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Abstract: The remote measurement of heart rate (HR) could have many applications, such as health
and emotional conditions monitoring. Currently, methods based on visible cameras have been
developed for HR estimation. However, the employment of such techniques with scarce illumination
conditions could be challenging. Infrared Thermography (IRT) could be a valuable tool to overcome
this limitation. This study investigated the possibility of estimating average HR with facial IRT
through a cross-validated machine learning (ML) approach. The correlation coefficient between
the estimated and the measured HR was 0.7. Although preliminary, these results demonstrate the
feasibility of estimating HR with IRT.

Keywords: infrared thermography (IRT); machine learning (ML); heart rate (HR); remote sensing;
support vector machine

1. Introduction

The remote sensing of health condition is fundamental to monitoring patients’ im-
provements during rehabilitation and therapy [1]. Moreover, during the COVID-19 pan-
demic, several solutions have been proposed in order to remotely assess the vital signs and
the clinical conditions of patients to avoid contagions [2]. Furthermore, the contactless mon-
itoring of the emotional and autonomic conditions of individuals during several tasks, such
as working and driving, could help improve the human safety and well-being. Among the
physiological signals, the heart rate (HR) could be suggestive of both the clinical condition
and emotional state of the subject [3]. Particularly, several contactless methods for HR
estimation based on a visible camera have been proposed [4]. However, poor illumination
conditions could be detrimental to these methods. A valuable tool to that could help over-
come this limitation could be the infrared thermography (IRT), which is a non-invasive,
contactless and low-cost technology that passively measures the radiation of a body, pro-
viding information on its superficial temperature [5]. Facial IRT could provide insight
on the human autonomic activity through the evaluation of the temperature time course
and spatial patterns [6]. Recently, machine learning (ML)-based approaches have been
employed for IRT data analysis to increase the capability of this technology in assessing
pathologies and to improve emotion recognition for human–machine interaction [7,8].
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This work aims to investigate the possibility of estimating the average HR from facial
IRT through an ML framework. Specifically, a Support Vector Regression (SVR) was
implemented to estimate the average HR from features evaluated on the temperature time
course of facial ROIs.

2. Material and Methods
2.1. Experimental Procedure and Data Acquisition

The experimental session involved 24 healthy volunteers (16 women and 8 men,
age = 51.46 ± 7.68 years). Participants were requested to perform a breathing task sitting
down in front of a computer. The rate and the intensity of the breathing was modulated
by a visual stimulus. The esperimental session lasted 1 min. During the breathing task,
the RR intervals were recorded using a photopletismographic (PPG) sensor (emWave Pro
Plus, HeartMath, Inc., Boulder Creek, CA, United States) positioned on the fingertip of
the subjects’ left hand. The sample frequency was 370 Hz. The facial temperature was
recorded by means of a digital thermal infrared camera FLIR SC660 (FLIR, Wilsonville,
OR, USA) (640 × 480 bolometer FPA, sensitivity/noise equivalent temperature difference:
<30 mK @ 30 ◦C, field of view: 24◦ × 18◦). The IRT device pointed toward the face of
the subject, at a distance of 60 cm. The sample frequency was 10 Hz. The camera was
blackbody-calibrated, in order to remove eventual drift/shift of the sensor’s response
and optical artifacts. The acquisitions were performed in accordance with the standard
guidelines for thermal measurements [9].

2.2. Data Preprocessing

Concerning the PPG signal, the cut-off frequencies were set at 0.2 and 10 Hz. The PPG
peaks were idenfied on filtered and normalized (z-score) signals. The procedure provided
an excellent automatic peak identification without the need of any manual correction after
visual inspection. The PPG peaks were used to evaluate the average HR during the 1 min
recording. The quality of IRT signals was checked by visual inspection. No video was
rejected. Three ROIs were selected on the nostrils, the nose tip and glabella. (Figure 1). The
temperature time course over the ROIs was obtained by applying a tracking algorithm [10].
From each ROIs, several features were computed: mean value, standard deviation, kurtosis,
skewness, difference between the average of the first and last 5 s of the acquisition, sample
entropy, the power at the respiratory, cardiac and myogenic frequency bands.
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Figure 1. ROIs placement on a representative subject.

2.3. Machine Learning Procedure

A regression based on SVM was implemented using a linear kernel. The input of the
models was constituted by the thermal features extracted from the different ROIs, and the
output was the HR evaluated from PPG. Of note, the metrics were normalized (z-score).
Since the number of predictors (i.e., number of ROIs × number of features, 27) was higher
then the number of participants (i.e., 24), a subset of the features was considered after a
features selection procedure based on the wrapper method [11]. Specifically, the standard
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deviation, kurtosis and sample entropy from the nostrils and glabella, and the skeweness
and power of the respiratory band from the nose tip, were employed as regressors. A
leave-one-out cross-validation was implemented to reduce the overfitting effect and to test
the generalization capabilities of the model. The performance of the model was evaluated
by correlation analysis, a Bland–Altman plot and paired t-test.

3. Results and Discussion

Figure 2 reports the correlation and Bland–Altman plot obtained by comparing the
measured HR with the cross-validated output of the model.
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Figure 2. Correlation and Bland–Altman plot associated with the measured and predicted HR.

The correlation coefficient was 0.70 (p < 0.001), and the paired t-test did not assess
significant differences between the measured and predicted HR (t = −0.33; d.f. = 23;
p = 0.75).

The results demonstrate the feasibility of employing IRT to evaluate average HR in a
contactless manner. The advantage of employing such a technology to monitor HR relies on
the possibility of concurrently evaluating several physiological signals (e.g., breathing rate,
facial temperature, sweat glands activity). IRT could indeed be used for remote sensing
in clinical applications, as well as to monitor the human well-being, stress and emotional
state for different purposes (e.g., automotive, workplace).

The limitation of this work is the reduced number of participants. However, it is
worth highlighting that the cross-validation procedure implemented allowed us to test the
generalization performance of the model. Moreover, an increment of the sample size could
deliver more accurate results and could allow us to test the performances of more complex
machineries, such as deep learning. Moreover, the ML framework proposed is able to
estimate the average HR over a temporal window of 1 min. Further studies are indeed
necessary to investigate the possibility to assess the HR in smaller temporal windows or
to predict the pulse signal itself. The latter could be fundamental to estimating heart rate
variability (HRV) metrics through IRT.

4. Conclusions

The paper proposed an innovative model based on SVR to estimate the HR from
IRT. The model was tested through correlation, the Bland–Altman plot and paired t-test.
Although preliminary, these results could pave the way for the employment of IRT for HR
and HRV assessment.
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