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Abstract
We lay the foundations of Fatou theory in one and several complex variables. We
describe the main contributions contained in E. M. Stein’s book Boundary Behavior
of Holomorphic Functions, published in 1972 and still a source of inspiration. We also
give an account of his contributions to the study of the boundary behavior of harmonic
functions. The point of this paper is not simply to exposit well-known ideas. Rather,
we completely reorganize the subject in order to bring out the profound contributions
of E.M. Stein to the study of the boundary behavior both of holomorphic and harmonic
functions in one and several variables. In an appendix, we provide a self-contained
proof of a new result which is relevant to the differentiation of integrals, a topic which,
as witnessed in Stein’s work, and especially by the aforementioned book, has deep
connections with the boundary behavior of harmonic and holomorphic functions.

Keywords Approach regions · Almost everywhere convergence · Theorems of Fatou
type ·Maximal functions
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1 Introduction

The difference between the boundary behavior of holomorphic functions (defined on
a certain class of bounded domain in C

n) and that of harmonic functions (defined
on the same domains, seen as subdomains of R

2n) becomes much more significant if
n > 1, due to a subtler interplay between potential theory and complex analysis. This
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is one of the many places where the insight of Elias Menachem Stein has reached new
depths.

Stein also contributed a profound understanding of the boundary behavior of har-
monic functions per se—a subject that grew out of the Dirichlet problem.

When Stein started his work in this second area, classical potential theory had
already reached a high degree of development: It had been axiomatized, or was being
axiomatized, by the French school (H. Cartan, M. Brelot, G. Choquet), with deep con-
tributions from the German one (H. Bauer and his pupils), from the Prague Harmonic
Group (J. Král and his pupils), as well as from the Romanian school (S. Stoilow and
his pupils) [8,9,11,17–20,28–30,33,66,67,69,95,130,170,178]. In the hands of Kaku-
tani and Doob, the subject had produced a spectacular result—such as Theorem 8.7
below—on the boundary behavior of harmonic functions for any bounded domain in
R
n [52,84,85]. However, the geometric meaning of this result is not easy to grasp,

since its statement does not immediately yield a geometric insight about the boundary
approach which ensures the existence of boundary values.

At that time, some precise and geometrically crafted results on boundary behavior
did exist, but most of them, with perhaps the only exceptions given by the work of
Privalov and Kouznetzoff (1939) for Lyapunov domains in R

n , Tsuji (1939) for the
unit ball in R

n , Tsuji (1944) for Lyapunov domains in R
n , and Calderón (1950) for

the upper half-space, were confined to planar domains and to holomorphic function
and thus heavily depended on conformal mappings, which transfer the problem to the
unit disc [24,25,144,176,177].

It is then useful, in order to put things in perspective and be able to appreciate
Stein’s contributions, to give an overview of the state of the art at that time and to
see exactly what those precise and geometrically crafted results on boundary behavior
(mainly of holomorphic functions and, to a lesser extent, harmonic functions) were,
and what was the motivation that led to them.

Hence we start with the unit disc and follow the development of a certain stream
of ideas, which motivated Stein’s contributions, even at the cost of sacrificing com-
pleteness, and, with few exceptions, omitting proofs. Before we plunge into the field,
we introduce some notation that will make the treatment run smoothly, and say a few
words on the notion of “boundary property” occurring in these matters.

2 Pointwise Boundary Behavior

The collection of all functions which have a set D as domain and a set C as codomain
is denotedCD . IfY is a topological space,C(Y)

def= {
u ∈ C

Y : u is continuous on Y
}
.

If � ⊂ R
n is open, h(�) denotes the vector space

{
u ∈ C

� : u is harmonic on �
}
.

If � ⊂ C
n is open, O(�) denotes the space {u ∈ C(�) : u is holomorphic on �}. A

domain in a topological space is an open and connected subset.
The generic expression boundary behavior of a function u ∈ O(�) or u ∈ h(�)

that appears in the so-called Fatou-type theorems, hinges on any property or datum
which only depends on the values of the function near the boundary of ∂�. This
general concept assumes manifold shapes.
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7186 F. Di Biase, S. G. Krantz

2.1 The General Setting for Pointwise Boundary Behavior

The boundary behavior is called pointwise if it refers to any property of u or datum
defined from u which lies unaffected by changes of the values of u at points away
from a given point in the boundary of the domain of u. A more precise definition will
be given momentarily.

IfW is a topological space (seen as the ambient space) and � ⊂W, the boundary
of � in W is the set:

∂W�
def= � \�◦ ⊂W,

where � is the closure of � in W and �◦ its interior. If no ambiguity is likely, we
write ∂� for ∂W�.

The notion of pointwise boundary behavior is of interest not only when the domain
of u is an open subset ofR

n orC
n , but also if the ambient space is infinite-dimensional

(in some sense). Hence we set our notation in order to account for the more general
case, and we make the following assumptions.

(P 1) A function u : � → C is defined on a given open subset � of a topological
space W.

(P 2) A point q in ∂� is given.
(P 3) A filter � of subsets of � which ends at q is given (roughly speaking, the

elements of � play the role of neighborhoods, although they are not actually
neighborhoods; see below for the details).

The property
“the limiting value of u along � exists” (2.1)

(which the function umay ormay not have) describes the pointwise boundary behavior
of u with respect to the given filter at the given point. If a theorem gives sufficient
conditions which entail (2.1), it is called a pointwise Fatou-type theorem.

The limiting value in (2.1) is called the boundary value of u at q along �, and it is
the datum associated to this boundary behavior: It is denoted by u�(q). The notion of
filter, coupled with an explanation of the meaning of (2.1), the appropriate motivation,
and the most relevant examples, will be given momentarily.

Following Doob [52], a boundary set for � is a (possibly proper) subset of the
boundary of �, and a boundary function for � is a function defined on a (possibly
proper) subset of the boundary of �.

Other variants of the notion of pointwise boundary behavior, which are central to
the field, are the qualitative and the quantitative boundary behavior of functions (see
below).

2.2 Unrestricted Boundary Values

The property that the limiting value

u�(q)
def= lim

��z→q
u(z) (2.2)
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exists is a pointwise boundary property, which u may or may not have. The boundary
value u�(q) is then called the unrestricted boundary value of u at q in � and it is
the datum associated to this boundary property. It would be misleading to denote the
limiting value in (2.2) by u(q), since u is only defined on � (and, thus, u(q) is not
defined). The existence of the unrestricted boundary value is a strong condition, and
it is important on theoretical grounds (as for example in the set-up that leads to the
notion of harmonic measure). In general, its actual occurrence is more an exception
than a rule. However, there are always examples where it occurs: The restriction to the
domain of a function which is continuous on the whole ambient space has unrestricted
boundary value at any boundary point.

2.3 Approach Regions

The collection of all subsets [nonempty subsets] of a set X is denoted byP(X) [P•(X),
resp.].

If Y is a topological space and q ∈ Y, a neighborhood of q in Y is a subset of Y
which contains an open set containing q. Denote by

Nq(Y) (2.3)

the set of all neighborhoods of q in Y. The notion of approach region is a general
geometrical device that enables us to describe a whole class of concrete instances of
pointwise boundary behavior of a function u : � → C. This notion plays a distin-
guished role in Stein’s work in this area.

An approach region in � ⊂W ending at q ∈ ∂W(�) is a subset V ⊂W such that

V is a subset of � whose closure inW contains q. (2.4)

We indicate the fact that V is an approach region in � ⊂ W ending at q by writing
W ⊃ � ⊃ V → q. If V is an approach region in � ending at q, we say that the
boundary value of u at q through V exists and is equal to ξ ∈ C, and write

uV (q) = ξ, (2.5)

if for each O ∈ Nξ (C), there exists U ∈ Nq(W) such that {u(z) : z ∈ V ∩U } ⊂ O .
If ξ = ∞ in the Riemann sphere, or if u is real valued and ξ = +∞ or ξ = −∞,
this definition is modified in the familiar way. This statement is a pointwise boundary
property of u, and uV (q) is the associated datum.

The uncluttered notation adopted in (2.5) responds to the fact that boundary values
through various approach regions will be studied. It would be misleading to denote
the limiting value in (2.5) by u(q), since the function u is only defined on �, and
therefore, u(q) is not defined; moreover, the notation u(q) does not express the fact
that the value in (2.5) depends on V .

If V = �, then we recapture the notion of unrestricted boundary value of u at
q, which is a very stringent condition. Less stringent conditions arise by choosing
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7188 F. Di Biase, S. G. Krantz

smaller approach regions ending at q, such as, for example, a sequence of points in
� converging to q. Then the approach region is called sequential, and the limiting
value uV (q) is called a sequential boundary value. If V is a half-open Jordan arc in
� ending at q, i.e., the image of a continuous, injective function c : [0, 1)→ � such
that lims→1 c(s) = 1, then, following a consolidated terminology, the approach region
is called asymptotic, and the limiting value uV (q) is called an asymptotic boundary

value [36,126,132]. For example, if� is the unit disc D
def= {z ∈ C : |z| < 1},W = C,

and R
def= {sq : 0 ≤ s < 1} is the radius in D ending at q = eiθ , then uR(q) is called

radial boundary value of u at q (if it exists).
Another variant of this notion arises from the choice of a collection � ⊂ P•(�)

of approach regions in � ending at q. The property

“uV (q) exists for each V ∈ � and does not depend on V ′′ (2.6)

is a pointwise boundary property of u (which u may or may not have). The associ-
ated datum is the limiting value uV (q) (which, by assumption, does not depend on
V ), called the boundary value of u at q through � and denoted by u�(q). Hence

u�(q)
def= lim

V�z→q
u(z), for all V ∈ �.

2.4 Angular Boundary Values in the Unit Disc. The Fatou Set and the Plessner Sets

In the unit disc D, if q = eiθ ∈ ∂D, consider the following sets of approach regions:
(1) the set (denoted by Stolzq ) of all open Euclidean triangles contained in D and
having q as a vertex; (2) the set (denoted by Stolzsq ) of all such triangles which are
symmetric with respect to the radius ending at q; (3) the set of all sets � j (q), where
j ≥ 1, defined as follows

� j (q)
def=

{
z ∈ D : 1− |z||z − q| >

1

1+ j

}
. (2.7)

The sets in (1) are called Stolz triangles at q; those in (2) are called symmetric Stolz
triangles at q; those in (3) are called nontangential approach regions in D at q. These
sets yield the same notion of boundary value, denoted by

u�(q) (2.8)

and called angular boundary value of u at q: We will see that this fact can be under-
stood by observing that these sets determine the same filter (see below). Indeed, when
studying the mere existence of boundary values, the relevant datum in an approach
region, or in a set of approach regions, is the filter associated to it (see below). The
existence of the angular boundary value u�(q) is a more stringent condition than the
existence of the radial boundary value, but it is weaker than the existence of unre-
stricted boundary values. The subscript in u� is reminiscent of an angle. Indeed, if
u�(q) exists, given a half-open Jordan arc c : [0, 1) → D such that limr↑1 c(r) = q,
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if the visual angle between 0 and c(r) as seen from q is bounded away from π/2, then
limr↑1 u(c(r)) = u�(q). On the other hand, in 1927, John Edensor Littlewood [113]
proved the following result.

Lemma 2.1 If u : D → C is a function for which u�(q) exists, for a certain q ∈ ∂D,
then it is possible to select a certain half-open Jordan arc c : [0, 1)→ D ending at q
such that

(a) For each t ∈ Stolzq , there exists st ∈ [0, 1) such that c(s) /∈ t for each
s ∈ (st, 1).

(b) lims↑1 u(c(s)) = u�(q).

The condition in (a) says that the curve c, whose existence is established in
Lemma 2.1 is eventually disjoint from any given Stolz triangle in D ending at q
(see below). This condition is a set-theoretical expression of the notion that the curve
may be chosen to be tangential to ∂D at q: Here, set theoretical means that this notion
does not rest on any smoothness assumption on c.

The Fatou set of u ∈ C
D is the following boundary set for D:

Fatou(u)
def= {

q ∈ ∂D : u�(q) exists and is finite
}
. (2.9)

Let Ĉ be the one-point compactification ofC. ThePlessner set of u ∈ C
D is antithetical

to its Fatou set:

Plessner(u)
def= {

q ∈ ∂D : for each t ∈ Stolzq , the set {u(z) : z ∈ t} is dense in Ĉ
}
.

(2.10)
If u is real valued, then the real Plessner set of u is slightly different in its definition
but similar in spirit:

realPlessner[u] def= {
q ∈ ∂D : for each t ∈ Stolzq , u is unbounded above and below in t

}
.

(2.11)

2.5 Filters

The examples we have seen so far of pointwise boundary behavior can be subsumed
under a unique general construction, resting on the notion of filter, due to H. Cartan,
which we now introduce [27]. Recall from (2.3) that ifY is a topological space and q ∈
Y, the set of all neighborhoods of q in Y is denoted by Nq(Y). The key observations
that lead to the notion of filter and show its relevance in issues of limiting values, are
the following. First, the setNq(Y), seen as subset ofP(Y), has the following essential
properties:

(F 1) It is closed under finite intersections.
(F 2) It contains every superset of each of its elements.

Second, the familiar ε-δ description of the existence of a limiting value limz→q u(z)
of u ∈ C

Y shows that this notion only depends on the set Nq(Y) and on the values

123
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of u on (set theoretically) small sets in Nq(Y). This model case sheds light on the
following definition.

If Y is a nonempty set, a filter on Y (or filter of subsets of Y ) is a nonempty collection
of nonempty subsets of Y with the properties (F 1) and (F 2) (hencewith this definition,
the empty set is not a filter). The set Y is called the total space of the filter. Hence, if
� is a filter on Y , then � ⊂ P•(Y ) and ∅ /∈ �. The collection of all filters in Y is
denoted by Filters(Y). A filtered space (Y ,�) is a nonempty set Y endowed with a
filter �.

If Y is a topological space and q ∈ Y,Nq(Y) is a filter on Y, called neighborhood
filter on Y at q.

Observe that the set Filters(Y ), being a subset ofP•(P•(Y )), is a partially ordered
set under inclusion, and the assignment Y �→ Filters(Y ) is the object function of a
functor from the categoryof sets to the categoryof partially ordered sets. The associated
arrow function assigns to each function f : Y → Y ′ the order-preserving function
f∗ : Filters(Y )→ Filters(Y ′) which associates to each filter � ∈ Filters(Y ) the filter:

f∗(�)
def= {R ∈ P•(Y ′) : R ⊃ { f (x) : x ∈ Q} for some Q ∈ �}. (2.12)

Filtered spaces form a category, where a morphism f : (Y ,�) → (Y ′,�′) is a
function f : Y → Y ′ such that �′ ⊂ f∗(�). For background, see [118].

Lemma 2.2 Given any family of filters on a nonempty set, its intersection is not empty
and is a filter.

2.5.1 Small Sets, Large Sets, Filter Bases, and Localization of Filters

The information conveyed by a filter � is given by the “small” sets in �, because of
(F 2). Loosely speaking, if �1,�2 ∈ Filters(Y ), then �1 ⊂ �2 if �2 contains sets
which are “smaller” than those of�1, and�1 � �2 if�2 contains sets which are “too
small” compared to those of �1. Hence some authors write that R is � large instead
of R ∈ �, meaning that R is “large enough” to contain sets in �. For example, a set
belongs to the neighborhood filterNq(Y) (whereY is a topological space) if and only
if it contains some open set which contains a point q.

The vague notion of “small” sets in � leads to the notion of a filter base of � on
Y , defined as a collection � ⊂ � such that a set belongs to � if and only if it contains
some set in �; we then say that � is generated by � on Y and write � = 〈�〉Y . For
example, the subsets of N of the form {k ∈ N : k ≥ j}, called tails, generate the so-
called cofinite filter onN, and the open sets which contain q generate the neighborhood
filter Nq(Y).

A nonempty collection � ⊂ P•(Y ) is a filter base of some filter on Y if and only if
the intersection of any two sets in � contains some set in �. For example, if � � W
and � ∈ Filters(�) then � /∈ Filters(W ) but � is a filter base of the filter 〈�〉W, i.e.,
the filter of subsets of W generated by �. Observe that 〈�〉W = ı∗(�), as in (2.12),
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where ı : �→ W is the standard injection. Hence

〈�〉W = ı∗(�) = {R ∈ P•(W ) : R is superset of some set which belongs to�}.
(2.13)

If Y is a topological space and q ∈ Y, then the neighborhood filter Nq(Y) is
“localized” in the sense that the intersection of all its member is nonempty. This
property is not shared by all filters: For example, the cofinite filter on N does not
have this property. However, filters are “localized” in two ways: First, a filter cannot
contain as elements two disjoint sets. Second, if � and W are sets, and � ⊂ W , then
Filters(�) ∩ Filters(W ) �= ∅ if and only if � = W . However, if � � W , (2.13)
yields a useful injective map ı∗ : Filters(�)→ Filters(W ), obtained by (2.12) where
ı : �→ W is the natural injection.

2.5.2 Limiting Values Along a Filter

If (Y ,�) is a filtered space and u ∈ C
Y , we say that the limiting value of u along �

exists and is equal to ξ ∈ C, and write

lim
�

u = ξ, (2.14)

if for each O ∈ Nξ (C), there exists R ∈ � such that {u(z) : z ∈ R} ⊂ O . If ξ = ∞
in the Riemann sphere, or if u is real valued and ξ = +∞ or ξ = −∞, this definition
is modified in the familiar way. In (2.14), Y (the domain of u) is not required to be a
topological space, but only the total space of a filter, i.e., a set endowed with the filter
�. If u : Y → S, where S is a topological space, the existence of lim� u = ξ ∈ S is
defined in a similar way: Each open set in S containing ξ also contains the u image of
a set in �.

The definition (2.14) recaptures the topological one: If Y is a topological space,
and q ∈ Y, then

lim
Y�z→q

u(z) = ξ if and only if lim
Nq (Y)

u = ξ, (2.15)

where, in the left-hand side of (2.15), the limiting value is understood in the usual
topological sense. The definition (2.14) recaptures the familiar notion of convergence
for sequences as well: A sequence u : N → C converges to ξ ∈ C in the usual sense
if and only if the limiting value of u along the cofinite filter on N exists and is equal
to ξ .

2.5.3 Compatibility of a Filter with the Topology at a Point

If Y is a topological space, q ∈ Y, and � ∈ Filters(Y), we say that � converges to q
in Y if the following compatibility condition between the topology at q and the filter
holds: For each topological space S and each function u : Y→ S,

if lim
Y�z→q

u(z) exists and is equal to ξ ∈ S then lim
�

u exists and is equal to ξ

(2.16)
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7192 F. Di Biase, S. G. Krantz

For example, the filter� ∈ Filters(R) generated by the collection of intervals ( j,+∞)

does not converge to 0, since the existence of limR�z→0 u(z) and the existence of
lim� u (which amounts to the existence of limz→+∞ u(z)) are independent of each
other. The filter� ∈ Filters(R) generated by the collection of intervals (− 1

j , 0), j ∈ N,
converges to 0, since if limR�z→0 u(z) = ξ , then lim� u exists and is equal to ξ .

Lemma 2.3 A filter � of subsets of a topological space Y converges to q in Y if and
only if Nq(Y) ⊂ �.

If a topological space is Hausdorff, a filter cannot converge to two distinct points.

2.5.4 The Notion of Filter on a Domain Ending at a Boundary Point

If � is a proper subset of a topological space W, � ∈ Filters(�), and q ∈ ∂�, then
we say that � ends at q if the following condition holds: For each topological space
S and each function u :W→ S,

if lim
W�z→q

u(z) exists and is equal to ξ ∈ S, then lim
�

(u|�) exists and is equal to ξ,

(2.17)
where u|� is the restriction of u to�. Observe that in this setting,� does not converge
to q inW (since � is not a filter of subsets ofW), and � does not converge to q in �

(since q /∈ �). For a similar reason, � does not converge to q in the topology of �.

Lemma 2.4 If W is a topological space, � � W, q ∈ ∂�, and � ∈ Filters(�), then
� ends at q if and only if the filter of subsets of W generated by � converges to q in
W.

Recall that the filter of subsets ofW generated by � is defined in (2.13).
Observe that (2.17) is of interest only if q ∈ ∂�. Indeed, if q /∈ �, then no filter

� ∈ Filters(�) satisfies (2.17); if q ∈ �◦, then Lemma 2.3 implies that (2.17) is
equivalent to Nq(�) ⊂ �.

We now show that to every approach region V in � ⊂ W ending at q ∈ ∂�, it is
possible to associate a filter of subsets of � which ends at q.

2.5.5 The Filter Associated to an Approach Region

We have seen that the notion of limiting value along a filter is general enough to
recapture the familiar topological notion of convergence for functions and sequences.
We now show that it is also able to recapture the notion of convergence through
approach regions (or through collections of approach regions).

Let V be an approach region in � ⊂ W ending at q ∈ ∂�. The relevant data that
determine the existence of the boundary value of u at q through V defined in (2.5) are
the values of u on the so-called tails of V at q: A tail of V at q is the intersection of
V with some neighborhood of q inW. Indeed, a subset V ⊂ � is an approach region
in � ending at q if and only if the collection of all its tails at q is a filter base of a
filter on �. For example, the filter on � associated to � at q (where we see � as an
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approach region in � ending at q) is called the unrestricted filter at q . A filter base
for this filter is the collection

{
O ∩� : O ∈ Nq(W)

}
. Another example is given by

the radial filter ending at q ∈ ∂D, which is associated to the radius in D ending at q.
The filter on � associated to V at q, denoted by

[V ]q (or by [V ] if q is clear from context) (2.18)

is the filter on � generated by the collection of all tails of V at q. Hence [V ]q ∈
Filters(�).

Lemma 2.5 If W is a topological space, � ⊂ W, q ∈ ∂�, and V is an approach
region in � ending at q, then the associated filter [V ]q ends at q. Moreover,

If u ∈ C
� then lim[V ]q

u exists if and only if uV (q) exists, and the two values are equal.

(2.19)

Hence the notion of limiting value along a filter, given in (2.14), recaptures that of
limiting value through an approach region, given in (2.5). In view of (2.19), the filter
[V ]q associated to V at q is called the essential shape of the approach region V at q.

Filters associated to approach regions or to collections of approach regions (see
below) are called geometric filters.Wewill mostly be concernedwith geometric filters.

2.5.6 The Filter Associated to a Collection of Approach Regions. The Angular Filter

A filter is called geometric if it is associated to a collection of approach regions, as
described below. The filter [�]q associated to a collection � of approach regions in
� ⊂ W ending at q ∈ ∂� is the intersection of the filters associated to the various
approach regions in �. Hence [�]q =

⋂
V∈� [V ]q . A filter base of [�]q may be

described using the notion of selector. A selector of � is a function s : �→ P•(�)

which assigns to each V ∈ � a tail s(V ) of V at q. For each selector s of �, denote

by s̃ the set s̃
def= ⋃

V∈� s(V ) and call it a tail of �. The collection of all tails of � is
a filter base of [�]q . The filter [�]q ends at q, and, for each u ∈ C

�:

lim[�]q
u exists if and only if u�(q) exists, and the limiting values are the same.

(2.20)
Hence the concept of boundary value through a collection of approach region is sub-
sumed under the notion of convergence along a filter. In view of (2.20), the filter [�]q
associated to � is called the essential shape of � at q.

The angular filter on D ending at q is the filter on D ending at q ∈ ∂D, associated
to the collection Stolzq (defined in Sect. 2.4).

2.5.7 Equivalent (Collections of) Approach Regions

The pointwise boundary behavior of a function through an approach region is dictated
by its behavior along the associated filter. Hence the comparison between approach
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regions, from the viewpoint of pointwise boundary behavior, depends on the compar-
ison of the associated filters, which we now introduce. Stein understood that, from the
viewpoint of quantitative Fatou-type theorems, where families of approach regions are
the relevant object of study, the comparison between [families of] approach regions is
given on different grounds, as we will see.

In the following discussion, V1 and V2 denote approach regions in � ⊂W ending
at q, and u is a function � → C. We say that the approach regions V1 and V2 are
equivalent at q, and write V1 ∼q V2, if they have the same essential shape at q, i.e., if
[V1]q = [V2]q .
Lemma 2.6 The approach regions V1 and V2 are equivalent at q if and only if

there exists O ∈ Nq(W) such that O ∩ V1 = O ∩ V2. (2.21)

If V1 ∼q V2, then uV1(q) exists⇔ uV2(q) exists, and the two boundary values are
equal.

If �1,�2 are two collections of approach regions in � ⊂ W ending at q ∈ ∂�,
we say that �1 and �2 are equivalent at q, and write �1 ∼q �2, if they have the same
essential shape at q, i.e., if [�1]q = [�2]q .
Lemma 2.7 The collections of approach regions �1 and �2 are equivalent at q if and
only if

each V1 ∈ �1 has a tail which is contained in some element of �2

and each V2 ∈ �2 has a tail which is contained in some element of �1.

If �1 ∼q �2, then u�1(q) exists⇔ u�2(q) exists, and the two boundary values are
equal. For example, the collections Stolzq , Stolz

s
q , and {� j (q)} j are equivalent at q,

since they are associated to the same filter, i.e., the angular filter on D ending at q.

2.5.8 Comparison of Filters

We have seen that the comparison of approach regions is subordinate to the compar-
ison of the associated filters. Our terminology is motivated by the application to the
comparison of approach regions, where we will also be able to appreciate the meaning
of the following notions. Let �1,�2 ∈ Filters(Y ).

We already observed that the set Filters(Y ), being a subset of P•(P•(Y )), is a
partially ordered set under inclusion. Moreover, Filters(Y ) is a complete semi-lattice,
since the following properties hold.

(inf) The infimum (greatest lower bound)
∧

α∈I �α of any family {�α}α∈I of filters
exists in Filters(Y ). It is the intersection

⋂
α∈I �α of all the filters in the family

(see Lemma 2.2).
(sup) The supremum (least upper bound) �1∨�2 of two filters does not necessarily

exist.

Since �1 ∩ �2 �= ∅, for any two filters �1,�2 ∈ Filters(Y ), and the supremum
�1 ∨�2 exists only in certain cases, only the following possibilities may occur:
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(E–D) �1 ∨�2 does not exist: We say that �1 and �2 are eventually disjoint.
(C) The filters �1 and �2 are comparable if either �2 ⊂ �1 or �1 ⊂ �2. In this
case, �1 ∨�2 exists and is equal to �1 or to �2.

(C 1) If �1 ∨�2 = �1 (i.e., �2 ⊂ �1), we say that �2 is broader than �1,
and write �2 � �1. We say that �2 is strictly broader than �1, and write
�2 � �1, if �2 � �1.
(C 2) If �1 ∨�2 = �2, the roles are reversed.

(F–D) The filters �1 and �2 are not comparable, but �1 ∨ �2 exists. Hence
�1∨�2 is neither�1 nor�2. Then we say that�1 and�2 are frequently disjoint.

The filters �1 and �2 are disjoint if �1 \�2 �= ∅ and �2 \�1 �= ∅. Disjoint filters
are either eventually disjoint or frequently disjoint. If two filters are not disjoint, then
they are comparable.

It is convenient at times to say that �1 is eventually (frequently) disjoint from �2
to mean that �1 and �2 are eventually (frequently) disjoint.

Lemma 2.8 The filters �1 and �2 are eventually disjoint if and only if

there exist sets R1 ∈ �1 and R2 ∈ �2 such that R1 ∩ R2 = ∅ (2.22)

Lemma 2.9 The filters �1 and �2 are frequently disjoint if and only if

�1 \�2 �= ∅, �2 \�1 �= ∅, and R1 ∩ R2 �= ∅ for each R1 ∈ �1 and R2 ∈ �2
(2.23)

A broader filter casts amore stringent condition on the existence of limiting values,
in a precise sense.

Lemma 2.10 The filter �1 is broader than the filter �2 if and only if for each topo-
logical space S and each function u : Y → S, if lim�1 u exists and is equal to ξ ∈ S,
then lim�2 u exists and is equal to ξ .

In the study of limiting values, a relevant situation is the case where �1 is not
broader than �2, i.e., when it is not true that �1 ⊂ �2. We say that �2 lies frequently
outside of �1 if

�1 \�2 �= ∅

This situation encompasses three different cases:

(1) �2 is strictly broader than �1.
(2) �1 and �2 are eventually disjoint.
(3) �1 and �2 are frequently disjoint.

The relevance of these three different conditions in the study of limiting values is this:
If �2 lies frequently outside of �1, then the existence of lim�2 u does not follow a
priori from the existence of lim�1 u. The following results shed light on the meaning
of this condition. Recall that �1 ∧ �2 is the intersection of �1 with �2, i.e., the
collection {R : R ∈ �1 and R ∈ �2}.
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Lemma 2.11 The filter �2 lies frequently outside of �1 if and only if �1 ∧
�2 is strictly broader than �1.

Lemma 2.12 If lim�1 u = ξ and lim�2 u = ξ , then lim�1∧�2 u = ξ .

2.5.9 Comparison of Approach Regions

We say that the approach regions V1 and V2 are eventually disjoint at q if the essential
shape of V1 at q and the essential shape of V2 at q are eventually disjoint.

Lemma 2.13 The approach regions V1 and V2 are eventually disjoint if and only if

there exists O ∈ Nq(W) such that O ∩ V1 ∩ V2 = ∅.

The approach region E j defined in (2.24) and �k(1) are eventually disjoint at 1 (for
j = 1, 2 and k ≥ 1).

E1
def=

{(
1− n−2

)
ei/n : n = 2, 3, . . .

}
⊂ D, E2

def=
{(
1− x2

)
eix : x ∈ (0, 1/2)

}
⊂ D.

(2.24)
We say that the approach regions V1 and V2 are frequently disjoint at q if the essential
shape of V1 at q and the essential shape of V2 at q are frequently disjoint.

Lemma 2.14 The approach regions V1 and V2 are frequently disjoint at 1 at q if and
only if

for each O ∈ Nq(W), the following holds: (O ∩ V2) \ V1 �= ∅, (O ∩ V1) \ V2 �= ∅,
O ∩ V1 ∩ V2 �= ∅.

The approach region E3 defined in (2.25) and � j (1) are frequently (but not even-
tually) disjoint at 1 ( j ≥ 1).

E3
def=

{
r
(
1− n−2

)
ei/n : 0 ≤ r ≤ 1, n = 2, 3, . . .

}
⊂ D. (2.25)

It is convenient at times to say that V1 is eventually (frequently) disjoint from V2 to
mean that V1 and V2 are eventually (frequently) disjoint.

The effect of inclusion on the associated filters is contravariant: Indeed, if V2 ⊂ V1,
then [V1]q ⊂ [V2]q , and the existence of uV2(q) is aweaker property than the existence
of uV1(q). Indeed, if uV1(q) exists, then uV2(q) also exists and is equal to uV1(q). In
view of Lemmas 2.10 and 2.5, we say that the approach region V1 is broader at q
than the approach region V2, and write V1 � V2, if the essential shape of V1 at q is
broader than the essential shape of V2 at q, i.e., if [V1]q ⊂ [V2]q . This condition does
not exclude the possibility that V1 and V2 are equivalent at q.

Lemma 2.15 The approach region V1 is broader than V2 at q if and only if

there exists O ∈ Nq(W) such that O ∩ V2 ⊆ V1.
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It is possible that V1 is broader than V2 and yet that neither V1 ⊃ V2 nor V2 ⊃ V1
holds, as can be see from the following example, where W = C, � = D, q = 1.

V1
def= [Q ∩ (0, 1/2)] ∪ (1/2, 1), V2

def= (0, 1/2) ∪ [Q ∩ (1/2, 1)] .

We say that the approach region V1 is strictly broader at q than V2, and write V1 � V2,
if the essential shape of V1 at q is strictly broader than the essential shape of V2 at q,
i.e., if [V1]q � [V2]q .
Lemma 2.16 The approach region V1 is strictly broader than V2 at q if and only if

there exists an approach region E in � ⊂W ending at q such that

E and V2 are eventually disjoint, and V1 = V2 ∪ E

For example, � j+1(q) ⊂ D is strictly broader than � j (q) at q.

Lemma 2.17 If V1 and V2 are approach regions in � ⊂W ending at q, then V1 ∪ V2
is an approach region ending at q and [V1 ∪ V2]q = [V1]q ∧ [V2]q .

In the study of limiting values, a relevant situation is the case where V1 is not
broader than V2. We then say that V2 lies frequently outside of V1. This situation
encompasses three different cases: (1) V2 is strictly broader than V1; (2) V1 and V2 are
eventually disjoint; and (3) V1 and V2 are frequently disjoint. The relevance of these
three different conditions in the study of limiting values is this: If V2 lies frequently
outside of V1, then the existence of uV2(q) does not follow a priori from the existence
of uV1(q).

Lemma 2.18 If V1 and V2 are approach regions in � ⊂ W ending at q, then the
following conditions are equivalent:

(1) V2 lies frequently outside of V1
(2) For each O ∈ Nq(W), (O ∩ V2) \ V1 �= ∅.
(3) The approach region V1 ∪ V2 is strictly broader than V1 at q.

If V2 and V1 are eventually disjoint, then V2 lies eventually outside of V1. The
approach region E3 defined in (2.25) lies frequently outside of � j (1), but E3 and
� j (1) are not eventually disjoint.

Observe that � j+1(q) is strictly broader than � j (q) and hence it lies frequently
outside of � j (q), but � j+1(q) and � j (q) are not eventually disjoint.

If E is an approach region in � ⊂ W ending at q ∈ ∂�, and � is a collection of
approach regions in � ⊂ W ending at q ∈ ∂�, we say that E lies frequently outside
of � if, for each V ∈ �, E lies frequently outside of V . If � = Stolzq , then E is said
to lie frequently outside of the angular filter on D ending at q. We say that E and �

are eventually disjoint if for each V ∈ �, E and V are eventually disjoint. Of special
interest is the case where � = Stolzq : We then say that E and the angular filter on
D ending at q are eventually disjoint. For example, the approach region E defined
in (2.25) lies frequently outside of the angular filter on D ending at 1, but E and the
angular filter are not eventually disjoint.
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These notions are set theoretical and only depend on the particular “shape” of the
two approach regions (more precisely, on the associated filters). We will soon describe
another way approach regions may be “essentially larger” than one another: It depends
on the notion of family of approach regions and is one of the spectacular contributions
that Stein has given to the subject.

3 Pointwise Results for Holomorphic Functions in the Unit Disc

We are now ready to resume our discussion and plunge into the unit disc, which is a
special domain, for a number of intertwined reasons. A group of symmetries acts on
this space and makes it possible to derive the relevant objects from first principles—
this is the point of view that enabled Hua Luogeng to derive the reproducing kernels
in other contexts, which are also endowed with a rich group of symmetries. In this
specific case, the Poisson kernel had already been explicitly determined long before,
because of its link to the Abel summability of power series. The more concrete reason
that makes the unit disc so special, is that it is the natural home of complex analysis,

that favored ally of one-dimensional Fourier analysis [166]

as Stein put it, and the fact that the latter—the study of Fourier series—lives precisely
on its boundary. Indeed, many early results on Fourier series were obtained by the
Moscow school of mathematics by first treating a trigonomeric series as the real part
of a power series, and then, in Antoni Zygmund’s words, by

entering the interior of the unit disc [191].

Here, powerfulmethods of complex analysis are applicable. This is the so-called “com-
plex method,” whose final step was to go back to the boundary by taking boundary
values of holomorphic functions. For example, using the complex method, Privalov
extended to integrable functions the theorem (previously proved by Lusin for L2 func-
tions) about the existence of a fundamental singular integral (the Hilbert transform).
This method of course required knowledge about the boundary behavior of holomor-
phic function in the unit disc, and indeed, the Moscow school (centered around Lusin
and his outstanding students Privalov, Menshov, Kolmogorov, among others) con-
tributed to this topic with seminal work, which was part of the background on which
Stein operated, as we will see.

3.1 A Pointwise Theorem of Fatou Type for Radial BoundaryValues in the Unit Disc

In 1826, Niels Henrik Abel proved a result that appears to be the first example of
a pointwise Fatou-type theorem associated to radial boundary values. According to
Konrad Knopp,

The theorem had already been stated and used by Gauss […] The proof given by
Gauss […] is however incorrect, as he interchanged the two limiting processes
which come under consideration for this theorem, without at all testing whether
he was justified in so doing. [90, p. 177]
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Theorem 3.1 ([1]) If a power series

u(z) =
+∞∑

k=0
akz

k (3.1)

has radius of convergence equal to 1 and it converges for z = eiθ to a finite limit ξ ,
then the radial boundary value of u at eiθ exists and is equal to ξ .

In the special case θ = 0, to which the general one may be reduced, Abel’s theorem
says that

if the sequence fn
def=

n−1∑

k=0
ak converges to a finite limit ξ, then lim

r↑1

+∞∑

k=0
akr

k converges to ξ.

(3.2)

3.2 Abel’s Heuristic Principle

In retrospect, we can read in Abel’s theorem the elements of a principle that reappears
over and over again in different guises. The partial sums { f j } j in the hypothesis may
be seen as a “boundary datum.” The conclusion concerns the behavior of the function
u, defined inside the unit disc by (3.1) in terms of the boundary datum. Abel’s heuristic
principle says that there is a direct correspondence between a “regular” behavior of
the boundary datum and a “good” boundary behavior of u. Abel’s heuristic principle
also governs the correspondence between functions harmonic in a domain and their
boundary values:

The behavior of harmonic functions (in particular Poisson integrals) near the
boundary is closely related to the differentiability properties of the boundary
functions [168].

Stein’s work reached the roots of this correspondence.

3.3 Frobenius’Rendition of Abel’s Principle

In 1880, Ferdinand Georg Frobenius proved the following result, whish is another
instance of Abel’s principle: Indeed, it is an improvement of Abel’s theorem, since
the same conclusion is obtained from a weaker assumption, which still concerns the
“regularity” of the boundary data.

Theorem 3.2 ([64]) If the power series in (3.1) has radius of convergence equal to 1
and if the averages of the partial sums defined in (3.2)

f0 + f1 + . . .+ fn−1
n

(3.3)

have a finite limit ξ , then the radial boundary value of u at 1 exists and is equal to ξ .
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Frobenius was inspired by some ideas of Leibniz (1713), who had been questioned
about the series 1− 1+ 1− 1+ 1− . . ., whose sum, according to Grandi (1703), was
1/2 [68]. Leibniz observed that the partial sums fn are 0 or 1 with equal frequency
and thus the value of 1− 1+ 1− 1+ 1− . . . had to be the average between 0 and 1,
since

in going from the finite to the infinite the two values [0 and 1] merge in their
mean-value [107]

In hindsight, Leibniz’s intuition can be interpreted as an anticipation of four related
topics, where mean-values, or averages, play a prominent role: (i) the work of Henri
Léon Lebesgue on a differentiation theorem (in the notion of Lebesgue point); (ii)
martingale convergence theorems; (iii) ergodic theorems; (iv) the work of Godfrey
Harold Hardy and John Edensor Littlewood on the maximal function, inspired by

[any] game in which a player compiles a series of scores of which an average is
recorded [73]

Harmonic (and subharmonic) functions enter in this picture precisely because of their
well-known properties related to averages. Stein’s curiosity led him to develop a keen
interest in the link between these apparently unrelated topics, to which he contributed
with deep conceptual results, also offering an impressive showcase of unsurpassed
mastery of techniques where averages are central. Indeed, the “differentiability prop-
erties of the boundary functions” (which is “closely related to the behavior of harmonic
functions near the boundary”) are expressed in terms of mean values, as in the differ-
entiation of integrals (see below) [168].

3.4 Tauberian Results

If the limr↑1
∑+∞

k=0 akrk exists and is finite, then the sequence fn
def= ∑n−1

k=0 ak does not
have to converge, unless we also assume some additional condition on the coefficients
{a j } j . In other words, a “good” boundary behavior of u does not necessarily imply a
“regular” behavior of the boundary datum, unless additional conditions are assumed.
Alfred Tauber was perhaps the first to determine an additional condition of this kind.
His result may thus be seen as an instance ofAbel’s principle, in the converse direction:
Under an additional hypothesis (now called Tauberian), from the boundary behavior
of u, we may deduce that the boundary datum behaves in some “good” way. In 1897,
Tauber proved the following result.

Theorem 3.3 ([175]) If ak = o(1/k), then

if lim
r↑1

+∞∑

k=0
akr

k converges to a finite limit ξ then the sequence fn
def=

n−1∑

k=0
ak converges to ξ.

(3.4)

Thus, this result says that, under an additional condition, if the radial boundary
value at 1 of the holomorphic function in (3.1) exists and is finite, then the partial
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sums in (3.2) converge to the same limit. The following improvements of Tauber’s
result, proved by Littlewood in 1911, are another instance of Abel’s principle in the
converse direction.

Theorem 3.4 ([112]) If ak = O(1/k), then (3.4) holds.

These results have been completed by Hardy and Littlewood in 1924 as follows.

Theorem 3.5 ([72]) If ak = O(1/k) and u(z) =∑+∞
k=0 akzk has the asymptotic bound-

ary value ξ along some half-open Jordan arc ending at 1, then
∑n−1

k=0 ak converges to
ξ .

Theorem 3.6 ([72]) If
ak = O(1/k), (3.5)

then the necessary and sufficient condition for the following to hold:

∑
ak = ξ (3.6)

is that

the boundary value of
1

1− z

∑ an
n + 1

(1− zn+1) at 1 through

c exists and is equal to ξ (3.7)

for some half-open Jordan arc c in D ending at 1. The hypothesis (3.5) is sharp:
It cannot be relaxed to ak = O(φk/k) where the sequence {φ j } j≥1 diverges to ∞,
because, in this case, (3.7) ceases to be either a necessary or a sufficient condition
for (3.6).

Results of Tauberian type are also valid for the boundary behavior of harmonic
functions (in much the same way as results of Abel type are also valid for harmonic
functions): A result of this form is then called a converse of Fatou’s theorem.

3.5 Pointwise Theorems of Fatou Type for Angular Boundary Values

The following result, proved by Otto Stolz in 1875, is also an improvement of Abel’s
theorem. Indeed, from the same assumptions, we obtain a stronger conclusion, since
the existence of an angular boundary value is stronger than the existence of a radial
boundary value.

Theorem 3.7 ([171]) If a power series

u(z) =
+∞∑

k=0
akz

k

has radius of convergence equal to 1 and it converges for z = eiθ to a finite limit ξ ,
then the angular boundary value of u at eiθ exists and is equal to ξ .
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This result by Stolz has been improved by Alfred Pringsheim in 1901 in the fol-
lowing result, where only the existence of the limiting value of the averages in (3.3)
is required, rather than the convergence of

∑
k ak .

Theorem 3.8 ([140]) If the power series in (3.1) has radius of convergence equal to 1
and the averages in (3.3) have a finite limit ξ , then the angular boundary value of u
at 1 exists and is equal to ξ .

3.6 Littlewood’s Sharpness Problem and Littlewood’s Principle

We now present a question that belongs to a general circle of ideas, which was dear
to Hardy and Littlewood, centered on the task of finding “sharp” or “best possible”
results.

Assumption 3.1 Assume that, in the setting of Sect. 2.1, a pointwise Fatou-type theo-
rem holds, which asserts (for a given function u or class of functions) the existence of
a filter � ∈ Filters(�) such that

(1) The filter � ends at q ∈ ∂�.
(2) For each function u in the given class, the limiting value lim� u exists.

The filter � is called the convergence filter (for the given pointwise Fatou-type
theorem). We say that the convergence filter � is sharp, for the given pointwise
Fatou-type theorem, if the following statement is not true:

there is a filter �strictly broader than� and such that lim
�

u exists and is equal to lim
�

u.

(3.8)
Lemmas 2.10, 2.11, and 2.12 imply that (3.8) holds if and only if the following holds:

there is a filter � that lies frequently outside� and such that lim
�

u exists and is equal to lim
�

u.

(3.9)

Question 3.1 In the context of a given pointwise Fatou-type theorem, as in Assump-
tion 3.1, Littlewood’s Sharpness Problem is to determine whether the convergence
filter in the theorem is sharp.

Recall that, if � is strictly broader than �, then the existence of lim� u is a more
stringent condition than the existence of lim� u. Hence, if the given convergence
filter is not sharp, it is then possible to obtain a stronger result. For example, in
Abel’s theorem, the convergence filter is the radial filter. Stolz’s theorem shows that
convergence holds along the angular filter, which is strictly broader then the radial
filter. Hence the radial filter in Abel’s theorem is not sharp, and Stolz’s theorem is
an improvement of Abel’s theorem. Littlewood’s sharpness problem can be posed for
Stolz’s theorem as well, where the convergence filter is the angular filter. Observe that
ifC is any circle interior to and osculating the unit circle at 1, the associated filter [C]1
is eventually disjoint from (and lies frequently outside of) the angular filter.
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Theorem 3.9 ([70]) There exists a convergent series
∑

k ak such that, given any circle
C interior to and osculating the unit circle at 1, the limiting value of the function

u(z)
def= ∑+∞

k=0 akzk along [C]1 does not exist.
Theorem 3.9 is important because it established for the first time “Littlewood’s

principle,” which was accepted for several decades as unconditionally valid:

it is not possible to obtain boundary values through “tangential” approach
regions.

The opposition between “angular” and “tangential” approach turned out to be a key
to understand the boundary behavior of holomorphic (or merely harmonic) functions,
but it also exhibited unexpected, surprising results. Indeed, Stein showed that the limi-
tations of Littlewood’s Principle lie in the difference (which had remained overlooked
for a long time) between approach regions which are eventually disjoint from the
angular filter (which are actually tangential) and those lying frequently outside of it.

4 Qualitative Boundary Behavior (I)

The term collection is a synonym for set, but family is not: Following Samuel [152],
if E is a set, a family of elements of E based on I is a function α : I → E , where
I is a “set of indexes.” If I is the boundary of a topological space, we may omit the
explicit reference to it, as, e.g., in family of filters.

4.1 Notation in Measure Theory

The term measure (on a set X ) denotes a positive and complete measure, defined on
a σ -algebra S of subsets of X , where complete means that each subset of a set in S
which has measure zero also belongs to S. The term Borel measure on a topological
space X denotes a measure defined on a σ -algebra S of subsets of X which contains
the σ -algebra B(X) of Borel sets of X .

Following common usage, harmonic measure on the boundary X of a bounded
domain in R

n (with respect to a given pole) is denoted by ω. If X is the boundary
of the unit disc, harmonic measure with pole at the origin is normalized arc-length
dθ/2π . If X = R

n , Lebesgue measure is denoted by dω or dq. If no ambiguity is
possible, we may omit explicit mention of ω, and, following Stein [163], denote the
ω-measure of a set {. . .} by |{. . .}| instead of ω({. . .}).

The symbol ω (in bold-face) denotes the average operator associated to ω (see
below).

In order to simplify the statements of many results in the subject, it is handy to
introduce the following binary relations “ω=” and “⊂ω” between subsets of a measure
space, which are obtained from the ordinary relations “=” and “⊂” by replacing the
empty set with a null set. A null set in a measure space (X ,S, ω) is a subset Q ∈ S
with ω(Q) = 0. If Q, R ⊂ X , we say that Q is a.e. contained in R, and write

Q ⊂ω R (4.1)
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if the difference Q \ R is a null set: This means that almost all of Q is a subset of R.
We say that the sets Q, R are almost everywhere equal, and write

Q ω= R (4.2)

if
Q ⊂ω R and R ⊂ω Q (4.3)

Observe that Q ω= R if and only if the symmetric difference Q�R
def= (Q\R)∪(R\Q)

is a null set. We say that R is a.e. disjoint from Q if Q ∩ R ω= ∅, i.e., if Q ∩ R is a null
set.

A set Q ⊂ X has full measure if Q ω= X , i.e., if X \ Q is a null set. A property
is said to hold a.e. if the set of points in X for which it holds has full measure. A set
Q ⊂ R has full measure in R if Q ω= R.

If X ≡ (X ,S, ω) is a measure space (where S ⊂ P(X) a σ -algebra, and ω :
S → [0,+∞] a measure), the vector space of measurable complex-valued functions
defined a.e. on X , whose p th power is integrable, is denoted by Lp(X) (p > 0). The
space L p(X) is the quotient of Lp(X) modulo a.e. equivalence. Elements of L p(X)

are denoted in normal font. Hence the class of functions which contains f ∈ Lp(X)

is denoted by f ∈ L p(X).
Themean value of f ∈ L1(X) over Q ∈ S is defined, provided 0 < ω(Q) < +∞,

as follows:

ω
(
f ��Q

) def= 1

ω(Q)

∫

Q
f dω. (4.4)

In (4.4), the the vertical bar notation, which is well established in probability theory
to denote conditional expectation, of which (4.4) is a particular case (see below), has
been modified to a vertical dashed line in order to reduce notational clutter when
absolute values are involved.

The sets Q ∈ S for which 0 < ω(Q) < +∞ are called amenable:

A(X)
def= {Q ∈ S : 0 < ω(Q) < +∞}. (4.5)

Since mean values do not depend on the representative of f ∈ L1(X), the mean value
pairing ω, associated to the measure space (X ,S, ω), may be defined with L1(X) in
place of L1(X), as follows:

ω : L1(X)×A(X)→ C (f, Q) �→ ω
(
f ��Q

)
. (4.6)

4.2 A General Setting for Qualitative Boundary Behavior

In qualitative Fatou-type theorems, the main concern is the a.e. existence of boundary
values (as opposed to pointwise results, which only concern the boundary behavior at
individual points).
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4.2.1 Imbeddings in the Boundary

We say that ı : X → W is an imbedding of X into W, and write ı : X ↪→ W, if the
following holds:

(I 1) X and W are topological spaces.
(I 2) ı : X → W is a homeomorphism of X with {ı(q) : q ∈ X}, where the set

{ı(q) : q ∈ X} is endowedwith the subspace topology inherited by the ambient
space W.

Observe that, unless the set ı[X ] def= {ı(q) : q ∈ X} is isolated in W, in a neigh-
borhood of q in X , there are only points of X , but in a neighborhood of ı(q) in W,
there are also points of the ambient space W other than ı[X ]. Since an imbedding
ı : X ↪→W preserves the topology of X , we may identify q with ı(q).

Now assume that the following additional condition holds:

(I 3) D is a subset of W and ı[X ] ⊂ ∂WD.

It follows that the function ı : X → ∂WD (obtained by restriction of ı : X → W) is
also an imbedding of X into ∂WD. We then say that X is imbeddable in the boundary
of D in W, and write

ı : X ↪→ ∂WD ⊂W. (4.7)

The case where X is (a subset of) the topological boundary ∂� of a bounded domain�

in R
n fits within this general setting: Here, � plays the role of D, and the imbedding

is the identity. The reader may keep this standard setting in mind, before we see
examples of the more general setting described above, which arise in the area of the
differentiation of integrals (see below). Having this standard setting in mind, functions
f : X → C will be called boundary functions, and subsets of X boundary sets; cf.
Sect. 2.1.

4.2.2 Families of Boundary Filters and Families of Approach Regions

If ı : X ↪→ ∂WD ⊂W is an imbedding of X in the boundary of D inW, and S ⊆ X ,
a family of boundary filters on D (based on S) is a function � : S → Filters(D) such
that for each q ∈ S,

�(q) ends at ı(q). (4.8)

A family of approach regions in D based on S is a function ϕ : S → P•(D) such
that, for each q ∈ S,

the point ı(q) belongs to the closure of ϕ(q) in the ambient space W. (4.9)

In other words, ϕ(q) is an approach region in D ending at ı(q).
As in (2.18), if ϕ : S → P•(D) is a family of approach regions in D based on S,

the associated family of boundary filters on D based on S is denoted by

[ϕ] : S→ Filters(D). (4.10)
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The value of [ϕ] at q ∈ S is the essential shape of the approach region ϕ(q) at q: In
order to reduce notational clutter, we denote it by [ϕ(q)] rather than [ϕ(q)]q .

4.2.3 The Relative Fatou set and the Associated Boundary Function

If ı : X ↪→ ∂WD ⊂ W is an imbedding of X in the boundary of D in W, and
� : S → Filters(D) is a family of boundary filters on D based on S ⊆ X , the Fatou
set of u ∈ C

D relative to � is defined as follows:

Fatou(u;�)
def= {q ∈ S : lim

�(q)
u exists and is finite} ⊆ X (4.11)

Observe that the relative Fatou set Fatou(u;ϕ) may be empty. The boundary-values
function of u along � is the boundary function

lim
�

u : Fatou(u;�) −→ C (4.12)

defined as (lim� u)(q)
def= lim�(q) u.

If ϕ is a family of approach regions in D based on S, the relative Fatou set
Fatou(u;ϕ) and the associated boundary-values function limϕ u are well defined,
since to every family of approach regions, we may associate a family of boundary
filters, as in (4.10).

4.2.4 The Radial Approach and the Angular Approach in the Unit Disc

The angular approach to the boundary of D is the family of boundary filters ∂D →
Filters(D)which assigns to every q ∈ ∂D the angular filter onD ending at q, as defined
in Sect. 2.5.6. The associated boundary function u� : Fatou(u)→ C, defined in (2.8),
encodes the angular boundary values of u.

The radial approach to theboundaryof D is the family of boundaryfilters associated
to the family of radial approach regions:

ρ : ∂D→ P•(D), (4.13)

where ρ(q)
def= {sq : 0 ≤ s < 1}. The associated boundary function uρ :

Fatou(u; ρ)→ C yields the radial boundary values of u.

4.2.5 A General Setting for Qualitative Boundary Behavior

A setting where we may study the a.e. existence of boundary values, as well as results
which arise in the area of differentiation of integrals, will now be given. Hence this
setting will provide a formal unification of two topics which, as Stein observed many
times, are closely related: The “behavior of harmonic functions [u] near the boundary”
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and the “differentiability properties of the boundary functions [ f ]” [168]. The typical
example of this close relation is this:

If q is a Lebesgue point of f , then the angular boundary value of u esists. (4.14)

(see below for a definition of the notion of Lebesgue point). The close relation between
the two topic has already been touched upon in Sect. 3.2, and it appears prominently
in Fatou’s work as well as in Stein’s work and elsewhere [32,59,163,165].

The study of the “differentiability properties of [boundary] functions” is known in
the literature as “differentiation of integrals.” Results on differentiation of integrals are
usually based on subtle “covering theorems” [97,99]. In the appendix, we will present
a new result (the existence of “amenable nets”) which capitalizes on an idea due to
de la Vallee Poussin, which was precisely meant to avoid the Vitali covering theorem
employed by Lebesgue in his differentiation theorem (see below) [39,40,104]. Here
is the setup.

(Q 1) An imbedding ı : X ↪→ ∂WD of X in the boundary of D inW is given.
(Q 2) A complex-valued function u : D→ C is given.
(Q 3) A measure ω is given on X .
(Q 4) A subset S ⊆ X of positive measure is given.
(Q 5) A family � : S→ Filters(D) of boundary filters on D based on S is given.

The property
“The set Fatou(u;�) has full measure in S′′ (4.15)

(which the function u may or may not have) describes the qualitative boundary behav-
ior of u with respect to the given family of boundary filters �. If a theorem gives
sufficient conditions which entail (4.15), it is called a qualitative Fatou-type theorem.

Contrary to what one may think at first, as we will see, it is not true that a qualita-
tive Fatou-type theorem necessarily arises from the “superposition” ofmany pointwise
results (and in this case, a result of this kind is not considered to be genuinely qualita-
tive). We use the term qualitative because, as Stein observed several times, the mere
existence of a limit is

of an elusive nature and thus difficult to pin down analytically [160].

Another variant of the notion of boundary behavior, which is central to the field, is the
quantitative boundary behavior (see below). We will see that most qualitative results
arise from quantitative ones.

4.3 A Pseudo-Qualitative Fatou-Type Theorem for Unrestricted Convergence

Theorem 4.1 If� ⊂ R
n is bounded and open and u : �→ C is uniformly continuous,

then u�(q) exists for each q ∈ ∂�.

Theorem 4.1 is not a genuine example of a qualitative Fatou-type theorem, since
ultimately it arises from the superposition of pointwise results [15, p. 157]. It is asso-
ciated to unrestricted convergence (where the filter �(q) is the unrestricted filter at
q).
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4.4 A Qualitative Theorem of Fatou Type for Arbitrary Functions: A Bootstrap
Result

An important example of a qualitative Fatou-type result, which is not obtained as the
superposition of many pointwise Fatou-type theorems, is Theorem 4.2, based on the
family of approach regions in D:

� j : ∂D→ P•(D),

defined in (2.7) for j ≥ 1. Define �0(eiθ )
def= {reiθ : 0 ≤ r < 1}. Observe that � j

is a family of approach regions in D, for each integer j ≥ 0; For each q ∈ ∂D, the
set � j (q) increases monotonically to D as j → +∞; � j (eiθ ) equals � j (1) rotated
through an angle θ around z = 0, i.e., � j (eiθ ) = {zeiθ : z ∈ � j (1)}. The measure on
∂D is normalized arc-length.

Theorem 4.2 If u ∈ C
D and Q ∈ A(∂D), then

Q ⊂ Fatou(u;�1) implies that Q ⊂ω Fatou(u). (4.16)

Observe that Theorem 4.2 holds for any function u : D → C. Recall from (4.1)
that Q ⊂ω Fatou(u) means that Q \ Fatou(u) is a null set.

Theorem 4.2 is a qualitative Fatou-type theorem, since at any individual point
q ∈ ∂D, it is not true that the existence of a limiting value through �1(q) implies
the existence of the angular boundary value. Theorem 4.2 exhibits a “bootstrap” phe-
nomenonwhichholds forany function:The existence of finite boundary values through
�1(q) at each q ∈ S, implies, at points q which form a set of full measure in S, the
existence of boundary values through � j (q) for each j . This conclusion is a definite
improvement of the original assumption. Hence the statement of Theorem 4.2 is not
pointwise and cannot be obtained as the superposition of many pointwise Fatou-type
theorems. If we replaced �1 with �0 in (4.16), the conclusion would be false.

4.5 A Qualitative Theorem of Fatou Type for Bounded Holomorphic Functions

Theorem4.3 is perhaps thefirst occurrence of a qualitativeFatou-type theorem. It is due
to Fatou in 1906, in a seminal work to which the origin of the “complex method” may
be traced. Indeed, Fatou was interested in the problem of reconstructing a Lebesgue
integrable function (modulo a null set) from its Fourier coefficients. Significantly, he
was also interested in the study of a generalized version of the Dirichlet problem
for the open unit disc, where the boundary datum is assumed to be merely Lebesgue
integrable—rather than continuous, as in the classical Dirichlet problem (see below).
Both problems are inversion problems, i.e., they may be formulated in the following
general terms: Given an injective map

f �→ R(f),
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onewants to recapture f from a knowledge of R(f). In the first problem, R is the Fourier
transform of periodic functions; in the second one, R is the Poisson operator, which
maps an integrable function on D to its “harmonic extension” (see below). The link
between the two inversion problems is given by “the complex method,” coupled with
the fact that harmonic functions in D are real parts of holomorphic functions. Indeed,
in this setting, real-variable theory (including potential theory), complex analysis, and
Fourier analysis form a threefold unity, as Stein would put it.

Theorem 4.3 ([59]) If u ∈ O(D) and

sup
z∈D
|u(z)| <∞, (4.17)

then Fatou(u) has full measure in ∂D.

Recall that in Fatou(u), defined in (2.9), the limiting value is the angular one. An
important class of qualitative Fatou-type theorems, which will shed light on Theo-
rem 4.3, is given by results on differentiation of integrals (see below).

4.6 The Inversion Problem for Functional Representations

Let (X ,S, ω) be a measure space, and let D be a set. A linear and injective operator

R : L p(X)→ C
D (4.18)

defined on L p(X), is called a functional representation of L p(X) on D, because an
element f ∈ L p(X) is not a function but an equivalence class of functions, while
R(f) ∈ C

D is a genuine function. If R is only defined on a subspaceH of L p(X), we
say that R is a functional representation ofH.

A left inverse of R exists, since R is injective: It is an operator R̃ : CD → L p(X)

such that

f = R̃(R(f)) for each f ∈ L p(X).

In other words, a left inverse of R enables us to reconstruct f in terms of Rf. The
inversion problem for a functional representation R is the task of finding an explicit
description of a left-inverse R̃ of R. For example, the task of reconstructing a periodic
function from its Fourier coefficients, known as the Fourier inversion problem, is the
inversion problem for the functional representation L p(∂D) → C

Z which maps a
periodic function to the sequence of its Fourier coefficients.

4.7 The Inversion Problem for Geometrizable Functional Representations

A functional representation (4.18) is said to be geometrizable if X is imbeddable in
the boundary of D in an appropriate ambient space W.

If the functional representation R in (4.18) is geometrizable, a solution of the
inversion problem for R may be given by a family � : X → Filters(D) of boundary
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filters on D based on X , as follows: We say that � solves the inversion problem for R
if

for each f ∈ L p(X), the function lim
�

R(f) : Fatou(R(f);�)→ C is a representative of f.

(4.19)
Observe that (4.19) implies, in particular, which Fatou(R(f);�) has full measure in
X . Here, the same family of boundary filters is used for all functions in L p(X).

Similarly, a solution of the inversion problem for R may be given by a family of
approach regions ϕ : X → P•(D) in D based on X , and we say that ϕ : X → P•(D)

solves the inversion problem for R if (4.19) holds with � replaced by [ϕ].

4.8 The Poisson Integral

The Poisson integral P f of f ∈ L1(X) is the function P f : D→ C defined by

P f (z)
def=

∫ 2π

0

1− |z|2
|z − eiθ |2 f (eiθ )dθ/2π (z ∈ D). (4.20)

Since (4.20) does not change if we alter f on null sets, we obtain the operator P :
L1(∂D) → C

D, called the Poisson operator, which is a functional representation of
L1(∂D) onD. The Poisson operator was first met in the study of summability methods
of series: If f ∈ L1(∂D) and

a0
2
+

∞∑

j=1
an cos(nθ)+ bn sin(nθ) (4.21)

is its Fourier series, then the Abel means of (4.21) are the Poisson integral of f

a0
2
+

∞∑

j=1
[an cos(nθ)+ bn sin(nθ)]rk = Pf(reiθ ).

The Poisson operator
P : L1(∂D)→ C

D (4.22)

solves the classical Dirichlet problem for D (see below) and is geometrizable, since
∂D is the boundary of D in C. In 1906, Fatou showed that the angular approach solves
the inversion problem for (4.22).

Theorem 4.4 ([59]) If f ∈ L1(∂D), then the Fatou set of P f has full measure in ∂D,
and the boundary function (P f )� : Fatou(P f ) → C is equal almost everywhere to
f .

Recall that in Fatou(P f ), the limiting value is the angular one; see (2.9). This result
should be compared to the following:
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Theorem 4.5 There exists a function f ∈ L1(∂D) such that the unrestricted boundary
value (Pf)D(q) exists for no q ∈ ∂D.

Another qualitative theorem of Fatou type, motivated by its applications to the
study of Fourier series, is due to Privalov (1919) and is based on Theorem 4.3. Given
a real-valued function f ∈ L1(∂D), we denote by Qf ∈ h(D) the harmonic function
conjugate to P f , normalized so as to vanish at 0.

Theorem 4.6 ([141]) If f ∈ L1(∂D), then Fatou(Qf ) ⊂ ∂D has full measure.

Hence the function f̃ (q)
def= (Qf)�(q) is defined a.e. on ∂D. It is called the function

conjugate to f , and it can be expressed as a singular integral. The function f̃ does
not necessarily belong to L1(∂D), and there are functions f ∈ L1(∂D) such that f̃
does not belong to L1(I ) on any interval I . However, in 1925, Andrej Nikolaevič
Kolmogorov proved the following substitute result, called weak-type (1,1) inequality,
motivated by its applications to the study of Fourier series:

Theorem 4.7 ([91]) There exists c > 0 such that for each f ∈ L1(∂D) and each r > 0

|{| f̃ | > r}| ≤ c
r

∫

∂D

| f | d ω, (4.23)

In (4.23),weuse theunclutterednotation {g >r} to denote the set {q∈ ∂D : g(q)>r}.
Theorem 4.7 yields an inequality involving the so-called distribution function of the
angular boundary values of the harmonic conjugate of the Poisson integral of f, where
the inequality is uniform w.r.t. functions of a certain class, since the same constant c
applies to all functions in L1(∂D): It is a weak-type (1, 1) inequality, and it belongs
to the so-called quantitative theorems of Fatou type (see below).

In order to understand which points in ∂D belong to Fatou(P f ), the notion of
Lebesgue point of f , which is a key to the answer, leads us to the problem of the
differentiation of integrals, which has a deep role in the subject. In the appendix, we
present a new result, on the existence of amenable nets, which is deeply connected to
differentiation of integrals, thanks to a technique due to de la Vallée Poussin [39,40].

5 Differentiation of Integrals

The mean-value pairing ω : L1(X)×A(X)→ C in (4.6) is linear in the first variable,
and we may, by the familiar device of fixing the first variable first, represent it as a
linear and injective operator as follows:

ω : L1(X)→ C
A(X), (5.1)

where (with slight but innocuous abuse of language) ω(f)(Q)
def= ω

(
f ��Q

)
. The func-

tion
ω(f) : A(X)→ C (5.2)
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encodes all the averages of f ∈ L1(X), and (5.1) is called the mean-value operator
for X .

The problem of recapturing a function from its mean values may be described as
follows. If (X ,S, ω) is a σ -finite measure space and a measure ν on S is absolutely
continuous with respect to ω, then there is a measurable function f on X (which is
unique modulo alterations on null sets) such that

ν(Q) =
∫

Q
f d ω for each Q ∈ S.

The function f is called the Radon–Nykodim derivative of ν with respect toω, and the
task of recapturing f from ν and ω is equivalent to the task of recapturing f ∈ L1(X)

from the knowledge of all its averages. Now, observe that the latter is the inversion
problem for the functional representation ω in (5.1). This problem is known in the
literature as the problem of the differentiation of integrals.

The problem of expressing a left inverse ofω may also be posed for its restriction to
certain subcollectionsA′(X) ⊂ A(X), in the following terms: Determine conditions
on A′(X) which ensure that the map ω′ : L1(X) → C

A′(X), obtained by restriction,
is injective, and find an explicit expression for its left-inverse.

We will present some solutions (in various degrees of generality) to the inversion
problem for the functional representation in (5.1).

5.1 Martingales and the Dyadic Decomposition of@D

The functionω
(
f ��Q

)
is linear in f, and it has the followingmean-value property in Q:

If Q is the disjoint union of Q1 and Q2, thenω
(
f ��Q

)
is themean value ofω

(
f ��Q1

)
and

ω
(
f ��Q2

)
, where the average is takenwith respect to the relativemeasures pk

def= ω(Qk )
ω(Q)

of Q1 and Q2 in Q, so that

ω
(
f ��Q

) = p1ω
(
f ��Q1

)+ p2ω
(
f ��Q2

)
. (5.3)

There is indeed a strong analogy between (4.22) and (5.1), i.e., between P f and ω(f);
cf. [52]. The mean-value property (5.3) leads to a martingale, a structure which has
strong ties to the notion of net (defined below). de la Vallée Poussin, motivated by the
need to avoid the Vitali covering theorem arising in the differentiation of integrals,
introduced the notion of a net in 1915 (under the name of reseau) [39,40]. The exis-
tence of a net is a premise for the applicability of de la Vallée Poussin’s ideas, which
may be established quite explicitly on Euclidean spaces: In the appendix, we show
that amenable nets do exist in great generality, and therefore provide the necessary
premise for the differentiability of integrals à la de la Vallée Poussin. This result has
the potential of producing new results in applications to the behavior of holomorphic
functions of several complex variables, as well as in applications to that part of prob-
ability theory connected with martingales. We plan to return to these matters in the
near future.
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Martingales reappeared implicitly in analysis (although not with this name) in the
work of Paley in 1932 [135], in the context of the Walsh–Kaczmarz functions (now
called Walsh–Paley functions). In the same year, they peeped into probability theory
in the work of Serge Bernstein and, a few years later, hidden in a technical condition,
in the work of Paul Levy (1935) but still at the level of the unconscious. The notion
of a martingale was later brought to full light by Jean André Ville and it blossomed in
the hands of J. L. Doob (see Sect. 12).

The Walsh–Paley functions, as well as the dyadic decomposition of the interval
[0, 1], are intimately related to each other. Indeed, Stein used the latter in his recast-
ing of the Littlewood-Paley theory in general terms, which has been seminal in the
subject [164]. A decomposition of dyadic type is a sequence of nested partitions that
appears prominently in the stopping-time argument used in the Calderón-Zygmund
decomposition: The prototype example is the collection of dyadic arcs, i.e., intervals
of the form:

{eiθ : 2πk2−m < θ < 2π(k + 1)2−m}, (5.4)

where m = 0, 1, 2, . . ., k is an integer, and 0 ≤ k ≤ 2m − 1. The open arc in (5.4) is
a dyadic arc of generation m. The dyadic arcs are obtained by consecutive bisections
from the arc {eiθ : 0 < θ < 2π}. Hence the collection of all dyadic arcs has the
inclusion–exclusion property: Two dyadic arcs are either disjoint, or one of them is
contained in the other. We will soon show the relevance of these structures.

5.2 Differentiation of Integrals in a Metric Measure Space

Ametricmeasure space is a set X endowedwith ametric δ and a positiveBorelmeasure
ω.Anopen (closed)ball of center q ∈ X and radius r > 0 in ametric space X ≡ (X , δ)

is defined as follows. The closed ball is the set B[q, r] def= {
q′ ∈ X : δ(q′, q) ≤ r

}
.

The open ball is the set B(q, r)
def= {

q ′ ∈ X : δ(q ′, q) < r
}
. If any ambiguity is likely,

instead of B(q, r), we may write BX ,δ(q, r), or BX (q, r), or Bδ(q, r), according to
which ambiguity must be avoided. The collection of all open (closed) balls in X is
denoted byB(X) (B[X ], resp.). The topology generated byB(X) is denoted byG(X , δ)

or by G(X) if there is no ambiguity about the metric. Generic elements of B(X) are
denoted by I , since they play the role of intervals.

An extended pseudometric on a set Z is a function δ : Z × Z → [0,+∞] which
differs from a metric in two ways: First, it may happen that δ(z1, z2) = 0 and z1 �= z2.
Second, δ may assume the value+∞. A basis for the topology induced by an extended
pseudometric is also given, as in the case of a metric space, by the open balls (defined
in the same way). The topology induced by an extended pseudometric is usually not
T0.

5.2.1 The Mean-Value Operator is Geometrizable

If we wish to solve the inversion problem for the mean-value operator ω : L1(X) →
C
A(X) within the setting of Sect. 4.7, we first need to know that X is imbeddable in

the boundary of A(X) in an appropriate ambient space W. In other words, we need
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Table 1 Some hyperspaces on X P•(X) Nonempty subsets

B(X) Open balls

B[X ] Closed balls

A(X) Amenable sets

G(X) Open subsets (from the German Gebiete)

G•(X) Nonempty open subsets

F(X) Closed subsets (from the French fermé)

to show that the mean-value operator L1(X) → C
A(X) is geometrizable. A natural

candidate for W is the collection P•(X) of nonempty subsets of X , topologized by
the Hausdorff extended pseudometric δH : P•(X) × P•(X) → [0,+∞] defined as
follows: If Q1, Q2 ∈ P•(X), then δH (Q1, Q2) is the infimum of the set of all r > 0
such that

Q1 ⊆
⋃

q2∈Q2

B[q2, r ] and Q2 ⊆
⋃

q1∈Q1

B[q1, r ],

where δH (Q1, Q2) = +∞ if there is no such r . The topology on P•(X) induced by
δH is called the Hausdorff topology.

A hyperspace on X is a subset of P•(X), endowed with the Hausdorff topology
inherited from P•(X). Some hyperspaces on X which are met in practice are given
in Table 1. The Hausdorff topology onP•(X) is not T0, but it has useful properties if
restricted to certain subsets of P•(X). For example, δH is a metric if restricted to the
collection of nonempty closed and bounded subsets of X . Hausdorff (1914) proved
that this collection is compact if X is compact.

The natural injection
ı : X → P•(X) (5.5)

is the injective function defined by ı(q)
def= {q}. Observe that if Q ∈ P•(X) and

q ∈ X , then
δH (ı(q), Q) = sup{δ(q, w) : w ∈ Q}. (5.6)

It follows that, if (X , δ) is ametric space, then the natural injection (5.5) is an isometry:

δ(q, w) = δH (ı(q), ı(w)) for each q, w in X .

Hence ı : X ↪→ P•(X) is an imbedding of X intoP•(X). Thus wemay geometrically
identify a point q ∈ X with the singleton ı(q) = {q} ∈ P(X), and we may look
at X as being inside the hyperspace P•(X). In particular, since (5.6) implies that
δH (q, B(q, 1/n)) ≤ 1/n, it follows that q belongs to the closure of B(X) in P•(X).

Lemma 5.1 If (X , δ) is a metric space and no point in X is open, then X is imbeddable
in the boundary of B(X) in P•(X). The imbedding is the natural injection (5.5).

Proposition 5.2 If (X , δ, ω) is a metric measure space, ω({x}) = 0 for each x ∈ X,
and B(X) ⊂ A(X), then
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(1) The natural injection (5.5) yields an imbedding of X in the boundary of B(X)

in P•(X).
(2) The natural injection (5.5) yields an imbedding of X in the boundary ofA(X)

in P•(X).

Observe that the hypotheses of Proposition 5.2 imply that no point of X is open.

5.2.2 Differentiation Bases

In this section,we assume,without further notice that the hypotheses of Proposition 5.2
are met. Hence the functional representation (5.1) is geometrizable, and we may be
able to solve the inversion problem for ω : L1(X) → C

A(X) using the approach
indicated in Sect. 4.7. A family of approach regions in A(X) based on X is called a
differentiation basis for X . Hence a differentiation basis for X is a function

ϕ : X → P•(A(X)), (5.7)

such that for each q ∈ X ,

ϕ(q) is a subset ofA(X) whose closure inP•(X) (in the Hausdorff topology) contains {q},
(5.8)

just as in (2.4). From the viewpoint of boundary values, the relevant object associated
to ϕ is the family

[ϕ] : X → Filters(A(X))

of boundary filters onA(X) based on X , which is associated to (5.7), as in Sect. 2.5.5.
Hence the value of [ϕ] on q ∈ X is the filter [ϕ(q)] ∈ Filters(A(X)) generated by the
tails of ϕ(q) at ı(q) (in the topology of the ambient space P•(X)). The filter [ϕ(q)]
ends at ı(q), as in (4.8).

A differentiation basis (5.7) is called a Lebesgue differentiation basis if it solves
the inversion problem for the mean-value operator ω : L1(X)→ C

A(X), as described
in Sect. 4.7. This means that, for each f ∈ L1(X), the set Fatou(ω( f );ϕ) has full
measure in X , and the boundary function

lim
ϕ

ω( f ) : Fatou(ω( f );ϕ)→ C

is equal a.e. to f . This means that for each f ∈ L1(X),

f (q) = lim[ϕ(q)]ω( f ) for a.e. q ∈ X . (5.9)

Recall from (2.14) that lim[ϕ(q)] ω( f ) is defined as limϕ(q)�Q→q ω
(
f ��Q

)
and that the

meaning of “Q → q” is that δH (Q, q)→ 0, i.e., Q converges to {q} in the Hausdorff
topology of P•(X).
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If ϕ(q) ≡ A(X), then (5.9) holds if f is continuous, but not for each f ∈ L1(X).
This example corresponds to unrestricted convergence.

If v : X → P•(A(X)) is defined by v(q)
def= {Q ∈ A(X) : q ∈ Q}, then the

approach regions in v are also too large (see below) and v is not a Lebesgue differen-
tiation basis.

5.2.3 The Radial Differentiation Basis

If the hypotheses of Proposition 5.2 are met, then the functional representation

ω : L1(X)→ C
B(X) (5.10)

(obtainedby restriction) is also geometrizable, andwemayapproach the corresponding
inversion problem along the lines of Sects. 4.7 and 5.2.2. Observe that the analogy of

X ↪→ ∂P•(X)B(X) ⊂ P•(X) (5.11)

with
∂D ↪→ ∂CD ⊂ C (5.12)

is formalized by the fact that both cases fallwithin the framework of (4.7) in Sect. 4.2.1.
In order to obtain the analog of (2.7), observe that δH plays in P•(X) the role of the
Euclidean distance d in C, and that the expression 1 − |z| which appears in (2.7) is
precisely the distance from z to the boundary of D in C. Hence in D, z ∈ � j (q) if and
only if

d(z, ∂D)

d(z, q)
>

1

1+ j

and z ∈ �0(q) if and only if d(z,∂D)
d(z,q)

= 1. Thus, in (5.12), a special role is played, for
z ∈ D, by the distance to the boundary d(z, ∂D), defined by

d(z, ∂D)
def= inf{d(z, w) : w ∈ ∂D}.

In (5.11), a similar role is played, for I ∈ B(X), by the quantity

rδ(I )
def= inf{δH (I , w) : w ∈ X},

which is called the intrinsic radius of I . Observe that, if Q ⊂ X , then

1

2
diam(Q) ≤ rδ(Q) ≤ diam(Q).
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For example, if X = R
n and Q is a ball, then rδ(Q) is the radius of Q. We are thus

led to define

G0(q)
def=

{
I ∈ B(X) : rδ(I )

δH (q, I )
= 1

}
, G j (q)

def=
{
I ∈ B(X) : rδ(I )

δH (q, I )
>

1

1+ j

}
, ( j ≥ 1)

(5.13)
If X = R

n , then G0(q) ⊂ B(X) is the collection of all balls in R
n centered at q. The

family of approach regions G0 is called the radial differentiation basis, since it plays
the role of �0 in D, and �0(q) is the radius in D ending at q.

Lebesgue proved that if X = R
n , then G0 solves the inversion problem for (5.10).

Theorem 5.3 If f ∈ L1(Rn), then

f (q) = lim
r→0

ω
(
f ��B(q, r)

)
a. e. q ∈ R

n . (5.14)

This result holds in particular for X = ∂D, where we denote by I (q, r) ⊂ ∂D the
open ball (i.e., the open interval) of center q ∈ ∂D and radius r > 0. It is useful to
restate it as a separate result.

Theorem 5.4 If f ∈ L1(∂D), then

f (q) = lim
r→0

ω
(
f ��I (q, r)

)
a. e. q ∈ ∂D. (5.15)

5.2.4 The Centered Hardy–LittlewoodMaximal Function

The proof of the qualitative result in Theorem 5.4 is based on the centered Hardy–
Littlewood maximal function, which, following [169], we denote as follows:

m f (q)
def= sup

{
ω

(| f | ��B(q, r)
) : r > 0

}
. (5.16)

defined for f ∈ L1(X) on anymetricmeasure space (X , δ, ω). If, in particular, X = D,
the followingweak-type (1,1) inequality, established in 1930 byHardy andLittlewood,
plays a central role.

Theorem 5.5 ([73]) There exists c > 0 such that for each r > 0 and f ∈ L1(∂D)

|{m f > r}| ≤ c
r

∫

∂D

| f | d ω. (5.17)

In (5.17), {m f > r} denotes {q ∈ ∂D : m f (q) > r}, similar to (4.23). An analogous
result holds in R

n :

Theorem 5.6 There exists c > 0 such that for each f ∈ L1(Rn) and r > 0

|{m f > r}| ≤ c
r

∫

Rn
| f | d ω (5.18)
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5.2.5 The Standard Method

In order to derive Theorem 5.4 (which is a qualitative theorem) from Theo-
rem 5.5 (a quantitative theorem), it suffices to use the fact that functions f ∈
L1(∂D) may be globally approximated in the L1-norm by continuous functions.
Given j > 0 and ε > 0, write f = ξ + g, where ξ ∈ C(∂D) and g
has a L1 norm smaller then ε. The set Q j of those points q ∈ ∂D such that
1/ j < lim supr→0

∣∣ f (q)− ω
(
f ��I (q, r)

)∣∣ is contained in the union of three sets: (1)
The set of pointsq where 1/3 j < lim supr→0

∣∣ξ(q)− ω
(
ξ ��I (q, r)

)∣∣; (2) the setwhere
1/3 j < |g|; (3) the set of points q where 1/3 j < lim supr→0

∣∣ω
(
g ��I (q, r)

)∣∣. The first
set is empty, since ξ is continuous. The measure of the second is bounded by 3 jε.
The measure of the third set is bounded by cn3 jε, by (5.17). Hence |Q j | = 0, and
therefore, (5.15) holds a.e.

The reasoning which leads from (5.17) to (5.15) is used very often: It is called “the
standard method.” Theorem 5.3 follows from Theorem 5.6 in the same way.

5.2.6 Stein’s Theorem on Limits of Sequences of Operators

According to Zygmund, in 1909, Jerosch and Weyl first came up with the idea of
replacing a lim, as in (5.15) with a sup, as in (5.16), but

“unfortunately, that paper does not sufficiently exploit the brilliance of this idea”
[190].

In 1930, Hardy and Littlewood [73] were the first to “exploit the brilliance of this idea,”
and Zygmund immediately foresaw that the idea of replacing a “lim” with a “sup”
would turn out to be the key tool in the project of developing “real-analysis” methods
that could be extended to higher-dimensional situations, where complex analysis plays
no role, as we will see. Stein raised this intuition to a powerful technique with far-
reaching results, as R. Fefferman observed [60]:

AlthoughHardy and Littlewood invented the idea, it is only fair to give Zygmund
and his students such asCalderón andSteinmuch credit for realizing its pervasive
role in analysis.

Recall Theorem 4.7, where Kolmogorov proved that, from Theorem 4.6, due to Pri-
valov, on the “existence” of the conjugate function f̃, for f ∈ L1(∂D) (which is a
result on the existence of angular boundary values), there follows a weak-type esti-
mate for the operator f �→ f̃ . In his proof, Kolmogorov proceded by contraposition:
from the assumption that the weak-type inequality was false, he constructed a function
in L1(∂D) for which the conjugate function diverged, against Privalov’s result.

In the 1950s, Calderón proved a result similar in spirit but of a conditional nature,
about the convergence of the Fourier series of L2 functions. He showed that, assuming
the convergence a.e. of the Fourier series {sn(f)} of square-integrable functions, one
could deduce that the operator

f �→ sup{|sn(f)| : n ∈ N}
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is of weak type (2,2) [191, II, p. 165]
Stein was intrigued by the similarities between these two results and saw that a

general principle was hidden behind them. In 1961, he proved that, under fairly general
conditions of rotational invariance, a weak-type estimate (for the maximal function
associated to a sequence of operators) is a necessary condition for the existence, on a
set of full measure, of pointwise limits for the sequence of operators. The version given
below is not the more general one given in [161], but it contains its main elements.

Theorem 5.7 ([161]) If {Tn}n is a sequence of bounded linear operators on L1(∂D)

which commute with the rotations, and for every f ∈ L1(∂D), the limiting value
limn→+∞ Tnf(q) exists for a set of full measure in ∂D, then the operator f �→
sup{|Tnf(q)| : n ∈ N} is of weak-type (1, 1).

Theorem 5.7 says, roughly speaking, that the link between qualitative results and
quantitative ones, which is met in practice, is not incidental but essential. However,
whenwe applyTheorem5.7 to the setting of qualitative boundary behavior, the hypoth-
esis that the operators Tn commute with rotations means that the family of approach
regions is rotationally invariant. The differentiation basis G0 in (5.13), when spe-
cialized to the unit disc, is rotationally invariant. The following result shows that we
cannot dispose of this hypothesis. In order to state it, we need to define the τ -Hardy–
Littlewoodmaximal function of f at q ∈ ∂D associated to a given family τ of approach
regions in B(∂D) based on ∂D. If τ : ∂D→ P•(B(∂D)) is such a family of approach
regions, we define

M f ,τ (q)
def= sup

{
ω

(| f | ��I
) : I ∈ τ(q)

}
. (5.19)

Theorem 5.8 There exists a family of approach regions τ : ∂D → P•(B(∂D)) such
that

(a) The family τ is a Lebesgue Differentiation Basis: For each f ∈ L1(∂D)

f (q) = lim
I∈τ (q)

I→q

ω
(
f ��I

)
, a.e. q ∈ ∂D, (5.20)

where I → q means that δH (q, I )→ 0.
(b) It is not true that there exists c > 0 such that for each f ∈ L1(∂D) and all

r > 0

|{M f ,τ > r}| ≤ c
r

∫

∂D

| f | d ω. (5.21)

5.2.7 Maximal Functions Associated to Special Differentiation Bases

In order to understand why Theorem 5.5 holds, and having in mind that from a weak-
type inequality for the maximal function we may derive an a.e. result, we are led to the
following general definition. The maximal function associated to a subsetZ ⊂ A(X)

is the function, defined for f ∈ L1(X) and q ∈ X , given by

MZ f (q)
def= sup{ω (| f | ��Q

) : Q ∈ Z, q ∈ Q} (5.22)
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where MZ f (q) = 0 if the set in (5.22) is empty.

Lemma 5.9 If Z ⊂ A(X) is countable, then MZ f is measurable for each f ∈
L1(X).

A collection Z ⊂ A(X) has the inclusion–exclusion property if

for each Q1, Q2 ∈ Z, either Q1 ∩ Q2 = ∅ or Q1 ⊂ Q2, or Q2 ⊂ Q1. (5.23)

Lemma 5.10 If Z ⊂ A(X) is countable and (5.23) holds, then for each r > 0 and
f ∈ L1(X)

|{MZ f > r}| ≤ 1

r

∫

X
| f | d ω.

5.2.8 The Dyadic Maximal Function

The collection Z2 ⊂ A(∂D) of dyadic intervals, defined in (5.4), has the inclusion–
exclusion property, since these intervals are obtained by consecutive bisections from
the interval (0, 2π). The open arc in (5.4) is a dyadic arc of generation m. Lemma 5.10
applied to Z2 yields the following result.

Proposition 5.11 For each f ∈ L1(∂D) and r > 0

|{MZ2 f > r}| ≤ 1

r

∫

∂D

| f |d ω (5.24)

The maximal function MZ2 f is called the dyadic maximal function, and Propo-
sition 5.11 says that it is of weak type (1, 1). If there was a number c > 0 such
that

(∗∗) m f (q) ≤ cMZ2 f (q) (5.25)

for each f ∈ L1(∂D) and each q ∈ ∂D, then Theorem (5.5) (the Hardy–Littlewood
weak-type estimate for the centered maximal operator) would follow at once from
Proposition (5.11). Now, the symbol (∗∗) in (5.25) is used to alert the reader that its
statement is false, but the following result holds.

Proposition 5.12 For each f ∈ L1(∂D) and each r > 0

|{m f > 7r}| ≤ 2|{MZ2 f > r}| (5.26)

The inequality (5.26) is not a pointwise inequality, but a distribution function
inequality, i.e., an inequality between the measures of the super-level sets of the two
maximal operators. The Hardy–Littlewood weak-type estimate for the centered max-
imal operator follows at once from Proposition 5.11 and Proposition 5.12.

Theorem 5.6may be proved along similar lines, using the collection of dyadic cubes
in R

n , which is used prominently in the Calderón–Zygmund decomposition.
The dyadic intervals are the prime example of an amenable net. In the appendix,

we show that amenable nets exist in great generality.
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5.2.9 Conjugate Nets (after de la Vallée Poussin)

Although (5.25) is false, there is indeed a way to obtain a pointwise inequality
where the centered Hardy–Littlewood maximal function is bounded in terms of
the maximal functions associated to countable subsets of A(∂D). But, in order to
do so, we need two countable subsets Z3 and Z ′3 of A(∂D), which are conju-
gate to each other, in the sense that the endpoints of the intervals of generation
m of Z3 are the midpoints of the endpoints of intervals of Z3 of the same gen-
eration, and conversely. The notion of conjugate nets was introduced by C. de la
Vallée Poussin in 1916. He was motivated by the wish to avoid the use the Vitali
covering theorem, used by Lebesgue in 1910 [40, p. 64, footnote 2]. Let Z3 be
the collection of intervals {eiθ : k2π3−m ≤ θ < (k + 1)2π3−m} where m ≥ 0
and k ≥ 0 are integers, and let Z ′3 be the collection of intervals of the form
{eiθ : (k + 1/2)2π3−m ≤ θ < (k + 3/2)2π3−m}.
Theorem 5.13 If f ∈ L1(∂D) then, for each q ∈ ∂D,

m f (q) ≤ 6 ·max
{
MZ3 f (q),MZ ′

3
f (q)

}
. (5.27)

Hence (5.27) is the correct way of expressing the initial hope behind (5.25). The-
orem 5.13 leads to another proof of Theorem 5.5, since both MZ3 and MZ ′

3
are

of weak type (1, 1), by Lemma 5.10. Theorem 5.6 may also be proved along similar
lines.

5.2.10 The Uncentered Hardy–LittlewoodMaximal Function

Wehave seen that Lebesgue proved that if X = R
n , then the radial differentiation basis

G0, defined in (5.13), solves the inversion problem for (5.10). Recall that, inR
n ,G0(q)

is the collection of balls in X concentricwith q, and thatG1(q) = {I ∈ B(X) : q ∈ I}.
Lebesgue also proved that, if X = R

n , then G1 solves the inversion problem for (5.1).

Theorem 5.14 If f ∈ L1(Rn), then f (q) = lim[G1(q)] ω( f ) for a.e. q ∈ R
n.

Recall from (2.14) that lim[G1(q)] ω( f ) denotes limG1(q)�I→q ω
(
f ��I

)
, where the

meaning of “I → q” is that I ∈ B(X) converges to q in the Hausdorff topology
of P•(X). That is, that δH (q, I ) → 0, and observe that, if q ∈ I , the condition
δH (q, I )→ 0 is equivalent to diam(I )→ 0, since q ∈ I implies that

1

2
diam(I ) ≤ δH (q, I ) ≤ diam(I ) .

Hence Theorem 5.14 says that

f (q) = lim
q∈I

diam(I )→0

ω
(
f ��I

)
a.e. q ∈ R

n, (5.28)

where I ranges over balls in R
n , and it is in this form that it appears in the literature.
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If in (5.28), one tries to employ the collection of rectangles, then deep problems
arise. The subtlety has been hinted in Stein’s rendition of the turn of events that led
Zygmund to

[…] turn his attention from the one-dimensional situation to problems in higher
dimensions. At first, this represented merely an incidental interest, but then
later he followed it with increasing dedication, and eventually it was to become
the main focus of his scientific work. […] In higher dimensions it is natural
to ask whether [(5.28)] holds when the intervals are replaced by appropriate
generalizations in R

n . The fact that this is the case when the I s are replaced
by balls (or more general sets with “bounded eccentricity”) was well known
at the time. What must have piqued Zygmund’s interest in the subject was his
realization (in 1927) that a paradoxical set constructed by Nikodym showed that
the answer is irretrievably false when the I s are taken to be rectangles (each
containing the point in question) but with arbitrary orientation. To this must
be added the counterexample found by Saks several years later, which showed
that the desired analogue [of (5.28)] still failed even if we now restricted the
rectangles to have a fixed orientation (e.g., with sides parallel to the axes) as
long as one allowed f to be a general function in L1. [167]

Theorem 5.14 is proved on the basis of the uncentered Hardy–Littlewood maximal
function

M f (q)
def= sup{ω (| f | ��I

) : I ∈ B(X) and q ∈ I } (5.29)

and the associated weak-type (1, 1) inequality, which can be derived from (5.18) once
we observe that there is a constant c > 0 such that for each f ∈ L1(Rn) and q ∈ R

n ,

M f (q) ≤ c·m f (q) (5.30)

The inequality (5.30) follows from a property which relates the measure ω to the
metric δ. This property, called the doubling property, is valid inR

n , as well as in many
other cases.

5.2.11 Spaces of Homogeneous Type

A metric measure space (X , ω, δ) is called a space of homogeneous type if

(1) The measure ω is a complete Radon measure.
(2) There is a constant c > 0 such that ω(B(q, 2r)) ≤ cω(B(q, 2r)) for each

q ∈ X and each r > 0.
(3) B(X) ⊂ A(X).

In this definition, the condition that δ is a metric may be relaxed: It suffices to ask
that δ be a quasi-metric, where instead of the triangular inequality, one has δ(x, y) ≤
c′(δ(x, z) + δ(z, y)) for a constant c′ > 0 which does not depend on x, y, z. Some
variants of this notion that can be found in the literature require an “engulfing property,”
but in our definition, this condition is not necessary since it follows from the triangle
inequality.
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Recall that m f is the centered maximal function for X , as in (5.16), and MZ f is
the maximal operator associated to a subsetZ ⊂ A(X), as in (5.22). In 1990,Michael
Christ proved the following result.

Theorem 5.15 ([34]) If (X , ω, δ) is a space of homogeneous type, then there is a
countable collection Z ⊂ A(X) of bounded open sets which has the inclusion–
exclusion property, and such that there are positive constants c > 0 and c′ > 0 such
that for each f ∈ L1(∂D) and each r > 0

|{m f > cr |} ≤ c′|{MZ f > r |} .

Corollary 5.16 In a space of homogeneous type (X , ω, δ), both the centered Hardy–
Littlewood maximal operator m f and the uncentered Hardy–Littlewood maximal
operator M f are of weak-type (1, 1).

5.2.12 Lebesgue Points

Corollary 5.16 implies the following result, which recaptures Theorems 5.3 and 5.4.

Theorem 5.17 If (X , ω, δ) is a space of homogeneous type and f ∈ L1(X) then

f (q) = lim
r→0

ω
(
f ��B(q, r)

)
a. e. q ∈ X (5.31)

A Lebesgue point of f ∈ L1(X) is a point q ∈ X which satisfies a condition
stronger than (5.31):

lim
r→0

ω
(| f − f (q)| ��B(q, r)

) = 0. (5.32)

Formula (5.32) is a form of “continuity” of f at q. The collection of all Lebesgue
points of f is denoted by Lebesgue[ f ]. The following improvement of (5.31) follows
from the standard method.

Theorem 5.18 If X is a space of homogeneous type and f ∈ L1(X), then Lebesgue[ f ]
has full measure.

5.3 Differentiation of Integrals in a Topological Measure Space

A topological measure space (X ,S, ω,G) is a set X endowed with a topology G
and a complete, positive Borel measure ω defined on a σ -algebra S which contains
the Borel σ -algebra. If X ≡ (X ,S, ω,G) is a topological measure space, then the
mean-value operator (5.1) is well defined. The associated inversion problem may be
treated as in Sect. 4.2, provided we endowP•(X)with an appropriate topology which
makes the natural injection ı : X → P•(X), defined in (5.5), an imbedding.
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5.3.1 The Natural Topology onP•(X)

If X ≡ (X ,G) is a topological space, P•(X) is endowed with the natural topology,
defined as the coarsest topology in P•(X) which contains the following subsets of
P•(X)

int(C,U )
def= {Q ∈ P•(X) : C ⊂ Q◦ and Q ⊂ U } ⊂ P•(X) (5.33)

and
int(V )

def= {Q ∈ P•(X) : Q ⊂ V } ⊂ P•(X), (5.34)

where C ∈ F(X), U , V ∈ G•(X), and Q◦ denotes the interior of Q (see Table 1, p.
26).

Lemma 5.19 If X is a topological space, then the natural injection ı : X → P•(X),
defined in (5.5), is an imbedding, whereP•(X) is endowed with the natural topology.

Lemma 5.20 If X is a topological space, q ∈ X, � ⊂ P•(X), and � is a filter on
X, then � converges to q if and only if {q} belongs to the closure of � in the natural
topology of P•(X).

Lemma 5.21 If X is metrizable and q ∈ X, then the neighborhood filter of {q} ∈
P•(X) in the Hausdorff topology is equal to the neighborhood filter of {q} ∈ P•(X)

in the natural topology of P•(X).

Observe that if the topological measure space X has finitemeasure and if the natural
injection (5.5) yields an imbedding of X in the boundary of A(X) in P•(X), then

for each q ∈ X , {q} is a null set in X . (5.35)

Lemma 5.22 Let X be a topological measure space. If (5.35) holds, the measure is
Radon, and no nonempty open set of X is a null set, then the natural injection (5.5) is
an imbedding of X in the boundary of A(X) in P•(X).

5.3.2 Differentiation Bases for a Topological Measure Space

If X is a topological measure space and the natural injection (5.5) is an imbedding of
X in the boundary of A(X) in P•(X), then a family of approach regions in A(X)

based on X is called a differentiation basis for X . Hence a differentiation basis is a
function ϕ : X → P•(A(X)) such that, for each q ∈ X ,

ϕ(q) is a subset of A(X) whose closure in P•(X) (in the natural topology) contains {q}. (5.36)

It is useful to compare (5.36) to (2.4), (4.8), (4.9), and (5.8). From the viewpoint of
boundary values, the relevant object associated to ϕ is the family

[ϕ] : X → Filters(A(X))
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of boundary filters on A(X) based on X which is associated to (5.7). See also
Sect. 2.5.5.

A differentiation basis ϕ : X → P•(A(X)) is called a Lebesgue differentiation
basis if it solves the inversion problem for the mean-value operator ω : L1(X) →
C
A(X). This means that, for each f ∈ L1(X), the set Fatou(ω( f );ϕ) has full measure

in X and that the boundary function

lim
ϕ

ω( f ) : Fatou(ω( f );ϕ)→ C

is equal a.e. to f . In other words, for each f ∈ L1(X),

f (q) = lim[ϕ(q)]ω( f ) for a.e. q ∈ X . (5.37)

Observe that lim[ϕ(q)] ω( f ) is defined as limϕ(q)�Q→q ω
(
f ��Q

)
and that the meaning

of “Q → q” is that Q converges to {q} in the natural topology of P•(X).
Nets provide differentiation bases when there is no metric. The first appearance

of this notion in the Euclidean setting is due to de la Vallée Poussin (1916), under
the name of reseau [40]. In the appendix, we prove that amenable nets exist in great
generality.

5.3.3 Partitions and Amenable Nets

A partition of a nonempty set X is a nonempty collection C ⊂ P•(X) such that each
point q ∈ X belongs to one and only one set in C. The sets in C are called tiles of
the partition C. A partition C is finite if it has a finite number of tiles. The tile of C
which contains q ∈ X is denoted by C[q]. The collection of all finite partitions of X
is denoted by �(X). The set �(X) is endowed with a partial order which makes it a
directed set: The partition C2 is nested in the partition C1 if each tile of C2 is contained
in a tile of C1. We then write C1�C2 and say that C2 is finer than C1, and that C1
is coarser than C2. A net in X is a sequence C1,C2, . . . ,Ck, . . . of nested and finite
partitions, i.e.,

Ck�Ck+1 for each k ≥ 1

The partitions C j are called the partitions of the net. If c = {C j } j∈N is a net in X , then
the sets C j [q], for j ∈ N and q ∈ X , are called tiles of the net. The collection of all
the tiles of c is denoted by Tc. Hence

Tc def=
⋃

j∈N
C j .

The collection Tc has the inclusion–exclusion property. The coarsest topology which
contains Tc is called the topology generated by the net and is denoted by Gc. A net
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c in a topological space X ≡ (X ,G) is called compatible with the topology of X if
G ⊂ Gc, i.e., if

for each q ∈ X and for each U ∈ Nq(X) there is a j such that C j [q] ⊂ U .

If X ≡ (X ,S, ω) is a measure space, then a partition C of X ismeasurable (amenable)
if all its tiles belong to S (A(X), resp.). A net in (X ,S, ω) is measurable (amenable)
if all its partitions are measurable (amenable, resp.). Observe that the existence of
an amenable net in a measure space (X ,S, ω) implies that X has finite measure
(these notions may be adapted to measure spaces of infinite measure). Hence we may
assume, after normalization, which ω(X) = 1, i.e., (X ,S, ω) is a probability space.
An amenable net c = {C j } j∈N in (X ,S, ω) determines a function:

ϕc : X → P•(A(X)), ϕc(q)
def= {C j (q)} j ⊂ A(X). (5.38)

The function ϕc is called the standard sequence of tiles in the net.

Lemma 5.23 If X ≡ (X ,S, ω,G) be a topological measure space of finite measure
for which (5.35) holds, then the following conditions, for a given amenable net c =
{C j } j∈N in X, are equivalent.

(1) c is compatible with the topology of X.
(2) For each q ∈ X, the closure of ϕc(q) in P•(X) (in the natural topology)

contains {q}.
Moreover, any of the conditions (1), (2) implies the following:

(a) The natural injection (5.5) is an imbedding of X in the boundary of A(X) in
P•(X).

(b) The function ϕc defined in (5.38) is a differentiation basis in X.

In the following result, no doubling condition is required: Its proof only relies on
the standard method of Sect. 5.2.5 and on the maximal function inequality established
in Lemma 5.10.

Theorem 5.24 Let X be a topological measure space such that (5.35) holds. Assume
that an amenable net c = {C j } j∈N in X is given, and that the following conditions
hold:

(1) The net is compatible with the topology of X.
(2) C(X) is dense in L1(X).

Then the standard sequence ϕc of tiles in the net in (5.38) forms a Lebesgue differen-
tiation basis for X.

Two observations are in order: First, (5.37) with ϕ = ϕc is equivalent to the fol-
lowing condition:

f (q) = lim
j→+∞ω

(
f ��C j [q]

)
for a.e. q ∈ X . (5.39)
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Second, if C is an amenable and finite partition of (X ,S, ω), and C∗ denotes the σ -
algebra generated by C, then for each f ∈ L1(X), the conditional expectation of f
with respect to the σ -algebra C∗ generated by C is the unique element ofL1(X)which
is C∗ measurable (i.e., constant on each tile of C) and which, on all sets in C∗, has the
same averages as f . The conditional expectation of f with respect to C∗ is denoted
by ω

(
f ��C∗

)
. In the notation of (5.2),

ω
(
f ��Q

) = ω
(
ω

(
f ��C∗

)

��Q
)

for each Q ∈ C∗. (5.40)

The conditional expectation ω
(
f ��C∗

)
has the following simple explicit expression:

ω
(
f ��C∗

) =
∑

Q∈C
ω

(
f ��Q

)
1Q (5.41)

where 1Q is the indicator function of Q. Hence

ω
(
f ��C∗

)
(q) = ω

(
f ��C[q]

)
(5.42)

Thus, in the right-hand side of (5.39), the conditional expectation of f relative to
C∗j appears. Since conditional expectations are uniformly integrable, Vitali’s theorem

implies that ω
(
f ��C∗j

)
converges to f not only a. e. but also in L1 (see Sect. 11).

One of the attractions of Theorem5.24 is that the underlyingmeasure is not assumed
to be doubling. The price to be paid is that we have to rely on the existence of an
amenable net. In the following section, we will see that amenable nets exist under
appropriate countability hypothesis on the measure space.

5.4 Differentiation of Integrals in a Measure Space

In 1936, one year before filters appeared in the literature, René de Possel observed that
only some of the main properties of Lebesgue measure admit d’une manière évidente
(in evident ways) an extension to the case of an arbitrary measure space, but others
semblent perdre toute signification dès que l’espace n’est plus métrique (appear to lose
their meaning as soon as the space is not metric) [27,41]. Among the latter, he listed
the properties related to differentiation of integrals. Indeed, in our set-up, if (X , ω) is
a measure space, with no further structure, it does not seem possible to define, in this
degree of generality, a topology on P•(X) which would make the natural injection
X ↪→ P•(X) an imbedding. de Possel proposed to adopt an axiomatic approach,
which, with the benefit of hindsight, we think may be usefully rephrased in terms of
filters. We leave this full task to a future occasion and now limit ourselves to revise
the general setting of Sect. 4.2 as follows: We seek a function

� : X → Filters(A(X)), (5.43)
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such that for each f ∈ L1(X)

f (q) = lim
�(q)

ω( f ) a.e. q ∈ X . (5.44)

A concrete solution to this general problem is given by the following result, proved
in the appendix. The existence of an amenable net is a necessary premise for the
applicability of the differentiation of integrals à la de la Vallée Poussin, which has the
advantage of avoiding covering theorems [21].

Theorem 5.25 If (X ,S, ω) is a measure space of finite measure and at least one of
the following holds:

(1) The σ -algebra S is countably generated.
(2) L1(X) is separable as a metric space.

Then there exists an amenable net c = {C j } j in X such that for each f ∈ L1(X), the

sequence of conditional expectations {ω
(
f ��C∗j

)
}
j
converges to f a.e. and in L1.

The following result may be considered to be implicit in the work of de la Vallée
Poussin (1916).

Theorem 5.26 ([40]) If (X ,S, ω) is a measure space of finite measure, and c = {C j } j
is an amenable net on X such that the σ -algebra generated by the tiles of c is equal

to S, then, for each f ∈ L1(X), the conditional expectations {ω
(
f ��C∗j

)
}
j
converge

to f a.e. and in L1.

In Sect. 11, we show that Theorems 5.25 and 5.26 may be proved by only relying
on the quantitative results associated to the maximal operator in Lemma 5.10, thus,
avoiding more complex techniques.

In order to see more precisely how Theorems 5.25 and 5.26 fit within the general
framework of (5.43) and (5.44), observe that, if c = {C j } j≥1 is an amenable net, then
for each q ∈ X , the collection {C j [q]} j is a filter base, and, if we denote by �(q)

the filter on A(X) generated by {C j [q]} j , then (5.44) is equivalent to the following
statement:

f (q) = lim
j→∞ω

(
f ��C∗j

)
(q) a. e. q ∈ X . (5.45)

6 Qualitative Boundary Behavior (II)

The set-up of Sect. 5.2.1 shows that results on differentiation of integrals fit within
the general study of boundary behavior. Moreover, in the previous section, we have
illustrated in various cases the general principle that a qualitative Fatou-type theorem
(i.e., an almost everywhere convergence result) may be derived from a quantitative
information (i.e., from aweak-type inequality on the boundary). For example, we have
seen that quantitative estimates based on maximal operators (such as, for example,
Theorem 5.5) can be used to obtain results on differentiation of integrals (such as, for
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example, Theorem 5.4). A general expression of these facts can be given in terms of the
intrinsic maximal function (which does not depend on a functional representation).
We briefly delve into this matter now, in order to prepare the ground for the more
detailed treatment of the quantitative Fatou-type theorems of Sect. 7.

6.1 The Intrinsic Maximal Function

If ı : X ↪→ ∂WD ⊂ W is an imbedding of a topological measure space X =
(X ,S, ω,G) in the boundary of D (a subset of W), and ϕ : X → P•(X) is a family
of approach regions in D based on X , then the intrinsic maximal operator (called
“complex max” in [115]):

sup
ϕ
: CD → [0,+∞]X (6.1)

associated to ϕ is defined (for u ∈ C
D and q ∈ X ) as follows:

sup
ϕ
|u|(q)

def= sup {|u(z)| : z ∈ ϕ(q)} . (6.2)

Observe that sup
ϕ

u(q) may be infinite for any given q. The boundary function defined

in (6.2)

sup
ϕ
|u| : X → [0,+∞]

is called the ϕ-maximal function of u (or maximal function of u over a family ϕ of
approach regions). This construction is implicit in the definition of the (un)centered
Hardy–Littlewoodmaximal function. Indeed,mf(q), defined in (5.16), may be written
in the form (6.2), if we make the following choices:

(1) u
def= ω(| f |).

(2) The imbedding X ↪→ ∂WD ⊂W is given by D = B(X) and W = P•(X).
(3) The family of approach regions ϕ : X → P•(B(X)), is defined as

ϕ(q)
def= {B(q, r) : r > 0}.

The uncentered Hardy–Littlewood maximal function Mf , defined in (5.29), may be
similarly written in the form (6.2), if the family of approach region is chosen as

ϕ(q)
def= {I ∈ B(X) : q ∈ I }.

The ϕ-maximal function of u is able to detect, in a quantitative manner, the change
in the “shape” of ϕ(q), as q varies within X . More precisely, the functionwhich detects
the change in the “shape” of ϕ(q), as q varies within X , is the distribution function of
sup
ϕ
|u|.

6.2 The Distribution Function of the Intrinsic Maximal Function

In Sect. 4.8 and in Sect. 5.2.4, we have already seen some important examples of
quantitative theorems of Fatou type, such as Theorems 4.7 and 5.5. These give a
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uniform control of the relative size of certain boundary functions, as in (4.23) and
in (5.17), where uniform means that the constant which appears in the inequality only
depends on the class of functions being considered, not on the particular function in
the class. In inequalities of this sort, which are weak-type inequalities, one has to
control the measure of boundary sets of the form:

{|g| > r} def= {q : |g(q)| > r} . (6.3)

Here, g is a given boundary function, and it is sometimes necessary to deal with an
“unpleasant point in the argument,” as Stein puts it, namely, the fact that the set in (6.3)
is not necessarily measurable. One could get around this difficulty by making a certain
assumption, and it is sometimes necessary to do so, but that assumption would be “an
artificial one in the general context of our problems,” as Stein wrote in a different, but
related, case [163, p. 251]. Indeed, the device used by Stein in that case is also useful
in our context: He considered the outer measure induced by ω, denoted by ω∗ and
defined by

ω∗(Q)
def= inf{ω(R) : R ⊃ Q, R ∈ S}.

Then, ω∗ is the outer measure induced by ω, as defined in [63, p. 30]. Now, the point
is that, in order to obtain a.e. convergence results, it is indeed enough to control the
outer measure of the set in (6.3). Hence if g : X → C is a boundary function, the
distribution function of g is the function:

λ : [0,+∞)→ [0,+∞), λ(r)
def= ω∗{|g| > r}

(we borrow the handy notation from [163, p. 4]). One of the key observations made
by Stein [61] is that the distribution function of the ϕ-maximal function of u ∈ C

D

(where ϕ is a family of approach regions) may be expressed as follows:

ω∗{q ∈ X : sup{|u(z)| : z ∈ ϕ(q)} > r} ≡ ω∗{q ∈ X : ϕ(q)∩{|u| > r} �= ∅} (6.4)

where, in the same spirit as in (4.23), we use the short-hand notation {|u| > r} def=
{z ∈ D : |u(z)| > r}. The quantity in (6.4) is denoted by λ(u ��ϕ)(r). Hence

λ(u ��ϕ)(r)
def= ω∗{q ∈ X : sup{|u(z)| : z ∈ ϕ(q)} > r}. (6.5)

The observation in (6.4) is an example of Stein’s ability to see deep results hidden
in simple things, and it is at the basis of his simplification of a crucial step which
involves the so-called Carleson’s tent condition (see below). We will see that it is
precisely the distribution function of the intrinsic maximal function over a family
of approach regions, in (6.4) that encodes the way in which the various approach
regions change their “shape” from point to point, and that enables us to control, on the
quantitative side, the boundary behavior through a given family of approach regions.
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Results which entail a uniform control of the distribution function of sup
ϕ
|u| (i.e.,

uniform over a certain class of function) belong to the quantitative results on the
boundary behavior of functions.

6.3 The Lebesgue Differentiation Theorem in the Unit Disc

The Lebesgue differentiation theorem describes the boundary behavior of the mean-
value operator and is the prototype example of qualitative Fatou-type theorems:
Indeed, Theorems 4.2 and 4.3 are both based upon it, as well as the other qualita-
tive Fatou-type theorems, as we will see. In ∂D, the Lebesgue differentiation theorem
is the following result, proved in 1904 by Lebesgue. It is a special case of Theo-
rem 5.18. Here, we denote by I [q, r ] the closed interval in ∂D of center q and radius
r .

Theorem 6.1 ([102]) If f ∈ L1(∂D), then Lebesgue[ f ] has full measure in ∂D.

Fatou obtained Theorem 4.4 as a corollary of Theorem 6.1 (which is a qualitative
theorem of Fatou type) coupledwith the following result (which is a pointwise theorem
of Fatou type).

Theorem 6.2 If f ∈ L1(∂D), then Lebesgue[ f ] ⊂ Fatou(P f ). Indeed, if q ∈
Lebesgue[ f ], then (P f )�(q) = f (q).

Theorem 6.2 is an instance of Abel’s heuristic principle, a general principle that
Stein never ceased to emphasize: The link between the boundary behavior of P f at q
and the “regularity” properties of f at q, which is expressed in terms of the differen-
tiability property of the boundary function. Indeed, stronger notions of “regularity”
of f at q imply that the boundary value of P f at q through V exists, where V is even-
tually disjoint from the angular approach at q [12,176]. Differentiation of integrals is
important in itself, but also because of the aforementioned link: See Sect. 11.

6.3.1 The Geometric Form of the Lebesgue Differentiation Theorem in the Unit Disc

We have seen how, in general, the Lebesgue Differentiation Theorem may be framed
as a Fatou-type theorem. In order to see this fact in the concrete setting of ∂D, we
first express the mean-value operator ω( f ) in (5.2) as a function on D rather than
as a function on A(∂D). The Hausdorff pseudometric is indeed a genuine metric if
restricted to the collection (denoted by I ⊂ A(∂D)) of all closed intervals in ∂D, and
I turns out to be homeomorphic to the unit disc itself under the standard identification
mapping (which imbeds D inside A(∂D)):

μ : D→ I, (6.6)

where μ(z) is the closed arc in ∂D of center z
|z| and arc-length equal to 2π

1−|z| , with

μ(0)
def= ∂D.
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The Lebesgue transform
L : L1(∂D)→ C

D (6.7)

is the functional representation of L1(∂D) over D defined by Lf = (ω(f)) ◦μ. Hence
if z ∈ D, then

Lf(z)
def= ω

(
f ��μ(z)

)
.

Proposition 6.3 The following statements are logically equivalent.

(I) The Lebesgue differentiation theorem (Theorem 6.1)
(II) If f ∈ L1(∂D), the radial boundary values of L f exist and are equal to f a. e.
(III) If f ∈ L1(∂D), f (q) = limr↓0 ω

(
f ��I [q, r ]) a. e.

Observe that (II) and (III) are two equivalent ways of expressing the same state-
ment, the difference being that (II) is more directly geometric than (III). If we apply
the general technique of reducing a qualitative statement to a quantitative one, in
order to prove (II), it would suffices to show that there exists c > 0 such that for each
f ∈ L1(∂D) and each r > 0

|{supρ L |f| > c}| ≤ c
r

∫

∂D

| f |d ω,

where ρ is the radial family of approach regions. Now, as we observed in Sect. 6.1,
sup
ρ

L|f| is the centered Hardy–Littlewoodmaximal function, and hence the conclusion

follows from Theorem 5.5. On the other hand, (III) is identical to Theorem 5.4.
Apparently, (I) is a stronger statement than (II), but it really is equivalent to (II), as
can be seen by a density argument.

6.4 The Nagel–Stein Differentiation Theorem

We now present a deep and surprising contribution of Stein, obtained in collaboration
withAlexander Nagel, where a conjecturemade byWalter Rudin on the differentiation
of integrals is disproved. It is perhaps better to present this result in terms of the
boundary behavior of the Lebesgue transform Lf, defined in (6.7). In order to have
a better appreciation of this specific result, it is useful to observe that the Lebesgue
differentiation theorem can be bootstrapped so as to yield the following qualitative
Fatou-type theorem.

Theorem 6.4 (The angular differentiation theorem) If f ∈ L1(∂D), then for almost
every q ∈ ∂D, the angular boundary value of L f exists at q and equals f (q).

This result is called theangular differentiation theorem and is an improvement of the
Lebesgue differentiation theorem, since the latter result is equivalent to the statement
that the radial boundary values of the Lebesgue transform L f , defined in (6.7), exist
and are equal to f a. e. It is useful to express its content in different terms.
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Recall that I [q, r ] is the closed interval in ∂D of center q and radius r . Observe
that the Hausdorff distance δH (q, J ) between q (identified with {q} ∈ P•(∂D))
and J ⊂ ∂D is equal to the radius of the smallest closed interval centered at q
which contains J , i.e., δH (q, J ) = sup {|q − z| : z ∈ J }. The smallest closed interval
centered at q which contains J will be denoted by the uncluttered notation I [q, J ],
instead of I [q, δH (q, J )].

We now need to recall a notion due to Lebesgue. We say that a sequence {J j } j≥1
of intervals of ∂D converges angularly to q, and write Jn −→

nt
q, if there exists k > 0

such that

(a 1) as n→∞, δH (q, Jn) converges to zero;
(a 2) |Jn| ≥ k |I [q, Jn]| for each n ≥ 1.

The angular differentiation theorems is equivalent to saying that, for almost every
q ∈ ∂D,

f (q) = lim
Jn−→

nt
q

1

|Jn|
∫

Jn
f(eiθ ) dθ

for any sequence {J j } j≥1 of intervals in ∂D which converges angularly to q. In order
to see this equivalence, it suffices to observe that, in the correspondence between
closed intervals in ∂D and points of D given by the standard identification map (6.6),
the condition that a sequence of points converges to q ≡ eiθ staying within some
t ∈ Stolzq , is equivalent to conditions (a 1) and (a 2).

The condition that Jn −→
nt

q does not require that q ∈ Jn but it does not allow

that Jn occupies a very small portion of I [q, Jn]: This happens precisely when the
point which corresponds to Jn , under the standard identification map, converges to q
tangentially.

In 1979, Rudin posed the following question.

Question 6.1 ([150]) Is there a sequence {J j } j≥1 of intervals in ∂Dwith the following
properties?

(1) δH (1, Jn) converges to 0 as n→∞.
(2) |Jn ||I [1,Jn ]| converges to 0 as n→∞.

(3) If we set q Jn =
{
qq ′ : q ′ ∈ Jn

}
, then f (q) = limn→∞ 1

|q Jn |
∫
q Jn

f(eiθ ) dθ for

each f ∈ L1∂D and almost every q ∈ ∂D.

Rudin’s conjecture was that the answer was negative. A glimpse of the depth of
Stein’s vision is given by the following result, obtained in 1984 in his collaboration
with Nagel.

Theorem 6.5 ([127]) The answer to Rudin’s question is affirmative.

That is to say, Nagel and Stein prove a Fatou theorem with approach regions that
are not nontangential. This runs counter to the expectations of Littlewood and Rudin.

Theorem 6.5 was rather unexpected. It shows the subtlety of the subject and it is
only a part of a contribution of larger scope (see below).
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6.5 The Local Fatou Theorem of Privalov

One of the results obtained by theMoscow school of mathematics is a stronger version
of Theorem 4.3, due to Ivan Ivanovich Privalov in 1923. It is “stronger” because it
implies Theorem 4.3. It is called “local” because the action takes place around a subset
of the boundary rather than on the whole boundary.

Theorem 6.6 ([142,143]) Let u ∈ O(D). If Q ∈ A(∂D) and, for each q ∈ Q there
exists t ∈ Stolzq such that supz∈t |u(z)| < +∞, then Q ⊂ω Fatou(u).

Theorem 6.6 is a qualitative Fatou-type theorem, since at any individual point q, it
is not true that boundedness over some t ∈ Stolzq implies the existence of limiting
value through t. Recall that the conclusion of Theorem 6.6 says that Q \ Fatou(u) is
a null set. Observe the lack of uniformity: The various triangles are not assumed to be
congruent to each other, and the bound supz∈t |u(z)| depends on q.

In his proof, Privalov considered (for appropriate values of j and 0 < h < 1, where
R ⊂ ∂D is a certain closed set) the sawtooth region:

⋃

q∈R
� j (q) ∩ {z ∈ D : |z| > h} , (6.8)

which has rectifiable boundary and then applied a conformal transformation of this
region to the unit disc, where Theorem 4.3 is available. Privalov also extended his
result to holomorphic functions on planar domains with rectifiable boundary.

6.6 A Prelude to Hardy Spaces

A function u ∈ O(D) is said to belong to H1(D) if

sup
0<r<1

∫

∂D

|u(rq)|d ω(q) <∞.

A function u ∈ O(D) is said to be representable by the Cauchy integral if

(1) The radial limit uρ(q) exists almost everywhere and is integrable.

(2) For each z ∈ D, u(z) = 1
2π i

∫
∂D

uρ(ζ )

ζ−z dζ .

In 1916, Frigyes Riesz and Marcel Riesz proved the following result.

Theorem 6.7 ([149]) If u ∈ O(D), then the following conditions are equivalent:

(1) u is representable by the Cauchy integral.
(2) u ∈ H1(D).
(3) The radial limit uρ(q) exists for almost every q and u = Puρ .

6.7 Angular Boundary Values for Hardy and Nevanlinna Spaces in the Unit Disc

In 1923, F. Riesz obtained a result stronger than Theorem 4.3, for he proved that the
same conclusion of Theorem 4.3 holds under a weaker hypothesis, as follows.

123



Foundations of Fatou Theory and a Tribute to E.M. Stein 7235

Theorem 6.8 ([148]) Let 0 < p <∞. If u ∈ O(D) and

sup
0<r<1

∫

∂D

|u(rq)|pd ω(q) <∞, (6.9)

then the set Fatou(u) has full measure and, moreover, u� ∈ Lp(∂D) and

∫

∂D

|u�|pd ω = sup
0<r<1

∫

∂D

|u(rq)|pd ω(q).

The set of functions in O(D) that satisfy (6.9) is denoted by H p(D). The function
spaces H p(D) are the Hardy spaces of holomorphic functions in D. The conclusion
that Fatou(u) has full measure also holds for functions u ∈ O(D) which satisfy the

Nevanlinna condition (where ln+(x)
def= max{0, ln(x)})

sup
0<r<1

∫

∂D

ln+ |u(rq)|d ω(q) < +∞.

In 1932, Paley and Zygmund proved that the Nevanlinna condition cannot be weak-
ened:

Theorem 6.9 ([136]) If ψ is a non-negative and measurable and locally bounded
function defined on [0,+∞) and such that ψ(s) = o(s) as s → +∞, then there
exists a function u ∈ O(D) such that

sup
0<r<1

∫

∂D

ψ(ln+ |u(rq)|)d ω(q) < +∞.

although for almost every q ∈ ∂D, the function u has no radial limit at q.

6.8 A Zero-One Law for Holomorphic Functions: Plessner’s Theorem

In 1927, Abraham Plessner proved that, almost everywhere, the angular boundary
behavior of holomorphic functions on D is either “good” or “bad.”

Theorem 6.10 ([138]) If u ∈ O(D), then Fatou(u) ∪ Plessner(u) has full measure.

Plessner’s result implies Fatou’s theorem, since Plessner(u) is empty if u is
bounded. Plessner proved that the conclusion of Theorem 6.10 also holds for functions
that are merely meromorphic on D.

Table 2 contains an outline of some of the results that we have presented so far
on the boundary behavior of holomorphic functions on the unit disc (possibly subject
to certain growth conditions of Hardy-type), with an indication of the boundedness
conditions (if any) under which the results hold.
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Table 2 Outline of some of the qualitative results for functions inO(D)

Author Hypothesis Conclusion

Fatou Boundedness Angular lim exist a. e.

Riesz Hardy-type growth condition Angular lim exist a. e.

Privalov Local nontangential boundedness Locally angular lim exist a. e.

Plessner (No hypothesis) Either “good” or “bad” a. e.

6.9 The Area Integral: Qualitative and Quantitative Results

In 1930, in his study of trigonometric series, Nikolaj Nikolaevič Lusin defined the
so-called (Lusin’s) area function of u ∈ O(D) (with parameter j ≥ 1) as follows
[117]:

S ju(q)
def=

(∫

� j (q)

∣∣u′(z)
∣∣2dz

)1/2

, (6.10)

The j -Lusin set of u ∈ C(D), denoted by Lusin j (u), is the collection of all points
q ∈ ∂D such that

S ju(q) < +∞ (6.11)

and define theLusin set of u as Lusin(u)
def= ⋃

j≥1 Lusin j (u). Lusin proved two results,
one of a qualitative nature, the other quantitative.

Theorem 6.11 ([117]) If u ∈ H2(D) then, for each j ≥ 1, Lusin j (u) has full measure
in ∂D, and, for each j ≥ 1, there exists c j > 0 such that, for each u ∈ H2(D)

∫

∂D

(S ju)2d ω ≤ c j

∫

∂D

|u�|2 d ω (6.12)

In 1938, JósefMarcinkiewicz andAntoniZygmundproved the following qualitative
result: The finiteness of the area function is related to the existence of nontangential
boundary values.

Theorem 6.12 ([124]) If u ∈ O(D) and Q ∈ A(∂D), then

If Q ⊂ Fatou(u) then Q ⊂ω Lusin j (u) for each j ≥ 1. (6.13)

The proof of Theorem 6.12 is based on a conformal map applied to the sawtooth
region (6.8). Marcinkiewicz and Zygmund also proved the following quantitative
results, inspired by Theorem 6.11.

Theorem 6.13 ([124]) If p > 0 and j ≥ 1, there exists c(p, j) > 0 such that for each
u ∈ H p(D) ∫

∂D

(S ju)pd ω ≤ c(p, j)

∫

∂D

|u�|p d ω. (6.14)
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If p > 1 and j ≥ 1, then there is a constant cp, j > 0 such that if u ∈ H p(D) and
u(0) = 0, then ∫

∂D

|u�|pd ω ≤ cp, j

∫

∂D

(S ju)pd ω. (6.15)

In (6.15), it is necessary to assume u(0) = 0, since S j annihilates constants.
In 1943,DonaldClaytonSpencer proved the following result, of a qualitative nature.

It is a sort of converse of Theorem 6.12, reminiscent of Theorem 6.6.

Theorem 6.14 ([157]) If u ∈ O(D) and Q ∈ A(∂D) then

If Q ⊂ Lusin(u) then Q ⊂ω Fatou(u) (6.16)

Lusin’s Area Function belongs to the class of square functions:

A deep concept in mathematics is usually not an idea in its pure form, but rather
takes various shapes depending on the uses it is put to. The same is true of square
functions. These appear in a variety of forms, and while in spirit they are all the
same, in actual practice they can be quite different. Thus the metamorphosis of
square functions is all important. [166]

Stein contributed more than any other to the “metamorphosis” of square functions,
establishing both qualitative and quantitative results for the Area Function in higher
dimensions, as we will see.

The (qualitative) Area & Local Fatou Theorem is a corollary of Theorems 6.6, 6.12,
and 6.14. In order to state it in a simple form, given u ∈ O(D), we define the Privalov
set of u as follows (recall (6.2)):

Privalov(u)
def= {q ∈ ∂D : there exists j ≥ 1 such that sup

� j

|u|(q) <∞}. (6.17)

Theorem 6.15 If u ∈ O(D) then

Fatou(u) ω= Privalov(u) ω= Lusin(u) (6.18)

Indeed, if Q ∈ A(∂D), then the following three conditions are equivalent:

1. For almost every q ∈ Q, q ∈ Fatou(u).
2. For almost every q ∈ Q, there exists j ≥ 1 such that S j u(q) <∞.
3. For almost every q ∈ Q, there exists j ≥ 1 such that sup{|u(z)| : z ∈ � j (q)} <

+∞.

Theorem 6.15 is a qualitative Fatou-type theorem, since at any individual point
q ∈ ∂D, the three conditions in its statement are independent, except that of course,
if q is a Fatou point of u, then u is bounded in each t ∈ Stolzq .
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6.10 The Nagel–Stein Theorem for Bounded Holomorphic Functions in the Unit
Disc

Assume that, in the setting of Sect. 4.2.5, a qualitative Fatou-type theorem holds,
which asserts, for a given class of functions, the existence of a family of boundary
filters � : X → Filters(D) based on X , such that, for every function u in the given
class, the Fatou set of u relative to �

Fatou(u;�)

has full measure (see 4.12). In Sects. 4, 5, and 6 so far we have seen various results of
this form. The family of boundary filters� is called the convergence family of filters for
the given qualitative Fatou-type theorem.We say that the convergence family of filters
� is sharp, for the given pointwise Fatou-type theorem, if the following statement is
not true:

there is a family of boundary filters � : X → Filters(D) such that

(1) For every q ∈ X , the filter �(q) is strictly broader than �(q).
(2) For each function u in the given class, lim�(q) u exists for a.e. q ∈ X and

is equal to lim�(q) u.

Observe that, as in Sect. 3.6, if we substitute for the condition (1) the alternative
condition

(1′) For every q ∈ X , �(q) lies frequently outside of �(q).

We obtain an equivalent notion of sharpness. Hence we are led to the following ques-
tion, that first appeared (in a different guise) in Littlewood’s work, and which is akin
to the question raised in Sect. 3.6.

Question 6.2 In the context of a given qualitative Fatou-type theorem, Littlewood’s
Sharpness Problem is to determine whether the convergence family of filters in the
theorem is sharp.

In particular, if the convergence family of filters in the given theorem is not sharp,
then it is possible to obtain a stronger result. In 1927, Littlewood proved the following
seminal result.

Theorem 6.16 ([113]) There does not exist a family τ : ∂D → P•(D) of approach
regions with the following properties:

(asymptotic) For each q ∈ ∂D, τ(q) is the image of a half-open Jordan arc in D

ending at q.

(eventually
disjoint)

For each q ∈ ∂D, the approach region τ(q) and the angular filter on D

ending at q are eventually disjoint.

(Fatou) For each u ∈ H∞(D), Fatou(u; τ) has full measure and limτ(q) u = u�(q)

almost everywhere.
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(rotational
invariance)

If z ∈ τ(q), then eiθ z ∈ τ(eiθq) for each eiθ ∈ ∂D.

Indeed, if a family τ : ∂D → P•(D) of approach regions has the four properties
described above, then there exists u ∈ H∞(D) such that, for almost every q ∈ D, the
limiting value limτ(q) u does not exist.

In his proof, Littlewood used a nontrivial measure-theoretic result on Diophantine
approximation due to Khintchine (one of Lusin’s pupils). In their book on number
theory, Hardy and Wright refer to Khinchin’s result as a “difficult” theorem.

Littlewood’s result is called a negative theorem, since it bars certain families of
approach regions, which lie eventually outside the Stolz approach regions, to be
allowing almost everywhere convergence for functions in H∞(D). Observe that, in
Littlewood’s theorem, the order of tangency of τ(q) to the boundary, is fixed and inde-
pendent of q. In 1957, Littlewood’s result was improved by Arthur John Lohwater and
George Piranian.

Theorem 6.17 ([116]) Under the same hypothesis as in Theorem 6.16, there exists
u ∈ H∞(D) such that for each q ∈ D, the limiting value limτ(q) u does not exist.

In 1979, Rudin constructed a highly oscillating inner function in D that led to a
result which was surprising at that time.

Theorem 6.18 ([150]) There exists a family τ : ∂D → P•(D) of approach regions
such that

(asymptotic) (same as in Theorem 6.16)

(frequently outside the angular filter) For each q ∈ ∂D, τ(q) lies frequently outside
of the angular filter ending at q.

(Fatou) (same as in Theorem 6.16)

(not rotationally invariant) τ is not rotationally invariant.

At that time, the condition that τ is not rotationally invariant must have been con-
sidered essential for the validity of Theorem 6.18, as we can gather from the fact that
Rudin asked Question 6.1, which amounts, in effect, to the following question:

Question 6.3 Is there a family τ of approach regions in D based on ∂D with the
following properties?

(eventually dis joint)&(Fatou)&(rotational invariance)

(with the same terminology as in Theorem 6.16).

In 1984, Nagel and Stein proved the following result, which came unexpectedly.

Theorem 6.19 ([127]) The answer to Question 6.3 is affirmative.

123



7240 F. Di Biase, S. G. Krantz

The approach regions τ(q) in Theorem 6.19 are sequential. However, Nagel and
Stein also proved the following result.

Theorem 6.20 ([127]) There exists a family τ of approach regions in D with the fol-
lowing properties:

(asymptotic)&( f requently outside the angular f ilter)&(Fatou)

&(rotational invariance)

Theorem 6.20 shows that the absence of rotational invariance is not at the heart of
Theorem 6.18. The picture of this subject has perhaps been completed by the following
results. The first one is a theorem of Littlewood type.

Theorem 6.21 ([47]) There is no family τ : ∂D → P•(D) of approach regions for
which the following hold:

(a*) For each q ∈ ∂D, the set {q} ∪ τ(q) is connected

(eventually disjoint from the angular filter) (same as in Theorem 6.16)

(Fatou) (same as in Theorem 6.16)
(a regularity condition)

For each open set O ⊂ D, the set {q ∈ ∂D : O ∩ τ(q) �= ∅} is a measurable subset of ∂D.

(6.19)

Indeed, if a family τ of approach regions in D based on ∂D has the four properties
described above, then there exists u ∈ H∞(D) such that, for almost every q ∈ D, the
limiting value limτ(q) u does not exist.

Condition (a*) is strictly weaker than (asymptotic) and it identifies the property of
curves that is relevant for a theorem of Littlewood type.

A regularity condition, in the statement of a theorem, is a hypothesis that is not a
priori needed in order for the conclusion of the theorem to make sense. For exam-
ple, (6.19) is a regularity condition in Theorem 6.21. Inspiration for this regularity
condition (6.19) comes from a circle of ideas due to Stein (cf. 6.4), which originates
in Calderon’s extension to harmonic functions of Privalov’s Local Fatou Theorem,
presented in Sect. 8.2.5.

The results presented so far are concerned with geometric filters, i.e., with filters
associated to (collections of) approach regions. The following result is due to Joseph
Leo Doob in 1973.

Theorem 6.22 ([51]) If � : ∂D → Filters(D) is a rotationally invariant family of
boundary filters such that, for each u ∈ H∞(D), Fatou(u;�) has full measure and
lim�(q) u = u�(q) almost everywhere, then there exists a rotationally invariant family
of boundary filters � : ∂D→ Filters(D) such that

(1) For every q ∈ X, the filter �(q) is strictly broader than �(q).
(2) For each function u ∈ H∞(D), lim�(q) u exists for almost every q ∈ X and is

equal to lim�(q) u.
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6.11 Epilogue in the Unit Disc

Consider the following

Littlewood-Type Statement. There is no family τ : ∂D → P•(D) of approach
regions with the following properties:

(asymptotic)&(eventually dis joint)&(Fatou)

The question of the truth value of the Littlewood-Type Statement is another rendition
of Question 6.2, which has inspired the results we have seen in this section. The answer
is outflanking.

Theorem 6.23 ([47]) It is neither possible to prove the Littlewood-Type Statement nor
to disprove it.

Theorem 6.23 says that the Littlewood-Type Statement is independent of ZFC
(acronym for Zermelo, Fraenkel and theAxiomofChoice). The proof of Theorem6.23
is based on a combination of methods of modern logic and harmonic analysis, based
on an insight about the location of the link that makes the combination possible.

7 Quantitative Boundary Behavior

In quantitativeFatou-type theorems, in the setting of Sect. 6.1 and Sect. 6.2, the objects
of study are families of approach regions rather than families of boundary filters. If
ϕ : X → P•(D) is a family of approach regions in D based on X and sup

ϕ
|u| is the ϕ-

maximal function of u ∈ C
D , then the distribution function of sup

ϕ
|u|, defined in (6.5),

is able to detect, in a quantitativemanner, the change in the “shape” of ϕ(q), as q varies
within ∂D. The function λ(u ��ϕ) in (6.5) is called theϕ-gauge of u. Theorem 7.1 below,
based on the notion of subordination, attests to the relevance of the notion of ϕ-gauge,
associated to a family of approach regions.

7.1 Subordination

Given two families of approach regions on D based on X , say τ : X → P•(D) and
ϕ : X → P•(D), we say that τ is subordinate to ϕ if there exists c > 0 such that

λ(u ��τ)(r) ≤ cλ(u ��ϕ)(r) (7.1)

for each u ∈ C
D and each r > 0. Observe that the condition of being subordinate

does not hinge on the pointwise shape of τ(q) and ϕ(q) but is a global condition.
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7.2 A Bootstrap Result

At the heart of Theorem 4.2, there lies the following result, Theorem 7.1, which is a
special case of a more general result, Theorem 7.7 that will be presented after we have
introduced the appropriate language. Thus for the time being, we present the result in
the unit disc. Recall that �k : ∂D→ P•(D) is the family of approach regions defined
in (2.7).

Theorem 7.1 Let τ : ∂D → P•(D) be a family of approach regions in D which is
subordinate to � j0 for some given j0 ≥ 1. If u ∈ C

D and Q ∈ A(∂D), then

Q ⊂ Fatou(u;� j0) implies that Q ⊂ω Fatou(u; τ)

and, moreover, for almost every q ∈ Q, limτ(q) u = lim�k0
u.

Theorem 7.1 is important for a number of reasons: (1) It exhibits a bootstrap phe-
nomenon; (2) It derives a qualitative result from the quantitative inequality in (7.1);
(3) It contains a good part of the explanation of the “magic” of Theorem 4.2 and of
the Nagel–Stein results; (4) It provides the basis for a proper understanding of Stein’s
insight into the boundary behavior of holomorphic functions of several variables.

We are now ready to explain in part the “magic” of Theorem 4.2 and of the Nagel–
Stein results, on the basis of the following facts: (i) The condition that τ is subordinate
to � j0 is compatible with the condition that, for each q, τ(q) lies frequently outside
� j (q) for each j ≥ 1, or even that it is eventually disjoint from � j (q) for each j ≥ 1;
(ii) For each j ≥ 1 and each k ≥ 1, � j is subordinate to �k .

Observe that it is essential to assume that the value of j0 in the statement of Theo-
rem 7.1 is strictly greater than 0. Indeed, the statement of Theorem 7.1 with j0 = 0 is
false. Hence there is something “special” about the family of approach region � j for
j ≥ 1, which will be explained momentarily.
We postpone these tasks for a while, since we would now like to point out another

application of these ideas, which is based on the existence of a pointwise inequality.

7.3 Quantitative Estimates vs. Qualitative Results

The Hardy–Littlewood maximal operator M f (q) was defined in (5.29). Consider the
following statements:

(1) If j ≥ 0, there exists c j > 0 such that for each f ∈ L1(∂D) and q ∈ ∂D

sup
� j

|P f | (q) ≤ c j M f (q). (7.2)

(2) For each f ∈ L1(∂D), Lebesgue[ f ] ⊂ Fatou(P f ) and if q ∈ Lebesgue[ f ],
then (P f )�(q) = f (q).

(3) If j ≥ 0, then there exists c j > 0 such that, for each f ∈ L1(∂D) and each
r > 0,

|{sup
� j

|P f | > r}| ≤ c j
r

∫

∂D

| f |d ω. (7.3)
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(4) For each f ∈ L1(∂D) the set Fatou(P f ) has full measure.

The following observations are meant to illustrate the power of quantitative esti-
mates.

• (1) implies (2), by a variant of the standard method: Write f as the sum of a local
part (localized at a given Lebesgue point) and a remainder which vanishes around
the given point.

• (1) implies (3), since the Hardy–Littlewood maximal operator is of weak-type
(1,1).

• (3) implies (4), by the standard method.

7.4 The Hardy–Littlewood Pointwise Maximal Inequality

The form of the Poisson kernel enabled Hardy and Littlewood to prove the following
pointwise inequality.

Theorem 7.2 ([73]) If j ≥ 0, then there exists c j > 0 such that (7.2) holds for each
f ∈ L1(∂D) and q ∈ ∂D.

7.5 The Hardy–Littlewood L p Inequality

The following result, based on Theorem 7.2, is the crowning achievement among the
quantitative results on the boundary behavior of holomorphic functions in the unit
disc. The subtleties exhibited in the setting of several complex variables, uncovered
by Stein, arise precisely in its extension to that setting. This subtle result is based on
the work of Hardy and Littlewood, who “contrary to spelling, in this context a single
name” [190]. It is called the Hardy–Littlewood L p Inequality.

Recall that uρ denotes the boundary function which encodes the radial boundary
values of u.

Theorem 7.3 ([73]) For each j ≥ 0 and p > 0, there exists c = cp, j > 0 such that
for each u ∈ H p(D):

∫

∂D

(sup�k
|u|)p d ω ≤ c

∫

∂D

|uρ |p d ω. (7.4)

The power of the Hardy–Littlewood maximal function revealed itself in the follow-
ing result aswell. It was obtained in 1971 byDonaldLymanBurkholder, Richard Floyd
Gundy, andMartin Louis Silverstein, with a proof based on Brownian motion. Shortly
thereafter, in 1972, Stein gave a far-reaching version of this result, in collaboration
with Charles Fefferman [62].

Theorem 7.4 ([22]) If 0 < p < ∞, j ≥ 1, u ∈ h(D) is real valued, and sup
� j

u ∈
Lp(D), then u is the real-part of a function in H p(D).

Another instance of the general principle according to which a quantitative result
implies a qualitative one can be seen in the following result, obtained fromTheorem7.3
by the standard method.
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Proposition 7.5 The Hardy–Littlewood L p Inequality (7.4) implies that, if 0 < p ≤
+∞, then for each u ∈ H p(D), the set Fatou(u) has full measure.

Hence Theorem 7.3 enables us to recapture the qualitative result on the almost
everywhere existence of angular values, providedwe know that radial boundary values
exist almost everywhere.

The importance of Theorem 7.3 is clarified by the following result as well. It can
also be proved using the standard method.

Theorem 7.6 If ϕ : ∂D→ P•(D) is a family of approach regions such that, for each
u ∈ C(D), the function supϕ |u| is measurable on ∂D, and for each p > 0, there exists
c = cp > 0 such that for each u ∈ H p(D)

∫
∂D

(supϕ |u|)p d ω ≤ c
∫
∂D
|uρ |p d ω, (7.5)

then for each 0 < p ≤ +∞ and each u ∈ H p(D), limϕ(q) u exists and is equal to
u�(q) for a.e. q ∈ ∂D.

7.6 Imbeddings as General Setting for Quantitative Boundary Behavior

A good understanding of Theorem 7.1 may be achieved in the following general
setting, which also serves as a framework that contains all the applications we have in
mind.

If X = (X , ω, δ) is a space of homogeneous type, W = (W, d) is a pseudometric
space, and D ⊂W, then an imbedding X ↪→ ∂WD ⊂W is called admissible if it has
the following property, where we identify as usual points of X with their images inW
via the imbedding X ↪→W.

(AI) If {qn}n and {pn}n are sequences in X , then limn→+∞ δ(qn, pn) = 0 ⇔
limn→+∞ d(qn, pn) = 0.

An example, which we have already met, is the following: Any space of homogeneous
type X is admissibly imbeddable in the boundary of B(X) in P•(X).

In many cases, if � ⊂ R
n is a domain in R

n , then it is possible to endow ∂� with
an appropriate measure and metric for which the natural imbedding ∂� ↪→ R

n is
admissible (see below).

7.7 The Intrinsic Maximal Function in the Setting of an Admissible Imbedding

We assume that

• ı : X ↪→ ∂WD ⊂W is an admissible imbedding of X in the boundary of D ⊂W.
• ϕ : X → P•(D) is a family of approach regions in D based on X .
• R : L p(X)→ C

D is a functional representation of L p(X) on D.

The ϕ-maximal operator of |u| is defined as in D without substantial changes:

sup
ϕ
: CD → [0,+∞]X , (7.6)
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where sup
ϕ
|u|(q)

def= sup {|u(z)| : z ∈ ϕ(q)}, for u ∈ C
D and q ∈ X . The intrinsic

ϕ-maximal operator associated to a functional representation R is defined as follows:
For f ∈ L p(X) and q ∈ X

Rϕ : L p(X)→ [0,∞]X , Rϕf(q)
def= sup{|Rf(z)| : z ∈ ϕ(q)}. (7.7)

Hence the property “a weak-type/strong-type inequality holds for the operator Rϕ”
(which the operator Rϕ may or may not have) describes the quantitative boundary
behavior of the functional representation R with respect to the family of approach
regions ϕ. A theorem, which gives sufficient conditions entailing the validity of a
weak type or of a strong-type inequality for supϕ |R|, is called a quantitative Fatou-
type theorem. Observe that a quantitative Fatou-type theorem relies on the actual
choice of a certain family of approach regions, rather than on the specification of a
family of boundary filters.

7.8 Regular Families of Approach Regions

We say that ϕ : X → P•(D) is regular if one of the following equivalent conditions
holds:

(R 1) For each u ∈ C(D), the function sup
ϕ
|u| is measurable.

(R 2) For each open set O ⊂ D, the set {q ∈ X : O ∩ ϕ(q) �= ∅} is a measurable
subset of X .

The setwhich appears in (R2) also appears in the regularity condition ofTheorem6.21.
The function

ϕ∗ : D→ P(X) (7.8)

defined by

ϕ∗(z) def= {q ∈ X : ϕ(q) � z} (7.9)

is called the inverse of ϕ. The family of approach regions ϕ is uniquely determined by
its inverse. Observe that a family of approach regions X → P•(D) may be identified
with a subset of X × D. A subset of X × D is called a relation of X with D [87, p.
6]. Then, ϕ∗ is the “inverse relation” [87, p. 7].

The set ϕ∗(z) is called the shadow projected by z along ϕ. The shadow along ϕ

determine the sets which appear in the notion of regularity, since

{q ∈ X : O ∩ ϕ(q) �= ∅} =
⋃

z∈O
ϕ∗(z) .

The set {q ∈ X : O ∩ ϕ(q) �= ∅} is called the shadow projected by O along ϕ and is
denoted by ϕ∗[O]. Hence, with slight abuse of notation, the function

ϕ∗ : P(D)→ P(X) (7.10)

is defined by ϕ∗[O] def= {q ∈ X : O ∩ ϕ(q) �= ∅}.
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7.8.1 Lower Semicontinuity

A condition stronger than regularity is the following one: The family of approach
regions ϕ is called lower semicontinuous if one of the following equivalent conditions
is satisfied:

(LS.1) For any function u : D → C, the maximal function sup
ϕ
|u| is lower

semicontinuous on X .
(LS.2) For each z ∈ D, ϕ∗(z) (the shadow projected by z along ϕ) is open in X .

For example, the family of approach regions � j is lower semicontinuous if j ≥ 1,
while �0 is regular but not lower semicontinuous.

7.9 Adapted Families of Approach Regions

In order to see what are the properties of the family of nontangential approach region
� j , for j ≥ 1, which are behind the validity of Theorem 7.1we introduce, in the setting
of Sect. 7.6, the following notions. The family of approach regions ϕ : X → P•(D)

is said to be adapted to the admissible imbedding X ↪→ ∂WD ⊂ W if (roughly
speaking) the shadow of z ∈ D is an open set in X of small diameter, close to z,
and uniformly comparable to a ball. More precisely, ϕ is adapted to the admissible
imbedding X ↪→ ∂WD ⊂W if it has the following properties:

(1) The family of approach regions ϕ is lower semicontinuous.
(2) There are constants c1, c2 ∈ (0,+∞) such that, for each z ∈ D, there exist
q(z) ∈ X and r(z) > 0 such that

BX ,δ(q(z), c1 · r(z)) ⊂ ϕ∗(z) ⊂ BX ,δ(q(z), c2 · r(z)) . (7.11)

(3) For each q ∈ X and each sequence {z j } j of points in D converging to q in
(W, d), the following properties hold:

(3.a) lim j→+∞ diamδ

[
ϕ∗(z j )

] = 0, where diamδ [Q] is the diameter of Q in
the metric δ.
(3.b) lim j→+∞ sup{d(z j , p) : p ∈ ϕ∗(z j )} = 0.

For example, if j ≥ 1 then � j : ∂D→ P•(D) is adapted to the admissible imbedding
of ∂D in C. Observe that �0 is not adapted to this imbedding.

7.9.1 A General Bootstrap Result

Theorems 7.1 and 4.2 are special cases of the following result.

Theorem 7.7 Let ϕ : X → P•(D) be a family of approach regions that is adapted to
the admissible imbedding X ↪→ ∂WD ⊂ W, and let τ : X → P•(D) be a family of
approach regions that is subordinate to ϕ. If Q ∈ A(X) and u ∈ C

D, then

Q ⊂ Fatou(u;ϕ) implies that Q ⊂ω Fatou(u; τ)
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and, moreover, for almost every q ∈ Q, lim[τ(q)] u = lim[ϕ(q)] u.

7.10 An Intrinsic Condition for Subordination

In order to give an intrinsic condition that identifies a family of approach regions as
being subordinate to a given family of approach regions (which, in turn, is adapted
to an admissible imbedding), we introduce the following notions. In what follows,
ϕ : X → P•(D) is a family of approach regions.

7.10.1 The Lebesgue Transform

The family of approach regions ϕ is called amenable if ϕ(z) ∈ A(X) for all z ∈ D.
The ϕ-Lebesgue transform associated to an amenable family of approach regions ϕ is
the functional representation

Lϕ : L1(X)→ C
D

defined by Lϕf
def= ω(f) ◦ ϕ∗, i.e., Lϕf(z)

def= ω
(
f ��ϕ∗(z)

)
, for z ∈ D.

7.10.2 Tents

Stein had a crucial role in unearthing the role played by the notion of tent associated
to a family of approach regions. The notion of tent is used to give an intrinsic char-
acterization of those families of approach regions which are subordinate to a family
of approach regions which is adapted to an admissible imbedding. The ϕ-tent above
a subset Q ⊂ X is the set:

�ϕQ
def= {z ∈ D : ϕ∗(z) ⊂ Q}.

Hence �ϕ : P(X) → P(D). The term “tent” draws its origin from the case where
ϕ = � j : In this case, we denote �ϕQ by � j B.

7.10.3 The Bootstrap of a Family of Approach Regions

The bootstrap of ϕ is the function ϕ� : D→ P•(D) where

ϕ�(z)
def= {z′ ∈ D : ϕ∗(z) ⊂ ϕ∗(z′)} for z ∈ D.

If τ is another family of approach regions, the ϕ-bootstrap of τ is the family of
approach regions τϕ

τϕ(q)
def=

⋃

z∈τ(q)

ϕ�(z).
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7.10.4 The Action on Outer Measures

Denote by Outer[S] the collection of all outer measures defined on a set S (nonnega-
tive, monotonic, subadditive set functions vanishing on the empty set; see [63, p. 28]),
and define

ϕ◦ : Outer[X ] → Outer[D]

as follows: if m ∈ Outer[X ] and Z ⊂ D, we let (ϕ◦m )(Z)
def= m(ϕ∗(Z)).

7.10.5 A Synthetic Diagram

We summarize the various operators introduced so far in the following diagrams.

P•(D) P(D) P(D) C
D P•(D) C

D Outer[D]

X P(X) P(X) [0,+∞]X D C
X Outer[X ]

ϕ∗ supϕϕ �ϕ ϕ� Lϕ
ϕ◦

In this notation, a subscript indicates that the end result lives in X , a superscript that
it lives in D.

7.10.6 An Intrinsic Condition for Subordination in the General Setting

Theorem 7.8 Let ϕ : X → P•(D) be a family of approach regions that is adapted to
the admissible imbedding X ↪→ ∂WD ⊂ W, and let τ : X → P•(D) be a family of
approach regions. Then, the following conditions are equivalent:

(1) τ is subordinate to ϕ, i.e., there exists c > 0 such that, for all u ∈ [0,+∞)D

and each r > 0,
ω∗{sup

τ
u > r} ≤ cω{sup

ϕ
u > r}. (7.12)

(2) There is a constant c > 0 such that for each open ball B ∈ B(X),

ω∗(τ ∗[�ϕB]) ≤ cω(B). (7.13)

(3) There is a constant c > 0 such that for all f ∈ L1(X) and each r > 0,

ω∗{sup
τ

Lϕ |f| > r} ≤ cω{sup
ϕ

Lϕ |f| > r}.

(4) There is a constant c > 0 such that for all f ∈ L1(X) and each r > 0,

ω∗{sup
τ

Lϕ |f| > r} ≤ c
r

∫

X
|f| d ω.
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(5) The ϕ-bootstrap of τ is subordinate to ϕ.

The condition in (7.13) is the tent condition for τ relative to ϕ. It is intrinsic, since
it is stated purely in terms of τ .

7.11 An Explanation of the Nagel–Stein Phenomenon

An application of the tent condition shows that

� j+1 is subordinate to � j , (7.14)

even though, for each q ∈ ∂D, � j+1(q) is strictly broader than � j (q). The Nagel–
Stein phenomenon says that there is a family of approach regions τ with the properties
(a) and (b) described below:

(a) τ is subordinate to �1 (and therefore to � j , for all j , in view of (7.14)).
(b) For each q ∈ ∂D, τ(q) is eventually disjoint from the angular filter ending at

q.

Now, (a) implies

(a 1) Functions in H p(D) have a.e. boundary values through τ (by Theorem 7.1).
(a 2) For each p > 0, there exists cp > 0 such that

∫

∂D

(supτ |u|)p d ω ≤ c
∫

∂D

|uρ |p d ω for each u ∈ H p(D)

Observe that (b) says that the qualitative Fatou theorem in (a 1) is more stringent
than Theorem 6.9. Hence the point is to establish the compatibility of (b) with (a),
i.e., with the tent condition (7.13) where, say, ϕ = �1. This possibility arises if τ(q) is
sequential and “lacunary,” i.e., fast convergent, so that the shadow projected by the tent
which lies above an interval will have many “holes,” and therefore, its measure will
be bounded in terms of the measure of the interval, uniformly over the interval. Hence
the magic of Theorem 6.19 is revealed. A similar reasoning explains Theorem 6.20,
where now the approach regions τ(q) consist of curves.

7.11.1 The Cross-Section Condition

A family of approach regions ϕ : ∂D→ P•(D) is rotationally invariant if it has the
following property:

If z ∈ τ(q), then eiθ z ∈ τ(eiθq) for each eiθ ∈ ∂D. (7.15)

This notion plays an important role in Littlewood’s Theorem 6.16. A family of
approach regions ϕ : ∂D → P•(D) satisfies the cross-section condition if there
is a constant c > 0 such that, for each q ∈ ∂D and each r ∈ (1/2, 1),

|{w ∈ ∂D : rw ∈ ϕ(q)}| ≤ cr . (7.16)
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Observe that the family of approach regions � j defined in (2.7) satisfies the cross-
section condition. The relevance of this condition was discovered by Nagel and Stein
[35,99,127,172–174].

Lemma 7.9 Ifϕ : ∂D→ P•(D) is a rotationally invariant family of approach regions,
then the tent condition (7.13) holds forϕ if and only if the cross-section condition (7.16)
holds.

The following result says that if ϕ is not group invariant, then ϕ may satisfy the
cross-section condition but not the tent condition: Hence ϕ is not subordinate to � j .

Lemma 7.10 ([42]) There is a family of approach regions ϕ : ∂D → P•(D) with the
following properties:

(1) ϕ is not rotationally invariant.
(2) The cross-section condition (7.16) holds.
(3) The tent condition (7.13) does not hold, and hence ϕ is not subordinate to �1.

We are thus led to the following notion.

7.12 Distributionally Broader Families of Approach Regions

We say that a family τ : X → P•(D) of approach regions in D is distributionally
broader than a given family of approach regions ϕ : X → P•(D) if τ is not sub-
ordinate to ϕ. This notion plays a distinguished role in Stein’s contributions on the
boundary behavior of holomorphic functions in C

n .

7.13 Sequences of Families of Approach Regions

If X ↪→ ∂WD ⊂ W is an admissible imbedding, a sequence of families of approach
regions is a sequence {ϕ j } j≥1 where each ϕ j is a family of approach regions in D
based on X .

We say that the sequence of families of approach regions {ϕ j } j≥1 is adapted to the
admissible imbedding X ↪→ ∂WD if

(1) For each j ∈ N, ϕ j is adapted to the admissible imbedding X ↪→ ∂WD ⊂W.
(2) For each q ∈ X and each j ∈ N, ϕ j (q) ⊂ ϕ j+1(q).
(3) For each j ∈ N, there exist c j , c′j ∈ (0,+∞) such that, for each z ∈ D, there

exist q(z) ∈ X and r(z) > 0 such that

BX ,δ

(
q(z), c j r(z)

) ⊂ (ϕ∗j )(z) ⊂ BX ,δ

(
q(z), c′j r(z)

)
. (7.17)

Theorem 7.11 If the sequence of families of approach regions {ϕ j } j≥1 is adapted to
the admissible imbedding X ↪→ ∂WD ⊂ W, then for each j1 and j2 ∈ N, ϕ j1 is
subordinate to ϕ j2 .

Observe that the conclusion of Theorem 7.11 holds for j1 < j2 as well as for
j2 < j1. The case j2 < j1 is the nontrivial one. Indeed, under the hypothesis in the
theorem, ϕ j1 is subordinate to ϕ j2 even if it is strictly broader than ϕ j2 .
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Corollary 7.12 If the sequence of families of approach regions {ϕ j } j≥1 is adapted to

the admissible imbedding X ↪→ ∂WD ⊂ W, and u ∈ C
D, then for each j1 and

j2 ∈ N, if u has boundary values through ϕ j1(q) for a.e. q, then it has the same
boundary values through ϕ j2(q) for a.e. q.

The conclusion of Corollary 7.12 says that, from the viewpoint of a.e. convergence,
if j1 �= j2, then the families of approach regions ϕ j1 and ϕ j2 yield the same results.
Hence Theorem 4.2 follows from Theorem 7.1 and from Corollary 7.12.

7.13.1 Applications to Lebesgue Differentiation Bases

Recall that Lϕf is the Lebesgue transform of f, defined in Sect. 7.10.1.

Theorem 7.13 If X ↪→ ∂WD ⊂W is an admissible imbedding and ϕ : X → P•(D)

is an amenable family of approach regions which is adapted to it, then for each
f ∈ C(X) and each q ∈ X, the unrestricted boundary value of Lϕf exists at q and is
equal to f(q).

Recall that Mf is the Hardy–Littlewood maximal operator of f ∈ L1(X) defined in
Sect. 5.2.11.

Theorem 7.14 If X ↪→ ∂WD ⊂W is an admissible imbedding and ϕ : X → P•(D)

is an amenable family of approach regions which is adapted to it, then there exists a
constant c > 0 such that for each f ∈ L1(X), the following pointwise inequality holds
for each q ∈ X:

sup
ϕ
Lϕ |f| (q) ≤ c · Mf(q). (7.18)

Corollary 7.15 If X ↪→ ∂WD ⊂ W is an admissible imbedding, ϕ : X → P•(D) is
an amenable family of approach regions which is adapted to it, and τ : X → P•(D) is
a family of approach regions subordinate to ϕ, then for each f ∈ L1(X), the boundary
value of Lϕ f through τ(q) exists for a.e. q ∈ X and is equal to f (q).

The results in Sect. 6.4 are related to Corollary 7.15.

8 Harmonic Functions

Having given an outline of the results about the boundary behavior of holomorphic
functions that were relevant to “the complexmethod,” we are now almost ready to look
at history with the benefit of hindsight. The first attempts to find an extension of the
results of Fatou can be found in the work of the Moscow school of mathematics. Here,
the term “extension” refers both to extension to functions holomorphic on domains in
the plane other than the unit disc, aswell as to extension to functions defined on general
domains in Euclidean spaces and harmonic therein. For example, the first definition
of the Hardy space of holomorphic functions over a domain � in the plane, other than
the unit disc, is due to the Moscow school. Indeed, Lusin himself was aware of the
fact that the results on Fourier series obtained by the complex method belonged to real
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analysis and imagined that in order to prove his conjecture about the a.e. convergence
of Fourier series of L2 functions, one had to recast the subject again but without relying
on the complex method. For example, in the specific instance of the Hilbert transform,
he felt the need for a purely real-variable proof of a purely real-variables statement.
The first progress in this direction was achieved by Besicovitch in 1923 and 1926.
Zygmund and his school carried on with the project of developing new “real-variable”
methods aimed at understanding the higher dimensional case, where complex analysis
plays no role. Stein referred to this project as Zygmund’s vision and wrote that

[...] only with techniques coming from real-variable theory could one hope to
come to grips with many interesting n-dimensional analogues of the one dimen-
sional theory.

Concerning the period from 1950 to 1964, Stein wrote that

The mathematician animating this development was Antoni Zygmund. In many
ways he set the broad outlines of the effort, he mastered by his work some of the
crucial difficulties, and was throughout the source of inspiration for his students
and collaborators.

As a matter of fact, Stein himself played a leading role. We hope that the brief
outline we have given so far will make it easier to understand why the study of the
boundary behavior of holomorphic or harmonic functions has remained dear to his
heart, even in contexts where no group of symmetries is acting on the space. Before we
continue our presentation of his achievements in this area, we have to give a sample
of the large body of results that grew out of the Dirichlet problem. This will be done
in the following section.

8.1 The Dirichlet Problem

We now present an essential account of the Dirichlet problem, where the roots for
the study of the boundary behavior of harmonic (and holomorphic) functions are
contained [5]. As a prelude to the statement of the Dirichlet problem of classical
potential theory, observe that if � is a bounded domain in R

n and the unrestricted
boundary value u�(q) at q ∈ ∂� of a continuous function u : �→ C exists for each
q ∈ ∂�, then the boundary function u� : ∂� → C is continuous on ∂�. Loosely
speaking, the Dirichlet problem is this: Given a function f : ∂�→ C, one has to find
(if it exists, or, otherwise, one has to understand under which conditions it exists) a
function u f ∈ h(�) such that

the “boundary values” of u f exist and are equal to f . (8.1)

As can be seen from this formulation, the Dirichlet problem actually yields a whole
class of problem, depending on the precise meaning that we assign to the notion
of “boundary values” that appears in (8.1). The associated inversion problem, as in
Sect. 4.6, i.e., the problem of describing a way to recapture f starting from u f ∈
h(�), and, more generally, the problem of understanding the “boundary behavior” of
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u f ∈ h(�), leads to the Fatou-type theorems, of which we have already met different
versions, classified as pointwise, qualitative, and quantitative. As in the classical
Dirichlet problem, in (8.1), we consider the unrestricted boundary values. Our initial
observation shows that in the classical Dirichlet problem there is no loss of generality
in assuming that f ∈ C(∂�). If a solution u f ∈ h(D) exists, it is called the solution of
the classical Dirichlet problem with boundary datum f : It is unique and it is bounded
on �, i.e., it belongs to the Hardy space h∞(�) of complex-valued functions that are
harmonic on � and bounded therein:

h∞(�)
def=

{
u ∈ h(�) : sup

z∈�

|u(z)| < +∞
}

.

It follows that, if the classical Dirichlet problem can be solved in �, then there exists
an operator

C(∂�) −→ h∞(�),

which maps the datum f ∈ C(∂�) to the corresponding solution u f ∈ h∞(�). We
denote by Cr (∂�) the subset of C(∂�) consisting of all functions f ∈ C(∂�) such
that the solution of the classical Dirichlet problem with boundary datum f exists.
Hence

Cr (∂�) ⊆ C(∂�).

Domains � for which Cr (∂�) = C(∂�) are called regular domains for the classical
Dirichlet problem. Functions in Cr (∂�) are called regular for the Dirichlet problem.
Since the restriction to ∂� of any harmonic polynomial is regular, Cr (∂�) �= ∅. The
subset Cr (∂�) is a closed subspace of C(∂�). The following result is implicit, albeit
in a cryptic form, in Riemann’s Inauguraldissertation (1851) [147]:

Lemma 8.1 If � is a bounded domain, the following conditions are equivalent:

• � is regular for the Dirichlet problem;
• Cr (∂�) is dense in C(∂�) in the uniform norm;
• f , g ∈ Cr (∂�) implies that f · g ∈ Cr (∂�).

Hence a domain � is regular for the Dirichlet problem if and only if Cr (∂�) is a
subalgebra of C(∂�). If f ∈ Cr (∂�), then we denote by V f ∈ h∞(�) the unique
solution of the Dirichlet problem with boundary datum f . The map f �→ V f defines
a linear and positive operator:

V : Cr (∂�)→ h∞(�) (8.2)

called the Dirichlet solution operator. Domains that are not regular for the classical
Dirichlet problem were discovered by Stanisław Zaremba in 1909 and by Lebesgue
in 1913 [105,187,188]. See also [76,184].
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8.1.1 The Poisson–Keldych operator

The following result is remarkable.

Theorem 8.2 There is one and only one positive and linear operator:

K : C(∂�)→ h∞(�), (8.3)

such that the following diagram is commutative:

Cr (∂�) C(∂�)

h∞(�)
V

K

The uniqueness result in Theorem 8.2, due to Keldych in 1941 [86], is rather subtle
and has been forgotten by the more recent literature. The existence result does not
readily follow from the Hahn–Banach theorem or from the maximum principle, as it
is sometimes claimed. The operator K in Theorem 8.2 is called the Poisson–Keldych
operator. It is plausible that an extension of V to C(∂�) may exist, but it would have
no special meaning if it was not unique: The uniqueness shows that it has intrinsic
meaning. Indeed, the following result, due to Kellogg (1928) and Evans (1933), shows
that the Poisson–Keldych operator is relevant to the Dirichlet problem, even if the
domain is not regular.

Theorem 8.3 ([55,88]) The set of points q ∈ ∂� such that it is not true that

(K f )�(q) = f (q) for all f ∈ C(∂�) (8.4)

has capacity zero.

A point q ∈ ∂� is said to be regular for the classical Dirichlet problem if (8.4)
holds.

8.1.2 Kakutani’s Construction of the Poisson–Keldych Operator

In Theorem 8.2, the existence is independently due to Perron (1923), Remak (1924),
andWiener (1924), with different methods [86,137,146,186]. Another construction of
the Keldych operator, due to Kakutani, is based on the operator:

K : C(�)→ C(�)

defined as follows. If z ∈ �, let Bz be the Euclidean ball of center z and radius equal
to r(z)/2, where r(z) is the Euclidean distance from z to ∂�, and denote by σz the
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normalized Hausdorff measure of dimension n−1 on the boundary of Bz . We are now
ready to define K. If u ∈ C(�) and z ∈ �, let

Ku(z)
def=

{
u(z) if z ∈ ∂�
∫
∂Bz

u dσz it z ∈ �.

If j is a positive integer, denote by K
j the composition of K with itself j times.

Theorem 8.4 If f ∈ C(∂�) and u ∈ C(�) is any continuous extension of f to �,
then

K f
def= lim

j→+∞K
j u

exists in the topology of uniform convergence in C(�), belongs to h(�), and does not
depend on the particular extension ϕ. The operator f �→ K f is a linear and positive
extension of V .

The operator K is associated to a Markov process which is a discrete version of
Brownian motion in � killed at the hitting time of ∂� [85].

8.1.3 Harmonic Measure

We assume, without loss of generality that the origin 0 ∈ R
n belongs to �. There is a

unique positive complete Borel measure ω on ∂� such that

(K f )(0) =
∫

∂�

f (q) d ω(q), for all f ∈ C(∂�).

This measure ω is called the �-harmonic measure with pole at 0 ∈ �. Similarly, the
�-harmonic measure with pole at z ∈ � is the unique complete Borel measure ωz on
∂� such that

(K f )(z) =
∫

∂�

f (q) d ωz(q), for all f ∈ C(∂�). (8.5)

If there is no ambiguity about �, ωz is called harmonic measure rather than �-
harmonic measure. Observe that ωz(∂�) = 1. Recall that B(∂�) is the σ -algebra of
Borel subsets of ∂�. The measure-theoretic completion of B(∂�) under ωz , denoted
by B̂ω, does not depend on z ∈ �, since for a Borel subset E ⊂ ∂�, the conditions
ωz(E) = 0 andω(E) = 0 are equivalent. Hence all harmonic measuresωz are defined
on the same σ -algebra B̂ω, and (∂�, B̂ω, ωz) is a complete measure space for each
z ∈ �. The sets in B̂ω are precisely those for which harmonic measure is defined, and
they are called ω measurable.

The following notion turns out to be very relevant in measurability issues: A subset
of R

n is called analytic if it is the continuous image of a Borel subset of a Polish space
[14]. Analytic sets exist in nature: For example, denote by ∂a� ⊂ ∂�, the set of all
boundary points, for which there exists a half-closed Jordan arc contained in � and
ending at q.
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Theorem 8.5 ([52]) Every analytic subset of ∂� is ω measurable. For each z ∈ �,
ωz(∂a�) = 1.

Theorem 8.6 ([45]) In R
n with n ≥ 3, the set ∂a� ⊂ ∂� is not necessarily Borel but

it is analytic.

8.1.4 The Poisson Operator

For each z1, z2 ∈ �, anω-measurable function f : ∂�→ C is integrable with respect

to ωz1 if and only if it is integrable with respect to ωz2 . We denote by L1(∂�,ω)
def=

L1(∂�, B̂ω, ω) the quotient (modulo a.e. equivalence) of the space of allω-measurable
and ω-integrable functions. The Poisson operator

P : L1(∂�,ω)→ h(�) (8.6)

is defined, for f ∈ L1(∂�,ω) and z ∈ �, as follows:

(Pf)(z)
def=

∫

∂�

f(q) d ωz(q). (8.7)

Harmonic measures with different poles are mutually absolutely continuous with
respect to each other. For z ∈ �, the Radon–Nikodym derivative of ωz with
respect to ω is a positive function pz : ∂� → (0,+∞). The Poisson kernel
P : �× ∂�→ (0,+∞) is defined as P(z, q) = pz(q). The Poisson operator in (8.6)
has the representation (for f ∈ L1(∂�,ω) and z ∈ �)

(Pf)(z) =
∫

∂�

P(z, q)f(q) d ω(q).

8.1.5 The Poisson Operator on Complex Measures

The Banach space of all complex measures on the measure space (∂�, B̂ω) is denoted
by

M(∂�,ω).

Then the Poisson operator P : L1(∂�,ω)→ h(∂�) may be extended to an operator
onM(∂�,ω). It will be also denoted by P , by setting, form ∈M(∂�,ω) and z ∈ �,

(Pm)(z)
def=

∫

∂�

P(z, q) dm(q).

123



Foundations of Fatou Theory and a Tribute to E.M. Stein 7257

We then have the following commutative diagram, where the natural map fromC(∂�)

to L1(∂�,ω) is not necessarily injective.

C(∂�) L1(∂�,ω) M(∂�,ω)

h∞(�) h(�) h(�)

K P P
=

8.1.6 The Poisson Operator and the Dirichlet Problem

We denote the Poisson–Keldych operator K and the Poisson operator P with different
names, and different symbols, not only because—as operators—they have different
domains and different codomains, but because the boundary behavior of K f, where
f ∈ C(∂�), is different from that of Pf, where f ∈ L1(∂�,ω), as can be seen
from Theorem 4.5. Observe that, if � = D, then B̂ω is the σ -algebra of Lebesgue
measurable subsets of ∂D and ω is normalized arc length. Hence it is definitely not
possible to recapture f from Pf by taking its unrestricted boundary values, not even
if we restrict our attention to a “large” subset of ∂� and not even in the case of the
simplest regular domain such as the unit disc. Thus, some other method has to be
devised in order to recapture u from Pf. In the unit disc, angular boundary values will
do, as we have seen. Since Theorem 4.5 holds in the unit disc—perhaps the simplest
regular domain—we see that the notion of unrestricted boundary values can be used
to solve the inversion problem only if applied to the boundary behavior of K f where
f ∈ C(∂�).

8.1.7 A Probabilistic Fatou Type Theorem

If the inversion problem for the Poisson transform P : L1(∂�,ω) → h(∂�) can be
solved using a stochastic process, the result is a probabilistic Fatou-type theorem. An
example is given in Theorem 8.7, which shows that f ∈ L1(∂�,ω) can be recaptured
by the boundary values of Pf alongBrownian paths. This result is a qualitative theorem
of Fatou type and lives in “the magical world of Brownian motion”, as Stein put it
[166].

Theorem 8.7 ([52]) Assume that 0 ∈ � and that f : ∂�→ C is ω integrable. Then,

1. with probability 1,

lim
t↑τ (P f )(w(t)) = f (ŵ)

where w = w(t), 0 ≤ t < τ , is Brownian motion in � starting from 0 killed at
the hitting time of ∂�, τ is this hitting time, and ŵ ∈ ∂� is the hitting point;

2. If E ⊂ ∂� is ω measurable, then ω(E) is equal to the probability that ŵ

belongs to E.
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The interest of this statement lies in part in the fact that it holds for any bounded
domain, not necessarily regular ones, and indeed, it also holds for unbounded domains
when suitably modified.

In order to understand for which domains � ⊂ R
n , it is possible to recapture

f ∈ L1(∂�,ω) along angular boundary values, one has to develop “real-variable”
methods aimed at understanding the higher-dimensional case, where complex analysis
plays no role. We will return to this question momentarily. For the time being, we
observe that the notion of angular boundary value does not make sense for every
domain, not even in the plane, since, for example, if � is the von Koch snowflake,
then a.e. point in its boundary, with respect to harmonic measure, is not sectorially
accessible, i.e., it is not the vertex of an open triangle contained in � [46,139,183].
However, we will see that this is not the crucial difficulty.

8.2 Harmonic Functions in The Unit Disc

The process of developing “real-variable” methods aimed at understanding the
higher-dimensional case, where complex analysis play no role was a long one and, in
a certain sense, is not yet complete. We will now review the main results obtained in
this endeavour, of which Zygmund and his school have been the main actors. The first
step was of course that of extending to harmonic functions in the unit disc those results
which had therein been obtained for holomorphic functions. The difference between
harmonic functions and holomorphic functions is much more dramatic in C

n , where
n ≥ 2, than in C, due to the fact that, in one variable, harmonic and holomorphic
functions are strongly linked to each other by the Cauchy–Riemann equations. As a
consequence, we have already met some of the results, originally obtained for holo-
morphic functions in the unit disc, which also hold for harmonic functions in the unit
disc. Hence we now limit ourselves to present some of the other results which did not
fit in the previous sections. The first one is known as the localization principle.

Theorem 8.8 If f ∈ L1(∂D), Q ⊂ ∂D is open and f vanishes at all points of Q, then
the unrestricted boundary value of P f exists and vanishes at all points of Q.

The existence of the unrestricted limit of P f at q only depends on the asymptotic
boundary behavior of f at q, excluding the value at q. Indeed, if we define

lim inf
∂D�q ′→q

f (q)
def= lim

n→∞ inf
0<|θ |<n−1

f (eiθq)

(and similarly for lim sup), then we obtain the following result.

Theorem 8.9 If f ∈ L1(∂D) and q ∈ ∂D, then

lim inf
∂D�p→q

f (p) ≤ lim inf
D�z→q

P f (z) ≤ lim sup
D�z→q

P f (z) ≤ lim sup
∂D�p→q

f (p).

If a discontinuity of the first kind is given at q, then a precise quantitative result can
be given.
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Theorem 8.10 ([145]) If f ∈ L1(∂D), q ∈ ∂D, and f has a discontinuity of the first
kind at q:

f(q+)
def= lim

θ↓0 f(qe
iθ ) �= f(q−)

def= lim
θ↑0 f(qe

iθ )

then, if we let d = f(q+)− f(q−), for each α ∈ (0, 2π)

lim
s↓0 P(f)(seiαq + (1− s)q) = f(q+)+ f(q−)

2
+ d

π

π − α

2

If τ = τ(s) is a half-open Jordan arc in D ending at q as s → 1 and tangent to ∂D at
q, then

lim
s→1

Pf(τ (s)) = f(q+) or f(q−)

depending on the side from which τ approaches q.

The relation between the existence of the unrestricted limit at q and the continuity
of f at q is another instance of Abel’s Principle, which says that the regularity of f at
q affects the boundary behavior of P( f ) at q. We now present a quantitative version
of this principle. It is a bound of P f (z) depending both on the “size” of f near q,
and on the way, the point is located with respect to the boundary. The quantity which
measures the size of f at q is the centered Hardy–Littlewood maximal function of f
at q, defined in (5.16). The bound can be given in two forms. The first one is achieved
using methods which make the generalization to higher dimensions difficult, while
the second can be generalized directly. In most applications, either of the two forms
can be used.

Theorem 8.11 If f ∈ L1(∂D) and q ∈ ∂D, then, for each z ∈ D,

|P f (z)| ≤ 10

(
1+ |z − q|

1− |z|
)
m f (q)

and

|P f (z)| ≤ 3

(
2+ |z − q|

1− |z|
)2

m f (q).

This result can be applied (using the method of splitting a function into the local
part and the part that lives far away from the point) to prove Theorem 6.2.

Another quantitative version of Abel’s principle is the following one.

Theorem 8.12 If f ∈ L1(∂D), q ∈ ∂D, and z ∈ D, then

∣∣∣∣
∂P( f )

∂θ
(z)

∣∣∣∣ ≤ 2π

(
1+ |z − q|

1− |z|
)

sup
0<|x |<π

∣∣∣∣
f (eixq)− f (q)

x

∣∣∣∣ .
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As a corollary, we obtain the following result, another rendition of Abel’s Principle.

Theorem 8.13 ([59]) If f ∈ L1(∂D), q ∈ ∂D, and

f ′(q)
def= lim

x→0

f (qeix )− f (q)

x

exists and is finite, then the function d
dθ

P f has angular boundary value at q equal to
f ′(q).

Corollary 8.14 If f ∈ L1(∂D), q ∈ ∂D, and

f (q) = lim
x→0

1

x

∫ x

0
f (qeiθ )dθ,

then P f has angular boundary value at q equal to q.

In 1931, Littlewood proved the following result.

Theorem 8.15 ([114]) There exists a real-valued u ∈ h(D)which, for every p ∈ (0, 1)
satisfies

sup
0<r<1

∫ 2π

0
|u(rq)|pd ω(q) <∞ (8.8)

and has the property that for a.e. q ∈ ∂D, the radial limiting value of u at q does not
exist.

The collection of real-valued functions in h(D) which satisfy (8.8) is denoted by
h p(D).

If 1 ≤ p ≤ ∞, then the following qualitative result holds for functions in h p(D).

Theorem 8.16 If 1 ≤ p ≤ +∞, then each u ∈ h p(D) has angular boundary values
a.e.

8.2.1 Littlewood-Type Theorems for Harmonic Functions

Recall that, in Theorem 6.16, Littlewood showed that functions in H∞(D) do not
admit a.e. boundary values along any rotationally invariant family of approach regions,
with shape given by a half-open Jordan arc which is tangential to the boundary. In
1949, Zygmund gave two different proofs of Theorem 6.16. The first uses complex
analysis methods. The second is entirely within the realm of real analysis and is
the most enlightening. In retrospect, one can read in it the elements of three later
developments: The link between a.e. pointwise convergence and weak-type estimates
for the associated maximal operators, i.e., Stein’s theorem on the limit of sequences of
operators (Theorem 5.7); The tent condition (7.13); The quasi-dyadic decomposition
of a space of homogeneous type (a result due to M. Christ, of which Theorem 5.15 is
a consequence).
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Theorem 8.17 ([189]) If τ is a family of approach regionswhich satisfies the hypothesis
of Theorem 6.16, then there is a function f ∈ L∞(∂D) such that for a.e. q ∈ ∂D,
lim[τ(q)] Pf does not not exist.

This result has been improved by Hiroaki Aikawa in 1990.

Theorem 8.18 ([2]) If C is a tangential curve in D which ends at 1 and Cq
def= qC is

its rotated copy, then there exists u ∈ h∞(D) such that, for each q ∈ ∂D, lim[Cq ] u
does not exist.

8.2.2 The Nagel–Stein Theorem for Harmonic Functions

The results of Nagel and Stein are valid for harmonic functions as well.

Theorem 8.19 ([127]) There exists a family τ of approach regions in D with the fol-
lowing properties:

(eventually disjoint) For each q ∈ ∂D, τ(q) is eventually disjoint from the
angular filter at q.

(Fatou) If p > 1, each u ∈ h p(D) converges through τ a.e. to
its angular boundary values u�.

(rotational invariance) If z ∈ τ(q) then eiθ z ∈ τ(eiθq) for each eiθ ∈ ∂D

The approach regions τ(q) in Theorem 8.19 are sequential, but more can be done.

Theorem 8.20 ([127]) There exists a family τ of approach regions in D with the fol-
lowing properties:

(asymptotic) τ(q) is (the image of) of a half-open Jordan arc in D ending
at q for each q ∈ ∂D.

(frequently outside) For each q ∈ ∂D, τ(q) lies frequently outside of the angular
filter ending at q.

(Fatou) Each u ∈ h p(D), p > 1, converges through τ a.e. to its
angular boundary values u�.

(rotational invariance) If z ∈ τ(q) then eiθ z ∈ τ(eiθq) for each eiθ ∈ ∂D.

8.2.3 Characterization of Poisson Integrals

There is a nonvanishing function u ∈ h(D) such that its unrestricted boundary values

are equal to 0 at all points except one. For example: 1−|z|2
|1−z|2 . It is thus impossible, in

general, to reconstruct a harmonic function from its a.e. boundary values, and we say
that a function u ∈ h(D) is representable by its Poisson integral if

(1) The radial limit uρ(q) exists for a.e. q ∈ ∂D and belongs to L1(∂D).
(2) u = P(uρ).

Theorem 8.21 ([56–58]) If u ∈ h(D) then the following conditions are equivalent:

(1) u is representable by its Poisson integral.
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(2) There is a function f ∈ L1(∂D) such that u = P[ f ].
(3) For each ε > 0, there is j > 0 such that Q ⊂ ∂D and |Q| < 1

j imply
∫
Q |u(rq)|d ω(q) < ε for all r ∈ (0, 1).

Theorem 8.22 If 1 < p ≤ +∞ and u ∈ h(D), then the following conditions are
equivalent:

(1) There is an f ∈ Lp(∂D) such that u = P f .
(2) u ∈ h p(D).

If u ∈ h(D) is real valued, then the following conditions are equivalent:

(1) u ∈ h1(D)

(2) u is the difference of two positive harmonic functions.
(3) u is the Poisson integral of a finite signed Borel measure.

8.2.4 The Hardy–Littlewood L p Inequality for Harmonic Functions

The following result follows from (7.2).

Theorem 8.23 ([73,115]) If p > 1 and j ≥ 0, then there exists c = cp, j such that, for
all f ∈ Lp(∂D),

∫

∂D

(sup� j
|P f |)pd ω(q) ≤ c

∫

∂D

| f |pd ω.

8.2.5 The Local Fatou Theorem for Harmonic Functions

In 1950, Alberto Pedro Calderón extended to harmonic functions in D the local Fatou
theorem of Privalov.

Theorem 8.24 ([24]) If Q ∈ A(∂D) and u ∈ h(D), then the following are equivalent:

• for a.e. q ∈ Q, the angular boundary value u�(q) exists and is finite;
• for a.e. q ∈ Q, there exists t ∈ Stolzq such that u is bounded in t.

The result is false if we merely ask for radial boundedness. Observe the lack of
uniformity with respect to q in the hypothesis of this theorem. We will return to this
result momentarily.

8.2.6 A Zero-One Law for Harmonic Functions

The following result follows from Calderón’s local Fatou theorem, paying some atten-
tion to certain measurability issues. It plays the role of a Plessner-type theorem for
real-valued harmonic functions.

Theorem 8.25 If u ∈ h(D) is real valued, then Fatou(u) ∪ realPlessner[u] has full
measure in D.
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8.3 Harmonic Functions in Upper Half-Spaces

Theorem 8.24 was part of Calderón’s dissertation, written under Zygmund’s direction.
It was a breakthrough in the project of developing new “real-variable” methods aimed
at understanding the higher-dimensional case, where complex analysis plays no role.
Indeed,Calderón’s proof is“independent of conformalmappings and can be applied to
more general situations when conformal mapping is not available,” as Zygmund, with
his usual bit of understatement, put it. The “more general situation,” where Calderón
proved his result, is the (n + 1)-dimensional upper half-space E, defined as R

n ×
(0,+∞). Observe that E is an open subset of R

n+1 and that R
n can be imbedded in

R
n+1 as follows:

ı : Rn → R
n+1 : q �→ (q, 0). (8.9)

R
n is a space of homogeneous type with respect to Lebesgue measure, denoted by ω,

and the Euclidean metric, denoted by δ. We denote by d the Euclidean metric inR
n+1.

HenceR
n is admissibly imbedded in the boundary ofE inR

n+1 by (8.9). The family of

approach regions inEbased onR
n defined by�1(q)

def= {z ∈ E : 2d(z, ∂E) > d(z, q)}
is adapted to the admissible imbedding (8.9). If j > 0 is an integer, we similarly define

� j (q)
def= {z ∈ E : d(z, ∂E)

d(z, q)
>

1

1+ j
} (8.10)

and define �0(q)
def= {z ∈ E : d(z, ∂E) = d(z, q)} as the “radius” ending at q. The

one-parameter family of approach regions {� j } j≥1 defined in (8.10) is adapted to
the admissible imbedding (8.9). The approach regions in (8.10) are called cones,
or nontangential approach regions. At each point q ∈ R

n , the collection {� j (q)} j
determines the nontangential filter on E at q. The boundary value of u ∈ C

E along
this filter is denoted (if it exists) by u�(q). The notions of Fatou point and Fatou set
are accordingly defined.

8.3.1 Qualitative and Quantitative Theorems of Fatou Type

The Poisson integral for the upper half-space P : L p(Rn)→ h(E) defined by

Pf(z)
def=

∫

Rn
f(q)P(z, q)dq (8.11)

where P : E× R
n → (0,+∞), defined by

P(z, q)
def= cn

d(z, ∂E)

d(z, q)n+1
(8.12)

is the Poisson kernel for the upper half-space E, cn is a normalizing constant, z ∈ E ⊂
R
n+1, and q is also identified with a point of R

n+1 via (8.9). The expression d(z, ∂E)

is defined as inf{d(z, x) : x ∈ ∂E}, as usual. Observe that if z = (q, y), with q ∈ R
n

and y > 0, then d(z, ∂E) = y.
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The Poisson integral in (8.11) is associated to the Dirichlet problem in E. The
inversion problem for the functional representation P : L p(Rn) → h(E) can be
solved by taking a.e. angular boundary values, for 1 ≤ p ≤ ∞. The main tools are the
Hardy–Littlewood maximal function for R

n , defined for f ∈ L p(Rn) and q ∈ R
n by

Mf(q)
def= sup

{
ω

(|f| ��I
) : I ∈ B(Rn), q ∈ I

}

and the pointwise estimate, valid for each q ∈ R
n

sup
� j (q)

|Pf| ≤ c j Mf(q), (8.13)

which follows from three facts.
(1) The integral

∫
Rn P(z, q) dq is constant on E. Indeed, it is constant on �0(w) for

each w ∈ R
n (since, under the dilation q �→ cq, Lebesgue measure in R

n rescales
by cn), and it is invariant under horizontal translations, since P is invariant under
horizontal translation. The normalizing constant in (8.12) is chosen to make it equal
to one.
(2) If p : [0,+∞)→ (0,∞) is continuous, decreasing, and

∫
Rn p(|q|) dq = 1, then

∫
p(|q|) |f(q)| dq ≤ Mf(0) (8.14)

as may be seen with the following “telescoping trick”: Given ε > 0, choose Bk
def=

B(0, rk) ⊂ R
n so that |B1| = ε and |Bk+1 \ Bk | = |B1| for each k ≥ 1. Let B0 = ∅

and define g
def= ∑∞

k=0 p(|kε|)1Bk+1\Bk . Then p ≤ g. Write g = ∑∞
k=1 ik1Bk for

appropriate ik > 0. Then

∞∑

k=1
ik |Bk | =

∫
g(q) dq =

∞∑

k=0
p(kε)|Bk+1\Bk |

= p(0)|B1| +
∞∑

k=0
p((k + 1)ε)|Bk+1 \ Bk | ≤ p(0)|B1| + 1

and

∫
p(|q|)|f(q)|d q ≤

∞∑

k=1
ik

∫

Bk
|f(q)|d q ≤

∞∑

k=1
ik |Bk |Mf(0)

≤ (p(0)|B1| + 1)Mf(0) = (p(0)ε + 1)Mf(0).

Now, if we let ε → 0, (8.14) follows at once.
(3) If z ∈ � j (q), then P(z, q) ≤ c jP(z′, q) for all q ∈ R

n , where z′ ∈ �0(q) and
d(z, ∂E) = d(z′, ∂E). Hence (8.13) implies that the Hardy–Littlewood L p-inequality
holds for p > 1:
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∫

Rn
(sup� j

|Pf|)p dq ≤ cp, j

∫

Rn
|f|pdq (8.15)

Once again, the power of Hardy–Littlewood’s maximal function reveals itself in the
way it opens the path to results in higher dimensions. In particular, the standardmethod,
coupled with (8.13), (8.15), and Theorem 5.6, implies a whole series of qualitative
theorems of Fatou type, similar to those obtained in D [169, Chapter 2]. For example,
if f ∈ Lp(Rn), 1 ≤ p ≤ ∞, then (P f )�(q) = f (q) for a.e. q ∈ R

n .

8.3.2 The Local Fatou-Theorem and a Theorem of Plessner Type

Calderón’s proof of Theorem 8.24 is entirely based on real-variables techniques and
leads, in “the more general situation” of E, to the following result.

Theorem 8.26 ([24]) If Q ∈ A(Rn) and u ∈ h(E), then the following conditions are
equivalent:

• For a.e. q ∈ Q, the angular boundary value u�(q) exists and is finite.
• For a.e. q ∈ Q, there exists j > 1 and there exists a tail of � j (q) on which u is
bounded.

The definition of the Privalov set of u ∈ h(E) undergoes the appropriate modifica-
tion, which is left to the reader. In particular, Theorem 8.26 says that

Privalov(u) ω= Fatou(u)

One of the main points in Calderón’s industrious proof of this theorem, which had
already appeared in Zygmund’s proof of Theorem 8.17, is this: For each j ≥ 1, there
exists c j > 0 such that for each Euclidean ball B ⊂ R

n :

P(1B)(z) ≥ c j for each z ∈ � j B,

where 1B is the indicator function of B, P(1B) : E → (0,∞) is its Poisson integral,
and � j B is the � j tent above B, defined as {z ∈ E : � j (z) ⊂ B}, as in Sect. 7.10.6.
A result that is stronger than Theorem 8.26, along the lines of a local Fatou theorem,
has been obtained by Lennart Axel Edvard Carleson in 1962.

Theorem 8.27 ([26]) If u ∈ h(E) is real valued, then the following conditions are
equivalent:

• For a.e. q ∈ R
n, the angular boundary value u�(q) exists and is finite.

• For a.e. q ∈ R
n, there exists j ≥ 1 and a tail of � j (q) on which u is bounded from

below.

In the upper half-space E, Theorem 8.26 yields the following result, which plays
the role of a Plessner-type theorem for harmonic functions.

Theorem 8.28 If u ∈ h(E) is real valued, then the set Fatou(u) ∪ realPlessner[u] has
full measure.

123



7266 F. Di Biase, S. G. Krantz

8.3.3 The Generalized Area Integral: Qualitative and Quantitative Results

For u ∈ h(E), q ∈ E, h > 0, and j ≥ 1, the generalized area integral is defined as
follows:

S j,hu(q)
def=

(∫

�h
j (q)

|∇u(z)|2 (d(z, ∂E))1−n dz
)1/2

(8.16)

where �h
j (q)

def= {
z ∈ � j (q) : d(z, ∂E) < h

}
is the truncated cone at q with height

h. If n = 1, (8.16) specializes to (6.10). In his constant drive to develop real-analysis
methods, Zygmund was particularly fascinated by the problem of extending to the
upper half-spaces the area theorem (Theorem 6.15), and this task turned out to bemuch
more challenging, because the boundary of the analog of the sawtooth region (6.8) is
more difficult to tackle, and because there is no conformal map in this context.

The first result in this direction is one of the “pioneering results” of Calderón,
obtained in 1950.

Theorem 8.29 ([25]) If u ∈ h(E), Q ∈ A(Rn), and for each q ∈ Q, the function
u is bounded in some truncated cone at q, then, for each j ≥ 1 and each h > 0,
S j,hu(q) <∞ for a.e. q ∈ Q.

It took some time for these results to be completed. Here are Stein’s recollections
of a crucial stage.

I remember quite vividly the excitement surrounding the events at the time of
this work. It wasMarch 1959, and I had returned to the University of Chicago the
fall before. Frequently I met with my friends Guido Weiss and Mary Weiss, and
together we often found ourselves in Zygmund’s office (Eckhart 309, two doors
from mine). With our teacher our conversations ranged over a wide variety of
topics (not all mathematical) and more than once the subject of square functions
arose. When this happened the mood would change, if only slightly, as if in
deference to their special status, and the enigma that surrounded them. I had
an idea which seemed promising. But before we could see where it might lead
came the spring break. Further work would have to be held in abeyance since we
were each going our own ways: Zygmund travelled to Boston to visit Calderón;
Guido and Mary Weiss, having borrowed my Chevrolet, drove to Virginia for a
vacation trip; and I went to New York to be married. [166]

The “idea which seemed promising” worked out very well, and Stein proved the
following results, of a qualitative and quantitative type.

Theorem 8.30 ([158–160]) If 1 < p < ∞, j ≥ 1, f ∈ Lp(Rn), u ∈ h(E), and
Q ∈ A(E), then

(1) There exists a constant cp, j which only depends on p and j such that

∫

Rn
|S j,1(P f )|pd ω ≤ cp, j

∫

Rn
| f |pd ω. (8.17)
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(2) If f ∈ L1(Rn), then

|{S j,1P f > r}| ≤ c j
r

∫

Rn
| f | d ω. (8.18)

(3) If u(q, r) → 0 as r ↑ +∞ uniformly in q ∈ R
n, and S ju ∈ Lp(Rn), then

there exists f ∈ Lp(Rn) such that u = P f and

∫

Rn
| f |p d ω ≤ cp, j

∫

Rn
|S j,1P f |p d ω.

(4) If for each q ∈ Q, there exist j ≥ 1 and h > 0 such that S j,hu(q) <∞, then
Q ⊂ω Fatou(u).

As a corollary, we obtain the Area & Local Fatou Theorem for upper half-spaces.

Theorem 8.31 Let u ∈ h(E) and Q ∈ A(Rn). Then the following three conditions
are equivalent

1. For a.e. q ∈ Q, q ∈ Fatou(u).
2. For a.e. q ∈ Q, there exists j ≥ 1 and h > 0 such that S j,hu(q) <∞.
3. For a.e. q ∈ Q, there exists j ≥ 1 and h > 0 such that sup{|u(z)| : z ∈ �h

j (q)} <

+∞.

The definition of the Lusin set of u ∈ h(E) undergoes the appropriate modification,
which is left to the reader. In particular, Theorem 8.31 implies that

Fatou(u) ω= Privalov(u) ω= Lusin(u). (8.19)

Theorem 8.31 is qualitative, since at any individual point, the three conditions are
independent, except that of course if q is a Fatou point of u, then u is bounded in each
truncated cone at q.

In 1972, Stein surpassed himself and, in collaboration with C. Fefferman, proved
the following result, whose proof is based on a careful analysis of the quantitative
content of the qualitative statements contained in Theorem 8.31.

Theorem 8.32 ([62]) If u ∈ h(E) and 0 < p <∞, then the following conditions are
equivalent:

(1) sup
� j

u ∈ Lp(Rn)

(2) u(q, r)→ 0 as r →+∞ uniformly in q ∈ R
n, and S ju ∈ Lp(Rn).

If any of the conditions stated above holds, then the L p norms of sup
� j

u and S ju are

equivalent.
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8.3.4 Littlewood-Type Theorems

Zygmund’s real-variable proof of Littlewood’s Theorem 6.16 yields Theorem 8.17.
An immediate extension of Zygmund’s technique yields the following result.

Theorem 8.33 If τ : R
n → P•(E) is a translation-invariant family of approach

regions in E based on R
n such that τ(q) is an n-dimensional hypersurface in E which

is eventually disjoint from the nontangential filter at q, then there exists f ∈ L∞R
n

such that for a.e. q ∈ R
n, the boundary value of P f through τ(q) does not exist.

Observe that this result does not exclude the possibility that a translation-invariant
family of approach regions may exist, such that τ(q) is a curve in E tangential to the
boundary at q. This possibly has been excluded by Aikawa.

Theorem 8.34 ([3]) If τ : Rn → P•(E) is a translation-invariant family of approach
regions in E based on R

n such that τ(q) is a curve in E ending at q and eventually
disjoint from nontangential filter at q, then there exists f ∈ L∞(Rn) such that for a.e.
q ∈ R

n, the boundary value of P f through τ(q) does not exist.

Aikawa also proved a result of greater scope, where he allows families of approach
regions that are not invariant under translation but have, in a precise sense, the same
order of tangency to the boundary.

8.3.5 The Nagel–Stein Phenomenon

The Nagel–Stein phenomenon holds in upper half-spaces as well.

Theorem 8.35 ([127]) There exists a sequential, translation-invariant family of
approach regions τ on E based on R

n such that τ(q) is eventually disjoint from the
nontangential filter ending at q, and for each f ∈ Lp(Rn), 1 ≤ p ≤ ∞, Fatou(P f ; τ)

has full measure in R
n and lim[τ(q)] P f = (P f )�(q) almost everywhere.

Theorem 8.36 ([127]) There exists an asymptotic and translation-invariant family of
approach regions τ on E based on R

n such that τ(q) lies frequently outside the
nontangential filter at q, and for each f ∈ Lp(Rn), 1 ≤ p ≤ ∞, Fatou(P f ; τ) has
full measure in R

n and lim[τ(q)] P f = (P f )�(q) almost everywhere.

Recall that τ is asymptotic if τ(q) is the image of a half-open Jordan arc ending at
the point.

8.4 When is Nontangential Behavior Meaningful?

In 1939, Masatsugu Tsuji extended to the unit ball D
def= {x ∈ R

n+1 : ∑n+1
j=1 x j 2 <

1} ⊂ R
n+1 the basic results of qualitative and quantitative type which we have seen

in the unit disc for harmonic functions [176]. The boundary of D is the unit sphere
X = {x ∈ R

n+1 : ∑n+1
j=1 x j 2 = 1}, endowed with harmonic measure ω with pole at

0 (which is the normalized n-dimensional Hausdorff measure). We denote by d the
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Euclidean metric in the ambient space R
n+1 and by δ its restriction to X . If q ∈ X , the

nontangential filter on D ending at q is the one associated to the following approach
regions were j ≥ 1:

� j (q)
def= {z ∈ D : d(z, ∂D)[d(z, q)]−1 > (1+ j)−1}. (8.20)

We define �0(q) as {sq : 0 ≤ s < 1}. The nontangential filter at q ∈ X is also
associated to the collection of open cones of revolution with vertex q, axis of rotation
the inner normal to the boundary of D at q, and half-angle less than π/2. The sequence
of families of approach regions {� j } j≥1 is adapted to these data, in the sense of
Sect. 7.9. The Poisson kernel for the Dirichlet problem on D is given by

P(z, q) = cn
1− |z|2

d(z, q)n+1
, (8.21)

where cn is uniquely determined by the condition that
∫
X P(0, q)dω(q) = 1. If f ∈

L p(X ,) , 1 ≤ p ≤ ∞, its Poisson integral is Pf(z) = ∫
X P(z, q)f(q) d ω(q). If

u ∈ h(D), then u is the Poisson integral of a function in L p(X ,) with 1 < p ≤ ∞
iff sup0<r<1

∫
X |u(rq)|pd ω(q) <∞; u is the Poisson integral of a finite measure on

X iff sup0<r<1

∫
X |u(rq)|d ω(q) <∞; u is the Poisson integral of a finite positive

measure on X iff u > 0.
In 1961, Stein posed the following problem:

Itwould be desirable to extend these results by considering non-tangential behav-
ior for sets lying on more general hyper-surfaces. Presumably this could be done
without too much difficulty if the bounding hyper-surface were smooth enough.
It would be of definite interest, however, to allow the most general bounding
hyper-surface for which non-tangential behavior is meaningful. Hence exten-
sion of these results to the case when the bounding surfaces are, for example,
of class C1 would have genuine merit. Whether this can be done is an open
problem.

At that time, thanks to the work of Privalov and Kouznetzoff in 1939, and Tsuji
in 1944, some preliminary results were already known for Lyapunov domains, of
which “bounding hypersurface,” roughly speaking, has smoothness lying between
C1 and C2. Moreover, in the setting of Lyapunov domains in R

n+1, in 1963, Kjell–
Ove Widman proved some qualitative results on the boundary behavior of harmonic
functions [144,177,185].

The first breakthrough below C1 boundary was achieved in 1968 and 1970 by
Richard Allen Hunt and Richard Lee Wheeden, who obtained results of qualitative
and quantitative type for starlike Lipschitz domains, where the nontangential approach
regions are meaningful, since, in this case, there are indeed cones in the domain ending
at boundary points [78,79]. These results were stated in terms of harmonic measure on
the boundary. In 1977, Björn Dahlberg proved that harmonic measure on the boundary
of a Lipschitz domain in R

n+1, n ≥ 1, is mutually absolutely continuous with respect
to n-dimensional Hausdorff measure [37].
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The class of Lipschitz domains does not contain domains such as the interior of the
von Koch snowflake D since the collection of points in the boundary of D which are
sectorially accessible has harmonic measure zero. Indeed, almost every point q in ∂D,
with respect to harmonic measure, is a twist point, i.e., it has the following property:
If c : [0, 1)→ D is continuous and limr↑1 c(r) = q, then

lim inf
r↑1 arg(c(r)− q) = −∞, lim sup

r↑1
arg(c(r)− q) = +∞, (8.22)

where arg is a continuous determination of the angle.Observe that (8.22) is reminiscent
of a Plessner-type theorem for real-valued harmonic functions [4,46,139,183].

A second breakthrough, which pushed the study below the case where the “bound-
ing hyper-surface” is Lipschitz, was achieved in 1982 by David Jerison and Carlos
Kenig [23,81,83]. They introduced a class of domains inR

n+1, called non-tangentially
accessible domains, or “NTA domains” for short, that is strictly larger than the class of
starlike Lipschitz domain, and indeed large enough to include the vonKoch snowflake.
Indeed, the boundary of an NTA domain may be nonrectifiable and may admit no tan-
gent plane at any point. For an NTA domain D, the nontangential approach regions
are defined as in (8.20), but they could not possibly look like a cone at those boundary
points which are twist points.

The boundary of an NTA domain is a space of homogeneous type with respect
to harmonic measure and the Euclidean metric, and the sequence of families of non-
tangential approach regions defined in (8.20) for an NTA domain is adapted to the
metric and to harmonic measure, in the sense of Sect. 7.13. The area integral for an
NTA domain is defined as in (8.16). Jerison and Kenig proved both qualitative and
quantitative results for harmonic functions in NTA domains, along the lines of those
that we have seen so far, including the local Fatou theorem and the area theorem, in
its local (qualitative) version as well as in its global (quantitative) version.

This brief treament of these developments attest to the long range of Zygmund’s
vision as well as the extraordinary power of Stein’s interpretation of that vision.

9 Holomorphic Functions of Several Variables

Theboundarybehavior of functionsu ∈ O(B),whereB
def= {z ∈ C

n :∑n
j=1 |z j |2 < 1}

is the unit ball in C
n , produced unexpected results. We denote by ω the normalized

surface measure on the boundary ∂B
def= ∂CnB of B in C

n . If 0 < p < ∞, functions
u ∈ O(B) such that

sup
0<r<1

∫

∂B

|u(rq)|p d ω(q)

form the Hardy spaces H p(B) of holomorphic functions, where H∞(B) is the set of
all functions u ∈ O(B) such that sup{|u(z)| : z ∈ B} <∞. The Fatou-type theorems
which are valid for harmonic functions inB (considered as a smoothly bounded domain
of R

2n) are also valid for holomorphic functions in B, since holomorphic functions
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are harmonic. For example, functions in H∞(B) have radial boundary values and
nontangential boundary values ω almost everywhere on ∂B. Alongside the restriction
to ∂B of the standard, isotropic Euclidean metric d in C

n , ∂B is endowed with a
second, anisotropic metric, under which (∂B, ω, δ) is a space of homogeneous type.
The metric δ is called the Hörmander–Korányi–Stein metric, and it is defined as

δ(q, w)
def= √|1− q · w|, where q · w is the standard Hermitian inner product in C

n .
The natural imbedding of ∂B in (Cn, d) is admissible, in the sense of Sect. 7.6. The
Korányi (family of ) approach regions K j (q) : ∂B → P•(B) is the sequence of
families of approach regions in B based on ∂B defined, for q ∈ ∂B and j ≥ 1, as
follows:

K j (q)
def=

{
z ∈ B : d(z, ∂B)

d(z, Tq(∂B))
>

1

j + 1

}
(9.1)

whereTq(∂B) is themaximal complex subspace of the tangent space at ∂B at q (formed
by the so-called complex-tangent vectors). This sequence of families of approach
regions is adapted to the admissible imbedding of (∂B, ω, δ) in (Cn, d), in the sense
of Sect. 7.13.

One way to understand the form of K j (q) is to look at its intersection with real

two-dimensional planes. Observe that the intersection of B with E
def= {xq + y(iq) :

(x, y) ∈ R
2} ⊂ C

n is given by the condition x2 + y2 < 1 (and therefore describes in
a natural way a unit disc inside B) and that if z ∈ B ∩ E , then

d(z, Tq(∂B)) = d(z, q)

(The vector iq is called a complex-normal direction). It follows that K j (q) ∩ E can
be described, in the coordinates (x, y), by the condition (2.7) where z = (x, y) and
q = (1, 0). Hence the filter associated toK j (q) along the plane E is the angular filter.

On the other hand, if we consider a plane E ′ def= {xq + yv : (x, y) ∈ R
2}, where

v ∈ Tq(∂B) has unit length, we see thatK j (q) has the same degree of contact with ∂B

of the line at q along v. In particular, it is tangential to the boundary to quadratic order
in the complex tangential directions. In 1969, Adam Korányi proved the following
result.

Theorem 9.1 If 1 ≤ p ≤ ∞ and u ∈ H p(B), then Fatou(u;K j ) has full measure in
∂B.

Korányi also proved a local Fatou theorem for functions in O(B) with respect to
K j . His result is of historical significance and lasting importance, because it allows for
limiting values along approach regions which have a certain degree of tangency along
the complex-tangent directions. In other words, he showed that the approach regions
in the unit ball are subject to the usual restriction along the complex-normal direction,
but it allows a certain degree of contact in the complex-tangent directions. The original
proof of Theorem 9.1 is based on explicit computations of the Poisson–Szegö kernel
for B.

In his 1972monograph, Stein adapted the definition of theKorányi approach regions
to any smoothly bounded domain inC

n and completed the results obtained byKorányi.
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Indeed, he defined the notion of the Nevanlinna class of holomorphic functions in this
generality and proved a qualitative Fatou-type theorem in this class (thus, including
the case p > 0 in Theorem 9.1). Moreover, he defined the notion of the area function
and proved the local and area theorem with respect to K j . In his proofs, he could not
rely on the explicit expression of reproducing kernels which is available in the unit
ball, and proceeded on purely geometrical grounds, with maximal functions as the
main tool [165]. Stein never ceased to emphasize the deep link that differentiation of
integrals has with Fatou-type theorems, and indeed, this book contains an impressive
array of maximal functions that are witness to this link. In an appendix, we provide a
self-contained proof of a new result which is relevant to the differentiation of integrals.
A few years later, in order to obtain results of quantitative-type, he gave his second
main achievement in the subject. Indeed, he surpassed himself and defined, for a class
of pseudoconvex domains (finite type) which properly includes the class of strictly
pseudoconvex domains, a second sequence of families {A j } j∈N of approach regions
such that

(a′) For each j ∈ N, A j is distributionally broader than K j (this notion is defined
in Sect. 7.12).

(b′) For each u ∈ H p(�), lim[A j (q)] u exists and is equal to lim[K j (q)] u for a.e.
q ∈ ∂�, for each j ∈ N.

(c′) For almost every q ∈ ∂�, the filter on� ending at q associated to the collection
{A j (q)} j∈N is equal to the filter on � ending at q associated to {K j (q)} j∈N

(d′) For each p > 0 and j ∈ N, there is a constant cp, j > 0 such that, for each
u ∈ H p(�),

∫

∂�

(supA j
|u|)p d ω ≤ cp, j

∫

∂�

|uρ |p d ω, (9.2)

where uρ is the radial boundary function.

In view of (c′), Property (b′) follows at once from the qualitative result which holds
for K j . In particular, (b′) is not an improvement with respect to the qualitative result
which is known to hold for K j . The improvement lies in the quantitative result (d′),
which holds even though (a′) holds [128,129]. See [44,97].

10 Final Remarks

Our account of Stein’s contributions to the subject is not complete. We have chosen
to concentrate on certain main ideas that remained dear to his heart, in an attempt to
show the unity and depth of his vision, driven by insatiable, unabated curiosity, and a
constant drive to reach, during several decades of scientific activity, the inner core of
things.

The study of the boundary behavior of harmonic and holomorphic functions has
been a hallowed part of modern analysis for nearly 120 years. Contributors to the
subject area have ranged from P. Fatou to A. P. Calderón to A. Zygmund to L. Lempert
to A. Koranyi to F. Di Biase to S. G. Krantz and especially to E. M. Stein.
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One of the more modern developments that is especially attributable to Stein, is
the major differences between the one variable theory and the several variable theory.
In one complex variable, harmonic functions and holomorphic functions are very
closely related. In several variables, they are not. As a result, real-variable methods
play a major role in the several-variable theory; in the one-variable theory, they do
not. The methods of proof in the two subject areas are completely different, and the
end results even more different.

The study of boundary limits has an impact on complex geometry, differential
equations, harmonic analysis, and many other parts of mathematics. It continues to
develop and to grow. These two authors have benefitted immensely from its study.
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11 Appendix

We were unable to find a self-contained reference where all the results in Sect. 5.4
are stated and proved. In particular, the existence of amenable nets in Theorem 5.25,
proved in Sect. 11.7 and in Sect. 11.8, appears to be new. Hence we offer such a
presentation that differs from the available treatments because the only tools we use are
maximal operators, coupled with the standard method of Sect. 5.2.5, and because the
boundedness of the maximal operator does not depend on delicate covering theorems.
We recall here the statement of Theorem 5.25 that yields a differentiation theorem
which does not rely on covering theorems.
Theorem 5.25 If (X ,S, ω) is a measure space of finite measure and at least one of
the following holds:

(1) The σ -algebra S is countably generated.
(2) L1(X) is separable as a metric space.

Then there exists an amenable net c = {C j } j in X such that for each f ∈ L1(X), the

sequence of conditional expectations {ω
(
f ��C∗j

)
: j ∈ N} converges to f a.e. and in

L1.
We prove that amenable nets exist in great generality. This result yields a differ-

entiation theorem which does not depend on delicate covering theorems and has the
potential of producing new results in applications to the boundary behavior in sev-
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eral complex variables, as well as to that part of probability theory connected with
martingale convergence theorems [21]. We plan to return to these matters in the near
future.

For brevity, we include in this Appendix only those proofs which are not routine.
Full details will appear elsewhere.

The hierarchy {semirings} ⊂ {rings} ⊂ {algebras} ⊂ {σ -algebras}, and its relation
to the notion of partition, provide the basis for a good understanding of these matters.

11.1 Rings, Algebras, �-Algebras, Semirings, Finite Semirings, and Partitions

Let X be a nonempty set. A ring in X is a nonempty collection C ⊂ P(X) with the
following properties:

(R 1) If Q ∈ C and R ∈ C, then Q ∪ R ∈ C [C is closed under finite unions].
(R 2) If Q ∈ C, R ∈ C, and R ⊂ Q, then Q \ R ∈ C [C is closed under proper

differences].

A ring in X necessarily contains the empty set. Every ring is closed under differences,
symmetric differences, and finite intersections, The intersection of a nonempty col-
lection of rings in X is a ring in X . If C ⊂ P(X) is nonempty, the ring generated by
C, denoted by R(C), is the intersection of all rings which contain C. An algebra in X
is a nonempty collection C ⊂ P(X) with the following properties:

(A 1) C is closed under finite unions.
(A 2) If Q ∈ C, then X \ Q ∈ C [C is closed under complementation].

An algebra in X necessarily contains the empty set and X . Every algebra in X is a
ring in X .

Lemma 11.1 If C is a ring in X, then C is an algebra in X if and only if X ∈ C.

If C ⊂ P(X) is nonempty, the algebra generated by C, denoted by A(C), is the
intersection of all ringswhich contain C. Aσ -algebra in X is an algebrawhich is closed
under countable unions. Observe that any finite algebra is a σ -algebra. If C ⊂ P(X)

is nonempty, the σ -algebra generated by C, denoted by σ(C), is the intersection of all
rings which contain C. Hence C ⊂ σ(C) ⊂ P(X) and

C ⊂ R(C) ⊂ A(C) ⊂ σ(C) ⊂ P(X) (11.1)

A σ -algebra S in X is countably generated if S = σ(D) for some countable
D ⊂ P(X), and it is finitely generated if S = σ(D) for some finite collection
D ⊂ P(X). If C ⊂ P(X), define

C� def= {Q ∈ P(X) : Q may be written as union of finitely many disjoint elements of C}

and C∗def={Q ∈ P(X) : Q may be written as union of finitely many elements of C}.
The empty set belongs to both C� and C∗. Observe that C ⊂ C� ⊂ C∗ ⊂ P(X).
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Lemma 11.2 If C ⊂ P(X), then C∗ is closed under finite unions, and (C∗)∗ = C∗. If
C1 ⊂ C2, then C∗1 ⊂ C∗2 . Moreover, σ(C) = σ(C∗).

The length of Q ∈ C� is the smallest integer k such that Q may bewritten as disjoint
union of k sets in C. A similar definition is given for Q ∈ C∗. The empty set has length
equal to zero.

A nonempty collection C ⊂ P(X) is called a semiring if it has the following
properties:

(SR 1) If Q1, Q2 ∈ C, then Q1 ∩ Q2 ∈ C [C is closed under finite intersections].
(SR 2) If Q1, Q2 ∈ C and Q2 ⊂ Q1, then Q1 \ Q2 ∈ C� [we write that C− C ⊂ C�].

A semiring necessarily contains the empty set. The intersection of a collection of
semirings in X is not necessarily a semiring in X . For example, if X = {1, 2, 3},
C1 def= {∅, X , {1}, {2, 3}}, and C2 def= {∅, X , {1}, {2}, {3}}, then C1 ∩ C2 = {∅, X , {1}},
which is not a semiring. This example should be interpreted in terms of the relation
between semirings and partitions,whichwill be now illustrated.Recall that a nonempty
collection C ⊂ P(X) has the inclusion–exclusion property if for any pair of sets in
C, the two sets are either disjoint or one of them is contained in the other. If C has the
inclusion–exclusion property and it contains the empty set, then it satisfies (SR 1).
Every partition of X has the inclusion–exclusion property. All partitions mentioned
in this work are finite, even without further explicit mention. A finite partition of a
nonempty set X is a nonempty and finite collection C ⊂ P•(X) such that each point
q ∈ X belongs to one and only one set in C. The sets in C are called tiles of the partition
C. The tile of C which contains q ∈ X is denoted by C[q]. The collection of all finite
partitions of X is denoted by 
(X). We associate a partition [Q] ∈ �(X) to every
subset Q ⊂ X as follows:

[Q] def=
{
{Q, X \ Q} if Q �= ∅ and Q �= X (this is the binary partition associated to X)

{X} if Q = ∅ or Q = X (this is the trivial partition of X).

(11.2)
The set �(X) is endowed with a partial order (based on reverse inclusion) which
makes it a directed set. The partition C2 is nested in the partition C1 if each tile of C2
is contained in a tile of C1. We then write C1�C2 and say that C2 is finer than C1, and
that C1 is coarser than C2.

Definition 11.3 Given any C1,C2 ∈ �(X), define C1 ∨ C2 ∈ 
(X) as the partition of
which tiles are the nonempty sets of the form Q1 ∩ Q2 where Q j ∈ C j , j = 1, 2.

Observe that

C ∨ [X ] = C for each C ∈ �(X), where [X ] is the trivial partition (11.3)

and
C1�C1 ∨ C2 and C2�C1 ∨ C2 (11.4)

Recall that C1�C2 means that each tile of C2 is contained in a tile of C1.
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Lemma 11.4 The operation (C1,C2) �→ C1∨C2, is associative and commutative, and,
if Q ⊂ �(X) is finite, then

∨
C∈Q C

def= C1 ∨ C2 ∨ . . . ∨ Cn, where {C j }nj=1 is any
ordering of Q, is well defined.

Lemma 11.5 If C is a finite partition of X, then {∅} ∪ C is a semiring, C∗ = C�, C∗ is
a finite algebra, and C∗ = R(C) = A(C) = σ(C).

Lemma 11.5 is a special case of a more general result, given in Theorem 11.13.
Hence if C is a finite partition of X , then we define C∗ as the algebra generated by C,
while {∅} ∪ C is called the semiring associated to C.

Lemma 11.6 If C1,C2 ∈ �(X) and C1�C2, then C∗1⊂C∗2
If D ⊂ P(X) is finite, we define CD ∈ �(X) using Lemma 11.4 as follows:

CD
def= ∨

Q∈D[Q]. Hence, if D = {Q1, Q2, . . . , Qn} is any ordering of D, then
CD = [Q1] ∨ [Q2] ∨ . . . ∨ [Qn] (recall Definition 11.3).

Lemma 11.7 IfD ⊂ P(X) is finite, then (CD)∗ = A(D) = σ(D). In particular, σ(D)

is finite.

Theorem 11.8 If X is a nonempty set and S ⊂ X, then the following conditions are
equivalent:

(1) There exists a finite partition C of X such that S = C∗.
(2) There exists a finite set D ⊂ P(X) such that σ(D) = S.
(3) S is a finite σ -algebra.

11.2 Structure Theorem for Finite Semirings and Finite Algebras

Proposition 11.9 If S ⊂ P(X) is a finite semiring, then there is a partition C of X
such that S ⊂ C∗.

The following result is contained in Theorem 11.8. However, it also follows from
Proposition 11.9.

Corollary 11.10 If S ⊂ P(X) is a finite algebra, then there is a partition C of X such
that S = C∗.

11.3 Rings, Algebras Generated by Semirings, Nets, and Countable Semirings

Lemma 11.11 If C is a semiring in X, then if Q ∈ C, R ∈ C�, and R ⊂ Q, then there
exists Z ∈ C� disjoint from R such that Q = R ∪ Z.

We informally express the conclusion of Lemma 11.11 by writing that “C − C� ⊂
C�”.

Proposition 11.12 If C is a semiring in X, then C∗ = C�. Moreover, if Q =⋃k
j=1 Q j

where Q j ∈ C, then there exist disjoint sets R j ∈ C� such that Q = ⋃k
j=1 R j and

R j ⊂ Q j for each j .
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Theorem 11.13 If C ⊂ P(X) is a semiring, then C∗ is a ring, and C∗ = R(C). If C∗
contains X, then C∗ is an algebra and R(C) = A(C) = C∗.

We have seen that finite semirings are associated to finite partitions. We will now
show that countable semirings are associated to nets. A sequence C1,C2, . . . ,Ck, . . .
of partitions of X is called a net in X if the partitions are nested: Ck�Ck+1 for each
k ≥ 1. If c = {C j } j∈N is a net in X , a set which is equal to C j [q], for some j ∈ N and
q ∈ X , is called a tile of the net. The partitions C j are called the partitions of the net

c. The collection of all the tiles of c is denoted by Tc. Hence Tc def= ⋃
j∈N C j .

Theorem 11.14 If c is a net in X, then {∅} ∪ Tc is a countable semiring, T ∗c is a
countable algebra in X, and T ∗c = R(Tc) = A(Tc).

T ∗c is called the algebra generated by the net c. It is a countable algebra. We will
see below that every countable algebra is the algebra generated by a net (Proposi-
tion 11.18).

Observe that σ(T ∗c ) = σ(Tc), by Lemma 11.2, and that σ(Tc) is a countably gen-
erated σ -algebra, called the σ -algebra generated by the net c. We will see below
that every countably generated σ -algebra is the σ -algebra generated by a net (The-
orem 11.19).

Lemma 11.15 If c is a net in X and L ⊂ Tc, then there exists a unique subset Lc ⊂ L
such that

1. the elements of Lc are disjoint;
2.

⋃
Q∈Lc

Q =⋃
Q∈L Q.

11.4 Structure Theorem for Countably Generated�-Algebras

We give a more general version of the results of Sect. 11.2.

Lemma 11.16 If D ⊂ P(X) is countable, then there exists a net c in X such that

D ⊂ Tc∗ and Tc ⊂ A(D). (11.5)

Proof Let D = {Q j : k ∈ N}. Define inductively C1
def= [Q1] and, for j ≥ 2,

C j
def= C j−1 ∨ [Q j ]. We claim that, for each j ≥ 1,

Q j ∈ C∗j . (11.6)

Observe that (11.6) implies (11.5), since C∗j ⊂ Tc∗. We now prove (11.6). The fact
that Q1 ∈ C∗1 follows from the fact that Q ∈ [Q]∗ for each Q ⊂ X . In particular,
Q j ∈ [Q j ]∗ for each j . If j ≥ 2, then (11.4) implies that [Q j ]�C j , and Lemma 11.6
implies that [Q j ]∗⊂C∗j . Hence Q j ∈ [Q j ]∗⊂C∗j . !"
Corollary 11.17 If D ⊂ P(X) is countable, then R(D) and A(D) are countable.
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Proposition 11.18 If Q ⊂ P(X) is a countable algebra in X, then there exists a net
c in X such that Q = T ∗c
Theorem 11.19 If (X ,S) is a measurable space, where S is a σ -algebra of subsets
of the space X, then the following conditions are equivalent:

(1) S is countably generated.
(2) S is the σ -algebra generated by a net, i.e., there exists a net c with Tc ⊂ S

and σ(Tc) = S.

11.5 Density Results

If C ⊂ P(X) is nonempty, then R[C] ⊂ R
X (Q[C] ⊂ R

X ) denotes the collection
of finite linear combinations with real (rational, resp.) coefficients of functions of the
form 1Q , where Q ∈ C. Observe that R[C] and Q[C] are vector spaces.
Proposition 11.20 If C ⊂ P(X) is a semiring, then

1. Each function in R[C] may be written as a finite linear combination of indicator
functions of disjoint elements of C.

2. If f ∈ R[C], then |f| ∈ R[C].
3. R[C] = R[C∗].

If (X ,S, ω) is a probability space, where S is a σ -algebra of subsets of X and ω

is a measure on S, and D ⊂ S, the ω-closure in measure in S of D is the collection:

CLω
S {D}

def= {Q ∈ S : for each ε > 0 there exists a set R ∈ D such that ω(Q�R) < ε}.

Observe that
D ⊂ CLω

S{D} ⊂ S (11.7)

and that

ω(Q�R) =
∫

X
|1Q − 1R | d ω. (11.8)

We say that D is dense in measure in (S, ω) if S = CLω
S{D}. A probability space

(X ,S, ω) is said to be separable in measure if there exists a countable subsetD ⊂ S
which is dense in measure in (S, ω).

The definition of separability given above only applies to measure spaces of finite
measure: A slightly different definition (of which Proposition 11.23 gives a hint) is
required for measure spaces of possibly infinite measure. If (X ,S, ω) is a measure
space, we denote by S ∩ L1 the collection of sets in S which have finite measure.
Hence S ∩ L1 ⊂ S, and R[S ∩ L1] is the collection of finite linear combinations
of functions of the form 1Q , where Q ∈ S has finite measure. If ω(X) < ∞ then
S ∩ L1 = S. Observe that S ∩ L1 is a ring but not an algebra, unless ω(X) <∞. A
measure space (X ,S, ω) is separable in measure if there exists a countable collection
D ⊂ S ∩ L1 such that for each Q ∈ S ∩ L1, inf{ω(Q�R) : R ∈ D} = 0.

Proposition 11.21 If (X ,S, ω) is a measure space, then R[S ∩ L1] is dense in L1.
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Proof [63, p. 176] !"
Corollary 11.22 If (X ,S, ω) is a measure space and (S, ω) is separable in measure,
then L1(X) is separable as a metric space.

Proposition 11.23 If (X ,S, ω) is a measure space and C ⊂ S ∩ L1 is a semiring,
then the following conditions are equivalent:

(1) C∗ is dense inS ∩ L1, i.e., for each Q ∈ S ∩ L1, inf{ω(Q�R) : R ∈ C∗} = 0.
(2) R[C] is dense in L1(X).

Proof If (1) holds, Proposition 11.21 implies that in order to prove that R[C] is dense
in L1(X), it suffices to show that R[S ∩ L1] is contained in the closure of R[C] in the
topology of L1. This fact follows at once from the hypothesis and from (11.8), since
Proposition 11.20 implies that R[C∗] = R[C].

If (2) holds, let Q ∈ S ∩ L1 and ε > 0. Then there exists a sequence of functions
g j ∈ R[C] which converges to 1Q in L1. Each function g j may be written as g j =∑n

j=1 c j1A j , c j ∈ R, A j ∈ C, the sets A j are disjoint. We may assume, without
loss of generality that for each j at least one coefficient c j satisfies the condition
c j ≥ 1

2 , for otherwise, it would impossible for g j to be close to 1Q in the L1 norm.

Hence the set Q j
def= {q ∈ X : g j (q) ≥ 1/2} is nonempty for each j . Observe that

Q j ∈ C∗, (11.9)

since Q j is union of some of the sets A j . Observe that Q�Q j⊂
{|1Q − g j | ≥ 1/2

}
.

Indeed, if q ∈ Q�Q j , then either q ∈ Q \ Q j (and in this case the expression in the
right-hand side is equal to 1− g j (q) ≥ 1/2, since g j (q) < 1/2), or q ∈ Q j \ Q (and
in this case, the expression in the right-hand side is equal to g j (q) ≥ 1/2). It follows
that

ω (Q�Q j ) ≤ ω {|1Q − g j | ≥ 1/2} ≤ 2
∫

X
|1Q − g j | d ω. (11.10)

There exists n such that, if k > n, the right-hand side of (11.10) is smaller than ε.
Now, apply (11.9). !"

If one of the conditions of Proposition 11.23 holds, C is called a determining semir-
ing in (S, ω).

Lemma 11.24 If (X ,S, ω) is a probability space and D ⊂ S is an algebra, then
CLω

S{D} is a σ -algebra.

Proof In order to show thatCLω
S{D} is closed under finite unions and complements, it

suffices to apply the relations Q�R = (X \Q)�(X \R) and (Q1∪Q2)�(R1∪R2) ⊂
(Q1�R1)∪ (Q2�R2), and the hypothesis thatD is an algebra. Assume that, for each

j ∈ N, Qk ∈ CLω
S{D}, and let Q

def= ⋃
j∈N Qk . We may assume, without loss

of generality that the sets Qk are disjoint. Let Q−(n)
def= ⋃n

j=1 Q j and Q+(n)
def=

⋃∞
j=n+1 Q j Hence given ε > 0, there exists n ∈ N such that

∑∞
j=n+1 ω(Q j ) < ε.

Since Q−(n) ∈ CLω
S{D}, there exists R ∈ D such that ω(R�Q−(n)) < ε. Hence

ω(R�Q) < 2ε follows from the fact that R�Q ⊂ (R�Q−(n)) ∪ (Q+(n)). !"
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Theorem 11.25 If C ⊂ P(X), then σ(C)⊂CLω
S{A(C)}.

Corollary 11.26 If (X ,S, ω) is a probability space and c is a net in X, then σ(Tc) ⊂
CLω

S{T ∗c }.
Corollary 11.27 If (X ,S, ω) is a probability space andS is countably generated, then
(S, ω) is separable in measure.

11.6 Amenable Nets, Maximal Operators, andMartingales

If (X ,S, ω) is a probability space, a finite partition of X is called measurable if all
of its tiles are measurable. It is called amenable if all of its tiles are measurable and
have strictly positivemeasure. Ameasurable net (amenable net) in a probability space
(X ,S, ω) is a net c in X such that each partition of c is measurable (amenable, resp.).
If c is a measurable net in (X ,S, ω), then R[Tc] ⊂ L1(X). Theorem 11.14 implies
that {∅}∪Tc is a countable semiring, and T ∗c = A(Tc) is a countable algebra contained
in S. We say that a measurable net c is dense in measure in (S, ω) if T ∗c is dense in
measure in (S, ω).

Proposition 11.28 If (X ,S, ω) is a measure space, and L1(X) is separable, then

(1) (S, ω) is separable in measure.
(2) If ω(X) < ∞, then there exists a measurable net in X which is dense in

measure in (S, ω).

Proof We first prove (1). Let { fk}k be dense in L1(X). Since R[S ∩ L1] is dense
in L1(X), for each j ∈ N, there is a sequence {ϕ(k, j)}k∈N with ϕ(k, j) ∈ R[S ∩ L1]
such that limk→+∞

∫
X | fk − ϕ(k, j)| d ω = 0. Each function ϕ(k, j) may be written as a

finite linear combination of functions of the form 1Q , Q ∈ L( j, k), where L( j, k) ⊂
S ∩ L1 and the set L( j, k) is finite. Let D def= ⋃

j,k L( j, k). Then D is countable

and D ⊂ S ∩ L1. Since S ∩ L1 is a ring, R(D) ⊂ S ∩ L1. Lemma 11.17 implies
that R(D) is countable. Thus, {ϕ(k, j) : j, k ∈ N} ⊂ R[D] ⊂ R[R(D)] ⊂ R[S ∩ L1].
Hence R[R(D)] is dense in L1(X), and Proposition 11.23 (applied to C = R(D))
implies that R(D)∗ = R(D) is dense in measure in (S, ω).

Under the hypothesis of (2), S ∩ L1 = S, and, as in (1), we obtain a count-
able collection D with D ⊂ S and R[D] dense in L1(X). Lemma 11.16 implies
that there exists a net c = {C j } j∈N such that D ⊂ Tc∗ and Tc ⊂ A(D) ⊂ S
(since S is an algebra, because ω(X) < ∞). Hence Tc ⊂ S. It follows that
{ϕ(k, j) : j, k ∈ N} ⊂ R[D] ⊂ R[T ∗c ] = R[Tc]. Hence R[Tc] is dense in L1, and
Proposition 11.23 implies that T ∗c is dense in S. !"
Corollary 11.29 If (X ,S, ω) is a measure space, then L1(X) is separable as a metric
space if and only if (S, ω) is separable in measure.

Consider the following conditions, which a probability space (X ,S, ω) may or
may not satisfy:

(CG.1) S is countably generated.
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(CG.2) There exists a measurable net c in X such that σ(Tc) = S.
(S.1) (S, ω) is separable in measure.
(S.2) There exists an amenable net c in (X ,S)which is dense inmeasure in (S, ω).
(S.3) There exists ameasurable net c in (X ,S)which is dense inmeasure in (S, ω).
(S.4) There exists a measurable net c in (X ,S) such that R[Tc] is dense in L1(X).
(S.5) L1(X) is separable as a metric space.

Theorem 11.30 The conditions described above satisfy the following hierarchy:

(CG.1)⇔ (CG.2)⇒ (S.1)⇔ (S.2)⇔ (S.3)⇔ (S.4)⇔ (S.5).

If c = {C j } j∈N is an amenable net in a probability space (X ,S, ω), then the
maximal operator c∗ associated to c is defined by

c∗ f (q)
def= sup

j
ω

(| f | ��C j [q]
)
, (11.11)

where f ∈ L1 and q ∈ X . Lemma 11.15 implies at once the following result.

Proposition 11.31 If c is an amenable net in a probability space (X ,S, ω), then c∗ is
of weak type (1, 1).

Proposition 11.31 also holds for measurable (not necessarily amenable) nets, by
a slight modification of the definition given in (11.11). We will now dwell on this
issue since we prove that the existence of a dense measurable net is equivalent to the
existence of an amenable net, and that both follow from the hypothesis that (S, ω)

is separable in measure. If c is an amenable net in a probability space (X ,S, ω),
f ∈ L1(X), and q ∈ X , we define, for each j ∈ N

c j f(q)
def= ω

(
f ��C j [q]

)
.

Lemma 11.32 If c is a net in the probability space (X ,S, ω), then for each f ∈ L1(X),
the collection {c jf} j is uniformly integrable.
Theorem 11.33 If (X ,S, ω) is a probability space for which at least one of the fol-
lowing conditions holds:

(CG) (S, ω) is countably generated.
(S) (S, ω) is separable in measure.

and if c is an amenable net which is dense in measure in (S, ω), then for each f ∈
L1(X)

f (q) = lim
j→+∞ c j f (q) for a.e. q ∈ X (11.12)

and
f = lim

j→+∞ c j f in the topology of L1(X). (11.13)
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Proof Observe that Theorem 11.30 says that (CG) implies (S). Hence we assume (S),
which is the weaker hypothesis. If f ∈ R[Tc], then there is j0 such that

c jf = f for each j ≥ j0;

hence
(11.12) holds for each f ∈ R[Tc]. (11.14)

Proposition 11.23 implies that R[Tc] is dense in L1(X). Hence (11.12) follows
from (11.14), coupled with Proposition 11.31, by the standard method. Lemma 11.32
and (11.12) imply (11.13), by Vitali’s theorem [182]. !"

In the following two sections, we show that each of the two hypotheses of The-
orem 11.33 separately implies the existence of an amenable net which is dense in
measure.

11.7 On the Existence of Amenable and Dense Nets (I)

Through this section, (X ,S, ω) denotes a probability space and D ⊂ S denotes
a nonempty collection of measurable sets. We know from Corollary 11.10 that, for
each finite σ -algebra S in X , there exists a finite partition C of X such that S = C∗.
Something more can be said. Recall that the subsets Q, R ∈ S are a.e. equal, if the
quantity

dω(Q, R)
def= ω(Q�R) (11.15)

is equal to 0. We then write Q ω= R.

Lemma 11.34 For each Q1, Q2, Q3 ∈ S

|ω(Q1)− ω(Q2)| ≤ dω(Q1, Q2) (11.16)

and
dω(Q1, Q2) ≤ dω(Q1, Q3)+ dω(Q3, Q2). (11.17)

Lemma 11.35 If Q, R ∈ S and Q ω= R, then ω(Q) = ω(R).

Proof Apply (11.16) and observe that |ω(Q)− ω(R)| ≤ dω(Q, R) = 0 implies that
ω(Q) = ω(R). !"
Proposition 11.36 If (X ,S, ω) is a probability space and D is a finite subset of S
such that σ(D) = S, then

(1) there exists an amenable finite partition C of X whose algebra C∗ is dense in
measure in S.

(2) there exists an amenable net in (X ,S, ω) which is dense in measure in (S, ω).

Proof (2) follows from (1), since the net whose partitions are all equal to the
partition obtained in (1) satisfies (2). In order to prove (1), let C be the parti-
tion obtained in Corollary 11.10. In general, it is neither true that this partition
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is amenable, nor that there is an amenable partition C such that C∗ = S. If C
is amenable, then it satisfies (1), since C∗ is equal to S. If C is not amenable,
assume that C = {Q1, Q2, . . . , Qk, Qk+1, . . . , Qk+n}, where Q1, Q2, . . . , Qk are

the only null sets of C. Define the partition D as D
def= {R1, R2, . . . , Rn} where

R1
def= Q1 ∪ Q2 ∪ . . . ∪ Qk ∪ Qk+1 and R j = Qk+ j for 2 ≤ j ≤ n. Then D is

an amenable partition of X . Observe that D∗ � C∗ = S. We claim that D∗ is dense
in measure in S. Hence D satisfies (1). In order to prove the claim, observe that if
Q ∈ S is a null set, then Q ω= ∅ and ∅ ∈ D∗. Let Q ∈ S and assume that it is not
a null set. Since S = C∗, there exists sets R ∈ {Q1, Q2, . . . , Qk}∗, Z ∈ {Qk+1}∗,
T ∈ {Qk+2, . . . , Qk+n}∗, with Z ∪ T �= ∅, such that Q = R ∪ Z ∪ T . If Z = ∅, then
T ∈ D∗ and Q ω= T . If Z �= ∅ let Q′ def= R1 ∪ T . Then Q′ ∈ D∗ and Q′ ω= Q. !"

Under the hypothesis of Proposition 11.36, it is not necessarily the case that there
exists an amenable partition C such that S = C∗. The conclusion of Proposition 11.36
also holds under a weaker hypothesis.

Theorem 11.37 If (X ,S, ω) is a probability space andD is a finite subset of S which
is dense in measure in (S, ω), then

(1) there exists an amenable finite partition C of X whose algebra C∗ is dense in
measure in S.

(2) there exists an amenable net in (X ,S, ω) which is dense in measure in (S, ω).

Observe that if the hypothesis of Proposition 11.36 is satisfied, then the hypothesis
of Theorem 11.37 is also satisfied. Indeed, if S = σ(D) and D is finite, then S is
finite, and CLω

S{S} = S. In fact, the proof of the former result, based on a stronger
hypothesis, is simpler than the proof of the latter, which we will give in the following
section. Theorem 11.37 is contained in Theorem 11.49 below. We find it useful to
prove it separately, since in so doing, we will introduce results and notions that are
needed in the proof of the more general result, and which have independent interest.
The proof of Theorem 11.49 will be given at the end of this section, after we introduce
some preliminary results and notions which have independent interest. If C ⊂ S, we

define C̃ def= {Q ∈ D : 0 < ω(Q) < 1} and say that (X ,S, ω) is trivial if S̃ = ∅. In
order to prove (1) in Theorem 11.37, we introduce the following notion. An ω atom
of (S, ω) is a set Q ∈ S such that

ω(Q) > 0 andω(R|Q) is either 0 or 1 for each R ∈ S, (11.18)

where ω(R|Q)
def= ω(R∩Q)

ω(Q)
. Observe that Q ∈ S is an ω atom if and only if

ω(Q) > 0 and for each R ∈ S, either Q ∩ R ω= ∅ or Q ⊂ω R. (11.19)

Cf. (4.1). Hence either Q is a.e. disjoint from R (if Q ∩ R ω= ∅), or Q is a.e. contained
in R (if Q ⊂ω R).

We denote by Atomsω the collection of all ω atoms of (X ,S, ω). Observe that

X ∈ Atomsω if and only if (X ,S, ω) is trivial. (11.20)
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Lemma 11.38 If Q1 and Q2 areω atoms, then the following conditions are equivalent:

(1) Q1 and Q2 are not a.e. equal.
(2) Q1 and Q2 are a.e. disjoint.

Lemma 11.39 If D is finite and dense in measure in (S, ω), then for each Q ∈ S,
there exists Q′ ∈ D such that Q′ ω= Q and ω(Q′) = ω(Q).

Lemma 11.40 If Q1
ω= Q2 and R1

ω= R2, where Q1, Q2, R1, R2 belong to S, then

(1) For each R ∈ S, R ∩ Q1
ω= R ∩ Q2.

(2) For each R ∈ S, ω( R|Q1) = ω( R|Q2) provided that ω(Q1) > 0.
(3) For each Q ∈ S, ω( R1|Q) = ω( R2|Q) provided that ω(Q) > 0.
(4) Q1 ∪ R1

ω= Q2 ∪ R2.

Corollary 11.41 (1) If Q1 is an ω atom and Q1
ω= Q2, then Q2 is an ω atom.

(2) If D is finite and dense in measure in (S, ω) and if Atomsω �= ∅ then D ∩
Atomsω �= ∅.

Lemma 11.42 IfD is finite and dense in measure in (S, ω), then, for every set T ∈ S
that is not an ω-atom and which has positive measure,

(1) there exists R ∈ D such that

ω(T |R) = 1 and 0 < ω(R) < ω(T ); (11.21)

(2) there exists R ∈ D such that

ω(T |R) = 1, 0 < ω(R) < ω(T ), and R is an ω atom. (11.22)

Proof Since T is not an ω atom, there exists a set Z ∈ S such that 0 < ω(Z |T ) < 1.
This means that 0 < ω(Z ∩ T ) < ω(T ). Lemma 11.39 implies that there exists
R ∈ D such that R ω= Z ∩ T and ω(R) = ω(Z ∩ T ). Hence 0 < ω(R) < ω(T ).
Lemma (11.40) implies that ω(T |R) = ω(T |Z ∩ T ) = 1.

In order to prove (2), it suffices to apply (1) and observe that, since D is finite,
the selection process in (1) cannot continue indefinitely and when it stops we have
reached an ω atom. !"
Proposition 11.43 If D is finite and dense in measure in (S, ω), then Atomsω �= ∅.

In view of the importance of Proposition 11.43, we give two proofs, one of which
is constructive.

Proof First proof. Apply Lemma 11.42 to X . Then (2) in Lemma 11.42 yields the
result.
Second proof. If (X ,S, ω) is trivial, then X is an ω atom of (X ,S, ω): Cf. (11.20).
If (X ,S, ω) is not trivial, then let Q♦ be an element of D̃ of minimal measure, i.e.,
ω(Q♦) ≤ ω(Q) for each Q ∈ D̃. We claim that Q♦ is an ω-atom. Indeed, if Q♦ were
not an ω-atom, the statement in (1) in Lemma 11.42 would imply the existence of a
set R ∈ D̃, such that 0 < ω(R) < ω(Q♦), which is incompatible with the choice of
Q♦. !"
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If R ⊂ X is measurable, an a.e. partition of R is a finite collection C ⊂ S of sets
that are pairwise a.e. disjoint, and such that the set

⋃
Q∈C Q is a.e. equal to R. An

a.e. partition is called amenable if all its elements have strictly positive measure. It is
called ω-atomic if all its elements are ω-atoms. The rank of an a.e. partition C is the
number of elements of C.

Lemma 11.44 If D is finite and dense in measure in (S, ω), then there exists an a.e.-
partition C of X which is ω atomic, and C ⊂ D ∩ Atomsω.

Proof We partition D ∩ Atomsω into equivalence classes according to the equiva-
lence relation ω= and form C by selecting one element from each equivalence class.
Lemma 11.38 implies that the sets in the collection C obtained in this way are pairwise
a.e. disjoint. Observe that if X is an ω atom, then (X ,S, ω) is trivial andD∩Atomsω
only contains sets of fullmeasure, which are pairwise a.e. equal. In this case, C contains
only one element. If X is not an ω atom, then D contains at least two elements.

Let T be the complement in X of the set
⋃

Q∈C Q. We claim that ω(T ) = 0. In
order to prove the claim, assume that ω(T ) > 0. Then Lemma 11.42 implies the
existence of R ∈ Atomsω such that ω(T |R) = 1. Lemma 11.39 and Corollary 11.41
imply that there exists an ω atom R′ ∈ D ∩ Atomsω such that R′ ω= R. Let R′′ be the
element of C which is a.e. equal to R′. Now, R′′ ⊂ X \ T , R′′ ω= R, and ω(T |R) = 1
lead to a contradiction. Hence the set

⋃
Q∈C Q is a.e. equal to X !".

The relevance of a.e. partitions can be gathered from the following two results.

Lemma 11.45 If C is an amenable a.e.-partition of X then, for every R ∈ S,

ω(R) =
∑

Q∈C
ω(R|Q)ω(Q). (11.23)

Lemma 11.46 If C is an amenable a.e.-partition of X and if R ∈ S has the property
that for every Q ∈ C the value of ω(R|Q) is either 0 or 1, then there exists Q ∈ C∗
such that R ω= Q.

Proof If ω(R|Q) = 0 for each Q ∈ C, then (11.23) implies that ω(R) = 0, i.e.,
R ω= ∅, and the conclusion holds, since ∅ ∈ C∗. If ω(R) > 0, then (11.23) implies that

the set C′ def= {Q : Q ∈ C and ω(R|Q) = 1} is nonempty. Our assumption implies

that ω(R|Q) = 0 for each Q ∈ C \ C′. Let Q′ def= ⋃
Q∈C′ Q. Observe that Q′ ∈ C∗.

We claim that R ω= Q′. Indeed, let C′′ def= C \ C′, apply (1) and (4) in Lemma 11.40,
and observe that ω(R|Q) = 0 implies R ∩ Q ω= ∅ and ω(R|Q) = 1 implies Q ⊂ω R,
i.e., R ∩ Q ω= Q. Hence

R = R ∩ X ω= R ∩⋃
Q∈C Q =⋃

Q∈C R ∩ Q =⋃
Q∈C′′ R ∩ Q ∪⋃

Q∈C′ R ∩ Q
ω=⋃

Q∈C′′ ∅ ∪
⋃

Q∈C′ Q =
⋃

Q∈C′ Q = Q′

!".
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Proposition 11.47 If C is an ω atomic a.e. partition of X then

(1) For every R ∈ S, there exists Q ∈ C∗ such that R ω= Q.
(2) C∗ is dense in (S, ω).

Proposition 11.48 If there exists an amenable a.e. partition C of X, then there exists
an amenable partition C of X of the same rank, such that for each Q ∈ C, there exists
R ∈ C with Q ω= R.

Proof Let C = {Q1, Q2, . . . , Qn}. Define C def= {R1, R2, . . . , Rn} where the tiles Rk

are defined as follows: R1
def= Q1, R2

def= Q2 \ Q1, R3
def= Q3 \ (Q1 ∪ Q2), . . .

Rn−1
def= Qn−1 \ (∪n−2j=1Q j ), and

Rn
def= [Qn \ (∪n−1j=1Q j )] ∪ (X \ ∪nj=1Q j ).

Now, observe that the sets R j are disjoint, and that R j
ω= Q j for each j = 1, 2, . . . , n.

!"
Proof of Theorem 11.37. In Lemma 11.44, we proved the existence of an a.e. partition
C of X which isω atomic. Observe that Proposition 11.47 implies that for every R ∈ S,
there exists Q ∈ C∗ such that R ω= Q. Proposition 11.48 implies the existence of an
amenable partition C of X of the same rank as C such that for each Q ∈ C, there exists
R ∈ C with Q ω= R. Thus, for every R ∈ S, there exists Q ∈ C∗ such that R ω= Q.
Hence (1) in Theorem 11.37 has been proved. Now, (2) follows from (1), since the
net c of which partitions are all equal to the partition C obtained in (1) satisfies the
statement in (2). !"

11.8 On the Existence of Amenable and Dense Nets (II)

Through this section, (X ,S, ω) denotes a probability space and D ⊂ S denotes a
nonempty collection of measurable sets.

The goal of this section is to present a proof of the following result.

Theorem 11.49 If (X ,S, ω) is a probability space and (S, ω) is separable inmeasure,
then there exists an amenable net in (X ,S, ω) which is dense in measure in (S, ω).

Recall from Corollary 11.27 that if S is countably generated, then (S, ω) is sepa-
rable in measure.

In Sect. 11.1, we defined the binary operation (C1,C2) �→ C1∨C2 in the set�(X) of
finite partitions of the set X . Unfortunately, this operation may yield partitions which
are not amenable, even when C1 and C2 are amenable. Indeed, it may happen that the
partition {R∩Q, R \Q} of R is binary but not amenable. Observe that {R∩Q, R \Q}
is a binary and amenable partition of R if and only if 0 < ω(Q|R) < 1. Our variant
of the ∨ operation preserves amenability and is general enough for our goals.

Let �ω(X) be the set of amenable partitions of X . Recall that S̃ def= {Q : Q ∈
S and 0 < ω(Q) < 1}.
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We define an operation S̃ × �ω(X) → �ω(X) denoted by (Q,C) �→ Q ∗ C,
as follows. If Q ∈ S̃ and C ∈ �ω(X), we define C�

Q
def= {R : R ∈ C and ω(Q|R) ∈

(0, 1)} and

C′′Q
def= {R : R ∈ C and ω(Q|R) ∈ {0, 1}}.

Hence C�
Q ⊂ C and C′′Q ⊂ C are disjoint and C = C�

Q ∪ C′′Q . We then define

C′′′Q
def=

⋃

R∈C�
Q

{R ∩ Q, R \ Q} and finally Q ∗ C def= C′′Q ∪ C′′′Q .

Lemma 11.50 If Q ∈ S̃ and C ∈ �ω(X), then

C � Q ∗ C and there exists Z ∈ (Q ∗ C)∗ such that Q ω= Z . (11.24)

Proof The first statement in (11.24) is immediate, since each tile in Q ∗ C is either a
tile of C or is obtained from a tile R of C by the binary partition {R ∩ Q, R \ Q}.

First case. C�
Q = ∅. Then C′′Q = C and Q ∗C = C. The fact that C�

Q = ∅means that
ω(Q|R) is either 0 or 1 for each R ∈ C. Lemma 11.46 implies that there exists Z ∈ C∗
such that Q ω= Z . Since in this case, Q ∗ C = C, the proof of (11.24) is complete.

Second case. C′′Q = ∅. This means that 0 < ω(Q|R) < 1 for each R ∈ C. Hence

Q ∗ C =
⋃

R∈C
{R ∩ Q, R \ Q}.

Hence C � Q ∗ C. Since Q =⋃
R∈C Q ∩ R and the sets R ∩ Q are tiles of Q ∗ C, we

obtain Q ∈ (Q ∗ C)∗.
Third case. C�

Q �= ∅ and C′′Q �= ∅. Consider the sets

C0Q
def= {R ∈ C : ω(Q|R) = 0} and C1Q

def= {R ∈ C : ω(Q|R) = 1}.

Then C′′Q = C0Q ∪ C1Q , and Q =⋃
R∈C�

Q
Q ∩ R ∪⋃

R∈C′′Q Q ∩ R =⋃
R∈C0Q Q ∩ R ∪

⋃
R∈C1Q Q ∩ R ∪⋃

R∈C�
Q
Q ∩ R.

Observe that R ∈ C0Q implies that Q∩ R ω= ∅, and R ∈ C1Q implies that Q∩ R ω= R.
Hence

Q ω=
⋃

R∈C0Q
∅ ∪

⋃

R∈C1Q
R ∪

⋃

R∈C�
Q

Q ∩ R =
⋃

R∈C1Q
R ∪

⋃

R∈C�
Q

Q ∩ R.

Finally, observe that
⋃

R∈C1Q R ∪⋃
R∈C�

Q
Q ∩ R ∈ (Q ∗ C)∗. !"
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Proof of Theorem 11.49. Let D ⊂ S, D countable, and CLω
S{D} = S. We may

assume, without loss of generality that for every pair Q, R of distinct sets in D, Q is
not a.e. equal to R. Indeed, it suffices to partitionD into equivalence classes under the
equivalence relation ω= and then select one element from each equivalence class. Since
X and ∅ belong to the algebra of any net, we also assume that 0 < ω(Q) < 1 for each
Q ∈ D, by simply removing from D the sets Q for which ω(Q) = 0 or ω(Q) = 1,

if any. Let D = {Qk}k∈N, and define C1
def= {Q1, X \ Q1}. Observe that C1 is an

amenable net, since 0 < ω(Q) < 1, and that Q1 ∈ C∗. Then define C2
def= Q2 ∗ C1.

Lemma 11.50 implies that C2 is amenable and that there exists Z2 ∈ C∗2 such that
Q2

ω= Z2, and that C1 � C2. Hence Lemma 11.6 implies that C∗1 ⊂ C∗2, and therefore,
Q1 ∈ C∗2. Repeat the process, and define inductively Ck

def= Qk ∗ Ck−1. Lemma 11.50
implies that, for each k ∈ N, Ck is amenable , and that there exists a set Zk ∈ C∗k such
that Qk

ω= Zk . Since the collection D is dense in measure in (S, ω), it follows that⋃
k∈N C∗k is also dense in measure in (S, ω). Hence {Ck}k∈N is an amenable net which

is dense in (S, ω).

Summary. Stein never ceased to emphasize that differentiation theorems on the
boundary are useful to obtain results on the boundary behavior of functions. A typical
example of this fact, which is a precise instance of Abel’s heuristic principle, can be
found in Theorem 6.2. A more sophisticated version can be found in [165, p. 33]. The
need for differentiation theorems also arises in [32]. Usually, differentiation theorems
are obtained using delicate covering theorems, coupledwith the doubling condition for
the underlying measure. In this appendix, we have proved the differentiation theorems
that were stated in Sect. 5.4 (Theorems 5.25 and 5.26), which do not depend on
those tools, but only on the standard method of Sect. 5.2.5 and on Lemma 5.10. These
differentiation theorems depends on the existence of an amenable net: In this appendix,
we proved that amenable nets exist for a large class of measure spaces, which includes
those which arise as boundaries of bounded domains. Hence these results have the
potential of forming the groundwork for applications to the study of the boundary
behavior of holomorphic functions. !"

12 Miscellaneous Notes

Section 1. An overview of the history of the Romanian school of Potential theory can
be found in [6].
Section 3.3. The quotation fromLeibniz (1713) comes from a public letter that Leibniz
wrote to Christian Wolff, published in Actorum Eruditorum Supplementa, [107,108].
The original Latin is transitu a finito ad infinitum simul fiat transitus a disjunctivo [...]
ad unum [...] positivum, inter disjuntiva medium. “the passage from finite to infinite is
similar to that from an alternative [between two different options] to a definite choice,
which is the average between them.”
Section 2.5.8. Recall that it is possible to reconstruct a topology from the knowledge
of its convergent (topological) nets (not to be confused with the measure-theoretic
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nets defined in Sect. 11.6) [87]. If τ1 and τ2 are topologies on a setY, a more stringent
condition for a net in Y to be convergent in a topology is given by a set-theoretically
larger topology: If τ1 ⊂ τ2, then every τ2-convergent net is also τ1 convergent to the
same limiting value. Hence if we think of a topology as a sieve which lets only con-
vergent nets pass through, then a (set-theoretically) smaller topology yields a coarser
sieve, which lets more nets pass through, and indeed τ1 is called coarser than τ2.

Filters behave contrariwise, since they act on the domain of functions rather than
on the codomain. Thus, if �1,�2 ∈ Filters(Y ), a more stringent condition on a filter
for a function u ∈ C

Y to be convergent along a filter is given by a set-theoretically
smaller filter: If �1 ⊂ �2, then every function u : Y → C for which lim�1 u exists,
the limiting value lim�2 u also exists and is equal to lim�1 u. Hence the situation
is reversed, and a (set theoretically) smaller filter corresponds to a finer sieve (not
to a coarser one). For this reason, keeping in mind that filters associated to broader
approach regions are set theoretically smaller, if �1 ⊂ �2, we call �1 broader than
�2, rather than coarser, since the latter terminology would be confusing.
Section 4.4. Calderón’s real-variable proof of the local Fatou theorem of Privalov,
with its clever use of a point-of-density argument related to the geometric properties
of the sawtooth region (6.8), as well as of its variants, lies at the root of Theorem 4.2
and of its extensions, such as Theorem 7.7. Observe, however, which Calderón’s proof
involves harmonic functions, while Theorems 4.2 and 7.7 are valid for any function.
Cf. [42, Theorem 2.9], [119–122]. See also A generalized Local Fatou Theorem by R.
Wittmann (unpublished).
Section 5.1. In 1935 [110, p. 93], Paul Levy introduced a technical property (that
would now be called a martingale), which he called Condition (C), and that he also
used in 1937 [111, Théorèm 68]. In 1936, Jean André Ville introduced the general
concept, motivated by the lively dispute aboutmathematical foundations of probability
that was ongoing at that time, where the axioms proposed by R. von Mises, and made
more precise byWald, had been sharply criticized by some of the leading probabilists.
Ville had been exposed to Wald’s ideas while participating in Karl Menger’s Vienna
Colloquium in 1935, and in 1936 pointed out a flaw in that approach, first in a short
note [180,181] that received little attention, and later in his thesis [180] published in
1939 that immediately caught the attention of Doob, who wrote an enthusiastic and
prescient review [48]. Ville used the term martingale as a synonym for système de jeu
[gambling strategy], as it had been used in this sense since at least the 18th Century,
when Giacomo Casanova, recounting his gambling adventures, wrote the following
lines:

Je continuais à jouer à la martingale, mais ce fut avec tant de malheur que je ne
tardai pas à me trouver sans un sequin. [I kept playing the martingale but with
such a bad luck that I was soon left penniless.]

Further information can be found in thework of Bienvenue et al. andMazliak [10,125].
Results which are closely related to Theorem 5.26 can be found, in various rendi-

tions, in the work of Levy [110, p. 129], Sparre Andersen and Jessen [154–156], and
Doob [49], [50, Chapter VII]. This is how Sparre–Andersen and Jessen introduce their
result:
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The present paper deals with two limit theorems on integrals on an abstract
set. The first limit theorem is a generalization of the well-known theorem on
differentiation on a net, the net being replaced by an increasing sequence of
σ -fields.

The “well known theorem on differentiation on a net” in the quotation given above
appears to be due to de la Vallée Poussin [39,40].
Section 5.2.6. S. Sawyer and E. M. Nikišin have generalized Theorem 5.7 in various
directions [65,131,153].
Section 6.10. A regularity hypothesis in a theorem is one which is not formally nec-
essary to give meaning to its conclusion. In 1916, William Fogg Osgood had the
following to say about regularity conditions:

It is unsatisfactory, in stating an important theorem, not to know whether a given
hypothesis is needed merely for convenience of proof, or whether the theorem
would be false if it were omitted. The situation is still more annoying when it is
conceivable that the theorem could be proven with about the same ease without
the hypothesis, if one were only able to see more clearly.[134]

Some theorems, originally proved under some regularity condition, also hold without:
In this case, the regularity condition is not essential. A notable example of this kind is
given by the boundedness hypothesis in Osgood’s theorem on the holomorphicity of
separately holomorphic functions [133]. Indeed, Hartogs proved that the conclusion
holds even if this hypothesis is omitted [74]. Among the other examples of this kind,
we mention one due to Stein [163, p. 251], and one due to Saks [151]. Other theorems
do fail if we omit the regularity condition from the hypothesis. An example of this kind
is the countability hypothesis in Egorov’s theorem on pointwise convergence [13, p.
198], [16, Theorem 2, INT IV.64]. There seems to be no general way to understand a
priori whether a given regularity hypothesis is essential or not. Theorem 6.23 shows
that the regularity condition (6.19) in Theorem 6.21 is neither essential nor inessential
[43,53,80,101].
Section 8.1.3. If E ⊂ ∂�, then E ∈ B̂ω if and only if the indicator function 1E is
resolutive, in the sense of classical potential theory [52, Chapter 1.VIII].
Section6.8. Plessner’s theoremhas theflavor of a zero-one law inprobabilistic settings,
where certain “tail”σ -algebras are trivial. For this point of view, see [54] and references
therein.
Section 9. In 1967, Hórmander published a paper (submitted on November 1966)
where a lucid geometric description of the metric δ appears [77]. In July of the same
year, Korányi and Stein gave lectures at the Centro Internazionale Matematico Estivo
Summer School organized byEdoardoVesentini inUrbino (Italy) [179]. In the notes of
those lectures, both authors make a reference to a “joint paper” they had in preparation,
but which apparently never appeared [168, p. 298], [94, p. 171], [92,162].

Deep contributions to the subject have been given by L. Lempert and S. R. Barker
[7,109].
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