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Abstract: In recent years, lipid metabolism has gained greater attention in several diseases including
cancer. Dysregulation of fatty acid metabolism is a key component in breast cancer malignant
transformation. In particular, de novo lipogenesis provides the substrate required by the proliferating
tumor cells to maintain their membrane composition and energetic functions during enhanced growth.
However, it appears that not all breast cancer subtypes depend on de novo lipogenesis for fatty acid
replenishment. Indeed, while breast cancer luminal subtypes rely on de novo lipogenesis, the basal-
like receptor-negative subtype overexpresses genes involved in the utilization of exogenous-derived
fatty acids, in the synthesis of triacylglycerols and lipid droplets, and fatty acid oxidation. These
metabolic differences are specifically associated with genomic and proteomic changes that can perturb
lipogenic enzymes and related pathways. This behavior is further supported by the observation
that breast cancer patients can be stratified according to their molecular profiles. Moreover, the
discovery that extracellular vesicles act as a vehicle of metabolic enzymes and oncometabolites may
provide the opportunity to noninvasively define tumor metabolic signature. Here, we focus on de
novo lipogenesis and the specific differences exhibited by breast cancer subtypes and examine the
functional contribution of lipogenic enzymes and associated transcription factors in the regulation of
tumorigenic processes.

Keywords: breast cancer; de novo lipogenesis; extracellular vesicles; metabolism

1. Introduction

Breast cancer is the most common cancer in female individuals. In 2020, breast, lung,
and colorectal accounted for 50% of all new diagnoses of female cancers, and breast cancer
alone accounts for 30% [1]. Breast cancer is a highly heterogeneous disease characterized
by the presence of different subtypes with variable clinical outcomes. With the growing
amount of data generated by proteogenomic studies, researchers have been able to define a
detailed molecular landscape of each subtype, thus providing a detailed picture of genomic
alterations and altered functional networks [2–4].

Transcriptional profiling studies have defined four major breast cancer subtypes: lu-
minal A, luminal B, HER2-enriched, and basal-like [5]. Luminal breast cancers, which
include luminal subtypes A and B, are characterized by estrogen receptor (ER) and/or pro-
gesterone (PR) expression and confers a more favorable prognosis in part due to reactivity
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to anti-hormone therapies [6]. In contrast, baseline-type breast cancer such as ER negative,
PR negative, and HER2 negative (triple negative breast cancer, TNBC) has the highest
recurrence rate and worst overall survival rate among all breast cancer subtypes [6]. As a
consequence of this different genomic and proteomic background, breast cancers can also
be classified in terms of altered metabolic pathways and metabolite levels. For instance,
from the analysis of 228 non-treated breast cancer patients, three significantly different
metabolic clusters (Mc1, Mc2, and Mc3) have emerged. Mc1 is characterized by the highest
levels of glycerophosphocholine and phosphocholine, Mc2 by the highest levels of glucose,
and Mc3 by the highest levels of lactate and alanine [7].

This metabolic phenotyping results in enhanced nutrient uptake to support the
metabolic demand of tumor cells, but also to provide cells with metabolic intermedi-
ates, named oncometabolites, which sustain specific cellular processes [8,9]. For instance,
increased lactate production is a characteristic of ER− tumors due to the increased rate of
glycolysis and over-expression of lactate dehydrogenases [10].

In this scenario, lipid metabolic reprogramming is a hallmark in cancer [10,11]. Cancer
cells exhibit a “lipogenic phenotype” characterized by exacerbated levels of fatty acid
biogenesis, even in the presence of abundant circulating exogenous fatty acids and reflected
in the overexpression and increased activity of lipogenic enzymes [11–14]. Fatty acids or
derived lipid species are then critical for lipid synthesis and membrane structures, protein
modification and localization functions, and receptor localization and signaling of major
oncogenic signaling pathways [15].

Accordingly, the uptake of preformed fatty acids may also be an important mechanism
of cancer lipid acquisition. Several factors including genetic mutations and metabolic
conditions of oxygen and nutrient deprivation can drive this metabolic adaptation [16].
In the context of breast cancer, while the luminal subtype relies on de novo lipogenesis
(DNL) (or de novo fatty acid synthesis) as a source for biomass and energy requirements,
basal-like TNBC cells overexpress genes involved in the utilization of exogenous fatty
acids and triacylglycerol synthesis [17]. Lipid transport and uptake are indeed important
and under-appreciated aspects of lipid metabolism in cancer [18]. This aspect links lipid
metabolism with the activation of particular tumor cellular processes such as the epithelial–
mesenchymal transition (EMT) that is thought to contribute to cancer progression and
chemoresistance [19–21].

These findings highlight the role of lipid metabolism in breast cancer pathophysiology
and the tight correlation with multiple cellular processes. Here, we review this functional
crosstalk focusing on metabolic pathways related to DNL.

2. Lipogenesis in Cancer

In normal tissues, glucose represents the main source of acetyl-CoA for lipid synthesis,
a process known as DNL (Figure 1).

In this case, pyruvate, the glycolytic end-product, enters mitochondria where it is
converted in acetyl-CoA by the pyruvate dehydrogenase complex. In hypoxia, a common
feature of solid tumors, a metabolic reprogramming accounts for a reduction in the mi-
tochondrial conversion of pyruvate into acetyl-CoA that normally feeds the tricarboxylic
acid cycle (TCA) to produce citrate. As a result, glycolysis-derived pyruvate is primar-
ily diverted to lactate rather than to mitochondrial oxidative phosphorylation [22]. This
metabolic reprogramming allows the cancer cells to rapidly obtain ATP and glycolytic
intermediates to support anabolic demand.

Cancer cells adopt different metabolic adaptations for fatty acid synthesis, mainly
relying on glutamine or acetate as alternative substrates [22]. The reductive carboxylation
of glutamine-derived α-ketoglutarate, through the isocitrate dehydrogenase-1 (IDH1)-
dependent pathway represents, for different cancers, the main pathway to synthesize acetyl-
CoA for lipid synthesis [23]. TNBC cells often exhibit glutamine-dependent phenotype
upregulating both glutamine uptake and glutamine-related enzymes [24,25]. Consequently,
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TNBC may be more susceptible to glutamine-targeting therapeutics compared to luminal
types [25].

Figure 1. De novo lipogenesis and transcriptional regulation. In aerobic conditions, glucose-derived pyruvate fuels,
in the form of acetyl-CoA, the tricarboxylic acid cycle, to form citrate. Once exported in the cytosol, citrate generates
acetyl-CoA for fatty acid synthesis, mediated by sequential reactions of acetyl-CoA carboxylase and fatty acid synthase.
The resulting palmitoyl-CoA is used for the synthesis of complex lipids. The de novo fatty acids synthesis is regulated at
the transcriptional level by the SREBP-1c, PPARγ, ChREBP, and LXR receptor family. Abbreviations: ACC, acetyl-CoA
carboxylase; ACLY, ATP citrate lyase; ChREBP, carbohydrate-responsive element-binding protein; CIC, citrate carrier; FASN,
fatty acid synthase; FFA, free (non-esterified) fatty acid; αKG, α-ketoglutarate; LXR, liver X receptor; MPC, mitochondrial
pyruvate carrier; OAA, oxaloacetate; PPARγ, peroxisome proliferator-activated receptor-γ; PDH, pyruvate dehydrogenase;
SCD1, stearoyl-CoA desaturase; SREBP-1c, sterol regulatory element-binding proteins-1c; TCA, tricarboxylic acid cycle.

Acetate can be derived from a range of sources including extracellular acetate, hi-
stone deacetylation, and the recently identified conversion of pyruvate into acetate by
thiamine-dependent keto acid dehydrogenases as well as a reactive oxygen species-coupled
reaction [26].

In hypoxic conditions, breast cancers increase acetate uptake [27–30] and upregulate
enzymes converting acetate to acetyl-CoA such as acetyl-CoA synthetases (ACSS). Indeed,
acyl-CoA synthetase short-chain family member 2 (ACSS2) was found to be upregulated in
hypoxic breast cells [27,30].

Hypoxic cells can also rely on the uptake of fatty acids to compensate for reduced
glucose-based DNL [26,31]. Breast cancers have increased expression of fatty acid-binding
proteins (FABP3, FABP7 or FABP4) and CD36 [32,33], which are involved in the uptake
and subcellular trafficking of fatty acids [31,34,35]. Thus, in breast cancer cells, lipid
accumulation in the form of lipid droplets relies on a FABP-dependent fatty acid uptake,
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while DNL resulted in being repressed. Indeed, CD36 inhibition impaired angiogenesis as
well as migration and invasion of breast cancer cell lines [36,37].

3. Key Enzymes of De Novo Lipogenesis (DNL)

Cell requirement for fatty acids is normally met by the utilization of dietary fatty acids.
The amount of fatty acids synthetizes by DNL is of minor importance in most human
tissues, except for the liver, mammary gland, and to a lesser extent, adipose tissue [38].
However, the rate of DNL and the expression of several lipogenic enzymes are increased in
various cancer types.

DNL is a metabolic process by which pyruvate, mainly derived from carbohydrate
sources is converted into fatty acids (Figure 1) [38].

In aerobic conditions, pyruvate, the end product of glycolysis is transformed in acetyl-
CoA, which enters the TCA cycle by condensing with oxaloacetate to form citrate. When the
energetic charge is high such as after a meal rich in carbohydrates, citrate can be transported
from the mitochondria into the cytosol, where fatty acid synthesis occurs. Citrate efflux
into the cytosol is catalyzed by the citrate carrier (CIC), an intrinsic protein of the inner
mitochondrial membrane, which catalyzes an electroneutral exchange of citrate plus a
proton with malate. In the cytosol, glucose-derived citrate is converted into oxaloacetate
and acetyl-CoA by the ATP citrate lyase (ACLY). The obtained acetyl-CoA is required for
lipid synthesis during membrane biogenesis as well as for histone acetylation reactions to
regulate the expression of certain proteins in aberrantly proliferating cancer cells.

Key enzymes of DNL are acetyl-CoA carboxylase (ACC) and the multi enzymatic
complex fatty acid synthase (FASN).

ACC represents the rate-limiting enzyme of DNL, catalyzing the irreversible carboxy-
lation of acetyl-CoA into malonyl-CoA. The reaction requires biotin and ATP. In humans
and mammals, there are two isoforms of ACCs: ACC1 (or ACC-α) with 265 kDa and ACC2
(or ACC-β) with 280 kDa. ACC1 presents in the cytosol with a lipogenic role, so is particu-
larly expressed in lipogenic tissues and ACC2 is mainly associated with mitochondria in
oxidative tissues [39–41]. Therefore, ACC1 is enriched in lipogenic tissues such as the liver,
adipose, and lactating mammary gland, where it catalyzes the biosynthesis of long-chain
fatty acids. In contrast, ACC2 is highly expressed in oxidative tissues such as skeletal
muscle and heart, where it regulates fatty acid β-oxidation.

Cytosolic malonyl-CoA, produced by ACC, can be used for fatty acid biosynthesis. The
reaction is catalyzed by FASN. After priming with acetyl-CoA, FASN uses malonyl-CoA as
a carbon donor and NADPH as a reduced cofactor to produce palmitoyl-CoA.

By furnishing malonyl-CoA, ACC not only plays a key role in DNL, but also regulates
mitochondrial fatty acid β-oxidation, considering that malonyl-CoA is an inhibitor of
carnitine palmitoyl-transferase-1, the key enzyme of this metabolic process.

The de novo synthesized fatty acids can be used for the synthesis of complex lipids
such as phospholipids, ceramides, cholesterol esters, and triacylglycerols and thereby play
a major role in membrane structure, cell signaling, and energy storage. Following DNL,
the enzyme stearoyl-CoA desaturase (SCD) catalyzes the introduction of the first double
bond in the cis-delta 9 position of saturated fatty acyl-CoA giving monounsaturated fatty
acids, which are preferentially transformed into triacylglycerols for storage [41]. Two
isoforms of SCD have been reported in human cells, SCD1 and SCD5 [42]. Both isoforms
are overexpressed in luminal cancer models compared to the TNBC subtypes [43].

4. Transcription Factors Regulating De Novo Lipogenesis (DNL)

DNL is a highly regulated metabolic pathway. Having common features at their
promoter regions, lipogenic genes are coordinately regulated at the transcription level. The
transcription factors sterol regulatory element-binding protein-1c (SREBP-1c), upstream
stimulatory factor (USF), peroxisome-proliferation-activated receptors (PPARs), carbo-
hydrate response element-binding protein (ChREBP), and liver X receptors (LXRs) play
critical roles in regulating this process (Figure 1).
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SREBPs represent the master transcriptional factors regulating DNL. SREBPs are
members of the basic helix-loop-helix (bHLH)-leucine zipper transcription factors and
can be classified into three types: SREBP-2, SREBP-1a, and SREBP-1c. Whereas SREBP-2
preferentially regulates genes involved in cholesterol metabolism, SREBP-1 regulates fatty
acid synthesis enzymes. Expressions of ACC, FASN, and SCD1 are under the control of
SREBP-1c [44]. Moreover, SREBP-1c activates the expression of CIC both in hepatocytes [45]
and in the mammary epithelium [46] and SREBP-1 overexpression increases the CIC
transcript and protein levels. Moreover, SREBP-1 upregulates ACLY at the mRNA level via
Akt signaling [47].

Although SREBP-1 plays a pivotal role in regulating lipogenic gene expression, it is
not the only one. In vitro studies have demonstrated that insulin effect on FASN promoter
also requires the presence of the upstream stimulatory factors (USFs). USFs are bHLH-
leucine zipper transcription factors able to bind the CANNTG sequence present in the
promoter region of FASN. The effects of SREBP-1 and USFs on FASN are independent and
additive [48].

Lipogenic enzyme transcription may also be regulated by ChREBP [49], a glucose-
regulated bHLH transcription factor. In response to increased glucose levels, ChREBP
undergoes dephosphorylation steps that allow translocation from the cytoplasm to the
nucleus where, in association with its binding partner Max-like (MLX) interacting protein,
it binds carbohydrate response elements of lipogenic genes [50–52].

LXRs are members of the nuclear receptor superfamily that heterodimerize with
retinoid X receptor (RXR) [53]. Two isoforms of LXRs have been identified, LXRα and
LXRβ [53,54]. It has been reported that LXRs perform an important role in the regulation of
fatty acid synthesis. LXRs can activate lipogenic enzymes directly or by SREBP-1c. FASN
is transcriptionally regulated by both LXRα and LXRβ [54–56].

PPARs are members of the superfamily of nuclear hormone receptors that function
as ligand-dependent transcription factors. Upon ligand activation, they regulate the
expression of genes containing a specific response element, called the PPAR-responsive
element (PPRE), which consists of a hexameric nucleotide direct repeat of the recognition
motif (TGACCT) spaced by one nucleotide (DR-1). Three subtypes of PPARs termed α, δ
(or β), and γ, have been identified [57,58]. These receptors heterodimerize with the retinoid
X receptor (RXR) and alter the transcription of target genes after binding to PPRE.

Although PPARγ is considered to be the master regulator of adipocyte differentia-
tion, an increase in PPARγ expression has been associated with accumulation in hepatic
triacylglycerols. A study reports that PPARγ is capable of inducing lipid accumulation
in hepatocytes in which an increase in SREBP-1 as well as ACC and FASN expression is
also measured. These data suggest that PPARγ may play a role in stimulating lipogene-
sis [57–59]. Heterozygous PPARγ mutant mice exhibit smaller fat stores upon a high-fat
diet [60,61]. Recently, it has been reported that the overexpression of PPARα/RXRα and
PPARγ/RXRα heterodimers enhances CIC promoter activity in BRL-3A and 3T3-L1 cells,
respectively [45].

5. Role of DNL Enzymes in Breast Cancer

Oncogenic signaling has been reported to increase DNL in order to prepare the cell for
invasion and metastasis. However, it appears that not all breast cancer subtypes depend
on DNL for fatty acid supply. Indeed, while the luminal subtypes rely on DNL, the TNBC
subtype overexpresses genes involved in the utilization of exogenous-derived fatty acids,
in the synthesis of triacylglycerols and lipid droplets, and fatty acid oxidation (Figure 2).

To support the high demand of acetyl-CoA for the increased DNL, luminal breast
cancer cells increase glucose entry and glycolytic flux [62]. By transporting citrate into the
cytosol, CIC plays an important role in DNL. Thus, CIC inhibition can potentially limit
cancer cell proliferation. Indeed, inhibition of CIC activity by BTA was reported to reduce
breast xenograft tumor growth [63].
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Figure 2. Lipogenesis in luminal and basal-like breast cancer cells. In luminal breast cancer cells, glucose-derived acetyl-CoA
is the main source of citrate for the cytosolic synthesis of lipids. In basal-like, pyruvate is mainly converted into lactate in the
cytosol, and other substrates such as glutamine and acetate are used to support cell lipid synthesis. Additionally, basal-like
breast cancer cells increase free fatty acid entry in the cell to fulfill the β-oxidation pathway. Solid arrows signify the main
reaction processes and dotted arrows signify processes with a minor relevance. Abbreviations: FFA, free (non-esterified)
fatty acid; OAA, oxaloacetate; αKG, α-ketoglutarate; TCA, tricarboxylic acid cycle.

Changes in ACLY expression have been found in diverse types of tumors including
breast cancer, suggesting that this enzyme plays a crucial role in cancer metabolism [64].
ACLY has been reported to have a strong expression in breast cancer tissue, with respect to
adjacent normal tissues, and silencing ACLY expression in MCF-7 cell line suppressed cell
viability and increased cell apoptosis [65]. Accordingly, a study reported that genetic or
chemical inhibition of ACLY reduces, both in vitro and in vivo, proliferation, and tumor
growth [66].

In recent work, Lucenay et al. demonstrated that cyclin E, an independent predictor
of survival in patients with invasive breast cancer, upregulating ACLY activity leads
to lipid droplet accumulation, a process positively correlated with tumor growth and
development [67]. ACLY mRNA has been reported to be mostly expressed in the HER2-
enriched subtype with respect to TNBC, linking the expression of this enzyme to the EMT
process [65,66].

Several studies have highlighted the association between ACC 1/2 and FASN ex-
pression and activity with invasion, proliferation, and EMT [66–70]. Enhanced of both
expression and activity of FASN are considered early events in breast cancer progres-
sion [71] and blocking FASN can induce antitumor effects in TNBC [68]. Additionally,
inhibition of FASN by cerulenin can affect EMT [72] and reverse the hyperglycemia-induced
EMT phenotype [73]. Fasnall, a selective FASN inhibitor, reduced the proliferation of breast
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cancer cells and modulated the lipidomic profile of these cells by increasing ceramide levels
due to malonyl-CoA accumulation and consequent CPT-1 inhibition [74]. More recently,
CRISPR/Cas9 knockout of FASN in MCF-7 cells demonstrated that FASN inhibition has a
role in reducing proliferation, cell survival, cell size, cell cycle, migration, cell adhesion,
and DNA replication [75].

A study conducted by Alò and collaborators demonstrated that FASN overexpression
is associated with the stage of progression of breast cancer and that FASN expression can
be used as a prognostic indicator for disease-free survival and overall disease survival [76].
In breast cancer stem cell sub-populations, high expression levels of ACC 1/2 and FASN
have been correlated with increased cell survival and, in turn, with the formation of
pre-malignant lesions [77]. Moreover, a decreased level of palmitic acid, associated with
ACC1 and FASN gene silencing, can induce apoptosis in human breast cancer cells [70].
Interestingly, it has been reported that breast cancer susceptibility gene 1 (BRCA1) can
exert its tumor suppressor function by preventing p-ACC1 dephosphorylation and, in turn,
decreasing DNL [78].

ACC 1/2 and FASN expression in breast cancer cells is regulated by diverse growth
factors and sex hormones through their corresponding receptors such as PR, ER, androgen
receptor, and HER [79]. Based on this responsiveness, lipogenic enzyme expression is
associated with molecular subtypes, and then with the malignant phenotype of breast
cancers. Data suggest that in breast cancer cell lines overexpressing HER2, both FASN and
ACC1 levels increased compared with cells in which HER2 expression is relatively low
(such as MDA-MB-231) [80]. Indeed, induction of HER2 in MDA-MB-231 cells stimulates
ACC1 expression via the PI3K/Akt pathway [81]. FASN upregulation in HER2-positive
cells occurs throughout an SREBP-1-mediated mechanism. More recently, HER2 has also
been shown to directly phosphorylate and activate FASN activity [82].

It must be pointed out that a metabolic transition that suppresses lipogenesis and
promotes energy production is an essential component of metastasis in breast cancer. In-
deed, Snail, a key inducer of EMT, has been related to ACC2 suppression and increased
oxidation of mitochondrial fatty acids [83] and TGFβ1, which induces EMT, suppresses
ACC in MCF-7 cells [84]. Furthermore, epithelial breast cancer cells with high expression
of E-cadherin showed high expression of FASN, while mesenchymal cells with high expres-
sion of vimentin showed high expression of carnitine palmitoyltransferase-1 and therefore
of β-oxidation [84]. A recent work reports that in both human and murine breast cancers,
ACC1 inhibition, by increasing the level of acetyl-CoA, can favor acetylation and activation
of the transcription factor Smad2, and thus EMT and metastasis [85].

It has been suggested that SCD1 may play a key role in the generation of the malignant
phenotype as well as in the subsequent proliferation and survival of cancer cells [86].
Accordingly, SCD1 expression is enhanced in breast cancer tissues in situ compared to
normal tissue [87,88] and SCD1 expression was associated with shorter survival times in
breast cancer patients [89]. SCD1 was reported to be overexpressed in both HER2-enriched
subtype [90,91] and in breast cancer cells that overexpress mucin-1 [92]. Inhibition of SCD1
activity or silencing its expression leads to anti-proliferation effects in breast cancer cell
lines [93–98]. Moreover, ERα regulates SCD1 expression. Indeed, in vitro treatment of
MCF-7 and T47D cell lines with 17β-estradiol induces SCD1 expression and modulates the
cellular monounsaturated/saturated fatty acid ratio [99]. This was also observed in vivo,
where the relative amounts of phosphatidylcholines (PC) (36:1) compared to PC (36:0) and
that of PC (36:1) compared to lysoPC (18:0) were significantly higher in the cancerous areas
characterized by higher levels of SCD1 expression compared to normal areas [100].

6. Role of DNL Transcription Factors in Breast Cancer

SREBP-1 has been demonstrated to play a pivotal role in breast cancer tumorigene-
sis, in terms of cell migration and invasion and as a prognostic marker of tumor malig-
nancy [101]. Ectopic expression of SREBP-1 in MCF-10A cells significantly increased prolif-
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eration rate and mammosphere formation, suggesting that lipogenesis can augment the
self-renewal property of these cells, thus providing oncogenic transforming abilities [77].

After MCF-7 cell exposure to MAPK and PI3K inhibitors, a reduced mRNA level for
both SREBP-1c and FASN was found, while no changes in SREBP-1a and SREBP-2 levels
were observed [102]. Data from Freed-Pastor and collaborators showed that fatostatin, a
novel SREBP-1 inhibitor, significantly suppressed tumor growth in breast cancer [103].

ChREBP can activate target genes favoring downstream tumorigenic pathways [52].
Experimental evidence indicates that ChREBP may have a role in cancer pathology and
tumorigenesis, in particular, in transformed cells that reprogram their metabolism in favor
of aerobic glycolysis [104]. In this context, a study reports that ChREBP may play a key
role in the malignant progression of breast cancer by allowing metabolic adaptations to
take place in response to changes in oxygenation [52].

Some studies have demonstrated that PPARγ is overexpressed in breast cancer, sug-
gesting a possible role in tumor development and/or progression [105]. An immunohis-
tochemistry study conducted on 170 infiltrative breast carcinomas revealed that PPARγ
was inversely correlated with histological grade, indicating a favorable impact of PPARγ
expression on disease-free survival of patients with ductal breast carcinoma. Probable
cooperation with ERβ in exerting that favorable effect was also demonstrated [106]. More-
over, selective antagonism of PPARγ with T0070907 inhibited proliferation, invasion, and
migration in MDA-MB-231 and MCF-7 breast cancer cells [107].

MYC (proto-oncogene, bHLH transcription factor) is a transcription factor that controls
a variety of normal functions spanning from cell cycle, cell growth, protein synthesis,
mitochondrial function, and metabolism [108]. Upregulation of c-MYC and its downstream
effectors is associated with poor disease outcome, high metastatic capacity, and endocrine
resistance in breast tumors [109]. In luminal models, MYC appears to be involved in
the regulation of metabolic pathways downstream of β-catenin and ERα signaling, thus
associating the metabolic characteristics of intrinsic breast cancer subtypes on their ER
expression. In particular, in breast cancer, c-MYC represents a direct target and coregulatory
of ERα [110], and ERα and c-MYC act synergically to induce cell proliferation [111,112]. It
has been demonstrated that β-catenin knockout reduces c-MYC expression and increases
fatty acid synthesis in the breast cancer cell model MCF-7 [113].

A recent study analyzing over 2000 breast tumors highlighted the functional role
of MYC in the context of TNBC. MYC gene amplification is associated with the risk of
relapse, poor prognosis, and death. Recent studies have suggested that TNBC cells with
high expression of MYC have increased fatty acid β-oxidation to support their growth.
Therefore, fatty acid oxidation inhibition could be a potential therapeutic strategy for MYC
overexpressing TNBC tumors [36].

N-myc downstream-regulated gene 1 (NDRG1), also called differentiation-related
gene-1 (Drg1) and Cap43, is expressed in various normal tissues and suppressed in sev-
eral malignancies. NDRG1 has been reported to regulate the fate of lipid in cells with
altered lipid metabolism, thus contributing to breast cancer aggressiveness [114]. In vitro
and in vivo data demonstrated a possible role of NDRG1 in breast cancer differentiation.
NDRG1 silencing reduces cell proliferation rates, causing lipid metabolism dysfunction
including increased fatty acid incorporation into neutral lipids and lipid droplets [115].

7. Tumor-Derived Extracellular Vesicles (EVs) Modulate Breast Cancer Metabolism

Extracellular vesicles (EVs) are cell-derived vesicles produced from likely all cell
types during physiological and pathological processes [116–121]. EVs are classified in
exosomes, microvesicles, and apoptotic bodies, depending on their size and biogenesis.
However, the International Society for Extracellular Vesicles (ISEV), in a recent position
paper, has recommended the use of the term “extracellular vesicle” for all EV types,
with a generic definition in “small EVs”, if within 100–200 nm, and “medium/large
EVs”, if above 200 nm [118]. EVs carry specific cargoes including genetic material (e.g.,
mRNAs, miRNAs, lncRNAs, nuclear, and mtDNA), proteins (e.g., cytokines, chemokines,
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growth factors, or other signal transduction mediators), lipids and lipid mediators (e.g.,
phospholipids, sphingolipids, eicosanoids) and, in the case of larger vesicles, also whole
organelles (e.g., mitochondria) [118,119,121,122]. During the last years, the interest in
these vesicles has grown considerably due to their crucial role in many pathological
conditions including autoimmune, inflammatory, cardiovascular, metabolic diseases and
tumors [118,121,123–125].

In breast cancer, EVs are characterized by a specific protein cargo useful for the
detection and classification of breast cancer subtypes [125]. This includes proteins, phos-
phoproteins, protein kinases, and metabolic enzymes. For instance, glycolytic enzymes
were identified in breast cancer EVs including aldolase, glyceraldehyde 3-phosphate de-
hydrogenase, enolase, triosephosphate isomerase, fructose bisphosphatase 1, and phos-
phoglycerate kinase [125,126]. Santi and collaborators demonstrated that cancer-associated
fibroblasts can support tumor growth through the transfer of lipids and proteins to can-
cer cells by EVs [127]. Moreover, Achreja and colleagues demonstrated that cancer cells
internalize cancer-associated fibroblast EVs rapidly and that this phenomenon influences
intracellular metabolism. Indeed, lactate, transported by cancer-associated fibroblast EVs,
regulates glycolysis flux, and contribute up to 35% of the TCA cycle flux by providing
TCA intermediates and glutamine [128]. Sansone and colleagues observed that the full
mitochondrial genome was packaged in cancer-associated fibroblast-derived EVs and EVs
isolated from patients with hormonal therapy-resistant breast metastatic disease. The acqui-
sition of cancer-associated fibroblast-derived EVs-mtDNA by breast cancer cells influences
metabolism, promoting estrogen receptor-independent oxidative phosphorylation [129].

In a metabolomic analysis of cancer-associated fibroblast-derived vesicles, it was
found that EVs can transport metabolites required for lipid synthesis such as acetate, which
is required for lipid synthesis [130]. These data suggest that EVs can supply recipient cells
with lipogenic substrates, a feature highly relevant in cancer where tumor cells need these
building blocks to proliferate.

Recent studies have demonstrated that extracellular vesicles are able of carrying lipids
from parent cells to recipient cells such as fatty acids, cholesterol, eicosanoids, etc. which
may cause, among other things, metabolic changes [131–133]. However, a growing num-
ber of reports provide evidence that extracellular vesicles can regulate the expression of
classical lipid transporters such as CD36, ATP-binding cassette transporter A1 (ABCA1),
low-density lipoprotein receptor (LDLR), and ATP-Binding Cassette Subfamily G Mem-
ber 1 (ABCG1) [134]. A targeted quantitative lipidomic analysis of EVs and cells derived
from high-metastatic (D3H2LN) and low-metastatic (D3H1) TNBC cell lines found that
unsaturated diacylglycerol species were upregulated in EVs from high-metastatic D3H2LN
cells when compared with low-metastatic D3H1 cells without an increase in secreting cells.
EVs enriched in unsaturated diacylglycerols can induce phosphorylation of PKD/PKCµ

and PKCδ in endothelial cells, which leads to stimulation of neo-angiogenesis. Moreover,
unsaturated EV-derived diacylglycerols may contribute to EV-mediated education of other
surrounding cells to support tumor progression [135].

However, the role of EVs on lipogenesis depends on the cell of origin and growth con-
ditions. miR-126-3p was found to decrease lipid accumulation in mammary epithelial cells,
while its inhibition led to an increased number of intracellular lipid droplets concomitantly
with an upregulation, among others, of FASN and acyl-CoA synthetase long-chain family
member 1 (ACSL1) levels [136].

EVs are emerging as a novel mechanism to allow fatty acid transport between cells
and across cell membranes [133]. Indeed, FABPs, key extracellular and intracellular fatty
acid transporters, were found abundant in EVs released from many cell types [133].

Although the exact function within breast cancer is not yet fully understood, all of
these data suggest that EVs could play important roles in influencing lipid metabolism
in breast cancer. Therefore, the knowledge of their role in the different subtypes of breast
cancer could open interesting fields of study.
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8. Conclusions

Collectively, different studies indicate that breast cancer subgroups have a specific
lipogenic phenotype that can support a different metabolic demand, providing a metabolic
fingerprinting useful to classify cancer subtypes [137]. Therefore, while luminal subtypes
upregulate DNL, the basal-like model relies on uptake and storage of exogenous fatty acids,
which ultimately direct to β-oxidation. In this complex scenario, extracellular vesicles
seem to have an important role in tumor metabolic reprogramming, allowing the exchange,
between cells, of enzymes and metabolites useful for the lipogenic process. However, the
understanding of the mechanism at the basis of these cell communications still requires
considerable in-depth analysis.

Exogenous fatty acids might contribute to the constitution of structural lipids such
as sphingolipids, phospholipids, and cholesterol, and non-structural lipids such as tri-
acylglycerols and cholesteryl esters. Based on these considerations, it can be expected
that lipogenic differences among breast cancer subtypes can differently affect membrane-
associated cellular processes such as vesical trafficking, signal transduction, and molecular
transport [138]. Indeed, the endoplasmic reticulum membrane architecture and associated
enzymatic activities were mostly influenced in TNBC compared to the luminal cell line
after a long exposure to exogenous added polyunsaturated fatty acids [139].

On the other hand, cells characterized by enhanced DNL can present membranes
enriched with saturated and/or monounsaturated fatty acids, the end product of DNL and
SCD1 activity [140]. These cells are less prone to lipid peroxidation than cells with more
unsaturated membranes and more resistant to peroxidative damage and cell death [140,141].
Moreover, as saturated lipids pack more densely, increased DNL can also alter lateral and
transverse membrane dynamics that may limit the uptake of drugs, making the cancer cell
more resistant to therapy [139].

In TNBC, the described lipid metabolic remodeling can sustain the activation of
specific cellular processes or/and modify the lipidomic composition of these cells.

For instance, it appears that the activation of the EMT program is associated with an
increased expression of fatty acid uptake proteins including CD36 [98], and exogenous fatty
acids such as linoleic and arachidonic acid can initiate EMT in the human breast epithelial
cell line MCF-10A [141,142]. The dependence of TNBC from exogenous fatty acids is
reflected in the higher amount of phospholipid enriched in fatty acid with double bonds
in position 11 (PC 34:1) in TNBC with respect to the ER/PR+ and HER2+ subtypes [143].
Moreover, the prevalent incorporation of exogenous fatty acids in basal-like breast can-
cers, with respect to the estrogen-positive subtypes, is reflected in an increased level of
polyunsaturated fatty acid-enriched PC and cardiolipin molecules [141]. In this scenario,
the increased propensity of TNBC to form lipid droplets is seen as a way to sequestrate
potentially toxic lipids to maintain survival [144]. This aspect of TNBC cells makes this
cancer subtype more vulnerable to intervention toward the pathway of lipid droplet for-
mation. Additionally, knowing that claudin-low TNBC patients have a strong dependence
on fatty acid import throughout CD36, possible interventions toward CD36 and/or fatty
acid oxidation pathway in claudin-low TNBC patients have been proposed [36].

Overall, we can conclude that lipid metabolism represents an attractive model for
anticancer drug studies since it not only differs between normal tissues and tumors, but
also varies between tumor subtypes and concerning malignancy. Differences in the lipid
metabolism of breast cancer subtypes prompt efforts to uncover disease-specific lipid
alterations that can be proposed as diagnostic biomarkers.
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