proliferation
and transendothelial migration, it also inhibits the functions of cytolytic T cells, B cells and
dendritic cells [194]. HLA-G also induces T cell apoptosis and differentiation of CD4+ and
CD8+ T lymphocytes into regulatory T cells [195,196]. This wide range of effects is probably
due to the widespread expression of its receptors. Indeed, in addition to KIR2DL4, HLA-G
binds to multiple other inhibitory receptors, including ILT2/CD58j, ILT4 and CD160, which
are expressed on several immune cells [194].

Membrane-bound HLA-G levels on CLL cells have been found elevated in CLL
patients with progressive disease and short treatment-free survival, and a multivariate
Cox regression analysis has revealed that the HLA-G status of CLL cells has an indepen-
dent prognostic value similar to that of the established prognostic markers ZAP-70 and
CD38 [180,197]. Additionally, in CLL patients with higher surface HLA-G expression, it has
been shown that the sera contain higher levels of IL-10, suggesting that this cytokine may
regulate HLA-G expression on CLL cells [180]. Conversely, other studies in a larger cohort
of patients have observed a low expression of HLA-G on CLL cells of all samples and no
significant correlation with clinical data or progression-free survival time, indicating that
the prognostic role of HLA-G in CLL remains a controversial issue [198]. Increased plasma
levels of soluble HLA-G have been reported in CLL patients compared to healthy donors,
but no significant correlation has been found with known CLL prognosticators [199,200].

Compared to classical HLA, the HLA-G gene is conserved in the coding region but
shows different polymorphisms in the 5′ upstream regulatory (URR) and the 3′ untranslated
(UTR) regions [201]. A number of studies have indicated that HLA-G polymorphisms are
associated with HLA-G expression, cancer susceptibility and cancer development [202].
Among these polymorphisms, a 14 base pair insertion/deletion (ins/del) (rs66554220) in
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the 3′ UTR has been shown to influence mRNA stability and protein production [203].
Interestingly, Rizzo et al. have shown that in CLL, there is a significant correlation between
the del/del HLA-G genotype and increased plasma levels of soluble HLA-G, but not
between this genotype and increased membrane HLA-G levels, probably because of the
instability of membrane HLA-G forms which are rapidly released into the plasma [181].
The del/del HLA-G genotype is also associated with the expansion of circulating regulatory
T cells, which in CLL positively correlate with the presence of clinical and biological features
of aggressive disease [181,204]. Additionally, increased soluble HLA-G levels in del/del
patients are associated with impaired NK cell cytotoxicity through its binding to KIR2DL4
ligand expressed by NK cells, as confirmed by in vitro incubation of normal NK cells with
plasma samples from CLL patients with variable soluble HLA-G levels. [181].

In addition to evading and suppressing NK cell activity, CLL cells can also take
advantage of the interactions with NK cells by receiving signals that promote tumor cell
growth and survival. This observation is supported by studies showing that interaction
between the glucocorticoid-induced TNFR-related protein (GITR) receptor and its ligand
(GITRL) expressed at high levels in NK cells of CLL patients and CLL cells, respectively,
induces in the latter the release of TNF, IL-6 and IL-8 [205], which are known to act as
autocrine/paracrine growth and survival factors for CLL cells [206–208]. Similarly, even
the interaction between the costimulatory molecule 4-1BB expressed on CLL-derived
NK cells and the 4-1BBL, highly expressed on CLL cells, leads to the release of TNF by
CLL cells [209]. Notably, both GITRL and 4-1BBL send signals that impair direct and
antibody-induced NK cell cytotoxicity and IFNγ production [205,209], suggesting that both
GITR/GITRL and 4-1BB/4-1BBL interactions may contribute to CLL pathophysiology and
resistance to immunotherapy. Additionally, it has been reported that activated NK cells
release soluble B cell activating factor (BAFF) which enhances the metabolic activity of CLL
cells and reduces their susceptibility to direct NK cell cytotoxicity and ADCC induced by
anti-CD20 therapeutic mAbs, effects which are prevented by the BAFF neutralizing mAb
belimumab [210].

A hypothetical model of CLL escape from NK cell immune surveillance is shown in
Figure 2.
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Figure 2. A hypothetical model of chronic lymphocytic leukemia (CLL) escape from natural killer (NK) cell immune
surveillance. The escape of CLL cells from the NK cell response relies on multiple mechanisms: (i) reduced expression of
activating receptors on NK cells or their ligands on CLL cells; (ii) release by CLL cells of soluble ligands for NK cell activating
receptors; (iii) increased expression of inhibitory receptors on NK cell surface and of their ligands on CLL cells; (iv) NK
cell-induced signals that increase CLL cell growth/survival and metabolic activity and impair CLL cell susceptibility to NK
cell-mediated cytotoxicity. The red and blue arrows indicate increased and decreased cell surface expression, respectively,
of NK cell receptors or their ligands on CLL cells. Dotted line indicates GITR–GITRL interaction. Dotted arrows indicate
intracellular signaling.

4. Immunotherapeutic Approaches Involving NK Cells in CLL

NK cell-based therapeutic strategies in CLL and in other malignancies aim to potenti-
ate and/or restore NK cell activity or to provide patients with functional NK cells able to
kill tumor cells. These objectives may be achieved using different approaches, which are
detailed below and summarized in Figure 3.

4.1. Enhancement of NK Cell-Mediated ADCC

Therapeutic approaches exploiting NK cell-mediated ADCC in CLL employ either
tumor-specific mAbs or bispecific and trispecific killer engagers.
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Figure 3. Natural killer (NK) cells in chronic lymphocytic leukemia (CLL) immunotherapy. Different strategies have
been developed to harness NK cell activity against CLL cells: (A) Enhancement of NK cell-mediated antibody-dependent
cellular cytotoxicity (ADCC) using tumor-specific monoclonal antibodies (mAbs) (left) or bispecific and trispecific killer
cell engagers (BiKE and TriKE) (right). (B) Restoration of NK cell functions using mAbs targeting immune checkpoints.
(C) Chimeric antigen receptor (CAR)-NK cell therapy.

4.1.1. Monoclonal Antibodies

One of the NK cell-based therapeutic strategies in CLL relies on the ability of NK cells
to kill cancer cells opsonized with mAbs via ADCC, a mechanism based on the engagement
of CD16 receptor with the Fc fragment of IgG [24,27]. In CLL, therapeutic activation of
NK cell-mediated ADCC is induced by various humanized mAbs that target different
CLL surface antigens, including CD20, CD19 and CD37 (Figure 3A, left). mAbs targeting
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CD20 were the first immunotherapeutic approach in CLL, and the first approved anti-
CD20 mAb was rituximab [28], which mainly acts by inducing ADCC of NK cells and
complement-dependent cytotoxicity [211]. Although rituximab had limited success as a sin-
gle agent [212], its efficacy was increased when it was used in combination with fludarabine
and cyclophosphamide (FCR). FCR represents an option therapy for treatment-naïve and
relapsed patients [213,214], but is less effective in patients with unmutated IGHV; mutated
TP53; del (17p) and del (11q); and mutations in NOTCH1, SF3B1 and BIRC3 [215–217].
There are various explanations for the limited efficacy of anti-CD20 mAbs as monotherapy
in CLL. For example, loss of CD20 antigen on CLL cells following rituximab treatment
leads to expansion of antigen-loss variants resistant to NK cell-mediated ADCC [218]. The
expression of particular polymorphisms of FcγRIIIa can represent an additional limitation
that reduces the affinity of rituximab to FcγRIIIa on NK cells, resulting in poor clinical
responses [219]. Furthermore, rituximab can induce monocyte-mediated immunosuppres-
sive mechanisms, such as the release of ROS that inhibit NK cell-mediated ADCC, limiting
the benefit of the therapy [220]. The limited efficacy of therapeutic mAbs as single agents
might be also related to the impaired NK cell activity in the patients. This could be circum-
vented by the combination of the mAb with allogeneic NK cells. Studies have reported new
protocols for activation/expansion of cord blood-derived NK cells, which, in combination
with rituximab, mediate a high ADCC against primary CLL cells in vitro [221].

More recent anti-CD20 mAbs are ofatumumab, which targets a different epitope
than rituximab, and obinutuzumab (GA101) and ublituximab (TG-11019), both having
an engineered Fc fragment with increased affinity for CD16 [222]. Ofatumumab and
obinutuzumab have shown efficacy in phase 3 clinical trials when used in combination
with chemotherapy [223] or with inhibitors of BCR [224–226] or Bcl-2 [227]. Ublituximab
has been shown to increase NK cell-mediated ADCC against CLL cells ex vivo compared
to rituximab [154] and to have promising efficacy in phase 2 and/or phase 3 clinical
trials either as a single agent or in combination with the BTK inhibitor ibrutinib and the
next-generation PI3K inhibitor umbralisib in high-risk CLL [228–230].

An additional target for mAb-based therapeutic strategies in CLL is CD19. The anti-
CD19 afucosylated mAb inebilizumab (MEDI-551) and the Fc-engineered (S239D/I332E)
mAb tafasitamab (MOR208; XmAb5575) have been shown to enhance NK cell-mediated
ADCC against B lymphoma and leukemia cell lines compared with unmodified anti-CD19
mAbs [231,232]. Inebilizumab and tafasitamab were also tested in phase 1 trials and showed
tolerability and preliminary efficacy in previously treated and relapsed CLL [233,234].

Another target currently under investigation for CLL immunotherapy is CD37 [235].
Several CD37-targeting therapeutics have been clinically evaluated [236]. Among them,
BI 836826 (MAb 37.1), an Fc-engineered mAb able to induce apoptosis and enhance NK
cell-mediated ADCC, has been shown to potentiate the cytotoxicity of the PI3K inhibitor
idelalisib in relapsed CLL cells ex vivo [237]. In a phase 1 study in relapsed/refractory
CLL, acceptable tolerability and preliminary efficacy were observed [238]. An additional
anti-CD37 therapeutic molecule that has been engineered to increase NK cell-mediated
ADCC activity is otlertuzumab (TRU-016), a monospecific IgG fusion protein built using
the ADAPTIR (modular protein technology) platform [239]. When used as a single agent,
it has shown a modest activity and an acceptable safety profile in a phase 1 study enrolling
treatment-naïve and pretreated CLL patients [240]. In a phase 2 study in patients with
relapsed or refractory CLL, otlertuzumab in combination with bendamustine increased the
response rate and prolonged the progression-free survival compared with bendamustine
alone [241].

4.1.2. Bispecific and Trispecific Killer Cell Engagers

New potential therapeutic approaches able to boost NK cell activation at the tumor
site by targeting CD16 involve the use of bispecific and trispecific killer engagers, BiKEs
and TriKEs, respectively [132]. BiKE constructs comprise a single-chain variable fragment
(scFv) domain specific for a tumor antigen and a second scFv specific for an activating
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receptor on effector cells, thus forming an immunological synapse and triggering cytotoxic
responses [242]. TriKEs bind two different tumor antigens, allowing the recognition
of cancer cells even when one antigen is lost, thus preventing tumor escape [218,243].
So far, in CLL, BiKEs and TriKEs engaging NK cells have been investigated only in a
preclinical setting, but the obtained data show that these constructs have a high potential
for CLL immunotherapy. The first evidence of the therapeutic potential of BiKEs for NK
cell immunotherapy in CLL has been provided by Feys’ group, who generated different
BiKE constructs for CD19 and CD16 able to induce in vitro ADCC against primary CLL
cells [244,245]. Later, Gleason et al. showed the ability of a CD16/CD19 BiKE and a
CD16/CD19/CD22 TriKE to directly activate NK cells through CD16 by increasing both NK
cell cytotoxicity and production of IFNγ against CLL cells [246]. Although CD20 expression
on CLL cells is higher than that of CD19, the CD16/CD19/CD22 construct has been more
effective than rituximab in targeting CLL cells, suggesting that simultaneous targeting of
CD22 and CD19 is advantageous [246]. The CD16xCD19 construct has also been modified
to include the stimulatory IL-15 cytokine moiety. This new construct, the 161519 TriKE,
induces potent healthy donor NK cell activation, proliferation and direct killing of primary
CLL cells, holding great potential to cure refractory CLL [247] (Figure 3A, right).

Other authors have tested the possibility to activate anti-CLL NK cell cytotoxicity
through the engagement of NKG2D by a new construct, namely ULBP2/aCD19/aCD19,
a trispecific immunoligand containing ULBP2 as a natural ligand for NKG2D receptor
on NK cells and two sets of a CD19-specific scFv (aCD19) to target CLL cells [248].
ULBP2/aCD19/aCD19 efficiently binds to all target moieties simultaneously by retar-
geting NK cells to kill tumor cells in an antigen-specific manner and mediates efficient
NK cell-dependent killing of primary CLL cells both in allogenic and autologous settings.
Additionally, ULBP2/aCD19/aCD19 has shown significant in vivo ability to activate and
retarget NK cells to kill transplanted MEC1 cells in a xenograft mouse model [248].

4.2. Restoring NK Cell Functions by Targeting The Immune Checkpoints

A potential approach involving NK cells in CLL immunotherapy is the blocking of
the immune checkpoints [249]. However, in CLL, most of the attention for unleashing
antitumor responses with checkpoint inhibitors has been focused on T cells, with PD-
1 as one of the most studied immune checkpoints [182,185,186,250–253]. Clinical trials
evaluating PD-1-blocking mAbs in CLL have shown disappointing results, especially when
they were used as single agents [20,253]. Satisfactory results in terms of response rate
have been observed when PD-1-blocking mAbs were used, alone or in association with
ibrutinib, in CLL patients, especially those with high levels of PD-L1 and PD-1 in the
tumor microenvironment [20,253], undergoing Richter’s syndrome, a CLL transformation
to aggressive lymphoma, mainly occurring as diffuse large B cell lymphoma [254].

Other immune checkpoints expressed on NK cells include inhibitory KIRs, CD94/NKG2A,
ILT2/CD85j and LAG-3. The use of anti-KIRs or anti-CD94/NKG2A blocking mAbs re-
capitulates the condition of “missing-self” recognition, thus restoring NK cell-mediated
antitumor responses [249]. The clinical relevance of KIR inhibition has been already shown
in allogeneic haplo-mismatched stem cell transplantation in patients with AML [29,30].
Mismatches between KIRs on donor NK cells and recipient HLA-class I molecules enable
NK cell activation, which is associated with improved relapse-free and overall survival,
suggesting that in the absence of KIR interactions with HLA-class I molecules, alloreactive
NK cells may eradicate residual leukemia [29,30].

In CLL, the fully human IgG4 mAb lirilumab (IPH2102), directed against a common
epitope shared by KIR2DL1/2/3, has been evaluated. A first-in-human phase 1 study
using this mAb has identified the doses able to fully saturate KIRs without deleterious
clinical, hematological or immunological effects and has shown that a prolonged KIR
blockade is safe and well tolerated in patients with CLL [255]. Additionally, the evidence
that CLL cells overexpress HLA-E, the main ligand for CD94/NKG2A, has provided the
rationale for using the humanized IgG4 anti-CD94/NKG2A mAb monalizumab (IPH2201)
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for CLL treatment [138] (Figure 3B). Preclinical studies have shown that monalizumab
is able to restore direct cytotoxicity of CLL-derived NK cells against HLA-E-expressing
targets, without impacting NK cell-mediated ADCC [174]. In vitro studies have shown
that even mAbs blocking ILT2/CD85j, highly expressed in CLL-derived NK cells, are
able in combination with the immunomodulatory drug lenalidomide to restore NK cell
cytotoxicity, resulting in increased elimination of CLL cells [178]. Additionally, although
the functional consequences of LAG-3 blockade in CLL have mainly been studied for T
cells [256], it has recently been shown that in vitro treatment of CLL cells with the LAG-
3-blocking mAb relatlimab (BMS-986016) restores NK cell proliferation and antitumor
activity and in combination with lenalidomide significantly increases rituximab-mediated
ADCC of NK cells and IL-2 production by T cells [257].

4.3. Allogeneic NK Cell Therapy

Allogeneic hematopoietic stem cell transplantation (allo-HSCT) has long been consid-
ered the only curative approach for high-risk patients with CLL, particularly those with
relapsed/refractory disease or with TP53 aberration [258]. After BCR and Bcl-2 inhibitors
became available and their efficacy in high-risk CLL patients was shown [259–261], consid-
erations on the risk–benefit effects of an allo-HSCT in CLL have led to a dramatic decrease
in the number of allo-HSCTs performed in both Europe and the United States [262–264].

It has been well demonstrated that in haplo-HSCT for high-risk acute myeloid and
lymphoid leukemia, donor-derived alloreactive NK cells play a crucial role in the GvL
effect due to KIR–HLA mismatches between donor and patient and the consequent lack of
NK inhibition by KIR ligands [29,30,265,266]. Conversely, the GvL reaction in allo-HSCT
for CLL seems to be mainly mediated by T cells, as indicated by clinical studies showing
that increased relapses were observed using T cell-depleting strategies [263,267] and that
unrelated donor KIR genotype neither improves GvL reactions nor reduces the incidence of
relapse in CLL [268,269]. In keeping with these observations, in vitro studies have shown
that allogeneic NK cells, after expansion/activation with an optimized protocol, are able to
kill CLL cells independently of KIR–HLA mismatches [270]. However, although allogeneic
NK cells do not mediate the GvL effect in a CLL-HSCT transplantation setting, they, unlike
T cells, lack the potential to cause graft-versus-host disease (GvHD) [29,30,265,271,272],
thus representing appealing and safe candidates for adoptive immunotherapy for CLL.

4.4. CAR-NK Cell Therapy

An emerging strategy of adoptive cell immunotherapy in CLL is based on the transfer
of T or NK cells engineered with chimeric antigen receptors (CARs), which are able to
recognize a specific antigen on tumor cells and to activate antitumor activity in engineered
cells through signal transduction [273,274]. The first CAR-based therapy exploited in CLL
consisted in the infusion of autologous, CD19-directed CAR-T cells [275]. Since then, a
large body of clinical research has been performed for evaluating the safety and efficacy
of this new therapy in patients with refractory/relapsed CLL [276–280]. Concerning
the safety profile, CAR-T cells induce in CLL complications similar to those observed
in other hematological malignancies, including cytokine release syndrome (CRS) and
neurotoxicity [281]. Concerning the efficacy, although the initial trials of CAR-T cells
in CLL showed promising results [276–280,282], more recent studies were discouraging
because either the response rates or the remission rates were lower in CLL compared
with other B cell malignancies [15,16,18,19]. The low efficacy of CAR-T cell therapy in
CLL is mainly due to T cell exhaustion and increased T cell terminal differentiation, which
hamper the expansion and the antitumor functions of autologous CAR-T cells [250,283,284].
Although this limitation could be overcome by using allogeneic CAR-T cells from healthy
donors, this approach is problematic as these cells, even if HLA-matched, carry the risk of
GvHD [285]. Recent studies have shown that anti-CLL activity of autologous CAR-T cells
is improved when they are administered in combination with the BTK inhibitors ibrutinib
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or acalabrutinib [286,287] due to their ability to increase T cell number and function in
CLL [288].

Given the low performance of CAR-T cells in CLL and their complex and expensive
individual-patient-based manufacturing, there is a growing interest in NK cells as an
alternative platform for CAR engineering. The possibility of exploiting anti-CD19 CAR-NK
cells is appealing for several reasons. First, the risk of CRS or long-term adverse events
could be reduced when using NK cells due to their different cytokine profile, short lifespan
and low rate of expansion [289–291]. Second, CAR-NK cells recognize tumor cells not
only through the CAR construct but also through their native receptors, adding ADCC-
mediated mechanisms to the CAR-mediated cell killing and reducing the possibility of
tumor escape in the case of downregulation of the CAR target antigen [292]. Additionally,
NK cells for CAR therapy could be used in an allogeneic setting, because of their ability
to contribute to GvL effect without causing GvHD [272]. Finally, allogeneic NK-CAR
cells can be generated from multiple sources, including peripheral blood (PB), umbilical
cord blood (CB), hematopoietic stem cells, induced pluripotent stem cells (bone marrow)
and NK cell lines, thus providing an “off-the-shelf” product, unlike the personalized and
patient-specific product that limits current CAR-T cell therapies [273]. There is evidence
indicating that both adult PB and umbilical CB are good sources for generating anti-CD19
CAR-NK cells able to kill in vitro primary CLL cells [293]. Even NK-92 cells transfected
with CD19-CAR or CD20-CAR, or redirected against different tumor antigens by adapter
CAR technology using biotinylated antibodies as adapter molecules, have been shown
to induce significant lysis of primary CLL cells and to contrast tumor antigen evasion
mechanisms [294–296].

However, a major disadvantage of using NK cells for adoptive transfer is their low
persistence in the absence of cytokine support [297]. Indeed, whereas this could be help-
ful in reducing long-term adverse effects and toxicity, it may significantly reduce their
clinical efficacy. Interestingly, even the timing of the collection, in vitro expansion and
adoptive transfer of autologous NK cells in cancer patients undergoing chemotherapy
and PB stem cell transplantation has been shown to be of critical relevance in influencing
the clinical efficacy of NK cells [298]. Thus, enhancing NK cell performance has been the
subject of active research by many groups, who developed multiple strategies to genetically
manipulate NK cells to express cytokines for autocrine proliferation [299–301]. In this
context, Rezvani’s group generated CAR-CD19+ NK cells that not only persist and mediate
an efficient killing of primary CLL cells in vitro but also incorporate safety measures to
limit toxicity [301]. Specifically, CB-derived NK cells were transduced with a retroviral
vector incorporating the genes for (i) CAR-CD19 to redirect their specificity, (ii) IL-15 to
support their survival and proliferation and (iii) inducible caspase-9-based suicide gene
(iC9), which can be pharmacologically activated to eliminate transduced cells in the event
of unacceptable toxic effect (Figure 3C). Antitumor activity of these iC9/CAR.19/IL-15
CAR-NK cells was also demonstrated in a xenograft Raji lymphoma murine model. Based
on these findings, the same authors undertook a phase 1 and 2 trial to assess the safety and
efficacy of escalating doses of HLA-mismatched, CB-derived iC9/CAR.19/IL-15 CAR-NK
cells for the treatment of relapsed or refractory CD19-positive B-lymphoid malignancies,
including CLL [42]. Results showed that of the 11 treated patients, 8 rapidly responded
(within 30 days), including 7 (4 with lymphoma and 3 with CLL) who achieved a complete
remission without major toxic effects [42]. Altogether, the preclinical and early phase clini-
cal results obtained using CAR-NK cells in CLL are encouraging and support their further
development, especially if limitations of the current CAR-T cell therapy remain unsolved.

5. Conclusions

Here we reviewed current knowledge of the NK cell alterations in CLL, the different
CLL evasion mechanisms from NK cell-mediated immune surveillance and the potential
relevance of using NK cells in CLL immunotherapy. Despite contrasting studies about
phenotype, functions and role of NK cells in immune defense against CLL, the most likely
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opinion is that impairment of NK cell activity is mainly due to escape mechanisms of CLL
cells rather than to intrinsic defects in NK cells. This hypothesis is supported by several
pieces of in vitro evidence showing that NK cell functions are retained and/or recovered
after an appropriate stimulation, leaving hope that NK cells can be ideal candidates for
CLL immunotherapy. Nonetheless, anti-CD20 mAbs, such as rituximab, have shown
significant clinical responses only in combination with chemotherapeutic or targeted
agents, but not as monotherapy, indicating that different mechanisms negatively affect
NK cell-mediated ADCC in vivo. Therefore, a better understanding of the mechanisms of
resistance and evasion of CLL cells from NK immune surveillance, as well as advances
in engineering new therapeutic molecules able to restore NK cell activity, will help to
improve the current NK cell-based therapies and to develop additional ones. In this
context, different BiKE and TriKE constructs, which exploit the basic concepts of mAbs to
retarget NK cells, have been generated. These constructs have shown satisfactory activity
in the preclinical setting, holding great therapeutic potential for CLL treatment, but so far,
none of them have entered clinical trials. The targeting of immune checkpoint inhibitors
for reactivating the NK cell-mediated responses against CLL cells might be an appealing
therapeutic strategy. However, as several immune checkpoints are expressed on both NK
and T cells, it is difficult to establish how much of the clinical benefit of checkpoint blockade
is attributed to NK cells, unless CLL cells have lost HLA-class I molecules. Additionally,
the elements of this therapeutic approach, in particular the PD-1-blocking mAbs, failed
to show satisfactory clinical response in CLL trials, regardless of whether they were used
as single agents or in combination with ibrutinib, unless patients underwent Richter’s
transformation. These results suggest that more investigation is needed to explore the
potential of immune checkpoint blockade in CLL. However, what is clear, and also observed
in other malignancies, is that blocking a single inhibitory receptor on either T or NK cells is
unlikely to induce adequate immune responses and achieve a clinical benefit. Strikingly,
significant clinical responses have recently been obtained in CLL patients using cord blood-
derived CAR-NK cells, encouraging and supporting their further development, especially
if limitations of the current CAR-T cell therapy in CLL remain unsolved. Nonetheless,
several questions remain to be addressed for CAR-NK cell therapy in both CLL and
other malignancies. These include the determination of the best source of NK cells for
immunotherapy, the optimal vector system, the most biologically relevant signaling domain
for CAR activation and the ideal ex vivo NK cell expansion strategy.

In conclusion, further investigation for optimizing NK cell immunotherapy in CLL
is necessary. Considering that an antitumor response is mediated by different effector
subpopulations, including NK cells, that cooperate and/or act in a coordinated fashion, it
is likely that a multifaceted combination approach is what ultimately will be required to
obtain the maximal benefits from the current and future NK cell-based immunotherapy in
CLL and other malignancies.
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