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Featured Application: Aerobic exercise has a significant impact upon cognitive function in ag-
ing, and the FNDC5/irisin system exerts an interesting role as an important exercise-related 
factor acting on the aging brain. Its functions are dependent on irisin of peripheral origin or by 
its direct expression in the CNS, both of which are induced by physical exercise. The therapeu-
tic potential of exercise-linked irisin is very relevant, and could be very useful in preserving 
cognitive performance, and in improving treatment of neurodegenerative diseases. 

Abstract: The beneficial effects of exercise on the brain are well known. In general, exerciseoffers an 
effective way to improve cognitive function in all ages, particularly in the elderly, who are con-
sidered the most vulnerable to neurodegenerative disorders. In this regard, myokines, hormones 
secreted by muscle in response to exercise, have recently gained attention as beneficial mediators. 
Irisin is a novel exercise-induced myokine, that modulates several bodily processes, such as glu-
cose homeostasis, and reduces systemic inflammation. Irisin is cleaved from fibronectin type III 
domain containing 5 (FNDC5), a transmembrane precursor protein expressed in muscle under the 
control of peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α). The FNDC5/irisin 
system is also expressed in the hippocampus, where it stimulates the expression of the neurotro-
phin brain-derived neurotrophic factor in this area that is associated with learning and memory. In 
this review, we aimed to discuss the role of irisin as a key mediator of the beneficial effects of ex-
ercise on synaptic plasticity and memory in the elderly, suggesting its roles within the main pro-
moters of the beneficial effects of exercise on the brain. 
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1. Introduction 
Physical activity refers to body movement that is produced by the contraction of 

Skeletal Muscle (SkM) and that increases energy expenditure. It includes activities in the 
workplace (e.g., typing), around the house (e.g., household chores, such as cleaning) and 
during leisure time (e.g., walking, swimming, dancing, cycling). 
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Several studies showed a relationship between physical and mental health and 
Physical Exercise (PE). PE is known to slow down the process of 
age-relatedneurodegeneration, and existing hypotheses suggest that PE represents a po-
tential adjunctive treatment for cognitive impairment. Regular physical activity can 
modulate the potential risk factors of dementia and other neurodegenerative disor-
ders,such as Alzheimer’s disease (AD) and/or Parkinson disease (PD) [1]. 

Recently, a meta-analysis considered evidence on the safety and efficacy of PE as an 
additional therapeutic intervention for the quality of life, cognition, and depressive 
symptoms across several chronic brain disorders. Silverman and Deuster (2014) sug-
gested that regular physical activity affects the following biological pathways: (i) opti-
mization of neuroendocrine and physiological responses to psychosocial and physical 
stressors; (ii) action as a buffer against stress and stress-related diseases/chronic diseases; 
(iii) promotion of an anti-inflammatory state; and (iv) enhancement of neuroplasticity 
and growth factor expression [2]. 

PE exerts these effects by influencing various molecular pathways and myokines; 
through autocrine, paracrine, and endocrine mechanisms [3–6]. In this regard, myokines 
are released in response to variation in muscular contraction following exercise of dif-
ferent intensity, mode, and volume. Some myokines may be anabolic and have direct 
growth-promoting effects, while others generate signals that may mediate some of the 
health benefits of PE. In 2012, a new myokine expressed through the activation of tran-
scription factor Peroxisome proliferator-activated receptor Gamma Co-activator-1α 
(PGC-1α) by exercise-induced effects, was discovered. The newly identified molecule has 
been called “irisin” and has been defined as a communicator between the SkM and adi-
pocytes, and thus a potential bearer of positive effects of PE on other target tissues out-
side the muscle [7]. 

Irisin is cleaved from fibronectin type III domain containing 5 (FNDC5), a trans-
membrane precursor protein expressed in muscle under the control of PGC-1α. FNDC5 is 
also known to be profoundly expressed in many regions of thebrain, including cerebellar 
Purkinje cells, the hypothalamus, and the hippocampus, a region of the brain involved in 
memory and spatial awareness [7–12]. 

Previous work suggested that irisin may be responsible for the PE effect in some 
rodent models of neuropathological conditions, including cerebral ischemia and depres-
sion [13,14]. Furthermore, the overexpression of irisin and FNDC5 were associated with 
neuroplasticity, asthey may modulate neuronal proliferation [15], differentiation [16], 
and neurotrophin synthesis [8], conferring neuroprotection against amyloid peptide 1–42 
(Aβ1–42) in mice [17], and having an antidepressant-like effect in rats subjected to un-
predictable mild stress [13]. 

Similarly, to PE, the peripheral delivery of FNDC5 to the liver, via adenoviral vec-
tors (resulting in elevated blood irisin levels), induced the expression of brain-derived 
neurotrophic factor (BDNF) and other neuroprotective genes in the hippocampus of mice 
[8]. In line with these results, the neurotrophin BDNF plays an important role in the ho-
meostatic function and survival of the neurons; particularly in synaptic plasticity and 
neurogenesis. Decreased levels of BDNF have been identified in serum, as well as in 
hippocampal and cortex samples of AD and PD patients [18,19]. 

Since its discovery, irisin has been the subject of extensive research, which has ena-
bled several insights to be gained about its pleiotropic properties. The role of irisin on 
memory and cognitive performance has been studied only recently, particularly during 
the last 5 years. Given the rising significance of irisin as a mediator of the beneficial ef-
fects of PE, in this review, we providean update onthe literature focusing on the rela-
tionship between FNDC5/irisin system and cognitive functions. 

2. Cognitive Functions Memory and Aging 
During the last decade, the aging brain has been at the center of intensive research. 

The cognitive domains represent the more important elements of studying the aging 
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brain. It is encouraging that several studies have suggested that specific environmental 
factors can increase the brain plasticity in all ages of life, opening up the possibility of 
definite intervention to maintain the cognitive performance in older adults. In particular, 
cognitive stimulation and regular PE have been successfully related to improvement in 
brain plasticity [20,21]. However, age-related cognitive decline continues to occur, in-
cluding in the deterioration of memory [22].  

Memory enables the storage and recovery of data in order to adapt to environmental 
stimuli. In 1968, Atkinson and Shiffrin suggested the “modal” model of memory, in 
which memory was characterized by (i) sensory store, (ii) short-term memory (STM), and 
(iii) long-term memory (LTM). Therefore, memory has the capacity to archive the sensory 
inputs. Furthermore, through STM, memory can archive and use data for a brief period. 
STM is also defined as primary or active memory, and comprises different memory sys-
tems. LTM permits us to collect an indefinite amount of information for an indefinite 
time [23,24].  

The anatomic side of memory is mainly situated in the hippocampus [25]. It is a 
neural structure with complex efferent and afferent connections with various brain cor-
tices, that exerts a fundamental role in learning [26]. Consequently, STM and LTM are 
archived mainly in the hippocampus, but also in other cortex regions. This memory 
network allows us to more rapidly understand environmental stimuli, planning and 
acting adaptive responses. The brain can create new memories to learn more and/or use 
previous memories to inform behavior [27–29].  

Recent studies have shown that functional and morphological changes occur in 
parallel in the aging brain, most importantly at hippocampal and pre-frontal cortex levels 
[30]. At present, numerous interventions have been proposed to ameliorate the deficit in 
memory and slow down the acquirement of mild cognitive impairment or dementia. 
Withinthese multifactorial interventional factors, approaches include stress reduction 
(e.g., meditation), diet regimen, and regular PE [31]. PE has been described as having 
particularly beneficial effects. In fact, regular PE helps to prevent serious diseases in-
cluding diabetes, cancer, cardiovascular and neurodegenerative diseases. Moreover, PE 
can improve mood, quality of sleep and reinforce immune response [32–37]. 

Older adults are characterized by significant atrophy of grey and white matter pri-
marily in the hippocampus and pre-frontal cortex. PE is associated with improvement of 
cardiorespiratory fitness and reduced loss of grey and white matter in the temporal, 
frontal and pre-frontal regions [38]. At cellular and molecular levels, PE increases neu-
rogenesis, cerebral plasticity and synaptogenesis in the hippocampus. In these processes, 
PE acts on the expression and release of BDNF downstream, improving cerebral oxygen 
uptake, and in turn, enhancing memory formation [39]. Also, PE has been shown to 
promote memory by increasing dopaminergic activity in the basal ganglia [40]. 

Several studies support the hypothesis that a multifactorial approach is more effec-
tive in counteracting aging related memory decay. The combination of PE and mental 
exercises is more effective in improving cognitive function in the healthy elderly with 
respect to treatment with one stimulus alone. Specifically, the application ofa combina-
tion of home-based PE and digitalized cognitive stimulation for 16 weeks ameliorated the 
performance of verbal episodic memory [41]. Additionally, elderly who were submitted 
to a combined intervention for 12 weeks showed higher levels of improvement in execu-
tive and memory functions [42]. 

The mechanisms by which PE exerts its positive effects on health are numerous, 
howeverthe expression and release of myokines represent one of the most important. In 
2007, Pedersen and coworkers were early proponents of the idea that SkM releases a 
largenumber of molecules, which werenamed myokines [43]. Some years after this, the 
same authors suggested a new model in which SkM is a secretory organ, synthesizing 
and secreting myokines in response to muscle contraction. The main function of these 
factors is to regulate the muscular function and metabolism [44]. Subsequently, myokines 
have been increasingly recognized as a protective element against the negative effects of 
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physical inactivity and physiological aging. The most important myokines include acid 
β-aminoisobutyric acid, BDNF, decorin, fibroblast growth factor-21, follistatin-like pro-
tein-1, insulin-like growth factor-1, irisin, leukaemia inhibitory factor, meteorin-like, 
myonectin, myostatin, and immune mediators IL-4, IL-6, IL-7, IL-8, and IL-15 [45,46].  

The myokines act at a systemic level, exerting specific roles in different organs and 
tissues, including modulatory activity of the central nervous system (CNS) [47]. Many of 
the protective effects of PE on CNS are facilitated bycomponents of the neurothrophin 
family, particularly BDNF. As ascertained by studies on animal models, it acts in a para-
crine or autocrine manner on energy balance, improving insulin signaling, regulating 
motoneuron survival, playing an essential role insynaptic plasticity, neuronal survival 
and differentiation [48–50]. Inhumans, several studies on healthy subjects suggested a 
significant association between PE, peripheral levels of BDNF, cognitive performance, 
and the volume of the hippocampus [51–53]. Growing evidence is accumulating on the 
pleiotropic functions of irisin, and on its precise mechanism of action in the brain. 
However, evidence regarding the correlation between PE and irisin effects at a systemic 
level, as well as the association between irisin response and cognitive functions in older 
populations, is still limited. In the following sections, we describe irisin structure and 
expression, and speculate on its role in contributing to cognitive performance improve-
ment by PE. 

3. Irisin 
3.1. Irisin Structure 

About 20 years ago, two independent groups identified FNDC5 as a protein exerting 
a role in the differentiation of myoblast. These first findings suggested that the gene was 
highly expressed in the SkM, but also in cerebral and cardiac tissues [54,55]. Human 
FNDC5 is a type I membrane protein of 212 amino acids (aa). The N-terminal is a signal 
sequence needed for final maturation and cleavage, the C-terminal is the cytoplasmatic 
domain, and in the middle there is a fibronectin III (FNIII) domain, an unknown domain, 
and a hydrophobic transmembrane domain [7,56,57]. The irisin represents the segment of 
FNDC5 that is cleaved under stimuli such as PE or cold. The portion contains 112 aa, 
formed by the residues from 29 to 140, including the tail at the C-terminus, the central 
FNIII domain, and the tail at the N-terminus [7,57]. The resulting peptide is characterized 
by a molecular weight of 12 kDa, and is dimerizing through the FNIII domain [56]. The 
irisin undergoes post-translational modification by N-glycosylation at two different res-
idues. This modification, in addition to dimerization, determines a molecular weight 
reaching 35 kDa. The protein stability and the irisin secretion are regulated by the 
N-glycosylation. The process is strictly dependent on the presence of the signal peptide at 
the N-terminal, and is important for the irisin activity. The loss of glycosylation does not 
allow irisin to exert its main function in the browning stimulation of white adipose tissue 
(Figure 1) [58]. 

 
Figure 1. FNDC5/Irisin structure. Schematic structure of FNDC5. CD: Cytosolic Domain; FNDC5: Fibronectin type III 
Domain Containing 5; SS: Signal Sequence; TD: Transmembrane Domain. 
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In contrast to rodents, the human FNDC5 gene has an ATA as a start codon instead 
of ATG, generating a transcript that results in a very low efficiency of translation [59]. 
More recently, Albrecht et al. (2020), identifying other non-canonical start codon, sug-
gested that in SkM there are several transcripts for the human FNDC5 gene [60]. Studies 
on transcriptome profiling through RNA-sequencing (RNA-Seq) by the Functional An-
notation of the Mammalian Genome/Genotype-Tissue Expression Project, established 
that the FNDC5 gene is mainly expressed in SkM, the heart, and several regions of the 
brain, mainly in the cerebellum, but also in hippocampus, cortex, and medulla oblongata 
[61]. 

A receptor for irisin has not yet been identified. The only evidence is provided by an 
interesting study by Kim et al. (2018), whichshowed that this myokine exerts its biologi-
cal function by binding the integrins’ family of proteins. The integrins are ubiquitously 
expressed transmembrane receptors, consisting of eighteen α- and eight β-subunits, 
forming a total of 24 different heterodimers able to recognize also soluble ligands. Kim 
and coworkers described how the binding of irisin with the αVβ5 integrin heterodimer 
occurs in human adipocytes and osteocytes. Using the integrin inhibitor RGD peptide, 
which binds to αVβ5 in a selective manner, they also showed that any signaling response 
induced by irisin was significantly suppressed in these cells [62]. 

3.2. Irisin Functions 
Bostrom and colleagues were the first to showthat irisin levels in the blood increase 

after PE, describing an increase of 65% in blood concentration in mice submitted to reg-
ular running for 21 days [7]. The level of irisin after PE is dependent on the type of 
physical activity, where training based on aerobic exercise is a higher inductor of serum 
irisin compared to resistance exercise [63,64].  

In general, the level of irisin is influenced by lifestyle, characterized by specific res-
idential place and associated activities, as suggested by the differences recorded between 
rural and urban inhabitants. Irisin concentration is lower in urban citizens, with a mean 
value of 3.6 ng/mL, while active individuals that live in rural areashad amean value of 4.3 
ng/mL [65]. PE increases the level of irisin in the blood of healthy people [7], and in peo-
ple with metabolic disorders [66]. Its circulating level is also related to the phenotype of 
different disease, as well obesity, type 2 diabetes [67], chronic renal disease [68] and hy-
pothyroidism [69]. 

The first identified function of irisin was the “browning” of adipose tissue, in which 
irisin increases the expression of the mitochondrial protein uncoupling protein-1 (UCP-1) 
in mature fat cells, allowing the conversion of the white adipose tissue (WAT) to the 
brown adipose tissue (BAT) phenotype. The process ends with the formation of a third 
type of adipose tissue phenotype, named beige/brite adipose tissue. Irisin and PGC-1α 
regulate the expression of UCP-1 and thermogenesis in BAT, driving the metabolism of 
glucose and lipids toward the increase in energy consumption [70,71]. Furthermore, irisin 
is implicated in glucose homeostasis, by acting on different cell types and tissues in-
volved in glucose metabolism, such as adipose tissue, SkM, liver, and pancreatic β cells. 
Due to this property, irisin is able to improve insulin sensitivity under insulin resistance 
(IR) conditions [72]. A decrease in irisin levels was associated with an increased risk of 
presenting metabolic syndrome and hyperglycemia in obese adults. This myokine shows 
negative associations with fasting insulin and glycosylated hemoglobin [73]. Previous 
studies also suggested its negative correlation with fasting glucose and HOMA-IR in 
school-age students of both genders [74], and positive associations with insulin concen-
tration, fasting glucose, and HOMA-IR [66,75–77].  

Irisin has other specific functions, including in the heart and liver, where it exerts 
antiapoptotic effects on cardiomyocytes and hepatocytes through the induction of au-
tophagy [45], and protects cells from ischemia-reperfusion injury [78,79]. At bone level, it 
has a favorable effect and represents a key molecule in the crosstalk between this tissue 
and SkM. Specifically, irisin increases the mass and strength of the cortical bones, posi-
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tively modifying their geometry by reducingthe secretion of osteoblast inhibitors, and 
driving the expression of bone-specific genes [80]. In immune system functioning, irisin 
mediates the positive effect of regular/moderate physical activity, contributing to a re-
duction in systemic inflammation, and consequently protecting from the development of 
diseases associated with chronic inflammation [81].  

The functions of irisin on the brain are described in more detail in the section “Irisin: 
a new bridge between exercise and cognitive functions”. In brief, this myokine increases 
the proliferation of hippocampal neuronal cells [15], and reduces the neuronal damage 
mediated by pro-oxidant stimuli [14]. The FNDC5/irisin system is important for 
long-term potentiation and memory in mouse hippocampal region, being involved in 
establishing synaptic plasticity and memory [82], and may contribute to the antidepres-
sant effect of PE together with serotonin, by the activation of the PGC-1α/BDNF pathway 
[83]. 

3.3. Expression of FNDC5/Irisin  
In this section, the mechanisms involved in regulating FNDC5/Irisin expression in 

SkM and CNS are considered. Although the expression of the FNDC5 gene occurs in 
several tissues both in humans and rodents, we have focused on the SkM because it rep-
resents the major source of irisin from a peripheral origin [7,66]. We also considered the 
expression in the brain, due to the relevant role of irisin of CNS origin on cognitive func-
tions. 

4. Skeletal Muscle 
The expression of the FNDC5 gene in SkM cells is differentiated between muscle 

fiber types. Generally, slow type fibers show a higher expression compared to fast type 
fibers at rest; PE is able to induce FNDC5 expression in all type of fibers, following an 
expression pattern regulated by exercise type and duration. For example, in a mouse 
model, aerobic exercise (i.e., running wheel) induces equal expression of FNDC5 in dif-
ferent muscle fibers [7,84–86]. 

While the FNDC5 gene is expressed in different tissues, the main sources of circu-
lating irisin are the SkM during PE, and adipose tissue. Therefore, irisin can be consid-
ered both a myokine and an adipokine [7,84]. In the SkM, irisin expression is mainly 
mediated by PGC-1α through its interaction with a number of transcription factors im-
plicated in energy requirement [87–89]. These proteins can induce the expression of 
FNDC5 in a different manner: Yang et al. (2018) recently suggested in vitro that in C2C12 
myotubes the expression of FNDC5 is modulated by the cAMP response element-binding 
protein (CREB) through its binding with PGC-1α [90]. It’s important to remember that 
CREB is activated by aerobic exercise and that the signaling of cAMP activates CREB in 
the SkM during exercise to manage metabolic adaptation [91,92]. In addition, endurance 
exercise induces the expression of FNDC5 in the quadriceps via the PGC-1α/estrogen 
related receptor alpha (ERRa) pathway [8]. The retinoic acid (RA) is another inductor of 
FNDC5 expression in muscle. RA is a natural ligand for retinoid X receptor (RXR). This 
receptor also represents a transcription factor activated by a ligand that binds to RA re-
sponsive elements (RARE) in the regulatory sequences of genes regulated by PGC-1α 
[93]. The expression of FNDC5 is increased by treatment with RA in differentiated C2C12 
myocytes, also in an independent manner from PGC-1α [94] (Figure 2). During PE, 
PGC-1α accelerates mitochondrial biogenesis and regulates the glucose/fatty acid me-
tabolism, favoring the switch from fast to slow fiber contraction. Under this process, the 
increased expression and activity of PGC-1α is mediated by the increase of Ca2+ influx 
into fibers’ cytoplasm [95]. 

Conversely, other conditions can inhibit the expression of FNDC5 in SkM. For ex-
ample, FNDC5 expression is reduced by Myostatin. This myokine exerts a reverse effect 
to FNDC5, inhibiting the differentiation of myoblast [96], and significantly increasing the 
mRNA expression levels of PGC-1α and FNDC5 when it is silenced [97] (Figure 2). 
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Comparably, the expression of PGC-1α and FNDC5 may be suppressed by the protein 
Mothers against decapentaplegic homolog 3 (SMAD3) in C2C12 mouse myoblasts, while 
in knockout Smad3 mice, aerobic exercise increases serum irisin in comparison to 
wild-type mice [86]. Furthermore, Varela-Rodriguez et al. (2016) showed that 48 h of 
fasting decreased the circulating level of irisin and expression level of FNDC5 in SkM, 
while the intraperitoneal injection of insulin for 2 weeks has a comparable action on 
FNDC5/irisin level in plasma and SkM [98]. 

 
Figure 2. FNDC5/Irisin expression in Skeletal Muscle (SkM) mediated by PGC-1a. Schematic representation of irisin 
expression modulating factor in SkM occurring by activation or inhibition of PGC-1a. CREB: cAMP response ele-
ment-binding protein; ERRα: Estrogen-related receptor α; FNDC5: Fibronectin type III Domain Containing 5; PGC-1α: 
PPARγ coactivator 1α. 

Finally, it is worth mentioning the growing interest in the potential use of irisin as a 
bona fide biomarker and potential target for the complex management of sarcopenia and 
muscle loss even in subjects after spinal cord injury [80,99–101]. Future studies are war-
ranted to investigate the role of irisin as a biological bridge among exercise and muscle 
metabolism. 

5. Brain 
Several studiessuggested that the FNDC5/irisin system is expressed in the brain, 

where its specific roles have not yet been well established. Studies on animal models 
showed that this expression is dependenton the region of the brain, in which irisin is ex-
pressed in ventromedial nuclei and hypothalamic arcuate in primates [102], and in cor-
tex, hippocampus, and other areas such as the vestibular nuclei of the medulla oblongata 
and Purkinje cells of the cerebellum in mice [9]. 

The irisin expression in the CNS is regulated by several environmental, physiologi-
cal and pathological conditions. Aerobic PE significantly increases the mRNA of FNDC5 
in the mouse hippocampus [8,103]. Recently, Yu et al. (2020) suggested that additional 
stimuli, such as environmental enrichment (EE), can increase the expression of FNDC5 in 
the pre-frontal cortex [104], where it is useful in promoting neurogenesis and general 
cerebral activity, increasing the neuronal capacity to recover from wounds [105,106]. In 
regard topathological conditions, the expression of FNDC5 is reduced in AD patients in 
the pre-frontal cortex and hippocampus [107]. Nevertheless, the injection of recombinant 
irisin reduces stress-mediated anxiety, depression and memory disfunction in the hip-
pocampus and/or in the lateral ventricle of rodents’ model [108,109,110]. 

There is increasing evidence relating to FNDC5/irisin brain expression. Wrann et al. 
(2013) described that PGC-1α is responsible for FNDC5 expression induction in the pri-
mary neurons and hippocampus [8]. More recently, it was foundthat FNDC5 induction in 
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the hippocampus is regulated by the activation of the cAMP/PKA [104], and that the 
hippocampal FNDC5 expression is also induced by the lactate released from SkM during 
PE [107]. The FNDC5 promoter has been described in the presence of an ERRαbinding 
element (ERRE) sited in the upstream region, where PGC-1α increased FNDC5 expres-
sion activating ERRα, and then triggered a negative feedback onto PGC-1α/ERRα in 
primary cortical neurons [8]. Further studies are needed to investigatethe upstream reg-
ulatory sequences of the FNDC5 promoter, in order to better define how different stimuli 
can influence FNDC5 expression in the brain. These analyses could clarify which binding 
elements are regulated by different transcription factors. 

A number of studies suggested that irisin can also be endocytosed and that it exerts 
a role in mediating endocytosis and exocytosis. Regarding the endocytosis process, 
Lourenco et al. (2019) suggested that irisin bound to unrecognized receptor in CNS, par-
ticularly on the surface of hippocampal neurons and astrocytes, starting an endocytosis 
process [107]. In addition, the subcutaneous injection of irisin increased glucose uptake at 
brain level, suggesting its potential role in augmenting the endocytosis of glucose 
transporters [13]. Relating to exocytosis, the only evidences come from Zhang et al. (2018) 
showing that irisin increased insulin secretion in mouse pancreatic islet cells in response 
to glucose [111]. 

6. Irisin: A New Bridge between Exercise and Cognitive Functions 
As mentioned above, irisin exerts its role at a systemic level, including the CNS 

[46,47]. Since 2016, several findings on irisin’s impacts on cognitive functions have been 
made. These findings suggest that the beneficial effects of PE in counteracting memory 
degradationare mediated by irisin from a peripheral and central origin. In turn, the im-
pactof irisin on cognition is to a large extent elicited by the induction of the neurothro-
phin BDNF. 

In general, BDNF is essential for brain development due to its actions in neuronal 
survival, differentiation, and migration, and in exerting a role in dendritic arborization 
and in regulating synapse genesis and plasticity. Consequently, BDNF is fundamental for 
hippocampal function and learning [112–114]. It has been widely described that higher 
levels of BDNF have a beneficial effect on many cognitive processes, such as verbal, 
recognition, spatial, and episodic memory [115,116]. In humans, mutation in the BDNF 
gene (i.e., Val66Met) is associated with a decreased level of BDNF, with the affected 
subjects characterized by a higher level of mood disturbances, such as increased anxiety 
and depression, alterations in episodic memory, and reduced volume in specific regions 
of the brain [117,118]. 

BDNF is related to the positive effect of PE on CNS, in particular acting on the above 
cited neuronal survival/differentiation, and synaptic plasticity [48,49,53]. In humans, 
circulating BDNF was successfully associated with PE, cognitive performance and hip-
pocampal volume [51,52]. In a several studies, Vaynman and colleagues suggested that 
the blockage of BDNF signaling with a specific antibody (ant-TrkB) significantly reduced 
the improvement in acquisition and retention during spatial memory tasks induced by 
PE; this inhibition was paralleled by a decrease in expression of synaptic proteins 
[119,120]. In accordance, other studies suggested associations between PE, circulating 
BDNF levels and the hippocampal volume [121,122], whose systemic decline is associ-
ated with advanced age [123]. 

Notably, the activation of the FNDC5/irisin system in the brain is an important in-
ductor of BDNF. The overexpression of FNDC5 in primary cortical neurons increases 
BDNF expression, and in a similar manner the BDNF expression is significantly abro-
gated by RNAi-mediated knockdown of the FNDC5 gene [124]. An animal model 
showed that the irisin precursor FNDC5 could mediate beneficial CNS effects of endur-
ance exercise by upregulating BDNF expression in the hippocampus [8]. Accordingly, the 
above-mentioned human polymorphism of BDNF, Val66Met, was shown to affect both 
BDNF and FNDC5 expression in the brain after PE [125]. Nevertheless, in a mouse model 
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of AD, the neurogenesis mediated by PE in the hippocampus was associated with similar 
induction of expression of BDNF and FNDC5, facilitating improvement in cognitive 
functions [126]. Schnyder et al., (2015), suggested that endurance PE elevates systemic 
irisin levels, inducing the expression of FNDC5 in the hippocampus by PGC-1a, and 
leading to BDNF expression. This process culminates in neurogenesis induction in this 
region [127]. In two recent studies, Lourenco and coworkers investigated the relationship 
between the potential alteration of the FNDC5/irisin system and AD. They showed that 
silencing FNDC5 with specific small hairpin RNA in a mouse brain, determined the loss 
of long-term potential (LTP) at hippocampal level. A similar loss of LTP was induced in a 
model of AD obtained by injecting amyloid-β oligomers (AβOs) and causing memory 
and behavioral defects. The injection of the recombinant irisin in the glycosylated form 
was able to reverse these processes on LTP loss and behavioral alterations. In an addi-
tional approach, the same authors used an adenovirus expressing FNDC5 into the brain, 
injecting AβOs after six days, and obtaining analog recovery of animals. PE also reversed 
the behavioral defects of the AβO injection, supporting the idea from previous data, that 
the induction of FNDC5 in the hippocampus was mediated by PE. The following year 
(2020), Lourenco and colleagues suggested a positive correlation between cerebrospinal 
fluid irisin and BDNF levels, and memory, during a study on AD patients and control 
subjects [107,128]. These findings supported earlier evidence in animals of a relationship 
between FNDC5/irisin-BDNF and neuroplasticity in brain, as an element of the linking 
pathway between PE and cognitive functions [8,15]. Nevertheless, irisin may contribute 
to the antidepressant effect of PE together with serotonin, via the upstream activation of 
the PGC-1α/BDNF pathway [83]. 

Altogether, these findings suggest that the brain activation of the FNDC5/irisin 
system could be the mediator by which PE induces neurogenesis at a molecular level, 
highlighting that an important association exists between irisin and BDNF [116]. See 
Figure 3 for a summary representation. 

In another study, Li et al. (2017) described a role for irisin in the brain and cognitive 
modulation without mentioning BDNF, suggesting that irisin also has a protective effect 
againstadverse environmental stimuli. They described a reduction mediated by irisin of 
obtained neuronal damage inducing an oxidative stress condition; this beneficial effect 
was caused bythe inhibition of expression and secretion of canonical proinflammatory 
cytokines [14]. 

 
Figure 3. FNDC5/Irisin signaling in the brain. Schematic representation of irisin action on neuron. Irisin stimulates 
synaptic plasticity, neurogenesis and cognitive improvement by induction of expression of brain-derived neurotrophic 
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factor (BDNF). Physical exercise further induces brain FNDC5 and irisin release. cAMP: cyclic adenosine monophos-
phate; CREB: cAMP response element-binding protein; ERRα: Estrogen-related receptor α; FNDC5: Fibronectin type III 
domain containing 5; PGC-1α: PPARγ coactivator 1α; PKA: cAMP-dependent protein kinase. 

7. Conclusions 
This comprehensive review has shown how the interest in the myokine irisin has 

grown exponentially. Aerobic exercise has a significant impact upon cognitive function 
in aging. The FNDC5/irisin system exerts an interesting role as an important exer-
cise-related factor acting on the aging brain. Its functions are dependenton irisin of pe-
ripheral origin or by its direct expression in the CNS, both of which are induced by PE. 
The administration of glycosylated recombinant irisin may improve cognitive function in 
animals, mimicking the effect of endurance exercise on specific brain regions such as the 
hippocampus. The physiological expression of irisin levels decreases with age, albeit 
irisin expression in muscle is higher in elderly high-fitness men than in elderly 
low-fitness men. This is not true for the young [129–132]. Thus, it is possible that the ag-
ing-induced reduction in circulating irisin level can be restored by sustained endurance 
training, and that this effect might be age-specific. 

In the future, it will be imperative to completely bridge the gap in scientific literature 
on the relationship betweenexercise-linked irisin and consequences on cognition in ag-
ing, considering that the therapeutic potential of exercise-linked irisin is very relevant, 
and that it could be highly useful in preserving cognitive performance, and in improving 
treatment of neurodegenerative diseases. 
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