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Abstract

We present a microstructural model of permeability in fuaetl solids, where the fractures are described in
terms of recursive families of parallel, equidistant calregaults. Faults originate upon the attainment of
a tensile or shear resistance in the undamaged materiabn@ay faults may form in a hierarchical orga-
nization, creating a complex network of connected fracttinat modify the permeability of the solid. The
undamaged solid may possess initial porosity and permabihe particular geometry of the superposed
micro-faults lends itself to an explicit analytical quditttion of the porosity and permeability of the dam-
aged material. The approach is particularly appealing as@sof modeling low permeability oil and gas
reservoirs stimulated by hydraulic fracturing.
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1. Introduction

From the hydrogeological point of view, fractures and diggwities are among the most important fea-
tures of geological structures. In natural rock formatjdrectures and other types of discontinuities facilitate
storage and movement of fluids and represent the most ubicguitnd efficient conduits for fluid flowls [1].
The availability of fault and fracture mappings in resersas an important recent achievement in geology,
but the understanding of the influence of these structurélimhflows is still far from being satisfactory, in
particular when the mechanical coupling is significant. preblem is compounded by the complexity of the
topology and geometry of faults. Each group or class of §asltharacterized by orientation, spacing, dis-
tribution, and connectivity, in manners that affect theaptent of fluids, limiting or advantaging migration
and flow of fluids in a given environment [2].

Clearly, the complexity of natural fracture networks isated to the stress state history, which is often
unknown. Furthermore, cracks and fracture can evolve duket@ction of gravity, superposed localized
pressures, and shear tractions resulting from the viscokthe flowing fluids. Fracture processes are often
exploited in engineering technology, e. g., to improve apithoize hydraulic fractures for well stimulation in
low permeability reservoirs, to prevent water or gas owgbimto underground mines, to predict the integrity
of reservoirs for underground GB&equestration or hazardous waste storage, and in otherarapplication
[E]. The excavation of underground structures in rock magsguces cracking accompanied, in general, by
significant changes in flow and permeability due to the detation of geotechnical and hydrogeological
propertiesl[4].

Damage induced by mechanical or hydraulic perturbatiofisgences the permeability of the rock mass,
with significant effects on the pore pressure distributibtodifications in the pore pressure, in turn, affects
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the mechanical response of the material by poromechaniegdling. According to experimental obser-
vations at the microscopic scale, fracture evolution irksocan be interpreted essentially as a progressive
damage accumulation process, characterized by nuclegtionth and coalescence of numerous cracks fol-
lowing changes in the external load or in the internal po&splure|__[JEE|6]. In the particular case of hydraulic
fracturing, a stimulation technique used in petroleum stduto increase the oil/gas production in low per-
meability reservoirs, fractures are produced by the agilfincrease of the fluid pressure in a borehole. From
the theoretical point of view, it has been observed that titeess of hydraulic fracturing is related to: i) the
creation of a dense system of hydraulic cracks with limitealcing; and ii) the prevention or mitigation of
localization instabilitiesﬂ?].

The observation that intact rocks contain distributed fland cracks, arranged between particles of
various shape, has motivated the use of fracture mechangtsdy their organization and the conditions that
promote their growtH [8]. The description of two-dimensibflow through geometrically simplified fractures
embedded in infinite porous media can be found in numeroukestusee, e. g.D[ﬂO]. In particular, the
effective permeability of cracked materials has been aeal\theoretically, numerically, and empirically
[|1__'1|]. It is well known that standard approaches of fractuezhanics show limiting drawbacks related to the
explicit treatment of cracks. For example, models that diesthe damage of a material with the formation
of isolated microcracks, that do not form a connected né¢yare not able to relate the evolution of damage
to the enhancement of the permeability in a direct mecharfsshion. This drawback has been tackled
in recent studiemﬂmlq, where intersection and a&utgon between curve-shaped fractures have been
taken into account in numerical simulation of steady flow oid in anisotropic porous media.

As an alternative to fracture mechanics, continuum damagehamics considers the averaged effect
of microstructural changes, following a phenomenologaggbroach able to reproduce hydro-mechanical
responses during the progressive degeneration of rockgpiéal approach treats rock masses containing a
large number of discontinuities as homogeneous, anisotpmpous medidI]lS]. The cracks in the medium
are assumed to follow a probability distribution functl®DF(N, L, A) in terms of crack orientatioN, sizeL
and opening\. A symmetric crack tensor associated to the permeabilitydeof the cracked porous medium
is derived though an averaging procedure. The principaktions of the permeability tensor are coaxial to
those of the crack tensor. Thus, the first invariant of thelctansor is proportional to the mean permeability,
while the deviatoric part of the crack tensor is related #dhisotropic permeability.

In the framework of continuum mechanics, various method® Heeen developed to account for dif-
ferent factors in the theoretical evaluation of rock perbilég, e. g., the coupled effect of flow, stress and
deformation, the propagation of existing fractures, arerthcleation of new fractures. A simplified cou-
pled hydro-mechanical continuum approach, based on thisBieory of fluid saturated porous media and
on brittle-elastic solid with residual strength, was cdesed in a finite element model including damage
combined with elastic unloading/reloading/[16]. Howeverdraulic anisotropy and internal state variables
were not considered, thus the resulting permeability westéd as a scalar directly dependent on the stress
state. With a similar approach, a damage model accountirgyientation, size and number of penny-shaped
microcracks was used to predict the evolution of a scalampability in the context of the excavation of
underground openings [17.118]. However, as already nosetated microcracks fail to form a connected
network and, consequently, it remains unclear how they cmsiply contribute to the permeability of the
medium.

A micromechanical point of view has been takenlin [19] to asgke influence of local damage on the
macroscopic hydro-mechanical response of porous media.d@mage variables are related to the degra-
dation of elastic properties and to the characteristichefftacture network. Thus, the model is capable of
describing the evolution of the porous network with defotioraand the influence of deformation on perme-
ability [@]. The model distinguishes between the natumakmetwork, sensitive to the deformation of the
representative volume, and the crack network, enucleatidetidamaged material, and assumes laminar fluid
flow. The natural pore network is characterized by a Pore Biggibution (PSD) curve, updated with the
state variables and with the evolution of the cracks, arielirto the permeability. In spite of the anisotropic
nature of the crack pattern, a scalar value of hydraulic gotidity is defined by integration of the PSD.

Coupling between deformation and fluid flow has been accouoten a variety of ways. By consider-
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ing the volumetric strain as an additional controlling paeger, in ] numerical simulations of permeability
reduction (increase) upon elastic contraction (dilatiampcks are presented. Permeability is considered as a
scalar variable, although the approach accounts for flowih matrix and fractures. The dependence of rock
permeability on material deformation has been alterntieforced in terms of crack opening. An elaborate
coupled semi-empirical hydro-mechanical constitutivedegi@ccounting for anisotropic damage induced by
cracks and modification in permeability in brittle rocks endeviatoric compressive stresses was proposed
in [22]. The rock is regarded as a porous medium with embeduetbcracks. Upon homogenization, the
cracked material is treated as an equivalent porous medineresthe permeability tensor is decomposed
additively into initial and crack induced permeability seams. Here again, how permeability can be induced
despite the lack of connectedness of isolated microcraakain essentially unexplained. Since the microc-
rack distribution is orientation dependent, the crack pinility tensor has to be anisotropic in nature and it
is regarded as a function of crack number, orientationusadind average opening. The mechanical model is
formulated in terms of linear elasticity and the crack pigatéon conditions are based on linear elastic frac-
ture mechanics, without the support of a thermodynamieah&work. The effects of damage on anisotropic
permeability were discussed In [23] by adopting a relatigmbetween macroscopic and microscopic aspects
of damage, and exploiting micro-level analyses of flow tigtotandomly generated crack networks.

Models of distributed damage and permeability based onadisiamage mechanics are, of necessity,
empirical in nature and the precise meaning and geometheafamage variables often remains undefined. In
addition, the evolution of the damage variables and théitiomn to the deformation, stress and permeability of
the rock mass is described by means of empirical laws tha¢sept, at best, enlightened data fits. However,
the permeability enhancement due to extensive fracturfng ck mass depends sensitively on precise
details of the topology, which needs to bennectegand geometry of the crack set, including the orientation
and spacing of the cracks. In addition, the coupled hydrchaeical response of the rock, especially when
complex loading conditions and histories are of concermiigh too complex to yield to empirical data
fitting.

Based on these considerations, in this paper we endeavaviop a model of distributed fracturing
of rock masses, and the attendant permeability enhanceheebf, based on aexplicit micromechanical
constructiorof connected patterns of cracks, or faults. The approaandstthe multi-scale brittle damage
material model introduced iﬂlz4], which was limited to manltal damage. In contrast to abstract damage
mechanics, the fracture patterns that form the basis ofhtbery areexplicit and the rock mass undergoes
throughout compatible deformations and remains in stafiglérium down to the micromechanical level.
The fracture patterns are not arbitrary: they are shov\BMQbe optimal as regards their ability to relieve
stress, and the inception, orientation and spacing of #wdres derive rigorously from energetic considera-
tions. Following inception, fractures can deform by fiéetal sliding or undergo opening. The extension of
the theory presented in this paper additionally account8da pressure by recourse to Terzaghi's effective
stress principle. When the fluid pressure is sufficienthhhaxisting fractures can open, thereby contributing
to the permeability of the rock mass. The attendant perrigabhhancement can then be estimated using
standard lubrication theorly [25,]46, 27], resulting in dykdoupled hydro-mechanical model.

The paper is organized as follows. We begin in Sedtion 2 Mlitistrating the hydromechanical frame-
work, recalling the basic equations and the Terzaghi'scéffe stress principle. In Sectigh 3 we recall the
main features of the dry material model developed.in [24tpitucing a pressure dependent behavior at fault
inception. In Sectiofi]4 we derive analytically the perméigbassociated to the presence of faults in the
brittle damage material model. In Sectidn 5 we validate tla¢emal model by means of comparison with
experimental results taken from the literature.

2. Hydro-mechanical framework

Deterioration of mechanical and hydraulic properties cknmasses and subsequent problems are closely
related to changes in the stress state, formation of nevkgraad increase of permeability in porous media
saturated with freely moving fluids. In fully saturated recKuid and solid phases are fully interconnected
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and the interaction between fluid and rock is characterizeddupled diffusion-deformation mechanisms
that convey an apparent time-dependent character to theamieal properties of the rock.

The two governing equations of the coupled problem are tfeali momentum balance and the continuity
equation (mass conservation). The kinematic quantitias ¢haracterize this picture are the porous solid
displacementi and the rate of fluid volume per unit arga Hydro-mechanical coupling arises from the
influence of the mechanical variables (stress, strain esplatiement) on the continuity equation, where the
primary variable is the fluid pressure, and from the influenicthe hydraulic variables (pore pressure and
seepage velocity) on the equilibrium equations, where timegsy variables are the displacements.

2.1. Fluid flow in porous media

Fluid flow in porous media is governed by permeability, a groypthat measures the ability for fluids
(gas or liquid) to flow through a porous solid material. The/flaf a homogeneous fluid in a porous medium
is characterized by its velocity, of magnitudev. The energy of a flowing fluid is traditionally measured in
terms of total hydraulic heald that for slow flowing fluids reads

h=£+z,
,9

wherep the fluid density, and the gravitational acceleration. The pressure h&ad is the equivalent gauge
pressure of a column of water at the base of a piezometer.[@vation head expresses the relative potential
energy.

Fluid flow across packed porous media is generally chaiaeteby laminar regime (Reynolds number
Re< 1) and by a drop of the hydraulic he®th in the direction of the flow. Analytical models of fluid flow in
rocks use constitutive relations that link the averageaigi®f the fluid across the medium to the hydraulic
head drop. As representative example of constitutiveioglaDarcy’s law states that the discharge rate in a
porous media is proportional to the hydraulic head gradiedtinversely proportional to the fluid viscosity

q=-k2vh, 1
M

whereq is the discharge ratg, the fluid viscosity, andk the medium permeability tensor. Permeability is
intrinsically related to the void topology and does not actdor the properties of the fluid. In anisotropic

media, permeability is a symmetric (consequence of the @ms&ciprocal relations) and positive definite

(a fluid cannot flow against the pressure drop) second ordspi&. Real eigenvalues of the permeability

tensor are the principal permeabilities, and the corredimgreigenvectors indicate the principal directions of
flow, i.e., the directions where flow is parallel to the pressirop. Clearly, fractures modify the permeability

tensor, introducing new preferential directions for flumhfl Although affected by many factors, permeability
is primarily related to the rock porosity (or void fractiom)expressing the ratio between the volume of the
voidsVy and the total volum# that accounts also for the solid volurde

V V
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The rate of fluid volumeg is linked to the porosity through the continuity equatiorhiet for partially
saturated voids reads
9(nS:pr)

ot
wherep; is the density of the fluid phasg; the degree of saturation (i. e., the fraction of the fluid vody),
V- the divergence operator, angbt the partial derivative with respect to time. Under the agstion of fully
saturated voids and incompressible fluid, the continuitye¢ign becomes

=_V'pfq7
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We remark that the solid phase incompressibility assummiopted in the present model is not affecting
substantially the hydraulic behavior, mostly because th®gity of the matrix plays a minor role in the
hydraulic conductivity of the material. In fact the porgsind thus the permeability, is mostly imputable to
the formation of faults, reducing the relevance of the matdrosity.

2.2. Mechanics equations

In the absence of any occluded porosity, the solid graimsifoy the matrix generally undergo negligible
volume changes. In keeping with standard assumptions imgebanics, we consider the solid phase of the
matrix incompressible, thus we regard the change of thenvelaf the matrix as a change of the volume of
the voids of the matrix. This assumption is consistent whh adoption of the Terzaghi’s theory, in lieu of
the more sophisticated Biot theory, unnecessary for thestmn applications of the model. Moreover, we
consider fully saturated media.

The equations of mechanics in the finite kinematics framkwioe reported in Tablg 1 together with the
corresponding equations in linearized kinematics. In tipgations we denote witbr (P) the Cauchy (first
Piola-Kirchhoff) stressp (B) the spatial (material) body force vectdr(T) the spatial (material) surface
tractions,n (N) the spatial (material) outward normal to the boundaxy,P’) the effective stresg the pore
pressureg = symVu the small strain tensor, antthe jacobian of the deformation gradidnt

oX
X’

wherex and X are the spatial and material coordinates, respectively.

F=

Table 1: Mechanics and hydraulic equations

Equation Linearized kinematics  Finite kinematics
Linear momentum balance v+ b=0 DvP+B=0
Boundary conditions on=t PN=T
Terzaghi’s principle o=0'+pl P=P +pJFT
Solid constitutive law o =0'(e) P = P'(bF)
Darcy’s law g = —kogVh/u q=—-kogVh/u
Porosity n=ng+ Asy n=1-(1-ng)/J

In finite kinematics, the Eulerian porosity defined in Eq.i&haturally associated to the jacobian of the
deformation gradienl = detF = V/Vj,

1V, 1

n_JVO_l J(l No) , 3)
see Appendix A for details of the derivation. Note that forywéow values ofnyg Eq. (3) may provide
negative values of porosity far < 1, thus a zero lower-bound must be enforced in calculatidfesremark
that the solid phase incompressibility assumption adoiptéice present model is not affecting substantially
the hydraulic behavior of the medium, since the porosityhef matrix plays a minor role in the hydraulic
conduction of the model. In fact the porosity change, and tha permeability change, is mostly due to the
formation of faults, reducing the relevance of the porosftthe matrix.



3. Dry brittle damage model

The brittle damage model presented [24] is characterimed homogeneous matrix where nested
microstructures of different length scale are embeddedeakh level (or rankk of the nested architecture,
microstructures assume the form of families of cohesivétdagharacterized by an orientatiofy, and a
uniform spacing.x, see Fig[ 1(a). In keeping with well established matherabficocedures used to treat
free discontinuity problems, the constitutive model fa brittle damage is derived with a thermodynamically
consistent approach, by assuming the existence of a fragyedensity which accounts for reversible and
dissipative behaviors of the material.

3.1. Kinematics

(a) Reference configuration (b) Current configuration

Figure 1:Inelastic kinematics of the fault system. The opening dispineniA applied to all the faults at distantdeads
to a deformed configuration characterized by the inelagtiorthation gradienEf.

The key of the brittle damage model is given by the kinematsuanptions. We begin by considering the
particular case of a single family of fault planes of normadnd spacind., and later extend the behavior to
recursive nested families. The total deformation gradieof the material is assumed to decompose multi-
plicatively into a partF™ pertaining the uniform deformation of the matrix, and a setpartF’ describing
the discontinuous kinematics of the cohesive faults, i. e.,

F=F"F.

The deformation gradieri’ can be easily linked to the kinematic activity of the faulBonsider a material
vectordX, shorter than the system size but longer than the interia#e kcthat spans two material poings
andB in the material configuration F[g I{a). The numbeof faults traversed by the vector is

1
m=—dX-N.
L

Let us now apply an opening displacemanto each fault, Fig I(). In the spatial configuration the two
pointsA andB are joined by the vectaix given by

dx:dX+mA=dX+%(dX~N)A=(I +%A® N)dX,
where we set 1
Fr=1 +EA®N.

OnceN andL are suppliedF' andA are in one-to-one correspondence.
The fractured material may, in turn, accommodate a secaniyfaf faults:
F=fFmEt,  pmlo pm2pf?

This decomposition can be applied recursively for as mawglseas necessary; the innermost level will
maintain a purely elastic behavibF.
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3.2. Constitutive assumptions

The constitutive behavior of the brittle damage model feidhe introduction of a free energy density
sum of two contributions with full separation of variables

AF™,A.Q) = W(E™) + T0(A,0),
whereW™ is the strain-energy density per unit volume of the matbis the cohesive energy per unit surface
of faults, suitably divided by the lengthto provide a specific energy per unit of volume, anid a scalar
internal variable used to enforce irreversibility. Thetgarlar form of the energy densitiéd™ and® can
be selected freely according to the particular materiabgred. Note that the separation of the variables
excludes strong coupling between the two energies.

TA

Te

|
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q
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(@) (b)

Figure 2:(a) Irreversible linear decreasing cohesive law in termafefctive opening displacement and effective traction.
The enclosed area represents the critical energy relets&ga The maximum traction is defined by the cohesive
resistancd, and the the maximum opening displacement is indicated .byrhe maximum attained effective opening
g defines the internal variable of the model, used to diststgbetween first loading and unloading/reloading behaviors
(b) Kinematics of the single fault, defined by an opening ldispmentA, with a component\y along the normal and a
componentAr in the plane of the fault.

The cohesive energy of a fault with orientatibhis assumed to depend on an effective scalar opening
displacemena defined as

A= (-5 (A NY + BN,

where|A| is the norm of the opening displacement ghd material parameter measuring the ratio between
the shear and tensile strengths of the material [28]. lvvedithat the cohesive behavior is expressed in terms
of an effective cohesive la(A, g) = ®(A, g), dependent on the effective opening displacement onlg Th
effective tractionT is given by

T - ZiA) - \/(1_[3—2) (T-N)2+B2T]2. (4)

In applications, we use a simple effective cohesive lawjaliged Fig[ 2(3). During the first opening, the
cohesive law follows a linearly decreasing envelope, i. e.,

_[TA@-05A/A;) i A<A
©(A.q) = { Gc = 0.5T:A otherwise °’ ©)

whereG; is the critical energy release rate of the material,the tensile resistance, amg the critical
opening displacement corresponding to the full decohesidhe faults. Fracture is an irreversible process,
7



thus decohered faults permanently damage the material. eXtemt of damage is expressed through the
the maximum attained effective opening displacentert Anax. Irreversibility is enforced by assuming
unloading and reloading to/from the origin, see Fig.]2(e¢oading to the kinetic equation

. A if A=q and A>0,

q= {O otherwise ‘ ©6)
Tractions acting on the cohesive surface follows aleﬂ, [24

00 T > 5

_a—A_K[(l—,B)(A-N)N+,BA], @)

In the derivation of the constitutive model is necessarytmiduce the configurational force conjugaté\tp
given by

g%:%(l—ﬁz)(A-N)A. (8)
Damage irreversibility is a constraint of the brittle dareagodel, enforced in calculations through the growth
conditiong > 0. Moreover, upon fault closure the material model has tisfyahe impenetrability constraint,
i. e., the component of the opening displacement along thmalato the faults cannot be negative, thus
A - N > 0. More importantly, the model accounts for internal floctj a major dissipation mechanism in
geological applications. We assume that friction operatéle faults concurrently with cohesion. Clearly,
friction can become the sole dissipative mechanics if thigdoose cohesion completely upon the attainment
of the critical opening displacemefy. In considering friction, we resort to the approach propaséandolfi
etal. @] and make use of a dual dissipation potential pérarea¥*(A; F, A, q), whereA denotes the rate
of the fault opening displacement.

3.3. Variational Characterization

The behavior of irreversible materials with friction candbaracterized variationally by recourse to time
discretization@djq, where a process of deformatiomesyzed at distinct successive tings. . ., th.1 =
th + At, .... We assume that the state of the material at tina, andqy) is known and the total deformation
Fni1 at timet,,; is assigned. The problem is to determine the state of therial# timet,,,, accounting
for material constraints and dissipation.

Following [30,[24], the variational characterization oétmaterial model requires to obtain an effective,
incremental, strain-energy density,(Fn.1) by evaluating the infimum with respect 3.1 andgn,1 of the
extended constrained energy defined as

. At (Anig—A
Wn(Fn+1) = inf A(Fn+1» An+1» Qn+1) + T ',0 (%, Fn+1» An+1» On+1]- (9)
An+l, On+1
An+l “‘N=0

On+1 = On

The subindex used inW, signifies the dependence on the initial state. The irrebiitgiand the impenetra-
bility constraints render the effective strain-energysigni\, dependent on the initial conditions at tirpe

and account for all the inelastic behaviors, such as danmggeeresis, and path dependency. The constraints
of the minimum problem can be enforced by means of two Lagrangltipliersd; and.y, cf. [24]. Opti-
mization leads to a system of four equations, that proigle, gn.1, 41, andA,. Thus,W,(Fn1) acts as a
potential for the first Piola-Kirchhoff stress tend®y,; at timety,; [@], i.e., as

aWn(Fn+l)
6Fn+l .
The stable equilibrium configurations are the minimizershef corresponding effective energy. Note that

the variational formulation Eq[J9) of fault friction is nestandard in that it results in an incremental mini-
mization problem. In particular, the tangent stiffnessesponding to the incremental equilibrium problem

Pni1 = (10)



is symmetric, contrary to what is generally expected of asgeciative materials. In calculations we assume
rate independent Coulomb friction and, for the linearlyréasing cohesive model, we set

¥ (A; S™,N) = g max{0, —N - S"N} |A| (11)

whereu; is the coefficient of friction and we denote the symmetricosecPiola-Kirchhoff stress tensor of

the matrix of components
owm
I
The dual dissipation potential in Eq.{11) is rate-indepssnidi. e., is positively homogeneous of degree 1 in
A, and proportional to the contact pressure.
The fault geometrical featured andL can be determined with the aid of the time-discretized viaral
formulation as explained in the next section, cf) [24].

3.4. Fault Inception and Orientation

The actual orientatiol of the faults is defined by the surrounding stress state. &epinat the material
is undamaged at timg and that we are given the deformatién,, at timet,,1. We test two end states
of the material, one with faults and another without faustsd choose the end state which results in the
lowest incremental energy density,(Fn.1). The time-discretized variational formulation allowsatgcertain
whether the insertion of faults is energetically favoralgad the optimal orientation of the faults in the
fractured material. The orientation of the faultsand the remaining state variables are obtained variational
from an extended constrained minimum problem, i. e.,

. At (|Ansi— A
Wo(Fr) = it AP A Gt N) + 70 (B2 B g N) . (13)
N At
n+1» qn+1’
An+1 “N=>0
On+1 = On
NP = 1

Constrained optimization leads to a set of six equationsselsolution provides the optimal orientatidng,

A, and three Lagrangian multipliers. The optimal solutionféults undergoing opening without sliding has
been described iﬂt4]. For stress states in overall exdartBe frictional dissipation is null, and the resulting
normal aligns with the direction of the maximum principaluaof S™. For stress states characterized by
overall compression, here we provide a solution differeoirf the one reported ilﬁb4], and specific for
pressure sensitive materials. The two optimization equatinvolving the normaN are (for the sake of
clarity we drop the index + 1):

K2 Ny o 10D Atow

At
[A+r‘P*+/11A~N]= ——S +——+ 41N =0 (14a)

oA, TLrA-NI T Tan T L an
0 At
—[A+ =¥ + 1A - N+ 23N =
6N|[ TV A + A3IN[“]
A 100 AtoY*
STTA NSt IaN TNt 2N =0 (146)

Under a compressive stress, incipient faults are necésstosed,A, = 0, and can deform only by sliding,
i.e.,A-N = 0. We denote wittM = A/|A| the unit vector in the direction . Thus, the dissipation potential
can be written as

1A|
At’

‘P*(lA ;tA”';sm, N): —ut N-S"N (15)
and Egs.[(14a)-(14b) become

—ST]N‘]+ﬂTM|—,LlfN'SmNM| +|_/11N| =0
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Multiplying the first of these equations by, and the second by, we obtain the identities

—SEMJ—ZﬂfSJm'NJ+L/11M|+ N|=0.

SP}NJ'V“ + Mt STJNJN| ZIBT
223L
Al

The resulting equations imply that is a plane where the matrix shear stress satisfies the Mohlieo@d
failure criterion, in the classical form

SBNJM| +2/1f SBNJN| = (16)

=0T —us o, 7 =SIN;M,, o =SINyN;,

whereT must be intended equal & at fault inception. Thus, when faults fori8T. corresponds to the
cohesion (shear resistance at null normal stressjardtang the friction coefficient of the material. Eq.(17)
sheds light on the meaning of the paramgttrat, for pressure sensitive materials, identifies withftioéion
coefficientus. Finally, Eq. [I6) provides the lagrangian multiplieras

A

Az = —
3= S H

(T+o0).

Likewise, the lengtt. can be computed variationally by accounting for the misfrggE™S(A, L) contained

in the boundary layers that form at the junctions betweetif@nd a confining boundary. In the model, the
compatibility between the faults and their container iss§iad only on average, and this gives rise to boundary
layers that penetrate into the faulted region to a certgittdé he addition to the energy furnishes a selection
mechanism among all possible microstructures leading étexed energy, cf|ﬂ4].

So far we have been considering either an intact materiasimge family of parallel faults. The material
with a single fault family is referred to as rank-1 faultingtfern material. More complex microstructures can
effectively be generated by applying the previous consitungecursively. In the first level of recursion, we
simply replace the elastic strain-energy den®ty(F™) of the matrix byW,(F™), i. e., by the effective strain-
energy density of a rank-1 faulting pattern. This substtutan now be iterated, resulting in a recursive
definition of W,,(Fn;1). The recursion stops when the matrix between the faultsiresrelastic. The level of
recursion is the rank of the microstructure. The resultingrastructures consist of faults within faults and
are shown in Fid.1(a).

According to the particular loading history, at the titp@nd at the generic point the material is be charac-
terized by a particular microstructure with sevexabletermined in respect of equilibrium and compatibility
conditions. The model is therefore able to account for eiapening of the faults.

4. Permeability of the brittle damage model

Permeability is an overall important physical property ofqus media very difficult to characterize theo-
retically. For simple and structured models of porous mgubameability can be estimated through analytical
relationships that apply only under a narrow range of cooat The class of Kozeny-Carman type models
collects simple relations that, under the assumption ofrlanflow of the pore fluid, link the permeability to
the microstructural characteristics of the porous meditihe original Kozeny-Carman relatiomﬂ 33]

reads )
c n
k=—n (—) 17

8azr \l-n (17)

wherek is a scalar permeabilitg, an empirical geometric parametay, the ratio of the exposed surface of

the channels to the volume of the solids (also called speicifeznal s urface area), andthe tortuosity,

related to the ratio betwedn, average length of the channels, dndnacroscopic length of the flow path.
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The estimation of the shape coefficieatsandr has been promoting an active resealch @ﬁ@? 38].
electrical conductivity of rocks and the brine (salt saua)i saturation through quantitative relations I!@ 40,
m,@@ma. The complexity of the relationship betwéhe permeability tensor and a scalar property
such as the porosity in rocks has been clearly pointed__Q‘}Lt [46

The scalar nature of variables and parameters used in exadlytodels leads to scalar definitions, and
the correct tensor nature of the permeability is disreghrdenerefore, such models are not meaningful if
applied to soils characterized by the presence of sedirmi@niayers or fissures. Moreover, these models do
not allow for the modification of the porous medium microsture due to fluid-porous matrix interactions,
or by the presence of a variable confining pressure. In pdaticoermeability depends not only on the actual
stress and on the strain during the loading history, but afsthe evolution of the crack patterns, which is
anisotropic in nature.

Under the assumption of a perfectly impermeable matrix awmsiclering the presence of a single fault
family, the permeability tensor for the fractured britti@dage model can be directly derived from the partic-
ular geometry of faults. The permeability of a particulaogetry of parallel and equidistant faults has been
examined by Irmay@?]. Snovﬁiza%] and Parsdns [27] olet@diexpression for anisotropic permeability,
similar to the one described here, by considering netwdirpsauallel fissures.

We begin by recalling that the opening displacement deceepmto a normahy and a slidingAr
components, see Fig. 2[b), computed as:

An = N-A, As = (I =N®&N) A, As = |As], (18)

Let us assume that a fluid flows within the faults, filling theenpayers of constant widthy. The average
fluid flow, in laminar regime, will take place in the plane oktlayer. According to the solution of the
Navier-Stokes’ equation, the average velogityalong the generic directiogin the plane of the fault is

2
v = -9 (19)

wheredh/dsis the hydraulic head gradient in the direct®mhe assumption of laminar flow through a crack
has been widely used in the literature, cf., e.Lg_J, , 48] .cBnsidering a porous medium made of several
parallel faults of equal width, the discharggin the direction of the flow is

AN A2 pgoh
f N N P9
= = - _— 2
U =NVs="17Ay 12 4 o5 (20)
where A

nf N (21)

T L+ Ay

is a measure of the porosity due exclusively to the presehfzailts. By comparing Eqgs.[{20) and (1), we
obtain the permeability of the fractured material in difects as

An AR

ks = N
ST L+ AN 12

(22)

Now we want to restate the above equations in vector form.hjeaulic gradien¥h and the unit vectod
in the direction of the fluid flow are, respectively,

oh oh oh 0X1 0Xo 0X3
Vh= — —_— —_— = — P —e,. 2
6X1e1 * 6X2e2 * (3X3e3’ d 0s * 0s * Js € ( 3)
Thus, the directional gradiefih/ds can be expressed as
oh Vh.d- oh ox,  6h 9% oh 9xs (24)

s _a_na_i;a_xz%Jra_&as‘



The average velocitys in Eq. [I9) can be written as

A pg
Vo= -~y 2 vh-d (25)

and the average flow velocity vecteot, = vsd, becomes

_ M9 gn g 26
Vs—‘ﬁ;( -d) d (26)

Now, the hydraulic discharge can be written as

An AR P9
Tri 12 ded 2ivh, 27)

f
Os=N Vs =

thus the permeability tensor due to the presence of thesfilutterives as

2
r_ A Ay
L+AN 12

(d®d). (28)

To account for a generic direction of the flow in the layer ofmal N, in Eq. [28) we must replace the unit
vectord with the projection [ — N ® N), reaching the expression

PR

= a1 (- NeN). (29)

It follows that, as a noteworthy feature of the brittle damagodel, the permeability is described by an
anisotropic tensor.

If Q fault families are present in the porous medium, each cheriaed by a normalX, a separatiohX,
and a normal opening displacemeyft, the equivalent permeability is given by the sum of the cspomding
permeabilities:

Q 2

P o A
K

LK+ AR 12

The model does not exclude the presence of an initial pgroSitsee Eq.[(2), and permeabilik}", see
Eq. (IT7), of the intact matrix. In this case, the resultinggsity and permeability will be given by the sum of
the terms corresponding to the intact matrix and to the gault

(1 - N® e NX). (30)

n=n"+nf, k=km+ k.

In practical applications we assume an isotropic matrixqaability of Kozeny-Carman type, with the sim-
plified form
(n")?

k™ = kkcl . kKC=CKCm,

(31)

where the constaiixc accounts for shape coefficients.

We observe that the hydraulic behavior of the brittle damagdel is dependent on fracture orientation
and spacing computed on the basis of the boundary conditimisthat its permeability can vary according
to the kinematics of the faults.

5. Verification and Validation

Next, we present selected examples of application of theysodamage model, starting from a simple
one-dimensional analytical model that accounts for thegmee of the pore pressure. We continue by show-
ing the response of the fully tridimensional dry model uigdéng a loading that mimics a hydraulic fracturing
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process. We conclude with the validation of the model, répcing a few representative experimental results
on granite and sandstone.

We note that numerical calculations of the dynamic muliagompression experiments on sintered alu-
minum nitride (AIN) of Chen and Ravichandrﬁf[/@ 50,51, B2}e presented in [24] by way of validation
of the dry mechanical aspects of the model. The model wasrskmworrectly predict the general trends re-
garding the experimental observed damage patterns, aaswle brittle-to-ductile transition resulting under
increasing confinement. Therefore, in the present work ateicevalidation to the hydro-mechanical aspects
of the model.

5.1. lllustrative one-dimensional model with pore pressur

(e} o’
B
€ C,D,F
8I'T1
A Dl _B,C
E
E A E
. Ao
VT -
- -— p
B
—_ A -— A €
_= » o D, F
" C g
:, L S E Dic
. B
T L A, E
s | o F
' H
(a) Geometry (b) Results

Figure 3: One Dimensional example. (a) Size of the slab and of thedault external tractions. Plots of the behavior
of the one dimensional example. (top left) Relationshipveen total stress and total strain. (top right) Relatiomshi
between effective stress and matrix strain. (bottom le&)aRonship between pore pressure and total strain. (ootto
right) Relationship between effective stress and totaistr Point A denotes the maximum compression in the intact
material. Point B indicates the critical unstable faultdption state following the increase of pore pressure ara tot
deformation. Point C indicates the equilibrium state afditt formation, with pore pressure equal to the externatilo
Point D indicates the fault reclosure induced by a reduatibtihe total deformation at constant pore pressure. Point E
indicates the maximum reduction of the total deformationaaistant pore pressure. Point F indicates the attainment of
zero total deformation due to pore pressure increase.

In order to understand how the behavior of the brittle dammgdel in combination with the pore pres-
sure, we begin by illustrating a uniaxial case, i. e., thenitdislab of thicknessl shown in Fig[3, using a
linearized version of the model equations. Tensile straimsstresses are considered positive. The material
is assumed to be initially linear elastic, with no faults.eTatrix is characterized by a Young modukis
and a tensile resistandg. The slab is subject to a uniform uniaxial stresdue to a compressive traction
acting on the boundary. If no body forces are considerecedjodibrium equation becomes

do
— =0, o = const
dx

13



Terzaghi's effective stress principle states that thd sitasso- is balanced by an effective strassand by a
pore pressur@ acting everywhere in the porous medium, i. e.,

oc=0"+0p.

Following the kinematics of the brittle damage model, thaltdeformatiore splits in elastic part, related to
the behavior of the matrix, and in inelastic part, relatethopresence of the faults

E = Sm + Sf .
The elastic deformation defines the matrix elastic cortstéubehavior in terms of effective stress, valid up
to the attainment of the tensile resistarice

o = Ee™, o <Te.

If the effective stress exceeds, parallel faults form at the assigned distahce H, originating a discontin-
uous deformatios’ due to the jump\ of the faults

The four equationg(32)=(B2) involve the seven variabtes”, p, €, £, £, andA. Three variables can be
assigned, the other four follow from the equations.

Let us begin by applying a growing compressive tracti@m the slab surfaces up to the value —o
with a null pore pressure (from the origin to the point A in Bi@)). In this phase, we assign the total stress
o, p =0 and, since there are no faults= 0. We have

o = -0, " =0'/E, =0, e=¢gM

Next, we keepr = —o andA = 0, and let the pressugrowing up topmax = —o — T¢. The matrix behaves
elastically, from point A to point B in Fif 3(b), according to

o'=-c-p, " =0'/E, g =0, e=¢&"
The stress and deformation in the matrix are compressivenfiail values of the pore pressure and become
tensile forp > —o. Since in this phase the total deformation coincides withelastic one, the slab expands
progressively. When the pressure reaghgs, the effective stress reaches the resistance of the mjdriixt

B in Fig[3(B}, as

o =T.>0, e=e"=T;/E>O0,

and faults form at distande. After failure, the presence of faults modifies the mechapiche system. In
particular, the matrix is not able to provide a stress anartagix deformation goes to zero, i. &7, = 0 and
g™ = 0. To reach equilibrium, it is necessary to decrease the passure tq = —o or, alternatively, to
increase the external confinemenutdo reach the value gbmax In both cases, the total deformation will be
related only to the fault opening, no contribution derivesf the matrix. Up to the closure of the faults, the
governing equations become three, with five variablgp A, £ ands":

o=p, sfzs, A=Ls

We can assign two variables and use the three equationsstordee the others. For example, by keeping the
total deformation constant and setting, e = —o, we observe the instantaneous transfer of the deformation
from the matrix to the faults, point C in Hig 3{b):

o= p:—O_', 8=TC/E7 A:TCL/E (32)
14



If we keep the extensional total deformation constanttiada [32) hold for any value of the pore pressure,
because kinematics and equilibrium are not related by itotige assumptions, and changipg@r o will have

no effect onA. The behavior of the system can be further investigated byralling the total deformation
e. Let us keep the pore pressure constgng —o, and modify the boundary condition by progressively
reducinge. Until the total deformation is positive, 8 ¢ < T./E, faults are open and" = 0, ¢’ = 0, from
point C to point D in Fid 3(8). The opening displacement desifrom compatibility as

o=p, A =c¢gl.

When the total deformation vanishes, faults close and enteontact withA = 0, and the constitutive
relation in the matrix is reactivated. Fe 0 the total deformation transfers to the mateixs €™, restoring
a compressive effective stress

o = Ee™, oc=E"+p.

The compressive total stress increases proportionallgadtal deformation, from point D to point E in
Fig[3(b). Then, if we set the total stress constant, the deérmation can be progressively recovered by
increasing the pore pressure, form point E to point F i Fig}.3(

5.2. lllustrative dry example

The next examples are conducted in finite kinematics. Weialiez the strain energy density to a
neo-Hookean material extended to the compressible range, i

W(Fm) — %/1 |ng Jm + %G ((FmTFm) . I - 3 - 2 IOng) (33)

whered andG are the Lamé coefficients, add = detF™ is the determinant ofF™. We study the response
of the brittle damage model to the action of external loadgimgmicking the in-field conditions observed
during hydraulic fracturing procedures, and analyze threespondent variation in permeability. We assume
an intact material, with no pre-existent or natural fawdtsd limit our attention to the constitutive behavior.
The material is characterized by the constants listed ineldb The porosity and the permeability of the

Table 2: Rock material constants adopted in the illusteagivamples

A(MPa) G(MPa) T,(MPa) G.(N/mm) ¢ ko np
2778 4167 10.0 0.1 450 0 O

intact matrix are assumed to be null, thus the permeabilitybe exclusively related to the formations of
faults. The material is allowed to form up to three familiégaults, with different orientatioNX. Tensile
stresses and deformations are considered positive.

By assigning a prescribed history to the deformation gradiwe simulate a multistage multiaxial test
that mimics the in-field variation in stress and permeapilite to hydraulic fracture. The material is initially
compressed isotropically by applying a uniform streltghy = 1; = 2, = A3 = 0.99, to induce a geostatic-
like stress state. Then, the material undergoes an isoteopensiom; = 1, = A3 = 1.01, associated to the
reduction of the effective stress due to the injection ofghlpressure fracturing fluid. Given the isotropy
of the stress state, at the extension corresponding to thmraent material strength the material fails in
tension, creating in sequence three families of faultd) witrmal in the directiong,, e;, andes, respectively.
The microstructure of the three families differs becausdittérent spacings. Upon fault closure, the failed
material is able to sustain an overall compressive stregsnterpenetration of the faults being controlled by
the contact algorithm. In the last stage of loading, the nelts compressed with an anisotropic stretch. A
A1 = Ao = 0.97 stretch is applied in directio® ande,, while the original geostatic-like stretchh = 0.99 is
applied in directiores. Fig.[4(a) shows the mechanical response of the model itdiree;. The material
initially undergoes a compression (black circles). Théfeing extension induces a tensile state that reaches
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Figure 4:Multi-stage multiaxial response of the material, undemgcan isotropic compression, followed by an isotropic
extension, and by a final anisotropic compression. (a) S&tre@MPa) vs strairz;. Although the material fails, generating
three nested families of faults, the material preservesbitity of sustaining load. (b) Permeability (mjrin directione,

as a function of the strain. (c) Permeability (fjrin directione, as a function of the strain. (d) Permeability (fjnn
directione; as a function of the strain.

the strength of the material and causes triple tensileriailapen circles). The final compressive stretch is
characterized by a null stress until faults close completéfterwards, the contact algorithm provides the
compressive tractions that guarantee the equilibriumesitstem (grey circles). The resulting reduction of
the stiffness of the material due to the damage is remarkable
Figs.[4(b-d) show the permeability in directien e;, andes, respectively. The permeability is null until

the material fails (black circles). Then the permeabilégeches a maximum corresponding to the maximum
extension imposed to the material (open circles). The mdiffevalues of the maximum permeability for the
three directions is the combined result of the differentsmpof the fault families and of the stress anisotropy
derived from the formation of faults. Upon fault closurermpeability decreases to zero (gray circles). Note
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that the anisotropy of the compressive loading causes taojsoin the permeability history. In particular,
the permeability reduces more quickly in the directianwhere no extra-confinementis applied. In fact, the
over-compression in the two directioasande, closes the faults parallel to directi@s, while the flow is
still allowed in the faults normal tes.

5.3. Validation of the porous model against experimentsiiies
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Figure 5: Validation of the brittle damage model versus the expertaleiests on Lac du BonnéﬂlS] and Beisahr] [53]
granites . The sample is confined with a 10 MPa pressurec)&€viatoric stress - strain behavior. (b)-(d) Permesgpbili
variation with the deviatoric stress.

Experimental data of triaxial compression tests with pexildy measurements are available form the
literature. In this section we validate the porous britdendige model, considered at the constitutive level,
against experimental results of tests performed on diftereaterials. To facilitate the comparison with the
experiments and according to the typical conventions ofrgeainanics, in this section we assume compressive
strains and stresses as positive. Material constants ehtitel used in the validation are listed in Table 3.
Elastic modulugE, Poisson coefficient, friction coefficientus, porosityng and permeabilitkg of the intact
rocks were recovered from the experimental papers. FEE@ndy we computed the Lamé constants needed
by the elasticity model through the relations

1= vE G- E
CA+v)(1- 2\/)1’7 C21+v)°



Table 3: Material constants used for the validation of théemnia model

Rock EMPa) v T.(MPa) G¢(N/mm) ¢(°) ko(mn?) ng
Lac du Bonnet granite [18] 68,000 0.21 50 10 46.4 ~1®0 0.20
Beisahn granite [53] 52,000 0.21 60 10 350 -0 0.08
Berea sandstone [54] 8,000 0.18 50 50 29.0 %10 0.21

The cohesive parameterg, G¢, not available from the experimental papers, have beebreddid through
preliminary analyses.

We begin with the simulation of the triaxial tests on sampiésac di Bonnet and Beishan granites
documented idﬂ@fﬂ]. The tests consisted of the apptinaif a confining pressure of 10 MPa, followed
by an axial compressive load up to failure. Experimentstidetl the measurement of the permeability of
the samples, limited to the pre-peak phase. We simulateitheal test with the brittle damage model and
compare our numerical results with experiments. Elig. 5 shive deviatoric stress;s — o1 versus axial
and lateral deformationgg ande;, respectively, and the permeability versus deviatoriesstr During the
simulated axial compression, both granites develop ondyfarffaults in shear. The failure plane of the faults
corresponds to the one predicted by the Mohr-Coulomb @itemclined of an angle/4 — ¢/2 with respect
to direction of maximum stress (22.8r Lac du Bonnet and 2%° for Beishan). The peak of resistance
corresponds to the experimental values, but the brittleadgnmodel predicts a post-peak behavior which is
not available in the experimental papers. Experiments shoimitial reduction of the permeability, followed
by a marked increase when the samples begin to show a redoéstiffness. By contrast, the brittle damage
model predicts a constant permeability, which does noe@mse even after the formation of the shear faults.
However, when the load becomes too high to be balanced lipfriand the axial loading reduces, faults open
and the permeability increases, showing a characteristiedor often reported in experimental literature,
cf. [@] and the numerous references therein.

A second set of triaxial experiments on Berea sandstonedifférent confinement are reported in [54].
We selected three small confinement triaxial experimemiaracterized by a softening stress-strain curve.
Pre and post-peak porosity and permeability data are iediiml the experimental paper. We simulated the
experimental tests at confining pressures of 5, 10 and 40 Bzerimental and numerical results are shown
in Fig.[8. Fig[6(d) shows the deviatoric stress versus tlied deformation. Simulations capture nicely the
peak stress for the three tests, while the softening brasmdlot perfectly reproduced. Fig. 6(b) compares
numerical and experimental porosity for the two tests ateloasonfinement pressure. In both simulation
and experiment, porosity reduces progressively until ttess peak is reached, and grows during the soften-
ing phase, in correspondence to the reduction of the deidattvess. Simulations predict qualitatively and
guantitatively the variation of porosity during the tesbr@parisons between the model predictions and the
experimental observations in terms of permeability aregoatd. In the experiments permeability decreases
markedly after the stress peak, see Fig.]6(c), with a tremdmtrast to the one normally observed in exper-
imental data, cf., e. g.|.__[_155]. Indeed, in most documentgbarments, permeability grows after the failure
of the sample. The brittle damage model predicts a post-ppeaase in permeability, see Hig. §(d), which
is opposite to the sandstone experiments, but in line withynexperimental results in sandstone and other
materials, and is also in agreement with the simulationsranites discussed here.

6. Conclusions

We have developed a model of distributed fracturing of rodsses, and the attendant permeability
enhancement thereof, based on an explicit micromechaodcgdtruction resulting in complex connected
patterns of cracks, or faults. The approach extends the-sudlte brittle damage material model introduced
in [@], which was limited to mechanical damage. The fraetpatterns that form the basis of the theory
are not implied but explicitly defined and the rock mass ugdes throughout compatible deformations and
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Figure 6: Validation of the brittle damage model versus the expertaletests on Berea sandstone! [54]. Sample are
confined with a 5, 10 or 40 MPa pressure. (a) Deviatoric stag&d strain behavior. (b) Porosity variation with the
deviatoric stress. (c) Experimental permeability, vaoiatvith the deviatoric stress. (d) Numerical Permeabiligyriation
with the deviatoric stress.

remains in static equilibrium, not just on average at the nosaopic scale, but also the micromechanical
level. The sequential faulting construction used to geteetee fracture patterns has been shown i [24] to
be optimal as regards the ability of the fracture pattermslteve stress. In addition, the nucleation criterion,

orientation and spacing of the faults derive rigorouslyrfrenergetic considerations. Following nucleation,

fractures can deform by frictional sliding or undergo openthereby partially relieving the geostatic stresses
in the rock mass. The extension of the theory presentedsrptper additionally accounts for fluid pressure

by recourse to Terzaghi's effective stress principle. Sipadly, we estimate the permeability enhancement
resulting from fracture enhancement using standard labao theoryd:’i'?]. This extension gives rise

to a fully-coupled hydro-mechanical model.

The formulation has been derived in finite kinematics to besgient with the formulation of the damage
model in [18]. A finite kinematics approach is able to desehbth large and small strains, so that the model
can be applied also to porous media different from rocks.n&dr version of the model is currently under
development, in view of heavy numerical applications irdfigtoblems.
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The dry mechanical aspects of the model were validatemhtﬁzztneans of comparisons with the dy-
namic multiaxial compression experiments on sintered adum nitride (AIN) of Chen and Ravichandran
[@@E}LL—L—E&] The model was shown to correctly predictgheeral trends regarding the experimental
observed damage patterns, as well as the brittle-to-éucdihsition resulting under increasing confinement.
The hydro-mechanical coupled model has been validatedhstgdiree different sets of experimental data
concerned with triaxial tests at different confinement gpues on granite and sandstone, including Lac du
Bonnet [18] and Beisahi [53] granites and Berea sandstafie The ability of the model to qualitatively
reproduce the experimental peak strength, post-pealssitesin behavior permeability enhancement during
loading and recovery during unloading is remarkable.

The present coupled hydro-mechanical model has poteptiaide in applications, such as rocks under
geostatic conditions, gravity dams, hydraulic fractureragions, and others, in which a solid deforms and
undergoes extensive fracture under all-around confinemleil¢ simultaneously being infiltrated by a fluid.
The particular case of hydraulic fracture is characterizgdhe injection of fluid at high pressure, which
actively promotes the fracture process and the transpditidfinto the rock mass. Under such conditions,
the present model is expected to predict the developmeriireétdimensional fracture patterns of great
complexity over multiple scales. Such complex fracturégras have indeed been inferred from acoustic
measurements in actual hydraulic fracture operat@@]sand are in sharp contrast to traditional models
of hydraulic fracture, which posit the formation of a singkathematically-sharp crack. The present model
thus represents a paradigm shift from said traditional rsoideits ability to account for complexity in the
fracture pattern over multiple scale while simultaneosslgplying macroscopic effective properties such as
permeability and strength that can in turn be used, e. gulidiéld finite element simulations.
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Appendix A
By denoting the time derivative with, we write
WV

Vn=VWy, Vn+Vn=VWy n:v—vn.

Under the assumption of solid particle incompressibilty= Vi, andJ = Vi/V, thus the rate of porosity
change becomes: _ _
. Vv Vo J
n=Q-n——=(1-n)—=.
-y = -3
This relation can be alternatively written in the form
o) —log(1-n) =logJ+C
1-n J g =109 ’
whereC is a constant, which can be derived by setting as initialesly = 1 andny, obtaining

1
n=1+ 3(n0—1).
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