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Abstract

We present a microstructural model of permeability in fractured solids, where the fractures are described in
terms of recursive families of parallel, equidistant cohesive faults. Faults originate upon the attainment of
a tensile or shear resistance in the undamaged material. Secondary faults may form in a hierarchical orga-
nization, creating a complex network of connected fractures that modify the permeability of the solid. The
undamaged solid may possess initial porosity and permeability. The particular geometry of the superposed
micro-faults lends itself to an explicit analytical quantification of the porosity and permeability of the dam-
aged material. The approach is particularly appealing as a means of modeling low permeability oil and gas
reservoirs stimulated by hydraulic fracturing.

Keywords: Microstructured permeability; parallel faults; multi-scale permeability; analytical models.

1. Introduction

From the hydrogeological point of view, fractures and discontinuities are among the most important fea-
tures of geological structures. In natural rock formations, fractures and other types of discontinuities facilitate
storage and movement of fluids and represent the most ubiquitous and efficient conduits for fluid flows [1].
The availability of fault and fracture mappings in reservoirs is an important recent achievement in geology,
but the understanding of the influence of these structures onfluid flows is still far from being satisfactory, in
particular when the mechanical coupling is significant. Theproblem is compounded by the complexity of the
topology and geometry of faults. Each group or class of faults is characterized by orientation, spacing, dis-
tribution, and connectivity, in manners that affect the entrapment of fluids, limiting or advantaging migration
and flow of fluids in a given environment [2].

Clearly, the complexity of natural fracture networks is related to the stress state history, which is often
unknown. Furthermore, cracks and fracture can evolve due tothe action of gravity, superposed localized
pressures, and shear tractions resulting from the viscosity of the flowing fluids. Fracture processes are often
exploited in engineering technology, e. g., to improve and optimize hydraulic fractures for well stimulation in
low permeability reservoirs, to prevent water or gas outburst into underground mines, to predict the integrity
of reservoirs for underground CO2 sequestration or hazardous waste storage, and in other areas of application
[3]. The excavation of underground structures in rock masses induces cracking accompanied, in general, by
significant changes in flow and permeability due to the deterioration of geotechnical and hydrogeological
properties [4].

Damage induced by mechanical or hydraulic perturbations influences the permeability of the rock mass,
with significant effects on the pore pressure distribution.Modifications in the pore pressure, in turn, affects
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the mechanical response of the material by poromechanical coupling. According to experimental obser-
vations at the microscopic scale, fracture evolution in rocks can be interpreted essentially as a progressive
damage accumulation process, characterized by nucleation, growth and coalescence of numerous cracks fol-
lowing changes in the external load or in the internal pore pressure [5, 6]. In the particular case of hydraulic
fracturing, a stimulation technique used in petroleum industry to increase the oil/gas production in low per-
meability reservoirs, fractures are produced by the artificial increase of the fluid pressure in a borehole. From
the theoretical point of view, it has been observed that the success of hydraulic fracturing is related to: i) the
creation of a dense system of hydraulic cracks with limited spacing; and ii) the prevention or mitigation of
localization instabilities [7].

The observation that intact rocks contain distributed flawsand cracks, arranged between particles of
various shape, has motivated the use of fracture mechanics to study their organization and the conditions that
promote their growth [8]. The description of two-dimensional flow through geometrically simplified fractures
embedded in infinite porous media can be found in numerous studies, see, e. g., [9, 10]. In particular, the
effective permeability of cracked materials has been analyzed theoretically, numerically, and empirically
[11]. It is well known that standard approaches of fracture mechanics show limiting drawbacks related to the
explicit treatment of cracks. For example, models that describe the damage of a material with the formation
of isolated microcracks, that do not form a connected network, are not able to relate the evolution of damage
to the enhancement of the permeability in a direct mechanistic fashion. This drawback has been tackled
in recent studies [12, 13, 14], where intersection and interaction between curve-shaped fractures have been
taken into account in numerical simulation of steady flow of fluids in anisotropic porous media.

As an alternative to fracture mechanics, continuum damage mechanics considers the averaged effect
of microstructural changes, following a phenomenologicalapproach able to reproduce hydro-mechanical
responses during the progressive degeneration of rocks. A typical approach treats rock masses containing a
large number of discontinuities as homogeneous, anisotropic porous media [15]. The cracks in the medium
are assumed to follow a probability distribution functionPDF(N, L,∆) in terms of crack orientationN, sizeL
and opening∆. A symmetric crack tensor associated to the permeability tensor of the cracked porous medium
is derived though an averaging procedure. The principal directions of the permeability tensor are coaxial to
those of the crack tensor. Thus, the first invariant of the crack tensor is proportional to the mean permeability,
while the deviatoric part of the crack tensor is related to the anisotropic permeability.

In the framework of continuum mechanics, various methods have been developed to account for dif-
ferent factors in the theoretical evaluation of rock permeability, e. g., the coupled effect of flow, stress and
deformation, the propagation of existing fractures, and the nucleation of new fractures. A simplified cou-
pled hydro-mechanical continuum approach, based on the Biot’s theory of fluid saturated porous media and
on brittle-elastic solid with residual strength, was considered in a finite element model including damage
combined with elastic unloading/reloading [16]. However,hydraulic anisotropy and internal state variables
were not considered, thus the resulting permeability was treated as a scalar directly dependent on the stress
state. With a similar approach, a damage model accounting for orientation, size and number of penny-shaped
microcracks was used to predict the evolution of a scalar permeability in the context of the excavation of
underground openings [17, 18]. However, as already noted, isolated microcracks fail to form a connected
network and, consequently, it remains unclear how they can possibly contribute to the permeability of the
medium.

A micromechanical point of view has been taken in [19] to assess the influence of local damage on the
macroscopic hydro-mechanical response of porous media. The damage variables are related to the degra-
dation of elastic properties and to the characteristics of the fracture network. Thus, the model is capable of
describing the evolution of the porous network with deformation and the influence of deformation on perme-
ability [20]. The model distinguishes between the natural pore network, sensitive to the deformation of the
representative volume, and the crack network, enucleated in the damaged material, and assumes laminar fluid
flow. The natural pore network is characterized by a Pore SizeDistribution (PSD) curve, updated with the
state variables and with the evolution of the cracks, and linked to the permeability. In spite of the anisotropic
nature of the crack pattern, a scalar value of hydraulic conductivity is defined by integration of the PSD.

Coupling between deformation and fluid flow has been accounted for in a variety of ways. By consider-
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ing the volumetric strain as an additional controlling parameter, in [21] numerical simulations of permeability
reduction (increase) upon elastic contraction (dilation)in rocks are presented. Permeability is considered as a
scalar variable, although the approach accounts for flow in both matrix and fractures. The dependence of rock
permeability on material deformation has been alternatively enforced in terms of crack opening. An elaborate
coupled semi-empirical hydro-mechanical constitutive model accounting for anisotropic damage induced by
cracks and modification in permeability in brittle rocks under deviatoric compressive stresses was proposed
in [22]. The rock is regarded as a porous medium with embeddedmicrocracks. Upon homogenization, the
cracked material is treated as an equivalent porous medium where the permeability tensor is decomposed
additively into initial and crack induced permeability tensors. Here again, how permeability can be induced
despite the lack of connectedness of isolated microcracks remain essentially unexplained. Since the microc-
rack distribution is orientation dependent, the crack permeability tensor has to be anisotropic in nature and it
is regarded as a function of crack number, orientation, radius, and average opening. The mechanical model is
formulated in terms of linear elasticity and the crack propagation conditions are based on linear elastic frac-
ture mechanics, without the support of a thermodynamical framework. The effects of damage on anisotropic
permeability were discussed in [23] by adopting a relationship between macroscopic and microscopic aspects
of damage, and exploiting micro-level analyses of flow through randomly generated crack networks.

Models of distributed damage and permeability based on abstract damage mechanics are, of necessity,
empirical in nature and the precise meaning and geometry of the damage variables often remains undefined. In
addition, the evolution of the damage variables and their relation to the deformation, stress and permeability of
the rock mass is described by means of empirical laws that represent, at best, enlightened data fits. However,
the permeability enhancement due to extensive fracturing of a rock mass depends sensitively on precise
details of the topology, which needs to beconnected, and geometry of the crack set, including the orientation
and spacing of the cracks. In addition, the coupled hydro-mechanical response of the rock, especially when
complex loading conditions and histories are of concern, ismuch too complex to yield to empirical data
fitting.

Based on these considerations, in this paper we endeavor to develop a model of distributed fracturing
of rock masses, and the attendant permeability enhancementthereof, based on anexplicit micromechanical
constructionof connected patterns of cracks, or faults. The approach extends the multi-scale brittle damage
material model introduced in [24], which was limited to mechanical damage. In contrast to abstract damage
mechanics, the fracture patterns that form the basis of the theory areexplicit and the rock mass undergoes
throughout compatible deformations and remains in static equilibrium down to the micromechanical level.
The fracture patterns are not arbitrary: they are shown in [24] to be optimal as regards their ability to relieve
stress, and the inception, orientation and spacing of the fractures derive rigorously from energetic considera-
tions. Following inception, fractures can deform by frictional sliding or undergo opening. The extension of
the theory presented in this paper additionally accounts for fluid pressure by recourse to Terzaghi’s effective
stress principle. When the fluid pressure is sufficiently high, existing fractures can open, thereby contributing
to the permeability of the rock mass. The attendant permeability enhancement can then be estimated using
standard lubrication theory [25, 26, 27], resulting in a fully-coupled hydro-mechanical model.

The paper is organized as follows. We begin in Section 2 with illustrating the hydromechanical frame-
work, recalling the basic equations and the Terzaghi’s effective stress principle. In Section 3 we recall the
main features of the dry material model developed in [24], introducing a pressure dependent behavior at fault
inception. In Section 4 we derive analytically the permeability associated to the presence of faults in the
brittle damage material model. In Section 5 we validate the material model by means of comparison with
experimental results taken from the literature.

2. Hydro-mechanical framework

Deterioration of mechanical and hydraulic properties of rock masses and subsequent problems are closely
related to changes in the stress state, formation of new cracks, and increase of permeability in porous media
saturated with freely moving fluids. In fully saturated rocks, fluid and solid phases are fully interconnected
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and the interaction between fluid and rock is characterized by coupled diffusion-deformation mechanisms
that convey an apparent time-dependent character to the mechanical properties of the rock.

The two governing equations of the coupled problem are the linear momentum balance and the continuity
equation (mass conservation). The kinematic quantities that characterize this picture are the porous solid
displacementu and the rate of fluid volume per unit areaq. Hydro-mechanical coupling arises from the
influence of the mechanical variables (stress, strain and displacement) on the continuity equation, where the
primary variable is the fluid pressure, and from the influenceof the hydraulic variables (pore pressure and
seepage velocity) on the equilibrium equations, where the primary variables are the displacements.

2.1. Fluid flow in porous media

Fluid flow in porous media is governed by permeability, a property that measures the ability for fluids
(gas or liquid) to flow through a porous solid material. The flow of a homogeneous fluid in a porous medium
is characterized by its velocityv, of magnitudev. The energy of a flowing fluid is traditionally measured in
terms of total hydraulic headh, that for slow flowing fluids reads

h =
p
ρg
+ z,

whereρ the fluid density, andg the gravitational acceleration. The pressure headp/ρg is the equivalent gauge
pressure of a column of water at the base of a piezometer. The elevation headzexpresses the relative potential
energy.

Fluid flow across packed porous media is generally characterized by laminar regime (Reynolds number
Re≤ 1) and by a drop of the hydraulic head∇h in the direction of the flow. Analytical models of fluid flow in
rocks use constitutive relations that link the average velocity of the fluid across the medium to the hydraulic
head drop. As representative example of constitutive relation, Darcy’s law states that the discharge rate in a
porous media is proportional to the hydraulic head gradientand inversely proportional to the fluid viscosity

q = −k
ρg
µ
∇h , (1)

whereq is the discharge rate,µ the fluid viscosity, andk the medium permeability tensor. Permeability is
intrinsically related to the void topology and does not account for the properties of the fluid. In anisotropic
media, permeability is a symmetric (consequence of the Onsager reciprocal relations) and positive definite
(a fluid cannot flow against the pressure drop) second order tensor k. Real eigenvalues of the permeability
tensor are the principal permeabilities, and the corresponding eigenvectors indicate the principal directions of
flow, i.e., the directions where flow is parallel to the pressure drop. Clearly, fractures modify the permeability
tensor, introducing new preferential directions for fluid flow. Although affected by many factors, permeability
is primarily related to the rock porosity (or void fraction)n, expressing the ratio between the volume of the
voidsVV and the total volumeV that accounts also for the solid volumeVS

n =
VV

V
=

VV

VS + VV
. (2)

The rate of fluid volumeq is linked to the porosity through the continuity equation, which for partially
saturated voids reads

∂
(

n Sr ρ f

)

∂t
= −∇ · ρ f q ,

whereρ f is the density of the fluid phase,Sr the degree of saturation (i. e., the fraction of the fluid volume),
∇· the divergence operator, and∂/∂t the partial derivative with respect to time. Under the assumption of fully
saturated voids and incompressible fluid, the continuity equation becomes

∂n
∂t
= −∇ · q .

4



We remark that the solid phase incompressibility assumption adopted in the present model is not affecting
substantially the hydraulic behavior, mostly because the porosity of the matrix plays a minor role in the
hydraulic conductivity of the material. In fact the porosity, and thus the permeability, is mostly imputable to
the formation of faults, reducing the relevance of the matrix porosity.

2.2. Mechanics equations

In the absence of any occluded porosity, the solid grains forming the matrix generally undergo negligible
volume changes. In keeping with standard assumptions in geomechanics, we consider the solid phase of the
matrix incompressible, thus we regard the change of the volume of the matrix as a change of the volume of
the voids of the matrix. This assumption is consistent with the adoption of the Terzaghi’s theory, in lieu of
the more sophisticated Biot theory, unnecessary for the foreseen applications of the model. Moreover, we
consider fully saturated media.

The equations of mechanics in the finite kinematics framework are reported in Table 1 together with the
corresponding equations in linearized kinematics. In the equations we denote withσσσ (P) the Cauchy (first
Piola-Kirchhoff) stress,b (B) the spatial (material) body force vector,t (T) the spatial (material) surface
tractions,n (N) the spatial (material) outward normal to the boundary,σσσ′ (P′) the effective stress,p the pore
pressure,εεε = sym∇u the small strain tensor, andJ the jacobian of the deformation gradientF

F =
∂x
∂X

,

wherex andX are the spatial and material coordinates, respectively.

Table 1: Mechanics and hydraulic equations

Equation Linearized kinematics Finite kinematics

Linear momentum balance divσσσ + b = 0
¯

Div P + B = 0
¯

Boundary conditions σσσn = t PN = T

Terzaghi’s principle σσσ = σσσ′ + pI P = P′ + pJF−T

Solid constitutive law σσσ′ = σσσ′(εεε) P′ = P′(bF)

Darcy’s law q = −kρg∇h/µ q = −kρg∇h/µ

Porosity n = n0 + ∆εv n = 1− (1− n0) /J

In finite kinematics, the Eulerian porosity defined in Eq. (2)is naturally associated to the jacobian of the
deformation gradientJ = detF = V/V0,

n =
1
J

Vv

V0
= 1−

1
J

(1− n0) , (3)

see Appendix A for details of the derivation. Note that for very low values ofn0 Eq. (3) may provide
negative values of porosity forJ < 1, thus a zero lower-bound must be enforced in calculations.We remark
that the solid phase incompressibility assumption adoptedin the present model is not affecting substantially
the hydraulic behavior of the medium, since the porosity of the matrix plays a minor role in the hydraulic
conduction of the model. In fact the porosity change, and thus the permeability change, is mostly due to the
formation of faults, reducing the relevance of the porosityof the matrix.
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3. Dry brittle damage model

The brittle damage model presented in [24] is characterizedby a homogeneous matrix where nested
microstructures of different length scale are embedded. Ateach level (or rank)k of the nested architecture,
microstructures assume the form of families of cohesive faults, characterized by an orientationNk and a
uniform spacingLk, see Fig. 1(a). In keeping with well established mathematical procedures used to treat
free discontinuity problems, the constitutive model for the brittle damage is derived with a thermodynamically
consistent approach, by assuming the existence of a free energy density which accounts for reversible and
dissipative behaviors of the material.

3.1. Kinematics

(a) Reference configuration (b) Current configuration

Figure 1:Inelastic kinematics of the fault system. The opening displacement∆ applied to all the faults at distanceL leads
to a deformed configuration characterized by the inelastic deformation gradientFf .

The key of the brittle damage model is given by the kinematic assumptions. We begin by considering the
particular case of a single family of fault planes of normalN and spacingL, and later extend the behavior to
recursive nested families. The total deformation gradientF of the material is assumed to decompose multi-
plicatively into a partFm pertaining the uniform deformation of the matrix, and a second partFf describing
the discontinuous kinematics of the cohesive faults, i. e.,

F = FmFf .

The deformation gradientFf can be easily linked to the kinematic activity of the faults.Consider a material
vectordX, shorter than the system size but longer than the internal scaleL, that spans two material pointsA
andB in the material configuration Fig 1(a). The numberm of faults traversed by the vector is

m=
1
L

dX · N .

Let us now apply an opening displacement∆ to each fault, Fig 1(b). In the spatial configuration the two
pointsA andB are joined by the vectordx given by

dx = dX +m∆ = dX +
1
L

(dX · N)∆ = (I +
1
L
∆ ⊗ N) dX ,

where we set

Ff ≡ I +
1
L
∆ ⊗ N .

OnceN andL are supplied,Ff and∆ are in one-to-one correspondence.
The fractured material may, in turn, accommodate a second family of faults:

F = Fm1Ff 1
, Fm1

= Fm2Ff 2

This decomposition can be applied recursively for as many levels as necessary; the innermost level will
maintain a purely elastic behaviorFe.
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3.2. Constitutive assumptions

The constitutive behavior of the brittle damage model follows the introduction of a free energy density
sum of two contributions with full separation of variables

A(Fm,∆, q) =Wm(Fm) +
1
L
Φ(∆, q) ,

whereWm is the strain-energy density per unit volume of the matrix,Φ is the cohesive energy per unit surface
of faults, suitably divided by the lengthL to provide a specific energy per unit of volume, andq is a scalar
internal variable used to enforce irreversibility. The particular form of the energy densitiesWm andΦ can
be selected freely according to the particular material considered. Note that the separation of the variables
excludes strong coupling between the two energies.

(a) (b)

Figure 2:(a) Irreversible linear decreasing cohesive law in terms ofeffective opening displacement and effective traction.
The enclosed area represents the critical energy release rate Gc. The maximum traction is defined by the cohesive
resistanceTc, and the the maximum opening displacement is indicated by∆c. The maximum attained effective opening
q defines the internal variable of the model, used to distinguish between first loading and unloading/reloading behaviors.
(b) Kinematics of the single fault, defined by an opening displacement∆, with a component∆N along the normal and a
component∆T in the plane of the fault.

The cohesive energy of a fault with orientationN is assumed to depend on an effective scalar opening
displacement∆ defined as

∆ =

√

(1− β2) (∆ · N)2
+ β2|∆|2,

where|∆| is the norm of the opening displacement andβ a material parameter measuring the ratio between
the shear and tensile strengths of the material [28]. It follows that the cohesive behavior is expressed in terms
of an effective cohesive lawΦ(∆, q) = Φ(∆, q), dependent on the effective opening displacement only. The
effective tractionT is given by

T =
∂Φ

∂∆
=

√

(

1− β−2) (T · N)2
+ β−2|T|2 . (4)

In applications, we use a simple effective cohesive law, visualized Fig. 2(a). During the first opening, the
cohesive law follows a linearly decreasing envelope, i. e.,

Φ(∆, q) =

{

Tc∆ (1− 0.5∆/∆c) if ∆ ≤ ∆c

Gc = 0.5Tc∆c otherwise
, (5)

whereGc is the critical energy release rate of the material,Tc the tensile resistance, and∆c the critical
opening displacement corresponding to the full decohesionof the faults. Fracture is an irreversible process,
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thus decohered faults permanently damage the material. Theextent of damage is expressed through the
the maximum attained effective opening displacementq = ∆max. Irreversibility is enforced by assuming
unloading and reloading to/from the origin, see Fig. 2(a), according to the kinetic equation

q̇ =

{

∆̇ if ∆ = q and ∆̇ ≥ 0,
0 otherwise

. (6)

Tractions acting on the cohesive surface follows as, cf. [24],

T =
∂Φ

∂∆
=

T
∆

[(

1− β2
)

(∆ · N) N + β2
∆

]

, (7)

In the derivation of the constitutive model is necessary to introduce the configurational force conjugate toN,
given by

∂Φ

∂N
=

T
∆

(

1− β2
)

(∆ · N) ∆ . (8)

Damage irreversibility is a constraint of the brittle damage model, enforced in calculations through the growth
conditionq̇ > 0. Moreover, upon fault closure the material model has to satisfy the impenetrability constraint,
i. e., the component of the opening displacement along the normal to the faults cannot be negative, thus
∆ · N ≥ 0. More importantly, the model accounts for internal friction, a major dissipation mechanism in
geological applications. We assume that friction operatesat the faults concurrently with cohesion. Clearly,
friction can become the sole dissipative mechanics if the faults loose cohesion completely upon the attainment
of the critical opening displacement∆c. In considering friction, we resort to the approach proposed in Pandolfi
et al. [29] and make use of a dual dissipation potential per unit areaΨ∗(∆̇; F,∆, q), where∆̇ denotes the rate
of the fault opening displacement.

3.3. Variational Characterization

The behavior of irreversible materials with friction can becharacterized variationally by recourse to time
discretization [30, 24], where a process of deformation is analyzed at distinct successive timest0, . . . , tn+1 =

tn+∆t, . . . . We assume that the state of the material at timetn (∆n andqn) is known and the total deformation
Fn+1 at timetn+1 is assigned. The problem is to determine the state of the material at timetn+1, accounting
for material constraints and dissipation.

Following [30, 24], the variational characterization of the material model requires to obtain an effective,
incremental, strain-energy densityWn(Fn+1) by evaluating the infimum with respect to∆n+1 andqn+1 of the
extended constrained energy defined as

Wn(Fn+1) = inf
∆n+1, qn+1

∆n+1 · N ≥ 0
qn+1 ≥ qn

A(Fn+1,∆n+1, qn+1) +
∆t
L
ψ∗

(

∆n+1 − ∆n

∆t
; Fn+1,∆n+1, qn+1

)

. (9)

The subindexn used inWn signifies the dependence on the initial state. The irreversibility and the impenetra-
bility constraints render the effective strain-energy density Wn dependent on the initial conditions at timetn,
and account for all the inelastic behaviors, such as damage,hysteresis, and path dependency. The constraints
of the minimum problem can be enforced by means of two Lagrange multipliersλ1 andλ2, cf. [24]. Opti-
mization leads to a system of four equations, that provide∆n+1, qn+1, λ1, andλ2. Thus,Wn(Fn+1) acts as a
potential for the first Piola-Kirchhoff stress tensorPn+1 at timetn+1 [30], i. e., as

Pn+1 =
∂Wn(Fn+1)
∂Fn+1

. (10)

The stable equilibrium configurations are the minimizers ofthe corresponding effective energy. Note that
the variational formulation Eq. (9) of fault friction is non-standard in that it results in an incremental mini-
mization problem. In particular, the tangent stiffness corresponding to the incremental equilibrium problem
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is symmetric, contrary to what is generally expected of non-associative materials. In calculations we assume
rate independent Coulomb friction and, for the linearly decreasing cohesive model, we set

ψ∗(∆̇; Sm, N) = µ f max
{

0, −N · SmN
}

|∆̇| (11)

whereµ f is the coefficient of friction and we denote the symmetric second Piola-Kirchhoff stress tensor of
the matrix of components

Sm
IJ = Fm

iI
∂Wm

∂Fm
iJ

. (12)

The dual dissipation potential in Eq. (11) is rate-independent, i. e., is positively homogeneous of degree 1 in
∆̇, and proportional to the contact pressure.
The fault geometrical featuresN and L can be determined with the aid of the time-discretized variational
formulation as explained in the next section, cf. [24].

3.4. Fault Inception and Orientation

The actual orientationN of the faults is defined by the surrounding stress state. Suppose that the material
is undamaged at timetn and that we are given the deformationFn+1 at time tn+1. We test two end states
of the material, one with faults and another without faults,and choose the end state which results in the
lowest incremental energy densityWn(Fn+1). The time-discretized variational formulation allows toascertain
whether the insertion of faults is energetically favorable, and the optimal orientation of the faults in the
fractured material. The orientation of the faultsN and the remaining state variables are obtained variationally
from an extended constrained minimum problem, i. e.,

Wn(Fn+1) = inf
∆n+1, qn+1, N
∆n+1 · N ≥ 0

qn+1 ≥ qn

|N|2 = 1

A(Fn+1,∆n+1, qn+1, N) +
∆t
L
Ψ
∗

(

|∆n+1 − ∆n|

∆t
; Sm, N

)

. (13)

Constrained optimization leads to a set of six equations, whose solution provides the optimal orientationN, q,
∆, and three Lagrangian multipliers. The optimal solution for faults undergoing opening without sliding has
been described in [24]. For stress states in overall extension the frictional dissipation is null, and the resulting
normal aligns with the direction of the maximum principal value of Sm. For stress states characterized by
overall compression, here we provide a solution different from the one reported in [24], and specific for
pressure sensitive materials. The two optimization equations involving the normalN are (for the sake of
clarity we drop the indexn+ 1):

∂

∂∆I
[A+

∆t
L
Ψ
∗
+ λ1∆ · N] = −

NJ

L + ∆ · N
Sm

JI +
1
L
∂Φ

∂∆I
+
∆t
L
∂Ψ∗

∂∆I
+ λ1NI = 0 (14a)

∂

∂NI
[A+

∆t
L
Ψ
∗
+ λ1∆ · N + λ3|N|2] =

−
∆J

L + ∆ · N
Sm

JI +
1
L
∂Φ

∂NI
+
∆t
L
∂Ψ∗

∂NI
+ λ1∆I + 2λ3NI = 0 (14b)

Under a compressive stress, incipient faults are necessarily closed,∆n = 0
¯
, and can deform only by sliding,

i. e.,∆ ·N = 0. We denote withM = ∆/|∆| the unit vector in the direction of∆. Thus, the dissipation potential
can be written as

Ψ
∗

(

|∆ − ∆n|

∆t
; Sm, N

)

= −µ f N · SmN
|∆|

∆t
, (15)

and Eqs. (14a)-(14b) become

− Sm
IJNJ + βT MI − µ f N · SmN MI + L λ1NI = 0
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− Sm
IJ MJ − 2µ f Sm

JINJ + L λ1MI +
2λ3 L
|∆|

NI = 0 .

Multiplying the first of these equations byMI and the second byNI we obtain the identities

Sm
IJNJMI + µ f Sm

IJNJNI = βT

Sm
IJNJMI + 2µ f Sm

IJ NJNI =
2λ3 L
|∆|

. (16)

The resulting equations imply thatN is a plane where the matrix shear stress satisfies the Mohr-Coulomb
failure criterion, in the classical form

τ = βT − µ f σ, τ = Sm
IJ NJMI , σ = Sm

IJNJNI ,

whereT must be intended equal toTc at fault inception. Thus, when faults form,βTc corresponds to the
cohesion (shear resistance at null normal stress) andµ f = tanϕ the friction coefficient of the material. Eq. (17)
sheds light on the meaning of the parameterβ that, for pressure sensitive materials, identifies with thefriction
coefficientµ f . Finally, Eq. (16) provides the lagrangian multiplierλ3 as

λ3 =
|∆|

2 L
µ f (T + σ) .

Likewise, the lengthL can be computed variationally by accounting for the misfit energyEmis(∆, L) contained
in the boundary layers that form at the junctions between faults and a confining boundary. In the model, the
compatibility between the faults and their container is satisfied only on average, and this gives rise to boundary
layers that penetrate into the faulted region to a certain depth. The addition to the energy furnishes a selection
mechanism among all possible microstructures leading to a relaxed energy, cf. [24].

So far we have been considering either an intact material or asingle family of parallel faults. The material
with a single fault family is referred to as rank-1 faulting pattern material. More complex microstructures can
effectively be generated by applying the previous construction recursively. In the first level of recursion, we
simply replace the elastic strain-energy densityWm(Fm) of the matrix byWn(Fm), i. e., by the effective strain-
energy density of a rank-1 faulting pattern. This substitution can now be iterated, resulting in a recursive
definition ofWn(Fn+1). The recursion stops when the matrix between the faults remains elastic. The level of
recursion is the rank of the microstructure. The resulting microstructures consist of faults within faults and
are shown in Fig. 1(a).

According to the particular loading history, at the timetn and at the generic point the material is be charac-
terized by a particular microstructure with several∆, determined in respect of equilibrium and compatibility
conditions. The model is therefore able to account for variable opening of the faults.

4. Permeability of the brittle damage model

Permeability is an overall important physical property of porous media very difficult to characterize theo-
retically. For simple and structured models of porous media, permeability can be estimated through analytical
relationships that apply only under a narrow range of conditions. The class of Kozeny-Carman type models
collects simple relations that, under the assumption of laminar flow of the pore fluid, link the permeability to
the microstructural characteristics of the porous medium.The original Kozeny-Carman relation [31, 32, 33]
reads

k =
c

8a2
vτ

n
( n
1− n

)2
(17)

wherek is a scalar permeability,c an empirical geometric parameter,av the ratio of the exposed surface of
the channels to the volume of the solids (also called specificinternal s urface area), andτ the tortuosity,
related to the ratio betweenLa, average length of the channels, andL, macroscopic length of the flow path.
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The estimation of the shape coefficientsav andτ has been promoting an active research [34, 35, 36, 37, 38].
electrical conductivity of rocks and the brine (salt solution) saturation through quantitative relations [39, 40,
41, 42, 43, 44, 45]. The complexity of the relationship between the permeability tensor and a scalar property
such as the porosity in rocks has been clearly pointed out [46].

The scalar nature of variables and parameters used in analytical models leads to scalar definitions, and
the correct tensor nature of the permeability is disregarded. Therefore, such models are not meaningful if
applied to soils characterized by the presence of sedimentation layers or fissures. Moreover, these models do
not allow for the modification of the porous medium microstructure due to fluid-porous matrix interactions,
or by the presence of a variable confining pressure. In particular, permeability depends not only on the actual
stress and on the strain during the loading history, but alsoon the evolution of the crack patterns, which is
anisotropic in nature.

Under the assumption of a perfectly impermeable matrix and considering the presence of a single fault
family, the permeability tensor for the fractured brittle damage model can be directly derived from the partic-
ular geometry of faults. The permeability of a particular geometry of parallel and equidistant faults has been
examined by Irmay [47]. Snow [25, 26] and Parsons [27] obtained expression for anisotropic permeability,
similar to the one described here, by considering networks of parallel fissures.

We begin by recalling that the opening displacement decomposes into a normal∆N and a sliding∆T

components, see Fig. 2(b), computed as:

∆N = N · ∆, ∆S = (I − N ⊗ N) ∆, ∆S = |∆S|, (18)

Let us assume that a fluid flows within the faults, filling the open layers of constant width∆N. The average
fluid flow, in laminar regime, will take place in the plane of the layer. According to the solution of the
Navier-Stokes’ equation, the average velocityvs along the generic directions in the plane of the fault is

vs = −
∆

2
N

12
ρg
µ

∂h
∂s

, (19)

where∂h/∂s is the hydraulic head gradient in the directions. The assumption of laminar flow through a crack
has been widely used in the literature, cf., e. g., [13, 48]. By considering a porous medium made of several
parallel faults of equal width, the dischargeqs in the direction of the flow is

qs = nf vs = −
∆N

L + ∆N

∆
2
N

12
ρg
µ

∂h
∂s
, (20)

where

nf
=
∆N

L + ∆N
(21)

is a measure of the porosity due exclusively to the presence of faults. By comparing Eqs. (20) and (1), we
obtain the permeability of the fractured material in direction s as

ks =
∆N

L + ∆N

∆
2
N

12
. (22)

Now we want to restate the above equations in vector form. Thehydraulic gradient∇h and the unit vectord
in the direction of the fluid flow are, respectively,

∇h =
∂h
∂x1

e1 +
∂h
∂x2

e2 +
∂h
∂x3

e3, d =
∂x1

∂s
e1 +

∂x2

∂s
e2 +

∂x3

∂s
e3. (23)

Thus, the directional gradient∂h/∂scan be expressed as

∂h
∂s
= ∇h · d =

∂h
∂x1

∂x1

∂s
+
∂h
∂x2

∂x2

∂s
+
∂h
∂x3

∂x3

∂s
. (24)
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The average velocityvs in Eq. (19) can be written as

vs = −
∆

2
N

12
ρg
µ
∇h · d (25)

and the average flow velocity vector,vs = vsd, becomes

vs = −
∆

2
N

12
ρg
µ

(∇h · d) d. (26)

Now, the hydraulic discharge can be written as

qs = nf vs = −
∆N

L + ∆N

∆
2
N

12
(d ⊗ d)

ρg
µ
∇h , (27)

thus the permeability tensor due to the presence of the faults kf derives as

kf
=
∆N

L + ∆N

∆
2
N

12
(d ⊗ d) . (28)

To account for a generic direction of the flow in the layer of normal N, in Eq. (28) we must replace the unit
vectord with the projection (I − N ⊗ N), reaching the expression

kf
=
∆N

L + ∆N

∆
2
N

12
(I − N ⊗ N) . (29)

It follows that, as a noteworthy feature of the brittle damage model, the permeability is described by an
anisotropic tensor.

If Q fault families are present in the porous medium, each characterized by a normalNK , a separationLK ,
and a normal opening displacement∆K

N, the equivalent permeability is given by the sum of the corresponding
permeabilities:

kf
=

Q
∑

K=1

∆
K
N

LK + ∆K
N

∆
K
N

2

12

(

I − NK ⊗ NK
)

. (30)

The model does not exclude the presence of an initial porosity nm, see Eq. (2), and permeabilitykm, see
Eq. (17), of the intact matrix. In this case, the resulting porosity and permeability will be given by the sum of
the terms corresponding to the intact matrix and to the faults

n = nm
+ nf , k = km

+ kf .

In practical applications we assume an isotropic matrix permeability of Kozeny-Carman type, with the sim-
plified form

km
= kKCI , kKC = CKC

(nm)3

(1− nm)2
, (31)

where the constantCKC accounts for shape coefficients.
We observe that the hydraulic behavior of the brittle damagemodel is dependent on fracture orientation

and spacing computed on the basis of the boundary conditions, and that its permeability can vary according
to the kinematics of the faults.

5. Verification and Validation

Next, we present selected examples of application of the porous damage model, starting from a simple
one-dimensional analytical model that accounts for the presence of the pore pressure. We continue by show-
ing the response of the fully tridimensional dry model undergoing a loading that mimics a hydraulic fracturing
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process. We conclude with the validation of the model, reproducing a few representative experimental results
on granite and sandstone.

We note that numerical calculations of the dynamic multiaxial compression experiments on sintered alu-
minum nitride (AlN) of Chen and Ravichandran [49, 50, 51, 52]were presented in [24] by way of validation
of the dry mechanical aspects of the model. The model was shown to correctly predict the general trends re-
garding the experimental observed damage patterns, as wellas the brittle-to-ductile transition resulting under
increasing confinement. Therefore, in the present work we restrict validation to the hydro-mechanical aspects
of the model.

5.1. Illustrative one-dimensional model with pore pressure

(a) Geometry

A B, CD

E
F A, E

C, D, F
B

σ’

m

A

C
DE

p

B

F
A, E

D, F
B

σ

C

’

(b) Results

Figure 3: One Dimensional example. (a) Size of the slab and of the faults and external tractions. Plots of the behavior
of the one dimensional example. (top left) Relationship between total stress and total strain. (top right) Relationship
between effective stress and matrix strain. (bottom left) Relationship between pore pressure and total strain. (bottom
right) Relationship between effective stress and total strain. Point A denotes the maximum compression in the intact
material. Point B indicates the critical unstable fault inception state following the increase of pore pressure and total
deformation. Point C indicates the equilibrium state afterfault formation, with pore pressure equal to the external load.
Point D indicates the fault reclosure induced by a reductionof the total deformation at constant pore pressure. Point E
indicates the maximum reduction of the total deformation atconstant pore pressure. Point F indicates the attainment of
zero total deformation due to pore pressure increase.

In order to understand how the behavior of the brittle damagemodel in combination with the pore pres-
sure, we begin by illustrating a uniaxial case, i. e., the infinite slab of thicknessH shown in Fig. 3, using a
linearized version of the model equations. Tensile strainsand stresses are considered positive. The material
is assumed to be initially linear elastic, with no faults. The matrix is characterized by a Young modulusE
and a tensile resistanceTc. The slab is subject to a uniform uniaxial stressσ due to a compressive tractiont
acting on the boundary. If no body forces are considered, theequilibrium equation becomes

dσ
dx
= 0, σ = const.
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Terzaghi’s effective stress principle states that the total stressσ is balanced by an effective stressσ′ and by a
pore pressurep acting everywhere in the porous medium, i. e.,

σ = σ′ + p .

Following the kinematics of the brittle damage model, the total deformationε splits in elastic part, related to
the behavior of the matrix, and in inelastic part, related tothe presence of the faults

ε = εm
+ εf .

The elastic deformation defines the matrix elastic constitutive behavior in terms of effective stress, valid up
to the attainment of the tensile resistanceTc

σ′ = Eεm, σ′ ≤ Tc .

If the effective stress exceedsTc, parallel faults form at the assigned distanceL < H, originating a discontin-
uous deformationεf due to the jump∆ of the faults

εf
=
∆

L
.

The four equations (32)-(32) involve the seven variablesσ, σ′, p, ε, εm, εf , and∆. Three variables can be
assigned, the other four follow from the equations.

Let us begin by applying a growing compressive tractiont on the slab surfaces up to the valuet = −σ̄
with a null pore pressure (from the origin to the point A in Fig3(b)). In this phase, we assign the total stress
σ, p = 0 and, since there are no faults,∆ = 0. We have

σ′ = −σ̄, εm
= σ′/E, εf

= 0, ε = εm.

Next, we keepσ = −σ̄ and∆ = 0, and let the pressurep growing up topmax = −σ̄ − Tc. The matrix behaves
elastically, from point A to point B in Fig 3(b), according to

σ′ = −σ̄ − p, εm
= σ′/E, εf

= 0, ε = εm.

The stress and deformation in the matrix are compressive forsmall values of the pore pressure and become
tensile forp ≥ −σ̄. Since in this phase the total deformation coincides with the elastic one, the slab expands
progressively. When the pressure reachespmax, the effective stress reaches the resistance of the matrix,point
B in Fig 3(b), as

σ′ = Tc > 0, ε = εm
= Tc/E > 0 ,

and faults form at distanceL. After failure, the presence of faults modifies the mechanics of the system. In
particular, the matrix is not able to provide a stress and thematrix deformation goes to zero, i. e.,σ′ = 0 and
εm
= 0. To reach equilibrium, it is necessary to decrease the porepressure top = −σ̄ or, alternatively, to

increase the external confinement to ¯σ to reach the value ofpmax. In both cases, the total deformation will be
related only to the fault opening, no contribution derives from the matrix. Up to the closure of the faults, the
governing equations become three, with five variablesσ, p∆, ε andεf :

σ = p, εf
= ε, ∆ = Lεf .

We can assign two variables and use the three equations to determine the others. For example, by keeping the
total deformation constant and setting, e. g.,p = −σ̄, we observe the instantaneous transfer of the deformation
from the matrix to the faults, point C in Fig 3(b):

σ = p = −σ̄, ε = Tc/E, ∆ = Tc L/E. (32)
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If we keep the extensional total deformation constant, relations (32) hold for any value of the pore pressure,
because kinematics and equilibrium are not related by constitutive assumptions, and changingp orσwill have
no effect on∆. The behavior of the system can be further investigated by controlling the total deformation
ε. Let us keep the pore pressure constant,p = −σ̄, and modify the boundary condition by progressively
reducingε. Until the total deformation is positive, 0≤ ε ≤ Tc/E, faults are open andεm

= 0,σ′ = 0, from
point C to point D in Fig 3(b). The opening displacement derives from compatibility as

σ = p, ∆ = εL.

When the total deformation vanishes, faults close and enterin contact with∆ = 0, and the constitutive
relation in the matrix is reactivated. Forε < 0 the total deformation transfers to the matrix,ε = εm, restoring
a compressive effective stress

σ′ = Eεm, σ = Eεm
+ p.

The compressive total stress increases proportionally to the total deformation, from point D to point E in
Fig 3(b). Then, if we set the total stress constant, the totaldeformation can be progressively recovered by
increasing the pore pressure, form point E to point F in Fig 3(b).

5.2. Illustrative dry example

The next examples are conducted in finite kinematics. We specialize the strain energy densityW to a
neo-Hookean material extended to the compressible range, i. e.,

W(Fm) =
1
2
λ log2 Jm

+
1
2

G
(

(FmT Fm) : I − 3− 2 logJm
)

(33)

whereλ andG are the Lamé coefficients, andJm
= detFm is the determinant ofFm. We study the response

of the brittle damage model to the action of external loadings mimicking the in-field conditions observed
during hydraulic fracturing procedures, and analyze the correspondent variation in permeability. We assume
an intact material, with no pre-existent or natural faults,and limit our attention to the constitutive behavior.
The material is characterized by the constants listed in Table 2. The porosity and the permeability of the

Table 2: Rock material constants adopted in the illustrative examples

λ (MPa) G (MPa) Tc (MPa) Gc (N/mm) ϕ k0 n0

2778 4167 10.0 0.1 45.0 0 0

intact matrix are assumed to be null, thus the permeability will be exclusively related to the formations of
faults. The material is allowed to form up to three families of faults, with different orientationNK . Tensile
stresses and deformations are considered positive.

By assigning a prescribed history to the deformation gradient, we simulate a multistage multiaxial test
that mimics the in-field variation in stress and permeability due to hydraulic fracture. The material is initially
compressed isotropically by applying a uniform stretchL/L0 = λ1 = λ2 = λ3 = 0.99, to induce a geostatic-
like stress state. Then, the material undergoes an isotropic extensionλ1 = λ2 = λ3 = 1.01, associated to the
reduction of the effective stress due to the injection of a high pressure fracturing fluid. Given the isotropy
of the stress state, at the extension corresponding to the attainment material strength the material fails in
tension, creating in sequence three families of faults, with normal in the directionse1, e2, ande3, respectively.
The microstructure of the three families differs because ofdifferent spacings. Upon fault closure, the failed
material is able to sustain an overall compressive stress, the interpenetration of the faults being controlled by
the contact algorithm. In the last stage of loading, the material is compressed with an anisotropic stretch. A
λ1 = λ2 = 0.97 stretch is applied in directione1 ande2, while the original geostatic-like stretchλ3 = 0.99 is
applied in directione3. Fig. 4(a) shows the mechanical response of the model in direction e1. The material
initially undergoes a compression (black circles). The following extension induces a tensile state that reaches
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Figure 4:Multi-stage multiaxial response of the material, undergoing an isotropic compression, followed by an isotropic
extension, and by a final anisotropic compression. (a) Stressσ1 (MPa) vs strainε1. Although the material fails, generating
three nested families of faults, the material preserves itsability of sustaining load. (b) Permeability (mm2) in directione1

as a function of the strain. (c) Permeability (mm2) in directione2 as a function of the strain. (d) Permeability (mm2) in
directione3 as a function of the strain.

the strength of the material and causes triple tensile failure (open circles). The final compressive stretch is
characterized by a null stress until faults close completely. Afterwards, the contact algorithm provides the
compressive tractions that guarantee the equilibrium of the system (grey circles). The resulting reduction of
the stiffness of the material due to the damage is remarkable.

Figs. 4(b-d) show the permeability in directione1, e2, ande3, respectively. The permeability is null until
the material fails (black circles). Then the permeability reaches a maximum corresponding to the maximum
extension imposed to the material (open circles). The different values of the maximum permeability for the
three directions is the combined result of the different spacing of the fault families and of the stress anisotropy
derived from the formation of faults. Upon fault closure, permeability decreases to zero (gray circles). Note
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that the anisotropy of the compressive loading causes anisotropy in the permeability history. In particular,
the permeability reduces more quickly in the directione3, where no extra-confinement is applied. In fact, the
over-compression in the two directionse1 ande2 closes the faults parallel to directione3, while the flow is
still allowed in the faults normal toe3.

5.3. Validation of the porous model against experimental results
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Figure 5: Validation of the brittle damage model versus the experimental tests on Lac du Bonnet [18] and Beisahn [53]
granites . The sample is confined with a 10 MPa pressure. (a)-(c) Deviatoric stress - strain behavior. (b)-(d) Permeability
variation with the deviatoric stress.

Experimental data of triaxial compression tests with permeability measurements are available form the
literature. In this section we validate the porous brittle damage model, considered at the constitutive level,
against experimental results of tests performed on different materials. To facilitate the comparison with the
experiments and according to the typical conventions of geomechanics, in this section we assume compressive
strains and stresses as positive. Material constants of themodel used in the validation are listed in Table 3.
Elastic modulusE, Poisson coefficientν, friction coefficientµ f , porosityn0 and permeabilityk0 of the intact
rocks were recovered from the experimental papers. FromE andν we computed the Lamé constants needed
by the elasticity model through the relations

λ =
νE

(1+ ν)(1− 2ν)
, G =

E
2(1+ ν)

.

17



Table 3: Material constants used for the validation of the material model

Rock E (MPa) ν Tc (MPa) Gc (N/mm) ϕ (◦) k0 (mm2) n0

Lac du Bonnet granite [18] 68,000 0.21 50 10 46.4 10−13 0.20
Beisahn granite [53] 52,000 0.21 60 10 35.0 10−20 0.08
Berea sandstone [54] 8,000 0.18 50 50 29.0 10−5 0.21

The cohesive parametersTc, Gc, not available from the experimental papers, have been calibrated through
preliminary analyses.

We begin with the simulation of the triaxial tests on samplesof Lac di Bonnet and Beishan granites
documented in [18, 53]. The tests consisted of the application of a confining pressure of 10 MPa, followed
by an axial compressive load up to failure. Experiments included the measurement of the permeability of
the samples, limited to the pre-peak phase. We simulate the triaxial test with the brittle damage model and
compare our numerical results with experiments. Fig. 5 shows the deviatoric stress,σ3 − σ1 versus axial
and lateral deformations,ε3 andε1, respectively, and the permeability versus deviatoric stress. During the
simulated axial compression, both granites develop one family of faults in shear. The failure plane of the faults
corresponds to the one predicted by the Mohr-Coulomb criterion, inclined of an angleπ/4− ϕ/2 with respect
to direction of maximum stress (21.8◦ for Lac du Bonnet and 27.5◦ for Beishan). The peak of resistance
corresponds to the experimental values, but the brittle damage model predicts a post-peak behavior which is
not available in the experimental papers. Experiments showan initial reduction of the permeability, followed
by a marked increase when the samples begin to show a reduction of stiffness. By contrast, the brittle damage
model predicts a constant permeability, which does not increase even after the formation of the shear faults.
However, when the load becomes too high to be balanced by friction and the axial loading reduces, faults open
and the permeability increases, showing a characteristic behavior often reported in experimental literature,
cf. [55] and the numerous references therein.

A second set of triaxial experiments on Berea sandstone withdifferent confinement are reported in [54].
We selected three small confinement triaxial experiments, characterized by a softening stress-strain curve.
Pre and post-peak porosity and permeability data are included in the experimental paper. We simulated the
experimental tests at confining pressures of 5, 10 and 40 MPa.Experimental and numerical results are shown
in Fig. 6. Fig. 6(a) shows the deviatoric stress versus the axial deformation. Simulations capture nicely the
peak stress for the three tests, while the softening branch is not perfectly reproduced. Fig. 6(b) compares
numerical and experimental porosity for the two tests at lower confinement pressure. In both simulation
and experiment, porosity reduces progressively until the stress peak is reached, and grows during the soften-
ing phase, in correspondence to the reduction of the deviatoric stress. Simulations predict qualitatively and
quantitatively the variation of porosity during the test. Comparisons between the model predictions and the
experimental observations in terms of permeability are notgood. In the experiments permeability decreases
markedly after the stress peak, see Fig. 6(c), with a trend incontrast to the one normally observed in exper-
imental data, cf., e. g., [55]. Indeed, in most documented experiments, permeability grows after the failure
of the sample. The brittle damage model predicts a post-peakincrease in permeability, see Fig. 6(d), which
is opposite to the sandstone experiments, but in line with many experimental results in sandstone and other
materials, and is also in agreement with the simulations on granites discussed here.

6. Conclusions

We have developed a model of distributed fracturing of rock masses, and the attendant permeability
enhancement thereof, based on an explicit micromechanicalconstruction resulting in complex connected
patterns of cracks, or faults. The approach extends the multi-scale brittle damage material model introduced
in [24], which was limited to mechanical damage. The fracture patterns that form the basis of the theory
are not implied but explicitly defined and the rock mass undergoes throughout compatible deformations and
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Figure 6: Validation of the brittle damage model versus the experimental tests on Berea sandstone [54]. Sample are
confined with a 5, 10 or 40 MPa pressure. (a) Deviatoric stress-axial strain behavior. (b) Porosity variation with the
deviatoric stress. (c) Experimental permeability, variation with the deviatoric stress. (d) Numerical Permeability, variation
with the deviatoric stress.

remains in static equilibrium, not just on average at the macroscopic scale, but also the micromechanical
level. The sequential faulting construction used to generate the fracture patterns has been shown in [24] to
be optimal as regards the ability of the fracture patterns torelieve stress. In addition, the nucleation criterion,
orientation and spacing of the faults derive rigorously from energetic considerations. Following nucleation,
fractures can deform by frictional sliding or undergo opening, thereby partially relieving the geostatic stresses
in the rock mass. The extension of the theory presented in this paper additionally accounts for fluid pressure
by recourse to Terzaghi’s effective stress principle. Specifically, we estimate the permeability enhancement
resulting from fracture enhancement using standard lubrication theory [25, 26, 27]. This extension gives rise
to a fully-coupled hydro-mechanical model.

The formulation has been derived in finite kinematics to be consistent with the formulation of the damage
model in [18]. A finite kinematics approach is able to describe both large and small strains, so that the model
can be applied also to porous media different from rocks. A linear version of the model is currently under
development, in view of heavy numerical applications in field problems.

19



The dry mechanical aspects of the model were validated in [24] by means of comparisons with the dy-
namic multiaxial compression experiments on sintered aluminum nitride (AlN) of Chen and Ravichandran
[49, 50, 51, 52]. The model was shown to correctly predict thegeneral trends regarding the experimental
observed damage patterns, as well as the brittle-to-ductile transition resulting under increasing confinement.
The hydro-mechanical coupled model has been validated against three different sets of experimental data
concerned with triaxial tests at different confinement pressure on granite and sandstone, including Lac du
Bonnet [18] and Beisahn [53] granites and Berea sandstone [54]. The ability of the model to qualitatively
reproduce the experimental peak strength, post-peak stress-strain behavior permeability enhancement during
loading and recovery during unloading is remarkable.

The present coupled hydro-mechanical model has potential for use in applications, such as rocks under
geostatic conditions, gravity dams, hydraulic fracture operations, and others, in which a solid deforms and
undergoes extensive fracture under all-around confinementwhile simultaneously being infiltrated by a fluid.
The particular case of hydraulic fracture is characterizedby the injection of fluid at high pressure, which
actively promotes the fracture process and the transport offluid into the rock mass. Under such conditions,
the present model is expected to predict the development of three-dimensional fracture patterns of great
complexity over multiple scales. Such complex fracture patterns have indeed been inferred from acoustic
measurements in actual hydraulic fracture operations [56,57] and are in sharp contrast to traditional models
of hydraulic fracture, which posit the formation of a singlemathematically-sharp crack. The present model
thus represents a paradigm shift from said traditional models in its ability to account for complexity in the
fracture pattern over multiple scale while simultaneouslysupplying macroscopic effective properties such as
permeability and strength that can in turn be used, e. g., in full-field finite element simulations.
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Appendix A

By denoting the time derivative with ˙n, we write

V n= VV , V̇ n+ Vṅ = V̇V ṅ =
V̇V

V
−

V̇
V

n .

Under the assumption of solid particle incompressibility,V̇ = V̇v and J̇ = V̇v/V0 thus the rate of porosity
change becomes:

ṅ = (1− n)
V̇V

V0

V0

V
= (1− n)

J̇
J
.

This relation can be alternatively written in the form

ṅ
1− n

=
J̇
J
, − log(1− n) = log J +C ,

whereC is a constant, which can be derived by setting as initial valuesJ0 = 1 andn0, obtaining

n = 1+
1
J

(n0 − 1) .
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