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Abstract: Data-driven methodologies are among the most effective tools for damage detection of
complex existing buildings, such as heritage structures. Indeed, the historical evolution and actual
behaviour of these assets are often unknown, no physical models are available, and the assessment
must be performed only based on the tracking of a set of damage-sensitive features. Selecting the
most representative state indicators to monitor and sampling them with an adequate number of
records are therefore essential tasks to guarantee the successful performance of the damage detection
strategy. Despite their relevance, these aspects have been frequently taken for granted and little
attention has been paid to them by the scientific community working in the field of Structural Health
Monitoring. The present paper aims to fill this gap by proposing a multistep strategy to drive the
selection of meaningful pairs of correlated features in order to support the damage detection as a
one-class classification problem. Numerical methods to reduce the number of necessary acquisitions
and estimate the performance of approximation techniques are also provided. The analyses carried
out to test and validate the proposed strategy exploit a dense dataset collected during the long-term
monitoring of an outstanding heritage structure, i.e., the Church of ‘Santa Maria de Belém’ in Lisbon.

Keywords: structural health monitoring; damage detection; historical buildings; negative selection
algorithm

1. Introduction

Thanks to the latest improvements in sensing architecture (e.g., reduced size and
cost, increased reliability and ruggedness) and in computational strategies (e.g., faster and
reliable data fusion, machine learning, and optimisation algorithms), nowadays Structural
Health Monitoring (SHM) systems can be composed of large quantities of sensors of differ-
ent typologies and are capable of acquiring data with distinct sampling rate and formats.
These peculiarities make SHM-based methodologies very attractive for stakeholders, al-
lowing to collect—either directly or indirectly—a wide range of damage-related observable
quantities (e.g., cracks width, tilting, accelerations, velocities, etc.) and to integrate the
information content of each of them, by combining their sensitivity to damage with their
precision as global or local indicators. However, the result is a large amount of information,
easily up to terabytes of unstructured or semi-structured data per week [1], potentially able
to reduce the uncertainty, but extremely more demanding in terms of data management
and interrogation [2]. The complexity and the volume of this data flow is comparable
to the so-called “Big Data”, which refers to datasets that are almost unmanageable and
unprocessable with traditional approaches and tools [3–6]. Thus, to ensure the effectiveness
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of the structural monitoring as well as the interest of the stakeholders, the SHM system
should be designed in order to deliver and archive only the minimum amount of necessary
information, according to a process that can be referred to as feature selection. This consists
in the identification of the most significant Quantities of Interest (QoI) for the structure—
which might vary depending on the specific goal of the monitoring—and in the definition
of the best way to estimate them with enough accuracy. Not all the damage-sensitive
QoI, in fact, can be directly measured. In some cases, they are extracted from a related
observable quantity. The extraction is part of the data pre-processing stage together with
other processes such as data cleansing, data reduction, and data fusion. The aim of such
techniques is to correct or reject noisy or contaminated data and to merge information from
different sources, producing a new dataset with comparable reliability and information
content, but reduced dimensionality and uncertainty. QoI uncertainty and variability also
depend on non-damage-related factors. For instance, it is well-known that environmental
and operational variations (EOVs) may sensibly affect the properties of a structural system
(e.g., in terms of mass, stiffness, and stress level), resulting in changes of its dynamic
response. A brief state of the art on this topic is provided in Section 2.1. It follows that the
feature selection task is extremely problem-specific and must be tailored to the peculiar
characteristics of both the investigated system and the environment to which it is exposed.

Applying a feature selection strategy to a large dataset of a well-known structure
is relatively easy but investigating the structural fitness of a system that is completely
unknown, and whose behaviour is affected by many uncertainties, is quite challenging.
This situation is common when dealing with large historical constructions as in most cases
they were built in different phases, with various materials and structural elements, and
are therefore characterised by different states of degradation and accumulated damage.
Past interventions and unknown extreme loadings might have significantly jeopardized
the conditions of such buildings, leading to a behaviour that can be complex to predict
and interpret. Under these circumstances, the development of a reliable model for health
assessment needs a representative baseline of feature value distributions for different
operational and environmental conditions that may require a long preliminary monitoring
campaign. Reducing the size of the sample set necessary to develop and train such
models means reducing the cost, time, and computational burden associated to them. This
is particularly beneficial when the preliminary monitoring stage is carried out using a
continuous monitoring system (i.e., by installing permanent sensors across the structure),
but it is even more important when the SHM system is deployed and dismantled after
every record, since it allows to plan in advance the acquisitions.

This paper originates from the research framework outlined above and aims at tracing
a cost-effective feature selection strategy for SHM of historical buildings. The proposed
approach is meant to support the damage detection task intended as one-class classification
problem, which consists in the assessment of the state of a system as either safe or unsafe,
based on a set of features measured repeatedly over time. The classifier is a function trained
through a dataset from the reference state of the system. Among the algorithms suitable to
address such problems, the authors have recently investigated the applicability of Negative
Selection Algorithms (NSAs), developing a deterministic generation based version that
analyses the evolution of pairs of features at the same time [7–9]. The feature selection
strategy that will be described in Section 2 is tailored to this new version of the NSA and it
is based on the pairwise correlation of structural properties between themselves and with
non-structural factors. Moreover, different procedures to reduce the number of acquisitions
needed to achieve a good approximation of the system behaviour in the reference condition
are presented in the same section and appropriate codes developed for this purpose are
exploited. It is worth noting that such methodologies, although rooted in the same NSA
mode of operation, can be beneficial to any anomaly detection strategy, since the result is
a set of points in the feature space which can be employed to approximate the possible
response of any system in its reference condition and to train any data-driven algorithm for
damage detection. To establish whether or not the sample set is large enough, irrespective



Sensors 2021, 21, 7155 3 of 35

of the goals of the monitoring, specific performance metrics are tested in Section 3, to rate
the approximation. Given the necessity of a large validating dataset, the tests presented
hereafter are carried out by using quite a unique data set collected from the long-term
monitoring of the Church of the Jerónimos Monastery in Lisbon [10,11], which have also
benchmarked a previous experience of the authors of this work [8]. An extensive discussion
of the main results is provided in Section 4 with focus on the integration of all the proposed
strategies into a single methodology and on the analysis of the potential advantages for
stakeholders operating in the civil engineering SHM field. Finally, the conclusions are
drawn in Section 5.

2. Interpreting the Variability of The Structural Response to Support
Damage Detection
2.1. Effects of EOVs on Vibration Properties

A growing body of evidence about the effects of EOVs on buildings’ vibration prop-
erties has been published since the late 1980’s, especially in bridge monitoring. In this
regard, relevant examples ranging from short-span [12–15] to long-span bridges [16–18]
exist. More recently, similar studies have been carried out on large-scale structures, such as
stadiums or tall buildings [19–21]. The long-term monitoring of monuments confirmed
the influence of environmental conditions for this type of structures as well, and various
examples have been reported from several countries [11,22–31]. Although the majority of
them consist of stone/brick masonry buildings, earthen structures are not exempt from
these effects either [32,33].

Typical environmental conditions that affect the behaviour of structures and infrastruc-
ture systems are [34]: aerodynamic and hydrodynamic loadings; radiation environment;
temperature, moisture, and humidity levels. As regards operational conditions, they
usually depend on the live loads, which can be static or dynamic (e.g., traffic-induced
loading). Civil engineering systems related to significant mechanical processes, such as
those hosting heavy machinery, power plants, oil extraction pumps, etc., also undergo
different conditions due to power fluctuation, start-up and shut-down transients, moving
parts manoeuvres, changing mass loading (e.g., fuel levels in tanks, payloads of vehicles
operating over the system, etc.) [34]. Environmental conditions can affect structures, irre-
spective of their nature, through different processes, such as the thermal expansion and
contraction of the material (eventually modifying boundary conditions and causing cracks
to close and open), the stiffness variation, the stress (re)distribution, the appearance of
nonlinear effects and friction between elements, the variation of water content, and freezing
and thaw phenomena [15,35–38]. Such processes induce fluctuations in the global vibration
properties of the system, namely natural frequencies and structural damping, whereas
modal displacements are not as sensitive as long as the physical properties are altered
uniformly and the bearing conditions are not modified [36,39]. However, local nonuniform
variations of the physical properties, induced by EOVs, may also significantly affect the
mode shapes and, in the case of temperature effects, lead to seasonal cyclic trends [40]. The
combination of all the effects results in different trends of the structure-specific vibration
modes [19,41], thus distinguishing the contribution of each single factor, based on the time
histories, is almost impossible.

Masonry structures exhibit a peculiar behaviour opposite to concrete and metal sys-
tems, since the frequencies tend to increase linearly with the temperature. This has been
explained as an effect of the superficial cracks and discontinuities that close due to the
thermal expansion of the material. Still, for very low temperatures, the frequencies increase
inversely due to the closure of the cracks induced by the freezing of the system [28,29,42–44].
This phenomenon in some cases starts for temperature above 0 ◦C, determining either a
non-linear correlation or a bilinear correlation with a knee. Other local phenomena can
reduce the structural stiffness, and in turn the frequencies, with increasing temperature,
including a progressive out of plumb or the slackening of ties [42,44,45]. A few studies also
investigated the effect of relative humidity and wind speed on the structural behaviour.
Regarding the former, it has been demonstrated that increasing relative humidity, followed
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by water absorption, can cause downshifts in the natural frequencies of masonry structures
due to the mass increment [30,45]. As for the latter, it has been shown that increasing
wind actions can induce large tensile stresses in tall masonry buildings, which are likely to
reduce their stiffness, thus their frequencies [46]. In some cases the environmental effects
present a time lag as compared to the monitored quantity, that varies based on the physics
of the phenomenon [32,33].

The problem of developing a model able to explain and forecast the ambient-induced
changes of the modal properties of a structural system is particularly relevant for damage
detection purposes since the same modal properties are commonly adopted as damage
indicators. Indeed, research experiences demonstrated that frequency shifts due to low-
to-medium damage extents can be very small and easily masked by larger variations
induced by environmental conditions [15]. An extensive discussion on possible strategies
to filter-out non-damage-induced variations falls outside the scope of the paper, hence
interested readers can refer to [17,34,35,47–50].

2.2. Vibration-Based Damage Detection

In the context of SHM, damage detection can be formulated as a pattern recognition
problem addressed through machine learning algorithms [51]. In many civil engineering
applications, the lack of information on the system response in a condition that differs from
the reference one does reduce the damage detection problem to one-class classification [7],
the goal being to associate the measured features of the system to one of the two possible
condition states, e.g., safe/undamaged or unsafe/damaged, by training on baseline sam-
ples belonging to the safe state only. Machine learning algorithms may require a rescaling
of the analysed features to a predefined range [52], for instance to train and implement a
classifier within a unitary feature space, U = [0, 1]n, where n is the number of features
analysed (in the case of vibration-based damage detection, the features are derived from
vibration signals).

U consists of two complementary subsets, called self, S, and non-self, NS, such that:

S ∪ NS = U S ∩ NS = ∅ (1)

In a two-dimensional feature space, the self-space S is the region composed of all
the possible pairs of feature values belonging to the system in healthy condition. It has
potentially infinite elements due to the fact that EOVs and data noise induce shifts in
the feature values even without a change of the system state from healthy to damaged.
By contrast, the non-self-space NS is a region of the feature space gathering pairs of
feature values which belong to another, potentially damaged, condition of the system. The
previously introduced NSA performs the classification in terms of distance between new
features and detectors, which approximate the non-self-space. The detectors are generated
and trained against a set of representative self-samples S′. This set approximates the whole
self-space. Based on S′, in fact, a self-representation space Ŝ is modelled relying on the
concept of closeness, introduced through the self-radius rsel f

(
si), namely all the points x

of the feature space falling within a distance of rsel f
(
si) around the i-th self-sample si are

considered self:
Ŝ =

{
x ∈ U

∣∣∣∃si ∈ S′, ‖si − x‖ ≤ rsel f

(
si
)}

(2)

It is evident that the self-radius is critical for the performance of the classification,
especially for non-linear sample sets. A small radius can increase the false alarm rate
(detectors might fall in the holes within the self-samples), whereas a big radius decreases
the detection rate (the approximate self-space is larger than the actual, including portions
of non-self-space). In general, the definition of the radius is related to the problem of
boundary invasion (approximate self-space invading the non-self-space and/or detector
set invading the self-space). However, in most of the NSAs, this is a constant value whose
definition is not properly addressed. Only a few authors faced the self-representation by
using a variable self-radius, according to the statistics of the sample distribution. This
allows us not only to provide a better approximation of the self-space but also to reduce



Sensors 2021, 21, 7155 5 of 35

the number of samples required and their overlapping. In Figure 1, an example of two-
dimensional feature space, where the self-samples S′ with variable radius, are used to
censor the detectors by rejecting the ones that match with the approximate self-space. New
samples falling within the portion uncovered by the detector circles are not detected, thus,
the system is classified as undamaged.

Sensors 2021, 21, x FOR PEER REVIEW 5 of 34 
 

 

It is evident that the self-radius is critical for the performance of the classification, 

especially for non-linear sample sets. A small radius can increase the false alarm rate (de-

tectors might fall in the holes within the self-samples), whereas a big radius decreases the 

detection rate (the approximate self-space is larger than the actual, including portions of 

non-self-space). In general, the definition of the radius is related to the problem of bound-

ary invasion (approximate self-space invading the non-self-space and/or detector set in-

vading the self-space). However, in most of the NSAs, this is a constant value whose def-

inition is not properly addressed. Only a few authors faced the self-representation by us-

ing a variable self-radius, according to the statistics of the sample distribution. This allows 

us not only to provide a better approximation of the self-space but also to reduce the num-

ber of samples required and their overlapping. In Figure 1, an example of two-dimen-

sional feature space, where the self-samples 𝑆′ with variable radius, are used to censor 

the detectors by rejecting the ones that match with the approximate self-space. New sam-

ples falling within the portion uncovered by the detector circles are not detected, thus, the 

system is classified as undamaged. 

 

Figure 1. Example of detector distribution within a two-dimensional feature space after rejecting 

the detectors that match with the training self-samples, here considered with a variable self-radius. 

The use of statistical tools is due to the fact that the self-samples usually do not have 

a uniform distribution; they rather fall into a relatively stable range with a high overlap-

ping of the samples in dense areas. Therefore, a bigger radius should be set for the samples 

of the dense region and a smaller radius should be considered in the case of samples fall-

ing in the sparse region. Consequently, less samples with a bigger radius will cover more 

space, allowing to discard the redundant overlapping samples. Among the algorithms for 

the improved self-representation, some methodologies able to deal with such a scalability 

problem have been identified [53–55]. One of them has been already applied by the au-

thors in [9] to elaborate an enhanced version of NSA for the damage detection of a scaled 

masonry arch tested in laboratory conditions, pointing out the possible advantages of-

fered by the proposed approach but also highlighting the need for further analyses on 

full-scale structures exposed to real environmental and operational conditions. The pre-

sent research work provides a contribution to this latter point. 

2.3. Feature Selection Strategy 

Feature selection for SHM is the process that aims at identifying the QoI, namely the 

system features to be monitored and the exogenous factors whose effect must be filtered 

out, to support damage detection. The strategy analysed in the present paper is composed 

of two stages, as depicted in Figure 2. A preliminary study is first performed to identify: 

(1) the endogenous factors, namely the sources of vulnerability of the system, its material 

Figure 1. Example of detector distribution within a two-dimensional feature space after rejecting the
detectors that match with the training self-samples, here considered with a variable self-radius.

The use of statistical tools is due to the fact that the self-samples usually do not
have a uniform distribution; they rather fall into a relatively stable range with a high
overlapping of the samples in dense areas. Therefore, a bigger radius should be set for
the samples of the dense region and a smaller radius should be considered in the case of
samples falling in the sparse region. Consequently, less samples with a bigger radius will
cover more space, allowing to discard the redundant overlapping samples. Among the
algorithms for the improved self-representation, some methodologies able to deal with
such a scalability problem have been identified [53–55]. One of them has been already
applied by the authors in [9] to elaborate an enhanced version of NSA for the damage
detection of a scaled masonry arch tested in laboratory conditions, pointing out the possible
advantages offered by the proposed approach but also highlighting the need for further
analyses on full-scale structures exposed to real environmental and operational conditions.
The present research work provides a contribution to this latter point.

2.3. Feature Selection Strategy

Feature selection for SHM is the process that aims at identifying the QoI, namely the
system features to be monitored and the exogenous factors whose effect must be filtered
out, to support damage detection. The strategy analysed in the present paper is composed
of two stages, as depicted in Figure 2. A preliminary study is first performed to identify:
(1) the endogenous factors, namely the sources of vulnerability of the system, its material
and geometrical properties, and the aspects associated with its condition state (e.g., material
defects, current damages, or evidence of previous damages); (2) the exogenous factors,
such as hazards, peculiar operational conditions, loading, and environmental factors.
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Engineering judgment plays a relevant role in performing this task, and it should
always be supported by the knowledge acquired on similar cases, documentation, surveys,
inspections, sampling, experimental tests, and analytical and numerical simulations. It
is worth noting that these are typical sources for structural assessment and retrofitting,
as recommended by codes and standards, as the Eurocode 8 part 3 [56], the International
Existing Building Code [57], the ASCE/SEI Standard 41-06 [58], or the ISO 13822 [59],
among others. It follows that this stage of SHM can be framed into the actual methodology
to evaluate existing buildings, without additional costs, establishing a profitable link
between punctual assessment and long-term, informed, smart management of the assets.
By means of these sources, the aim of feature selection is the definition of future damage
scenarios under possible hazardous events, paying attention to the potential development
of ongoing failure mechanisms or degradation/alteration patterns. A set of endogenous
features representative of the system state are then selected according to their sensitivity to
the expected damage scenarios. The features selected according to these criteria will likely
own a large information content and could be good targets for the monitoring system to
readily warn in case of anomalous behaviour.

In the second stage, the non-damage-induced variability of the system features is anal-
ysed by investigating their normal range of variation against changing environmental and
operational conditions and their correlation with them. This process helps defining which
non-structural features should be monitored, if required, and which damage-sensitive
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features should be rejected from the list identified in the first stage, due to their excessive
sensitivity to other parameters that might hide damage-induced variations. Typical statis-
tical measures of central tendency (e.g., mean and median), of dispersion (e.g., standard
deviation and interquartile range) and shape (e.g., skewness and kurtosis) are used to
analyse the features value distribution. The correlation is qualitatively assessed by plot-
ting graphs, such as the seasonal trends and the scatter plots, and quantitatively defined
through indices such as the Pearson correlation coefficient. Whenever the relationship
between the variables looks strongly non-linear, other metrics can be used as, for instance,
the Spearman’s rank correlation coefficient.

The goal is the identification of a pair of properties forming a self-space with low
scatter. It is assumed that, due to the good correlation between the features, when a new
acquisition provides a point that falls outside the self-space, the system is likely to present
an anomalous and potentially damaged behaviour. Moreover, it is assumed that the better
the correlation, the smaller is the damage extent needed to push the value outside the
identified self-space. The effective damage sensitivity of the features can be estimated by
predicting the structural response against possible damage scenarios through experimental
or numerical simulations and then comparing the trend of the tracked features with their
reference baseline. Although, it must be stressed that predictions require either the support
of accurate models that are not always available or the possibility to carry out experimental
campaigns on accurate replica that are extremely expensive and often unfeasible, turning
this approach potentially misleading if the sources of uncertainties are not correctly taken
into account. To overcome this problem, it would be beneficial to use the same classification
algorithm to train and implement more classifiers in parallel operating in distinct feature
spaces (see example in Section 3.1) in order to take advantage of their different sensitivity
to various damage scenarios.

The identification of the final set of features to be monitored implies the defini-
tion of the related observables, the characteristics of the acquisition system, the algo-
rithms for feature extraction from the observables and other specific requirements of the
monitoring process.

2.4. Self-Space Approximation

As previously mentioned, the feature selection strategy aims at the identification of the
most representative features to be monitored based on the analysis of the self-region in the
feature space, especially in terms of values distribution. Still, the real challenge is to perform
this stage resorting to a reduced number of samples, in order to decrease the computational
load and, most importantly, the time and costs associated with the acquisition. To be
successful, this reduced baseline must be an unbiased sample set closely indicative of the
feature value distributions, namely it must be representative of the feature fluctuations
in the reference state, due to non-damage factors. Since various system’s features present
daily and seasonal trends, in many geographical areas, a proper investigation to set baseline
information would require at least a six-month time horizon; commonly, 18 months are
recommended. Still, a continuous monitoring over this time frame is not necessary if a
good approximation based on a reduced sample set is defined, with enormous advantages
in terms of costs and data overload. In this regard, a set of self-approximation strategies
are discussed hereafter. A generic flowchart is reported in Figure 3. Such strategies are
usually divided in two stages. The former stage aims at the definition of the expected
fluctuation range for the operational and environmental factors that are likely to affect
most the system structural response in terms of damage-sensitive features. The latter stage
consists of the preliminary monitoring of the damage-sensitive features under different
values of the operational and environmental conditions that are representative of these
factors’ values distributions.
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Similar to the feature selection, the self-space approximation is strongly case specific.
Testing, with the support of a critical analysis of similar case studies in the literature
allows the identification of the exogenous factors, which affect the structural response,
inducing a fluctuation in the damage-sensitive features. As introduced in Section 2.1,
depending on the actual condition, details, material and geometrical properties of the
structural system, different phenomena are expected to influence its behaviour. Given the
specific environment of the structure and its conditions of use, it is possible to distinguish
whether these phenomena are likely to happen and, eventually, discriminate the involved
exogenous factors. Finally, once the exogenous factors are identified, their expected range
of variation and their potential trend must be predicted. Due to the diffusion of weather
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stations and to the availability of historical climate data, it is possible to have not only a
good estimation of the expected limits of variation for the environmental factors in a certain
geographic area, but also a good forecast of their future values. Similarly, the frequency and
intensity range of the operational conditions affecting the structural vibration properties
can be, in many cases, predicted. Thus, even without deploying a dedicated monitoring
system on the investigated structure to track the environmental and operational factors,
one can use nearby existing monitoring stations to produce a preliminary estimate of
their values and to plan the acquisitions in order to be as representative as possible of the
expected range of the exogenous conditions.

The acquisition itself is performed in the second stage of the approximation strat-
egy. When the self-region of the feature space is sufficiently compact and convex, and
the expected range of the feature value variation is known, it is easy to achieve a good
approximation of S only based on a few points. However, the fluctuation of a structural
feature is rarely known in advance. The approximation strategy is thus based on the
assumption that, due to the correlation between EOVs and system’s response, records that
are collected from the system in extreme exogenous conditions should produce extreme
values of the features distribution. Thus, sampling the features by performing acquisitions
under different operational and environmental conditions that are as representative as
possible of the EOVs range, is likely to produce a sufficiently unbiased sampling of the
structural features. A second challenging problem, related to the self-space approximation,
is the definition of a reliable index of the quality of the sample that can be used to determine
whether the preliminary monitoring produced enough information. In this regard, some
measures are presented and tested in Section 3.2.1.

Two diametrical approaches for the approximation of the self-space are discussed
hereafter. The first one is deterministic, whereas the second one is stochastic. The two
essentially differ for the nature of the analysed variable. In the former, the goal is to use
the points to create an approximate self-space as the region within the envelope of the
points, irrespective of their distribution statistics. In the latter, the self-space is considered
as a stochastic variable whose probability density function is investigated based on the
available samples.

Deterministic approximation. The hypothesis underlying this approach is that the
self-space corresponds to the area within the most shrunk boundary enveloping the avail-
able points, intended as pairs of measured features. In many real applications there is no
clear definition of what the most shrunk boundary is. The lack of a univocal interpretation
of such a notion complicates its automatization. In the present work, a built-in MATLAB
function, based on the concept of alpha shapes and convex shapes, is exploited to address
this aspect. Add-on algorithms aimed at the same goal are under test and development.

Stochastic approximation. The stochastic approximation is strictly related to the
actual distribution of self-samples in real case studies. Indeed, self-points typically fall into
a relatively stable range presenting dense areas of overlapping samples surrounded by
sparse areas of rare samples. The stochastic approximation aims at defining the probability
distribution of the full self-population based on the distribution of a training set. Only a
few studies in the field of binary classification, particularly through NSAs, address this
specific problem, thus some techniques have here been collected and tested. All of them
define an approximation of the self-set as the area within a circle of given radius around
each sample. To take into account the varying distribution, samples have a different radius,
meaning that a bigger radius is set for the samples in the dense region, and a smaller radius
is set for the samples distributed in the sparse region and close to the boundary.

Three approaches are compared, using the same instances analysed for the determin-
istic case. The first one, called the affinity method [53], is based on the affinity density of
each sample a calculated as:

ρ(a) =
1

N − 1 ∑N
i=1

1
d
(
a, xi

) ,
(

xi 6= a
)

, (3)



Sensors 2021, 21, 7155 10 of 35

where d
(
a, xi) is the Euclidean distance between the sample a and the other (N − 1)

samples. In this case, the sample radius is given by:

rsel f (a) = R
ρ(a)− ρmin
ρmax − ρmin

, (4)

where R is the radius value for the maximum affinity density sample, whereas ρmin and
ρmax are, respectively, the minimum and the maximum affinity density for the sample.

The second approach is called the Gaussian method [54], since the probability distri-
bution of the samples is approximated by a Gaussian multivariate distribution. According
to the central limit theorem, the distribution of the sample mean is near to a Gaussian
distribution. As the number of samples increase, the mean of the samples approaches
the mean of a Gaussian distribution. Once the mean of each sample’s feature and the
covariance matrix are known, the joint Gaussian probability density function pd fa of the
sample a is calculated. As for this method, the sample radius is computed as:

rsel f (a) = R
pd fa − pd fmin

pd fmax − pd fmin
, (5)

where R is the radius value for the maximum probability density sample, while pd fmin
and pd fmax are, respectively, the minimum and the maximum probability density of the
sample set.

Finally the B-NN-ASR algorithm developed by [55] is applied as a third approach.
According to this method, for each self-sample, the distance to the k-th nearest neighbours
is calculated and the vectors, vi, connecting the sample to these neighbours are defined. The
sample is classified as boundary or internal according to the angle between such vectors
and the vector sum, vsum = ∑k

i vi as follows:

angi =
180◦

π
arccos

(
vi·vsum

‖vi‖ × ‖vsum‖

)
. (6)

The sample results internal if max(angi) ≥ α, otherwise it is classified as boundary.
Internal samples have a radius equal to the distance to the k/2-th nearest neighbour. A
boundary sample a is moved in the direction of the closest internal neighbour b up to the
point a+b

2 , and its radius is defined as:

rsel f (a) =
dis(a, b)

2
. (7)

In the present study, two different values for R and k are compared, namely R = 0.1,
R = 0.2, k = 4 and k = 6. Such values are selected through a pilot study within the range
of values found in the literature.

2.5. Combined Strategy

Feature selection and acquisition optimisation by self-space approximation are pre-
sented separately in the previous sections, since in real-world applications they are not
necessarily needed at the same time. For instance, if one has to design and deploy a
monitoring system for damage detection on a well-known building, feature selection might
be barely addressed and minimising the samples to train the classification algorithm is
the priority. On the opposite, when a large baseline dataset is already available and the
asset presents a complex behaviour, selecting the most representative features, by means of
numerical simulations and testing, is more important than optimising the sampling. How-
ever, the two tasks present several common activities, thus they are prone to be combined
into an integrated methodology suitable for the design of a sensor network for damage
detection of assets in case of very little knowledge. The flowchart depicted in Figure 4
provides a visual overview of the proposed methodology.
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Figure 4. Flowchart of the combined damage detection methodology.

The first design step of the flowchart coincides with the definition of the most relevant
endogenous and exogenous factors that can affect the structural behaviour in order to
select the expected damage scenarios. This step collects the first stage of both strategies as
they are largely overlapping.

The second stage of the self-space approximation, instead, is preparatory to the second
stage of the feature selection, thus, they are presented in a sequential order.
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3. Case Study: The Church of ‘Santa Maria de Belém’ in Lisbon

The Monastery of Jerónimos with the Church of ‘Santa Maria de Belém’, sited in
Lisbon, is most likely one of the most relevant monuments of the Portuguese architectural
heritage and a notable example of the Late Gothic Manueline style. It was built in phases,
from 1499, undergoing several interventions and modifications over time, especially in the
18th and 19th centuries. It is worth noting that the present methodology is tested on the
case study ex-post, since inspections, numerical analyses, and monitoring were performed
before, hence they were not planned by strictly following the methodology proposed herein.
Nonetheless, the large amount of information available on the monument is a priceless
validating dataset for testing the approach and its numerical features. Until the recent
investigations carried out by the University of Minho [10,11], the information at disposal
about the material properties and some of the structural details was very scarce. The
vulnerability of this monument, emerged after in-depth testing campaigns and numerical
analyses, combined with its exposure to a medium-high seismic hazard, suggested for the
deployment of a long-term monitoring system in the main nave. The data used in this
study is composed of 788 records collected through this monitoring system, measured in
255 different days between 25 June 2005 and 28 September 2009 (Table 1).

Table 1. Overview of the collected data.

Year N◦ Days N◦ Samples Month Range T Range
(◦C)

f1 Range
(Hz)

f3 Range
(Hz)

f4 Range
(Hz)

2005 11 24 25 June–22 November 17.19–30.39 3.705–3.943 6.27–6.781 7.09–7.524
2006 24 111 26 January–27December 9.09–31.83 3.639–3.939 6.23–6.652 7.16–7.53
2007 27 183 1 January–30 December 10.38–31.71 3.602–3.934 6.22–6.656 7.14–7.505
2008 17 221 1 February–24 April 12.68–25.95 3.605–3.936 6.21–6.51 7.12–7.476
2009 176 249 1 April–28 September 16.93–33.22 3.620–3.958 6.27–6.778 7.09–7.544

A reliable estimation of the first, third, and fourth natural frequencies was possible
throughout the investigated period. This dataset is the result of a data cleansing process
with the rejection of corrupted measurements, thus the number of records for the different
features is not always the same. For an extensive description of the inspection and moni-
toring campaign carried out in the Church of Jerónimos, the reader is referred to [10,11].
Hereafter, only the baseline information necessary to pursue the objectives of this work
will be considered.

3.1. Selection of Representative Features

The two-stage feature selection procedure described in Section 2.3 is here adopted to
select the most meaningful QoI of the church for damage detection purposes. As previously
mentioned, the first stage requires a comprehension of the specific risks associated with the
structure under investigation. The church is located in one of the areas with the highest
seismic hazard of Portugal. Indeed, the country is situated near the Eurasia-Africa plate
boundary, opposite the Atlantic Ocean. Even though the structure was able to withstand
the great Lisbon earthquake of November 1755, the following shakes of December 1756
led to the collapse of one of the columns and, consequently, to the ruin of part of the nave.
The columns of the nave are essential to support the curved vault that springs from the
two longitudinal walls and whose span is reduced through their large fan capitals. Yet,
these columns are very slender, featuring a free height of 16 m and a radius of just 1.04 m,
which slightly increases up to 1.88 m at the nave-transept intersection. During the surveys,
transversal deformations of the walls of around 6 cm and out-of-plumbness of the columns
ranging between 5 and 18 cm were measured. Moreover, cracks and signs of material
detachment were found in the vault and in the columns. Non-destructive tests allowed
to determine the section of both the vault (stone slab of 8–10 cm, laying on stone ribs and
covered with a mortar layer of variable thickness) and the columns. The latter are either
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monolithic or built with more limestone blocks (up to two-three blocks in the nave and
four in the transept), but cramp irons between the blocks were not found.

The various diagnostic investigations carried out in the church over years identified
the vault and the columns as the most vulnerable elements. Numerical analyses performed
through finite element models with different levels of refinement proved that the activation
of the most probable collapse mechanisms is indeed associated with the failure of these
elements. Furthermore, it emerged that the columns’ bearing capacity plays a fundamental
role not only against horizontal forces, but also in terms of building safety under gravity
loads [10]. From a dynamic standpoint, it was shown that the structural behaviour of the
church in the low frequency range is governed by the local modes of the slender columns.
Their effect is also evident in the global response of the structure for higher frequency
levels, as confirmed by the outcome of the Ambient Vibration Tests (AVTs) performed over
30 points distributed across the lateral walls, the top of the columns and the vault key.
Since the deflection of the columns appears to be well caught in the analysis of the modal
response of the church, it is evident that their long-term behaviour can be tracked by a
vibration-based monitoring. Therefore, in this first stage, natural frequencies are identified
as the most appropriate damage-sensitive features. For the sake of completeness, following
the general flowchart presented in Figure 2, a detailed scheme of the first stage of the
feature selection strategy is reported in Figure 5. The QoI identified for the case study
object of analysis are highlighted together with the most relevant operational, loading, and
environmental factors affecting the structural behaviour.
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Figure 5. Summary of the first stage of the feature selection strategy.

In the second stage, the features variation and their correlation with the environmental
factors are investigated. The influence of the thermo-hygrometric parameters on the
structural dynamic properties can be qualitatively evaluated by visualising the seasonal
trends illustrated in Figure 6. As it can be observed, the trends of temperature and
natural frequencies present clear similarities, although a higher dispersion for the frequency
samples is noted as compared to the smooth variation featured by the temperature values.
This is also evident by zooming in on the daily trend, as shown by the examples reported in
Figure 7 where the features are normalised to the [0,1] interval defining the unitary feature
space. Such a behaviour might be due to the influence of other exogenous factors on the
frequency values, such as humidity and wind speed even though these parameters do not
follow a clear seasonal trend (Figure 6).
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Figure 7. Example of the daily trend between 1 March and 4 March 2008.

As scatter plots offer a better insight into the behaviour of each feature and their
correlation, all the pairwise combinations of features are displayed in Figure 8. The
correlation is quantified through the Pearson coefficient, ρ, which is reported in the same
plots. Since the goal of the feature selection is the identification of pairs of properties to
be jointly monitored, the first check consists in evaluating whether or not each one of the
factors, by itself, is able to explain the frequency trend. The coefficients reveal a very slight
correlation between frequencies and humidity (Figure 8d–f), and a negligible correlation
between frequencies and wind speed (Figure 8g–i), meaning that the stress level induced
by the wind in the structure is very low. Moreover, the Pearson coefficient confirms the
good correlation between frequencies and temperature (Figure 8a–c). Finally, for the sake
of completeness, the two factors with the largest correlation (e.g., air temperature T and
relative humidity RH) are combined into a single parameter, namely the absolute humidity
AH, according to the following formula:

AH =
6.112· exp[(17.67× T)/(T + 243.5)]RH·18.02

(273.15 + T)·8.314

(
g/m3

)
, (8)

and its correlation with the frequency values is also investigated. This parameter has been
used to analyse monitoring data from adobe historical buildings (e.g., [32,33]), whose dy-
namic response demonstrated to be strongly affected by humidity. However, for the present
case study, the T-AH combination does not produce a better correlation (Figure 8j–l).
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It is well-known that, if measured in distinct structural parts, environmental factors
can present different variability ranges and time lags in their peaks due to the material
characteristics and the local conditions and exposure of the different locations. This time
lag can also interest the EOVs effect on the system vibrational properties [33,60,61]. Indeed,
EOVs within a single element or among different elements are rather non-uniform and
non-linear, especially in large-scale structures [12,35,62]. A recommended solution would
be to perform the feature selection considering different measurement points and testing
the correlation with properly averaged values. However, for the sake of simplicity, in the
present study, only a single measurement point for the environmental factors is adopted,
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and two possible alternatives are considered. First, the degree of correlation between
natural frequencies and temperature is estimated with a time shift of one hour, since the
sampling rate of the measurements allows to consider only hourly lags, but this produces
no further improvement in the Pearson coefficient (Figure 9). Then, the correlation is
estimated only between frequencies. The pairwise comparison of these global dynamic
properties shows that a very high correlation exists (Figure 10). A damage detection
performed on a feature space composed of two natural frequencies might be even more
effective, taking advantage of their different sensitivities to possible damage scenarios.
However, such a feature space lacks the control on the exogenous factors’ variability, hence
it is essential to sample the QoI for the training in order to guarantee the diversity of the
environmental conditions.

Figure 9. Scatterplot. One-hour lag between temperature and frequency.

Figure 10. Scatterplot. Pairwise comparison between natural frequencies.

In light of the foregoing, it is inferred that for the present case study different classifiers
may be analysed in parallel, considering feature spaces composed by temperature and
natural frequencies as well as by pairs of frequencies.

3.2. Approximation of the Self-Space

In the previous section, the feature selection was performed considering a large dataset.
In most applications, however, one can train the damage identification algorithm based
only on a few data, given the difficulties associated with extensive diagnostic investigations
and monitoring campaigns. The approximation strategies tested hereafter allow to reduce
the number of acquisitions required for the application of supervised learning methods
by introducing some control on the QoI sampling so as to ensure that the records are
sufficiently representative of the expected range of variation. Some indicators of the
quality of the approximation are also defined in order to assess if the sampling provides an
adequate number of points or if more acquisitions are needed. For the sake of brevity, only
the analyses performed on the feature space composed by air temperature and first natural
frequency are reported and discussed next. Nonetheless, the approach can be generalised
to any pair of features. As per common practice in classification, especially when working
with NSAs, the feature space is normalised to a unitary space.
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3.2.1. Deterministic Approximation

As mentioned in Section 2.4, the deterministic approximation of the self-space consists
in sampling the points of the feature space belonging to the self-region and defining the
area within the most shrunk boundary that envelopes them.

To analyse the performance of the approximation, it is assumed that the full self-space
corresponds to the area enclosed by the enveloping boundary of the whole measured
dataset (788 records). In real situations, no a priori information regarding the frequency
bounds is usually available. It is also assumed that the temperature is the main exogenous
factor that affects the system behaviour in the reference condition. Data provided by the
climate archive for Lisbon (e.g., the “Instituto Português do Mar e da Atmosfera” [63])
report an average minimum in the coldest month around 8.1 ◦C and an average maximum
in the warmest month around 27.8 ◦C. Extreme values recorded are 0.4 ◦C and 41.5 ◦C.
The average annual maximum temperature is 20.9 ◦C, the average annual minimum value
is 13.1 ◦C and the annual mean is 17 ◦C. Based on these data, a sampling is predefined
by dividing the temperature line in three ranges (<17◦, 17◦–25◦, and >25◦) and collecting
an equal amount of data in each range. Further analysis of the temperature distribution
might lead to a better definition of the ranges. From each subrange, 2, 3, 6, 12, 18, 25,
33, 40, and 50 samples are drawn, resulting in a total of 6, 9, 18, 36, 54, 75, 99, 120, and
150 samples. To assess the influence of the number of subranges, different divisions are
analysed, respectively, {3, 4, 6, 9} and {3, 4, 6, 8}, for the case of 36 and 120 samples. The
random generation of the samples simulates a real-world modal identification with the
only condition that it is carried out in a pre-defined range of temperature; furthermore, 10
repetitions per each number of samples are performed. No repeated samples are admitted
in the same set.

All these instances are compared against the exact self-space in terms of similarity,
intersection area and amount of covered non-self-space. The similarity is expressed as:

Similarity = 1− Union− Intersection
Union

. (9)

The first two metrics (similarity and intersection area) are an estimate of the percentage
of true negatives correctly classified, whereas the latter (covered non-self-space) is an
estimate of the percentage of false negative errors. False negatives are samples belonging
to a damaged state but classified as normal, being therefore considered the worst class of
errors in damage detection. It is worth noting that the self-space approximation is only
valid in the temperature range of the samples and the model beyond such bounds cannot
be inferred. However, the aim is not to assess the quality of the model itself, but the amount
of the global self-space that is represented, thus each approximate area is compared against
the full self-space.

As expected, the results of the deterministic approximation, reported in Table 2, show
that an increasing number of samples provides higher similarity and intersection area, but
also a larger covered non-self-area, even though this value has a scattered distribution,
affected by the number and the randomness of the sampling (Figure 11b). For a large
sample set, the non-self-coverage is due to the higher probability of sampling boundary
points, meaning that the approximate area does not fall completely inside the real one, since
this is not perfectly convex. For a small sample set, the number of points used to define the
boundary might be insufficient to describe the non-convexity of the self-space. Therefore,
this parameter cannot be controlled a priori and it is completely problem-specific.
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Table 2. Results of the deterministic approximation of the self-space.

Pt. Div. Area
Avg.

Area
St. dev.

Similarity
Mean

Similarity
St. Dev.

Intersection
Area Mean

Intersection
Area St.

Dev.

Non-Self-
Covered

Mean

Non-Self-
Covered
St. Dev.

Exact self-space 0.276 – 100 – 1 – 0 –
6 3 0.071 0.032 12.7 5.0 0.036 0.064 0.0022 0.0048
9 3 0.099 0.124 23.8 8.6 0.067 0.065 0.0038 0.0062

18 3 0.113 0.090 34.2 7.5 0.096 0.053 0.0037 0.0059
36 3 0.124 0.151 39.8 11.9 0.111 0.083 0.0024 0.0027
36 4 0.123 0.110 42.4 7.3 0.119 0.111 0.0047 0.0056
36 6 0.120 0.109 42.6 6.2 0.119 0.088 0.0040 0.0034
36 9 0.123 0.122 42.3 6.3 0.118 0.132 0.0022 0.0025
54 3 0.150 0.158 43.0 6.8 0.120 0.126 0.0029 0.0035
75 3 0.168 0.205 52.0 11.0 0.146 0.194 0.0040 0.0070
99 3 0.180 0.199 59.0 8.4 0.165 0.161 0.0033 0.0032
120 3 0.196 0.212 61.7 7.0 0.174 0.155 0.0060 0.0070
120 4 0.196 0.205 67.0 5.9 0.189 0.166 0.0068 0.0053
120 6 0.180 0.200 67.3 4.7 0.190 0.193 0.0059 0.0027
120 8 0.184 0.150 62.7 5.4 0.176 0.182 0.0042 0.0036
150 3 0.038 0.181 64.2 5.6 0.180 0.157 0.0043 0.0023
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The intersection area values show a logarithmic tendency (Figure 11a). The reduction
of tangent slope cannot be used directly as a criterion to define an acceptable number of
samples, since it requires the a priori knowledge of the real self-area. Nonetheless, a similar
trend appears in the approximate area plot and in the normalised incremental area plot
(Figure 11c,d), where this latter value is equal to the area growth due to the addition of
samples divided by the number of added samples. Therefore, these parameters can be
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used to define an acceptable number of acquisitions, which, for the specific case, is in the
range 36–75. In Figures 12–14, some examples of the area approximated by 36, 54, and
75 samples are reported, showing the outcome of 2 out of the 10 repetitions.
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In order to have a better insight into the sampling reduction, a single monitoring
instance is simulated, starting from an initial set of 6 samples and adding 1 record per time
up to 75. The resulting values of approximate area and normalised increment are reported
in Figure 15. The general trend confirms the results in terms of averaged values over more
repetitions as presented above. Sudden drops in the area value emerge, due to an excessive
shrinkage of the boundary caused by the automatic procedure. In Figure 16, an example of
such phenomenon, moving from 54 to 67 samples, is pointed out using arrows. Such an
issue can be easily solved by postprocessing the automatic identified area.
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The influence of the number of divisions has been analysed considering different
subranges (Figure 17). The underlying idea of the division itself is to guarantee an adequate
distribution of the samples along the temperature line, especially for a small dataset.
Increasing the number of divisions is unlikely to improve the performance for more than
four divisions in terms of approximate self-area. This phenomenon is most likely due to
a forced sampling in areas of the 2D space with less interest, leaving a fewer number of
samples for the dense area. Nonetheless, increasing the divisions reduces the non-self-
covered area, namely the risk of false negative errors.
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Finally, based on the available data, a possible plan for data collection is outlined. The
aim is to identify 60 records, 20 for each subrange of temperature. The closest instance
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consists of 63 samples almost evenly distributed (18–27–18) in the 3 temperature subranges
previously defined (Figure 18, Table 3). The 63 samples are collected in 7 days with hourly
acquisitions from 9 a.m. to 5 p.m. between 1 February and 1 July. Since the monitoring
is only simulated based on the existing dataset, the days reported do not belong to the
same year. However, they are indicative of the actual temperature irrespective of the year.
The trends of the approximate area and of the normalised incremental area are reported
in Figure 19. As seen in the case of Figure 15, the automatic procedure yields sudden
variations in the trends (Figure 19a,b). Thus, a manual modification of the approximate
area is performed, achieving a smoother trend (Figure 19c,d). The trend allows to identify a
small jump first due to the acquisitions collected from the second range of the temperature,
during the second day. A second significant jump appears when acquisitions from the
third range are added. After each jump the incremental area reduces significantly as
well as the tangent slope of the approximate area. Finally, the average daily trend is
introduced (Figure 19e,f) as a condensed index of the approximation quality. The average
daily incremental area, in particular, is able to capture more clearly than the hourly one
the sudden growth due to samples from the second and third range and the following
reduction in the increment when an acceptable approximation is reached.
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Table 3. Designed data campaign with results. Three colours are used to distinguish the three ranges.

Day Hour Temp.
(◦C)

Freq.1
(Hz)

Freq.3
(Hz)

Freq.4
(Hz) Day Hour Temp.

(◦C)
Freq.1
(Hz)

Freq.3
(Hz)

Freq.4
(Hz)

01/02 09:00 9.35 3.669 6.292 7.270 01/06 09:00 22.71 3.677 6.510 7.409
01/02 10:00 9.59 3.708 6.272 7.256 01/06 10:00 23.11 3.823 6.513 7.400
01/02 11:00 10.01 3.693 6.299 7.281 01/06 11:00 23.9 3.836 6.535 7.400
01/02 12:00 10.75 3.708 6.282 7.283 01/06 12:00 25.03 3.838 6.542 7.409
01/02 13:00 11.58 3.701 6.295 7.304 01/06 13:00 25.55 3.841 6.567 7.460
01/02 14:00 12.2 3.753 6.320 7.275 01/06 14:00 25.98 3.844 6.586 7.460
01/02 15:00 12.61 3.755 6.340 7.286 01/06 15:00 26.35 3.858 6.581 7.468
01/02 16:00 12.81 3.767 6.358 7.309 01/06 16:00 26.75 3.858 6.623 7.479
01/02 17:00 12.84 3.765 6.358 7.336 01/06 17:00 26.74 3.862 6.588 7.477
02/03 09:00 14.76 3.646 6.271 7.160 03/06 09:00 22.18 3.786 6.417 7.335
02/03 10:00 15.36 3.701 6.286 7.279 03/06 10:00 22.54 3.790 6.447 7.334
02/03 11:00 16.1 3.701 6.308 7.269 03/06 11:00 23.61 3.781 6.453 7.352
02/03 12:00 16.89 3.727 6.359 7.274 03/06 12:00 24.67 3.801 6.532 7.368
02/03 13:00 17.69 3.677 6.418 7.302 03/06 13:00 25.77 3.829 6.588 7.414
02/03 14:00 18.5 3.761 6.464 7.314 03/06 14:00 26.81 3.840 6.573 7.437
02/03 15:00 19.21 3.782 – – 03/06 15:00 27.66 3.850 6.620 7.464
02/03 16:00 19.75 3.797 – – 03/06 16:00 28.05 3.855 6.629 7.474
02/03 17:00 19.92 3.811 – – 03/06 17:00 28.07 3.867 6.655 7.474
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Table 3. Cont.

Day Hour Temp.
(◦C)

Freq.1
(Hz)

Freq.3
(Hz)

Freq.4
(Hz) Day Hour Temp.

(◦C)
Freq.1
(Hz)

Freq.3
(Hz)

Freq.4
(Hz)

03/03 09:00 15.77 3.680 6.254 7.204 01/07 09:00 23.64 3.790 6.398 7.313
03/03 10:00 16.27 3.680 6.286 7.242 01/07 10:00 24.56 3.766 6.404 7.312
03/03 11:00 16.82 3.701 6.324 7.350 01/07 11:00 25.67 3.771 6.433 7.310
03/03 12:00 17.62 3.720 6.368 7.316 01/07 12:00 26.26 3.821 6.455 7.350
03/03 13:00 18.02 3.729 6.395 7.343 01/07 13:00 26.8 3.734 6.500 7.351
03/03 14:00 18.35 3.757 6.405 7.301 01/07 14:00 27 3.802 6.514 7.395
03/03 15:00 18.91 3.742 – – 01/07 15:00 27.43 3.837 6.539 7.403
03/03 16:00 19.46 3.763 – – 01/07 16:00 27.92 3.855 6.543 7.403
03/03 17:00 19.47 3.755 – – 01/07 17:00 27.97 3.864 6.566 7.442
04/03 09:00 16.23 3.622 6.265 7.265
04/03 10:00 16.52 3.683 6.284 7.261
04/03 11:00 17.22 3.699 6.317 7.263
04/03 12:00 18.02 3.691 6.377 7.275
04/03 13:00 18.86 3.710 6.428 7.293
04/03 14:00 19.39 3.744 6.459 7.309
04/03 15:00 19.85 3.768 – –
04/03 16:00 20.1 3.819 – –
04/03 17:00 20.03 3.837 – –
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correction of some approximation (c,d), and daily average (e,f).

3.2.2. Stochastic Approximation

The three stochastic approximation algorithms presented in Section 2.4 are applied
and compared hereafter. Due to the characteristics of the sample set, for the B-NN-ASR,
the value of α, recommended to be equal to 150◦ [55], is here reduced to 110◦ to decrease
the number of points wrongly classified as external.

Their performance is evaluated in terms of self-coverage, SC, and non-self-coverage,
NSC. Namely, given the full set of 788 self-samples and a set of 326 artificial non-self-
elements (Figure 20), the coverage corresponds to the number of samples falling within the
circles approximating the corresponding set:

SC = N◦ o f sel f samples covered by the approximate sel f set
Total N◦ o f sel f samples

NSC = N◦ o f nonsel f samples covered by the approximate sel f set
Total N◦ o f nonsel f samples

(10)

The two aforementioned metrics are chosen because, in this case, the circles present a
large overlapping area, and a direct estimation of the covered self-space is not as straight-
forward as in the deterministic approximation.

The obtained SC and NSC are reported in Table 4. The results are also represented in
Figure 21 where the values of the SC are plotted against those of the NSC as points of a per-
formance curve for each algorithm. Based on the similarity between the receiver operating
characteristic (ROC) curve and the performance curve, a possible single metric to estimate
the quality of the approximation is defined, drawing inspiration from the well-known
Younden’s J statistic [64]. The metric ranks each point, namely a combination of algorithm
and number of samples, giving equal weight to NSC and SC. This metric corresponds to
the vertical distance from the point to the diagonal line (namely the difference SC–NSC). In
Table 4, for each performance curve, the point with the highest distance is reported in bold
and the best overall performance is underlined. Although most of the algorithm instances
reach the best performance for 120 samples, the metric values grow quickly up to around
36 samples, then the trend becomes almost constant for the increasing number of samples
(Figure 21c). This result is consistent with the outcome of the deterministic approximation
(see Figure 11).

As for the affinity and the Gaussian approaches, a tendency to increase both the self-
and the non-self-coverages is noted as the number of samples increases. Given the same R,
the Gaussian method outperforms the affinity, presenting a lower non-self-coverage for
the same self-coverage, thus being less prone to false negative errors. However, to achieve
the same self-coverage, the Gaussian approach requires more samples, especially for a
smaller R. As expected, when a larger radius R is adopted, less samples are required to
achieve a good coverage, however, the covered non-self-area quickly becomes significant.
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A smaller radius, even if more conservative, leads to the presence of holes in between the
approximate self-areas, which might induce false positive errors. This phenomenon can be
overcome by using the deterministic approximation since all the area within the samples is
considered as belonging to the self.
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54 3 0.800 0.036 0.919 0.160 0.758 0.008 0.922 0.079 0.884 0.141 0.940 0.201 

75 3 0.846 0.049 0.940 0.187 0.798 0.010 0.940 0.086 0.922 0.154 0.961 0.208 

99 3 0.887 0.059 0.954 0.207 0.826 0.010 0.944 0.083 0.924 0.158 0.960 0.198 

120 3 0.889 0.061 0.957 0.205 0.832 0.012 0.947 0.086 0.918 0.161 0.966 0.209 

120 4 0.918 0.077 0.977 0.241 0.864 0.017 0.965 0.099 0.936 0.166 0.977 0.212 

120 6 0.933 0.071 0.984 0.240 0.883 0.021 0.975 0.109 0.925 0.164 0.970 0.213 

120 8 0.931 0.069 0.987 0.233 0.874 0.022 0.972 0.112 0.925 0.142 0.962 0.182 

150 3 0.913 0.072 0.965 0.220 0.856 0.013 0.957 0.097 0.927 0.163 0.970 0.197 

Figure 20. Full self-set with its boundary and artificial non-self-set used for performance assessment.

Table 4. Average self-set and non-self-set coverage of the different stochastic approximations. In each column, the point
with best performance is highlighted in bold. The best overall performance is underlined.

Pt. Div.
Affinity 0.1 Affinity 0.2 Gaussian 0.1 Gaussian 0.2 B-NN-ASR k4 B-NN-ASR k6
SC NSC SC NSC SC NSC SC NSC SC NSC SC NSC

6 3 0.269 0.007 0.629 0.060 0.259 0.002 0.649 0.046 0.960 0.471 0.980 0.664
9 3 0.337 0.009 0.688 0.080 0.359 0.004 0.740 0.061 0.878 0.231 0.992 0.521

18 3 0.567 0.017 0.857 0.115 0.547 0.006 0.866 0.066 0.888 0.206 0.913 0.224
36 3 0.737 0.035 0.891 0.150 0.716 0.009 0.903 0.086 0.894 0.179 0.938 0.224
36 4 0.765 0.033 0.930 0.163 0.722 0.008 0.934 0.092 0.900 0.186 0.953 0.233
36 6 0.762 0.031 0.934 0.164 0.713 0.009 0.932 0.092 0.892 0.173 0.944 0.215
36 9 0.785 0.033 0.941 0.174 0.742 0.013 0.949 0.099 0.905 0.182 0.963 0.252
54 3 0.800 0.036 0.919 0.160 0.758 0.008 0.922 0.079 0.884 0.141 0.940 0.201
75 3 0.846 0.049 0.940 0.187 0.798 0.010 0.940 0.086 0.922 0.154 0.961 0.208
99 3 0.887 0.059 0.954 0.207 0.826 0.010 0.944 0.083 0.924 0.158 0.960 0.198
120 3 0.889 0.061 0.957 0.205 0.832 0.012 0.947 0.086 0.918 0.161 0.966 0.209
120 4 0.918 0.077 0.977 0.241 0.864 0.017 0.965 0.099 0.936 0.166 0.977 0.212
120 6 0.933 0.071 0.984 0.240 0.883 0.021 0.975 0.109 0.925 0.164 0.970 0.213
120 8 0.931 0.069 0.987 0.233 0.874 0.022 0.972 0.112 0.925 0.142 0.962 0.182
150 3 0.913 0.072 0.965 0.220 0.856 0.013 0.957 0.097 0.927 0.163 0.970 0.197
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Among the three methodologies, the B-NN-ASR algorithm showed a completely
different behaviour, proving to be less effective. Due to the characteristics of the training
set, the algorithm fails to identify the inner samples and, consequently, the boundary
samples are not moved toward an internal neighbour. For the same reason, the size of the
holes within the approximate self-space is much lower, but the non-self-area covered is too
large. Such results can be qualitatively seen in Figure 22, where the approximate self-set,
falling within the circles with variable radius around the acquired data, is compared with
the full self-set that corresponds to the area enclosed by the enveloping boundary of the
whole measured dataset (788 records).
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4. Discussion

The case study of the Church of ‘Santa Maria de Belém’, in Lisbon, has been explored
in this work to separately address two crucial aspects of the damage detection task: feature
selection and self-space approximation. Both the strategies can be combined into an
integrate preliminary step based on long-term monitoring and classification algorithm.

The process flow dissected in the previous sections can result in being beneficial not
only to technicians and the scientific community operating in the field of SHM and damage
identification, but also to the stakeholders and facility managers interested in investing in
SHM-based approaches as supporting tools for decision making.

Once the most relevant endogenous and exogenous factors that can affect the structural
behaviour are identified, critical damage scenarios can be defined. As for the present case
study, past analyses and diagnostic investigations identified the columns and the thin vault
of the church as the most vulnerable elements of the ensemble, as well as the structural
elements mostly affecting the dynamic response of the system in the low frequency range.
Thus, the natural frequencies of the first vibration modes of the church were considered
as damage-sensitive features, as their value is expected to change sensibly in the case of
variation in the column’s mechanical properties. The feature selection stage can be carried
out based on common techniques for the structural assessment of existing buildings,
thus, it does not involve extra costs for asset owners or facility managers. Information
regarding the exogenous factors is also easily accessible in most of the cases due to the
well-studied historical seismicity and the existence of national networks of sensors to
record environmental factors (e.g., temperature and humidity) and extreme events (e.g.,
earthquake). A dedicated sensor network for the exogenous factors can be deployed to
further refine the accuracy and the level of knowledge of the local conditions at the building
or element scale, but it is not strictly required at this stage, and punctual measurements
during the inspections can be easily performed. For the present case study, the vulnerability
and the condition state of the structure were evaluated through in-situ surveys supported
by radar investigations, opening of inspection windows, bore-drilling, chemical analysis
of the materials, and operational modal analyses. Moreover, numerical simulations were
performed by means of simplified models of the whole building as well as refined models
of single portions of it; the results were verified through simple hand calculations [10].
Carrying out an in-depth inspection and diagnosis phase is the basic requirement for
the appropriate design of a long-term monitoring system for damage detection, and it is
essential to support the safety assessment of the building in its actual condition and to
drive the decision-making procedures.

When aiming at the long-term damage detection, the self-space must be approximated
as best as possible by the optimising number and timing of the acquisitions. As for the
analysed structure, the preliminary monitoring was planned by pre-defining the days for
the acquisition according to the range of variability of the temperature in the area of Lisbon,
as provided by climate archives and weather forecast, since this parameter was expected
to be the most influential on the dynamic behaviour of the church. For the acquisition, at
least 60 samples—20 for each temperature sub-range—were considered necessary for a
good representation of the featured behaviour. Nonetheless, the approximation and the
monitoring are performed simultaneously, hence the approximation performance can be
assessed through ad-hoc metrics that do not require any information regarding the whole
dataset. If needed, more acquisitions can be demanded.

Several strategies, either deterministic or stochastic, can be used to carry out the
self-space approximation stage. As shown, a direct comparison between these techniques is
hardly possible, due to the differences in the functioning and in the region produced. With
respect to the deterministic counterpart, the stochastic approximate space might present
holes within the enveloping boundary of the samples and cover part of the feature space
outside of it. Since the stochastic methods are strongly related to the mode of operation
of the NSAs, they are preferable if used to prepare the training set of such algorithms.
For the present case study, among the applied stochastic techniques, the Gaussian with a
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radius equal to 0.2 produced the best performance. The deterministic approach, on the
other hand, is likely the easiest to be generalised to support the training of any damage
detection algorithm. Nonetheless, a combined use of deterministic and Gaussian strategy
is found to be beneficial, since it allows to assess the approximation by using different
metrics (e.g., normalised incremental area and approximate area for the deterministic
approach, optimum point of the performance curve for the stochastic approach); moreover,
a comparison of the resulting boundaries allows a critical post-processing, for instance
assessing if the deterministic approximation can be extended outside the boundary or
must be reduced according to the holes found in the stochastic approximation. During this
stage, a continuous monitoring system is not necessary, and this is extremely advantageous
because it does not require the installation of permanent sensors on a building. Even if
the costs due to deployment and dismantling of temporary sensors for each acquisition
day might be significant, the time requirement for the post-processing is strongly reduced,
since a very limited number of significant records is analysed. Besides, a reduced sample
set implies an easier data storage. On the opposite, continuous preliminary monitoring
requires the system to automatise the acquisition and transmission of data to a remote
server and needs to maintain a large number of sensors occupied for a long time. In
terms of data overload, these aspects can hinder the smoothness of the process, especially
considering that the preliminary acquisition entails many more measurement points than
ordinary long-term monitoring campaigns, as the system behaviour is unknown and must
be properly investigated. Non-continuous measurements might allow the stakeholders
to simultaneously perform the preliminary monitoring stage over more structures (e.g.,
within a six-month time horizon) even with a limited set of sensors, by alternating the days
of acquisitions.

In the third stage of the combined methodology, the sample set produced by the
preliminary monitoring is used to identify the most representative damage-sensitive QoI
for the long term monitoring. This task depends on the functioning of the damage detection
algorithm. In this work, the authors referred to a recently developed version of the NSA
which classifies the condition of the system within a two-dimensional feature space. Thus,
the correlation between the available features was investigated to define pairs suitable
to form feature spaces for the damage detection. To this end, a preliminary monitoring
consisting of 63 acquisitions, from 7 days of non-continuous monitoring, between 1 Febru-
ary and 1 July, was simulated (see Table 3). To demonstrate that the reduced sampling is
adequately representative of the whole dataset, thereby proving the effectiveness of the
self-space approximation, Figure 23 shows a qualitative comparison between the whole
population and the monitored data. As for the latter, the Pearson coefficient is highlighted.
Table 5 reports the statistics for both sets.

It is worth noting that, even though the distribution of the monitored data is not
completely representative of the population’s distribution, the Pearson coefficient values
are very close, suggesting that the feature selection can be performed on reduced datasets,
leading to similar results. The differences in the distribution are likely affected by a lack
of samples in the highest range of temperature. The maximum value of the population
is indeed 5 ◦C greater as compared to the monitored data. This lack might affect both
the interquartile distance, which is smaller for monitored data, and the skewness, which
becomes negative since the right tail is missing. Nonetheless, the measures of central
tendency are properly approximated. As for the natural frequencies, it is noted that
the extreme values are missing even though upper and lower ranges, which are cut off
by the sampling, are comparable. Similar to the temperature, the main difference is in
the skewness.

For the sake of brevity, only the correlation between frequencies and temperature is
discussed here. Still, the same approach was followed to analyse the correlation between
pairs of frequencies and between them and other environmental factors.

Numerical simulations can be also beneficial for the analysis of the effective damage-
sensitivity of the system features to support their selection. By using advanced numerical
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models, the damage scenarios can be simulated together with the effect of other exogenous
factors, allowing to explore the changes induced in the system response. Despite the advan-
tages, it is important to bear in mind that this approach might fail in representing all of the
most critical scenarios or in simulating them correctly, leading to a biased selection of the
damage-sensitive features. Moreover, numerical simulations can be time consuming and
computationally expensive, bringing on higher costs. Finally, it is stressed that whenever a
specific analysis of the features’ damage-sensitivity is not performed, the system condition
can still be successfully assessed, employing more classifiers in parallel and working on
different well-correlated feature spaces.

Sensors 2021, 21, x FOR PEER REVIEW 30 of 34 
 

 

Table 5. Statistics overview. Comparison between whole and reduced (simulated monitoring) datasets. 

 Whole Dataset Monitored Dataset 

 
T 

(°C) 

f1 

(Hz) 

f3 

(Hz) 

f4 

(Hz) 

T 

(°C) 
ΔT 

f1 

(Hz) 
Δf1 

f3 

(Hz) 
Δf3 

f4 

(Hz) 
Δf4 

Max 33.22 3.96 6.78 7.54 28.07 −15.5% 3.87 −2.3% 6.66 −1.9% 7.48 −0.9% 

Min 9.09 3.53 6.21 7.09 9.35 2.9% 3.62 2.7% 6.25 0.7% 7.16 1.1% 

Mean 21.16 3.77 6.42 7.32 20.31 −4.0% 3.77 ~ 0% 6.43 0.3% 7.34 0.4% 

St. Dev. 5.64 0.09 0.13 0.10 5.42 −3.9% 0.07 −24.4% 0.12 −11.9% 0.08 −17.9% 

Skewness 0.15 0.10 0.48 0.10 −0.25 −271% −0.14 −245% 0.14 −69.9% 0.20 96.2% 

Kurtosis −0.99 −1.0 −0.7 −0.7 −0.94 −5.0% −1.05 4.2% −1.27 86.9% −0.68 −1.7% 

Median 20.73 3.76 6.40 7.30 19.75 −4.7% 3.77 0.1% 6.42 0.4% 7.33 0.3% 

Interquartile 9.45 0.14 0.23 0.15 8.94 −5.4% 0.12 −16.9% 0.22 −4.0% 0.12 −19.7% 

Max. daily range 7.14 0.20 0.26 0.27 – – – – – – – – 

Min. daily range 1.27 0.04 0.09 0.05 – – – – – – – – 

 

 
(a) 

 
(b) 

 
(c) 

Figure 23. Overview of the data samples. Comparison between the whole dataset and the simulated monitoring campaign 

with reduced samples for the first frequency (a), third frequency (b) and fourth frequency (c). 
Figure 23. Overview of the data samples. Comparison between the whole dataset and the simulated monitoring campaign
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Table 5. Statistics overview. Comparison between whole and reduced (simulated monitoring) datasets.

Whole Dataset Monitored Dataset
T

(◦C)
f1

(Hz)
f3

(Hz)
f4

(Hz)
T

(◦C) ∆T f1
(Hz) ∆f1

f3
(Hz) ∆f3

f4
(Hz) ∆f4

Max 33.22 3.96 6.78 7.54 28.07 −15.5% 3.87 −2.3% 6.66 −1.9% 7.48 −0.9%
Min 9.09 3.53 6.21 7.09 9.35 2.9% 3.62 2.7% 6.25 0.7% 7.16 1.1%

Mean 21.16 3.77 6.42 7.32 20.31 −4.0% 3.77 ~0% 6.43 0.3% 7.34 0.4%
St. Dev. 5.64 0.09 0.13 0.10 5.42 −3.9% 0.07 −24.4% 0.12 −11.9% 0.08 −17.9%

Skewness 0.15 0.10 0.48 0.10 −0.25 −271% −0.14 −245% 0.14 −69.9% 0.20 96.2%
Kurtosis −0.99 −1.0 −0.7 −0.7 −0.94 −5.0% −1.05 4.2% −1.27 86.9% −0.68 −1.7%
Median 20.73 3.76 6.40 7.30 19.75 −4.7% 3.77 0.1% 6.42 0.4% 7.33 0.3%

Interquartile 9.45 0.14 0.23 0.15 8.94 −5.4% 0.12 −16.9% 0.22 −4.0% 0.12 −19.7%
Max. daily

range 7.14 0.20 0.26 0.27 – – – – – – – –

Min. daily
range 1.27 0.04 0.09 0.05 – – – – – – – –

5. Conclusions

This paper discussed a methodology to support SHM practitioners involved in the
damage detection of civil engineering systems, especially historical and monumental
buildings, in the definition of the most significant features/state indicators to be monitored,
and in the optimisation of the number of preliminary acquisitions necessary to drive this
selection. First, these two tasks were presented separately as they are not always performed
simultaneously on the same asset. Then, a combination of the two tasks was described
through a single workflow that merged the common activities and reorganised the specific
ones. These preliminary activities are also the common code’s requirement to structural
evaluation, making SHM easy to frame within existing building assessment.

It was shown that the feature selection process is extremely case-specific, depending
on the system components, on the surrounding environment as well as on the conditions
of use that might affect the structural response. A relevant case study was presented to
provide a deep insight in this regard. Moreover, as the feature selection must be tailored
to the characteristics of the employed damage detection algorithm, a Negative Selection
Algorithm based methodology, well-known by the authors, was used in the present work,
though the lessons learnt by this specific application can be easily adapted and generalised.

In what concerns the optimisation of the acquisition task, the motivations for reducing
the complexity of the preliminary investigation (e.g., monitoring period, amount of data,
number of permanent sensors, time and costs, etc.) were extensively discussed. In this
regard, the presented methodology was proven capable to achieve a sufficient approxi-
mation of the system behaviour based on non-continuous acquisitions properly sampled
over time. Different algorithms suitable for the methodology were tested and compared,
and simple metrics to assess the quality of the preliminary monitoring and the resulting
approximate feature distribution were presented. It was shown that such metrics do not
require any previous knowledge regarding the system feature distributions and can be
calculated during the execution of the monitoring to define when an acceptable level of
knowledge is reached.

In conclusion, the proposed combined methodology appears to be a cost-effective
strategy to investigate the behaviour of a poorly known system and to train a damage
detection algorithm for its long-term assessment. The amount of data necessary for the
training is very limited, making the information flow for damage detection easy to manage
and interrogate. Nonetheless, the relevance of such data is guaranteed by identifying the
most representative features and optimising its acquisition over time.
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