
Biostatistics(2010),11, 4, pp.609–630
doi:10.1093/biostatistics/kxq016
Advance Access publication on March 29, 2010

Surface shape analysis with an application to brain
surface asymmetry in schizophrenia

CHRISTOPHER J. BRIGNELL

School of Mathematical Sciences, University of Nottingham, Nottingham, NG7 2RD, UK

IAN L. DRYDEN∗

School of Mathematical Sciences, University of Nottingham, Nottingham, NG7 2RD,
UK and Department of Statistics, University of South Carolina, Columbia, SC 29208, USA

ian.dryden@nottingham.ac.uk

S. ANTONIO GATTONE

Department SEFeMeQ, University of Rome “Tor Vergata”, 00133 Rome, Italy

BERT PARK, STUART LEASK

School of Community Health Sciences, University of Nottingham, Nottingham, NG3 6AA, UK

WILLIAM J. BROWNE

Department of Clinical Veterinary Science, University of Bristol, Bristol, BS40 5DU, UK

SEAN FLYNN

Department of Psychiatry, University of British Columbia, Vancouver, BC V3C 4J2, Canada

SUMMARY

Some methods for the statistical analysis of surface shapes and asymmetry are introduced. We focus on
a case study where magnetic resonance images of the brain are available from groups of 30 schizophre-
nia patients and 38 controls, and we investigate large-scale brain surface shape differences. Key aspects
of shape analysis are to remove nuisance transformations by registration and to identify which parts of
one object correspond with the parts of another object. We introduce maximum likelihood and Bayesian
methods for registering brain images and providing large-scale correspondences of the brain surfaces.
Brain surface size-and-shape analysis is considered using random field theory, and also dimension re-
duction is carried out using principal and independent components analysis. Some small but significant
differences are observed between the the patient and control groups. We then investigate a particular
type of asymmetry called torque. Differences in asymmetry are observed between the control and patient
groups, which add strength to other observations in the literature. Further investigations of the midline
plane location in the 2 groups and the fitting of nonplanar curved midlines are also considered.
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610 C. J. BRIGNELL AND OTHERS

1. INTRODUCTION

Statistical shape analysis has developed rapidly since the pioneering work ofKendall(1984) andBookstein
(1986). The primary focus has been the analysis of landmark data where points of correspondence (land-
marks) are located on each object, and shape analysis of the points is invariant under certain geometrical
transformations of the object. The most commonly considered geometrical invariances are translation,
rotation, and scaling.

There is growing interest in developing methodology for analysis of the shapes of curves, surfaces
and volumes, as well as landmark data. Applications include brain shape in medical image analysis, face
shape, cell shape in biomedical science, molecule shape in bioinformatics, and many other examples
(e.g.Grenander and Miller, 1994; Kent and others, 1994, 2000; Stoyan and Molchanov, 1997; Joshiand
others, 1997; Bookstein, 1997; Van Essenand others, 1998; Morris and others, 1999; Thompsonand
others, 2000; Fischl and others, 2001; Hobolth and others, 2002; Hobolth, 2003; Klassenand others,
2003; Chungand others, 2003; Dryden, 2005; Bock and Bowman, 2006; Qiu and others, 2006; Barry and
Bowman, 2008).

There are several general approaches for carrying out shape analysis of objects. One method is to
register the objects using simple global transformations which are treated as nuisance parameters (such
as translation and rotation), and statistical analysis is then carried out on the “residuals” after matching.
This approach will be our main focus. An alternative is to match the objects closely using sophisticated
high-dimensional nonlinear deformations and then carry out statistical analysis using the deformation
parameters and/or residuals. For this type of approach, we shall also consider nonlinear deformations
with the popular technique of voxel-based morphometry (VBM) (Ashburner and Friston, 2000). Further
techniques include orthogonal basis function modeling and then carrying out statistical analysis on the
fitted parameters.

Our motivating application is the analysis of brain surface shape in neuroscience. The study involves
the investigation of whether there are large-scale shape differences between schizophrenia patients and
controls. The cortical surface of the brain tends to exhibit asymmetry, and in particular the right frontal
region is larger than the left and the left occipital region is larger than the right on average. This particular
asymmetry is often called “brain torque.” We aim to investigate the asymmetry in the brain surfaces from
magnetic resonance (MR) images, as well as other aspects of shape difference between schizophrenia
patients and controls.

Of fundamental importance in shape analysis is the choice of registration used to remove the unwanted
transformations and the labeling used to ensure correspondence of parts between objects. For example,
patients in an MR scanner are not located in exactly the same position or orientation, and so there is a need
to carry out some form of registration to remove these rigid body transformations as part of the analysis.
In our data set, if we were to ignore the registrations, we would end up making meaningless comparisons
of different parts of brains.

The labeling of each brain specifies which parts of one brain correspond to which parts of another.
Correspondence can be either in terms of biological homology or in a geometrical sense. The geometrical
properties of a labeled object that are invariant under a registration group of transformations are called
the “shape” of the object. Specific examples include size and shape where the registration group is the
rigid body transformation group of translation and rotation (as in our application) and similarity shape
where the registration group includes translation, rotation, and scaling (e.g. for object recognition from
photographs at different scales). There are a variety of ways to deal with registration invariance and la-
bel correspondence, including estimating optimal registration and labeling parameters using a statistical
model. In our case study, there are 3 main stages to the analysis:

1. Segmentation of the brain surface from each image.
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Surface shape analysis 611

2. Estimation of the midline (midsagittal cross-section) and internal landmarks so that each brain
image can be translated and rotated into a standardized frame of reference.

3. Inference about the shape and asymmetry of the brain surface.

At the first stage, the brain surface itself is identified in each image, and then the second stage involves
registration of each brain image by translation and rotation. Once registration has been carried out, the
labeling of the surface can be defined, and we take a large number of points located on the surface using
polar coordinates. Finally, the shape and asymmetry analysis of the high-dimensional point sets can be
carried out.

In Section2, we provide more detail about the application that forms the main part of the work. We
describe the data set, the preprocessing used to extract the brain surface boundary, and introduce some
notation and the parameters of interest. In Section3, we describe our mathematical representations of a
continuous surface size and shape. In Section4, we investigate a statistical model for the MR images,
specifying the likelihood in independent regions of the image. We consider maximum likelihood esti-
mation (MLE) for registering the images, and we also consider a Markov chain Monte Carlo (MCMC)
method for simulating from the posterior distribution in a Bayesian approach. In Section5, we investi-
gate different aspects of shape analysis—brain surface shape analysis, asymmetry and torque, and curved
midline analysis. We conclude with a brief discussion.

2. BRAIN SURFACE DATA

2.1 The data

Our main motivation for this work is a study in neuroscience investigating shape and symmetry in the
surface of the brain in schizophrenia patients and controls. The data set consists ofn = 68 3D MR images
of the brain from 29 male healthy controls, 25 male schizophrenia patients, 9 female healthy controls,
and 5 female schizophrenia patients. The mean ages are male controls (36.6), male patients (33.2), female
controls (33.9), and female patients (33.4). The MR images are proton density–weighted images and were
collected by Sean Flynn at the University of British Columbia, Canada. All scans in our case study were
from individuals under 50 and nearly all the subjects were right-handed (writing hand) except 1 male
patient and 1 male control. Each volunteer’s image consists of 256× 256× 256 voxels (3D pixels of size
1mm3).

2.2 Preprocessing: brain surface segmentation

There are many sophisticated image analysis programs available to assist with common tasks in medical
image analysis. We use a medical image analysis tool to extract the brain surface boundary, which is
the boundary between the gray matter and the cerebral spinal fluid (CSF). Since we are interested in
large-scale shape differences, we wish to extract the bounding region of the cortical surface, which is an
envelope over the cortical surface itself. The actual cortical surface is very complicated geometrically,
containing folds, sulci and gyri, and methods using high-dimensional spherical basis functions such as
spherical harmonics or spherical wavelets (Shenand others, 2004; Chungand others, 2007; Yu and others,
2007) aim to model such structure. However, in our case, we are interested in large-scale shape differences
in a bounding region of the cortical surface, and so we use the brain extraction tool (BET) ofSmith(2002)
which is available in the FSL library (Smithand others, 2004). The tool requires a tuning parameter to be
set (between 0 and 1—the default is 0.5) and fits a balloon-like template through an energy minimization
scheme. The preprocessing parameter is chosen manually by comparing the BET image and the magnetic
resonance imaging scan to see if any CSF has been included or if not enough gray matter has been
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612 C. J. BRIGNELL AND OTHERS

included. For our images, it was often necessary to raise the tuning parameter to values in the range
0.5–0.7, as too much of the CSF was being included. We call the output a “BET image,” which is an
image of the same size as the original but with a mask of zero value on voxels placed outside the brain,
with the brain surface at the boundary. Note that any error in estimating the brain surface is considerably
less than the variability between different brains, and so it is a reasonable practical approach to treat the
brain surface boundary as part of the data (i.e. as known).

2.3 Parameterization

Each brain has been approximately oriented in the scanner but there are differences in translation and
rotation that we wish to remove so that we can compare the brain surfaces of different individuals. We
use the following Euclidean coordinate system throughout:x-axis: posterior→ anterior (back to front),
y-axis: inferior→ superior (bottom to top),z-axis: right→ left (n.b. “left” = patient’s left). The sagittal
plane is thex-y plane, the coronal plane is they-z plane, and the axial plane is thex-z plane.

The registration of each brain is obtained by estimating rigid body transformations, with translation
represented byξ = (ξx, ξy, ξz)

T ∈ IR3 and a rotation using 3 Eulerian angles:θp (pitch angle about
x axis),θr (roll angle abouty axis),θy (yaw angle aboutz axis). We writeφ = (ξx, ξy, ξz, θp, θr, θy)

T for
the registration parameters.

We consider registration of each brain into Talairach space (Talairach and Tournoux, 1988) and this
procedure involves locating a midline plane (which is the midsagittal cross-section joining the 2 hemi-
spheres), locating 2 landmarks called the anterior commissure (AC) and posterior commissure (PC) in
this plane, and then finally rotating and translating the brain such that the line joining the commissures
(AC–PC line) in the midline plane is horizontal with the midpoint of the AC–PC line at the origin. The
locations of the AC and PC landmarks in the original image are determined by the registration parameters
φ and an additional parameterξc > 0 specifying the distance between them.

3. SURFACE SIZE AND SHAPE

We can regard a surface in IRd as a function{X(t) ∈ IRd: t ∈ D} on some domainD. For our application
d = 3. In general, the functionX(t) contains the shape and registration information of the surface. We can
derive a shape function by placing the surface in a standardized registration, for example, by matching to a
template, or registering on particular landmarks, or standardizing to a particular plane. In our application,
we will estimate the midline of the brain, the AC and PC, and then translate and rotate the brain into a
standard frame of reference. The registration method is described in detail in Section4.

The labeling of an object is a one-to-one and onto function (i.e. a diffeomorphism)h(u):D → D
which assigns the correspondence between parts of surfaces, so a relabeled surface isX(h(u)). In our
application, we will haveh(u) = u, after registering each brain and identifying a large number of points
on the brain surface.

We focus on the particular case of star-shaped objects in IRd which have a surface represented by a
radial functionR(t) from an internal point, whereR(t) > 0 andt ∈ D ⊆ Sd−1 are suitable spherical
coordinates. HereSd−1 is the unit radius sphere ind-dimensions. Star-shaped objects are very common in
many applications, and the simple univariate polar representation lends itself to convenient mathematical
and statistical analysis. In our application, we consider radial vectors from a central point of the brain to
the surface, after it has been registered to a standardized position using translation and rotation. The radial
functionsR(t) then represent the size and shape of the continuous surface. In order to compare different
star-shaped objects, we will first need to obtain a standardized registration and then compare the radial
functions. Possible models for the size-and-shape functions include Gaussian processes, and an alternative
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Surface shape analysis 613

is to work with logR(t), sinceR(t) > 0. If shape (with scale invariance) is required, we could work with
U (t) = R(t)/S for a suitable size measureS (Dryden, 2005), but in our application, we wish to retain
size.

In practice, a discrete set of points will be available, and we assume that the points are identified on a
surface fork values ofti ∈ D, i = 1, . . . , k (e.g. on regularly spaced rays from the origin). Assuming the
object is in a standardized registration, the collection of radiiR = (R1, . . . , Rk)

T measures the size and
shape of the surface. Suitable models in this case include multivariate normal distributions, either forR or
(log R1, . . . , log Rk)

T . Given the high-dimensional nature of the data, some form of dimension reduction
such as principal components analysis (PCA) or independent components analysis (ICA) may be useful.
We taketi to be regularly spaced in angles on the sphere and the radiiR(ti ) are the distances from the
origin to the brain surface when a ray fired from outside the head at directionti first hits the brain surface
boundary (i = 1, . . . , k). In our case,k = 62 501. Note that theR(ti ) are deterministic functions of the
registration parameters conditional on the brain surface boundary being known (having been estimated by
BET in our case).

4. BRAIN REGISTRATION

4.1 Maximum likelihood registration

In order to carry out statistical inference for the parameters(φ, ξc), we first need to specify the likelihood
function for the voxels in the preprocessed BET images. Consider a single BET imageY, with Yt denoting
the voxel value at locationt = (tx, ty, tz) ⊆ S = {1, . . . , 256}3. The center of the image is denoted
(Ox,Oy,Oz) and in our case this is equal to(128.5, 128.5, 128.5). After preprocessing, the voxels in
the BET image outside the brain surface are identically zero. We construct the likelihood for the nonzero
voxels only. We shall partition the voxel grid into distinct regions which depend on the parameters of
interest and then specify independent distributions for each region.

For our analysis, the brain surface labeling is determined by the registration of the images. We shall
consider registration based on the approximate symmetrical structure in the brain in the close vicinity of
the midline, and so a very important part of the model is the distribution of the voxel values in the midline
region.

We shall divide each BET image into 5 parts:

1. The midline regionM (defined as the nonzero voxels within distanceεM of the midline plane,
whose mirror image about the midline is also nonzero).

2. The AC regionA (defined as the voxels withinεA 6 εM in the x, y, or z direction of the AC
landmark).

3. The PC regionP (defined as the voxels withinεP 6 εM in the x, y, or z direction of the PC
landmark).

4. The remaining nonzero pixelsO of the BET image.
5. The region outside the brain surface containing zero-value pixels (which do not contribute to the

likelihood).

Note thatA ⊆ M andP ⊆ M. In our application, we takeεM = 15, εA = 10 = εP (in millime-
ters/voxels). When registering into Talairach space, the procedure consists of first finding a midline and
then finding the AC and PC landmarks. We shall specify our likelihood in 2 stages as well, first of all
specifying the likelihood for the midline region and then for the AC/PC regions.

The first stage of registration involves a rigid body transformation with rotation byθp, θr and trans-
lation in z to ξz + Oz. Each voxelt is sent to a new locations = s(t, θ) = (sx, sy, sz) (rounded to the
nearest integer). The midline plane is given by the new coordinates(sx, sy, ξz + Oz), and we take the
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614 C. J. BRIGNELL AND OTHERS

midline as lying at a half-integer position forξz + Oz (lying halfway between 2 planes of voxels). Lets
indicate voxels which are left of the midline (sz > ξz+ Oz). For any registration, the new registered image
is defined on the same voxel grid as the old image using a suitable wrap around the edges of the image.

Let s′ be the reflection ofs = (sx, sy, sz) about the midline, that is,s′ = (sx, sy, ξz + Oz − |sz −
ξz − Oz|). We shall regard the voxels at sitess and s′ as paired voxels. The midline region isM =
{s: |sz − ξz − Oz| 6 εM}, where both pairs of voxels are nonzero. Each pair of voxel values(Ys,Ys′) in
M is transformed toUs = (Ys − Ys′)/2,Vs = (Ys + Ys′)/2 (with Jacobian 1/2). We assume that allVs

are independent of allUs, and the likelihood ofVs is assumed constant with respect to(ξz, θp, θr).
For voxels inM, we consider a model where the expected values of the gray levelsYs are symmetrical

about the midline, that is,E[Ys] = μs = E[Ys′ ], and soE[Us] = 0. For simplicity, we assume that theUs

are independent. Note thatVs inM \ {A ∪ P} are not necessarily independent, but below we do require
Vs inA ∪ P are independent. If the dependencies inVi are strong in the regionsA orP then we are using
a pseudo-likelihood approximation in that small part (Besag, 1986).

Note that we are not assuming independence of most of the voxel intensities themselves, but rather
independence of theUs is assumed, which is a much less restrictive assumption. If a model with dependent
Us really was required, then we could still use our method, but it would again be a pseudo-likelihood
approach. We have investigated the autocorrelation ofUi with neighboring values, and it soon decreases
to zero after a very short distance. Thus, uncorrelatedUi seems a reasonable assumption. Independence is
of course stronger, but we think it is not unreasonable.

Exploratory data analysis was carried out by examining the histogram ofUs for a good choice of
midline for some example MR scans. We observed that a Laplace (double exponential) distribution fits
well to the data inM for the images, as seen in the example in the middle plot of Figure1. The Laplace
model seems appropriate in many image problems perhaps due to the presence of occasional large errors
(e.g. segmentation differences at boundaries of structures). Although by far the majority of voxels match
up well for a good choice of midline plane, there will be a few large discrepancies (due to tissue boundaries
or other nonmatching parts). A model that can accommodate some large positive or negative values is more
appropriate here than a short-tailed distribution, such as the Gaussian.

Therefore, a suitable model forUs with s(t, θ) ∈M has density

f (us) =
ψws

2
exp(−ψws|us|),

wherews = ws′ are predetermined weights, that is, a Laplace distribution with scale parameterψws

for s ∈ M. The weight of thesth voxel at a perpendicular distancesz from the midline is taken as
ws = max{(10.5− |sz − ξz − Oz|)/10, 0.5}.

In order to specify a model in the commissure regionsA andP, we use some training data obtained
by manually locating the AC and PC on the midplane ofnt = 7 scans. After translating and rotating the
images into their final registration the data, theVs, in the regionA ∪ P, are standardized for each scan to
a common mean and variance by means of a transformation of the formV∗

s = β j Vs + γ j , j = 1, . . . , nt .
For each voxel,s, in A andP, we can calculate an estimate for the mean and variance ofV∗

s from the
training data. The training data here define 2 templates, which represent typical distributions of voxels in
the AC and PC regions.

To locate the AC for each scan, we use the modelβVs+γ ∼ N(μA
s , (σ

A
s )

2/wA
s ), s ∈ A, independently

and to locate the PC, we modelβVs + γ ∼ N(μP
s, (σ

P
s )

2/wP
s ), s ∈ P, independently, whereβ and

γ specify a linear transformation of the voxel values to match the mean and variance of the templates
in A ∪ P. Note that the mean and variance parameters do depend on voxel locations. ThewA

s and
wP

s are weights based on the distance of voxels from each commissure, and we take the weights as
1/{1 + (cx − sx)

2 + (cy − sy)
2 + (cz − sz)

2}, where(cx, cy, cz) is the location of a commissure. The
additional parametersβ andγ are to be estimated based on the pixel values inA ∪ P at each possible
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Surface shape analysis 615

Fig. 1. Histograms ofus for several choices of midline and fitted Laplace distributions. From left to right, the top row
shows the histogram corresponding toξz equal to−2,−1, 0; the middle row shows histograms corresponding toξz
equal to 1, 2, 3; and the bottom shows the histograms forξz equal to 4, 5, 6. The middle plot withξz = 2 appears to
be the best choice here, which is confirmed by MLE.

registration. Recall that the location of the AC and PC landmarks also requires an additional parameterξc
which is the length between the landmarks. Finally, we simply take the likelihood contribution from the
remaining voxels inO to be constant with respect to the model parameters.

Hence, the log-likelihood for the nonzero voxels in an individual scan is taken to be

log L(U,V |φ,ψ, ξc) =
∑

s∈M

{
log

(
ψws

2

)
− ψws|us|

}

+
∑

s∈A

{
logβ −

wA
s

2(σA
s )

2
(βvs + γ − μA

s )
2
}

+
∑

s∈P

{
logβ −

wP
s

2(σP
s )

2
(βvs + γ − μP

s)
2
}

+ constant.
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616 C. J. BRIGNELL AND OTHERS

Note that the mean parametersμA
s , μ

P
s and variance parameters(σA

s )
2, (σP

s )
2 in the AC and PC templates

are regarded as known (having been estimated from training data).
The profile MLE ofψ−1 given the other parameters is obtained by solving

∂ log L

∂ψ
= 0 =

nM

ψ
−

∑

s∈M:sz>0

ws|us|,⇒ ψ̂−1 =
1

nM

∑

s∈M:sz>0

ws|us|

andnM is the number of voxels in the midline. In order to maximize over the other parameters we consider
4 stages.

MLE Algorithm

1. The midline plane is estimated with a simple grid search at steps of 0.01 radians forθp, θr and unit
steps forξz.

2. Approximate estimates ofξx, ξy, θy, ξc, β andγ are found by maximizing the likelihood of the
regionA ∪ P given the midline plane estimates in step 1.

3. The estimates ofξx andξy are refined by maximizing the likelihood of the regionA.
4. The estimates ofθy, a rotation about the AC obtained in step 3, andξc, the intercommissure distance,

are finalized by maximizing the likelihood of the regionP.

In each case, a simple grid search over the parameters is performed, with angular steps of 0.01 radians
and unit translations. Although we could consider iterating the steps in the algorithm, it made no difference
when we tried it in some example images.

EXAMPLE We evaluate the log-likelihood for an example image using a grid of values with rotations
0.01 radians apart and translations at 1 mm intervals. We find that the approximate maximum likelihood
estimators at step 1 of the algorithm areθ̂p = −0.07,θ̂r = −0.06, and̂ξz = 2.0, withψ̂−1 = 3.3613. In the
upper row of Figure2, we see the image transformed from its original orientation to the MLE registration
of the midline. Note that after the transformation, the crosshairs bisect the brain’s 2 hemispheres. In
Figure1, we see histograms of the voxels inM and the fitted Laplacian density for different choices
of ξz with ξz = 2.0 in the middle plot. Proceeding to register the image on the AC and PC, we find
the approximate discretized maximum likelihood estimates areξ̂x = −4.0, ξ̂y = 41.0, θ̂y = 0.29, and
ξ̂c = 26. In the lower row of Figure2, we see the image translated and rotated from its midline registration
such that the origin coincides with the AC and the AC–PC line is horizontal.

4.2 Bayesian registration

An alternative approach involves Bayesian inference for the registration parameters. The priors for the
parametersφ, ξc, β andγ are taken as independent and uniform as we have no prior knowledge. We also
takeψ ∼ 0(α0, β0) independently and chooseα0 andβ0 to give a fairly vague prior. The log-posterior
density is given by

logπ(φ,ψ, ξc, β, γ |U,V) = log L(U,V |φ,ψ, ξc, β, γ )+ (α0 − 1) logψ − ψβ0 + constant.

One can simulate from the posterior using an MCMC algorithm. In particular, we use Metropolis–Hastings
updates for the registration parameters, and a Gibbs step forψ since

(ψ |φ, ξc, β, γ,U,V) ∼ 0



nM + α0,
∑

s∈M:sz>0

ws|us| + β0



 .
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Surface shape analysis 617

Fig. 2. An image transformed from its original orientation (top left) to the MLE registration of the midline (top right),
using axial views. The image in the coronal view at the midline (bottom left) is then translated and rotated to have the
crosshair on the AC, and the AC–PC line horizontal in the final registration (zoomed in—bottom right).

We took the conditional modes ofβ andγ at each iteration, and our prior hyperparameters wereα0 = 0.1
andβ0 = 1/3, which results in a fairly vague prior.

EXAMPLE We implement the MCMC algorithm for the same image as for the MLE example. Figure3
shows the parameters after 15 000 iterations. The starting value was taken as the approximate maximum
likelihood estimate, as obtained in the previous example. The “maximuma posteriori” (MAP) estimate is
ξ̂x = −3.9, ξ̂y = 40.8, ξ̂z = 2.0, θ̂p = −0.070, θ̂r = −0.057, θ̂y = 0.289, ξ̂c = 25.79 andψ̂−1 = 2.8868.
Over the first 2000 iterations, we use an adapting stage (seeBrowne and Draper, 2000) to choose the
variances for the sampling distributions, and we take the next 2000 iterations as the burn-in period. The
adapting stage involves changes in the proposal variances with the aim of achieving 50% acceptance for
each parameter. The proposal variances are fixed once the acceptance rate remains in the range 40–60%.
Similar results after burn-in were obtained using MCMC simulations with starting values away from the
maximum likelihood estimate.
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618 C. J. BRIGNELL AND OTHERS

Fig. 3. Plots of parameter values and the log-likelihood from the MCMC algorithm over the first 15 000 iterations.
There are 2000 iterations for the adapting stage, 2000 iterations for burn-in, and 11 000 iterations post burn-in.

As expected, the approximate MLE and MCMC-based estimates are similar, and the posterior vari-
ability is small. We observed similar close agreements between the MLE and MCMC-based estimates
in many further images, with small posterior variability. For example, in Table1, we give the MAP and
approximate MLEs for a set of 7 further example images and there is close agreement. Hence, we shall
proceed with shape analysis of the brain surfaces by fixing the registration at the estimated registration
given by the approximate MLE, as the MLE is much faster to compute.

We compared the automatically located AC and PC from the MLE procedure with manually located
landmarks in all the images. The landmarks using both methods were in similar positions (exactly the
same position in 30 scans and very small departures in the rest).

5. SHAPE ANALYSIS

5.1 Labeling

Each brain is registered to Talairach space using the maximum likelihood method given in Section4.1,
and we now consider the labeling of each brain. The actual cortical surface of the brain is complicated
and highly variable between individuals, and so estimating a natural labeling of the actual cortical surface
is difficult. Our approach using correspondence of the BET image surface would not allow detailed shape
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Surface shape analysis 619

Table 1. The MAP estimates from the MCMC algorithm and the approximate MLEs for an example set of
7 brain images. In the ML case, theξ measurements are obtained to the nearest millimeter except forξc

which is to the nearest0.5 mm. There is close agreement between theestimates

Image Method ξx ξy ξz θp θr θy ξc

1 MAP −11.72 34.26 7.58 −0.05 −0.08 0.25 28.82
1 MLE −12 34 8 −0.06 −0.08 0.25 29
2 MAP −15.06 41.38 3.2 −0.01 −0.01 0.30 26.95
2 MLE −15 41 3 −0.01 −0.01 0.32 27
3 MAP −12.07 39.05 −1.97 0.01 0.01 0.23 27.59
3 MLE −12 39 −2 0.01 0.02 0.24 27.5
4 MAP −12.42 35.4 −4.26 0.02 −0.07 0.26 25.1
4 MLE −12 35 −4 0.02 −0.07 0.25 24.5
5 MAP −13.75 34.95 −0.68 0.01 0.01 0.16 27
5 MLE −14 35 −1 0.02 0.00 0.16 27
6 MAP −7.78 30.15 3.74 −0.07 0.00 0.07 25.51
6 MLE −7 29 4 −0.07 0.00 0.11 25
7 MAP −11.72 40.77 2.28 −0.03 −0.03 0.22 27.69
7 MLE −12 41 2 −0.03 −0.03 0.23 28.5

analysis of small regions of the surface (since corresponding parts would not match precisely) but it does
allow the comparison of global large-scale shapes.

We have locatedk radii lengths in a group ofn people, where the lengths are denoted byRi j , j =
1, . . . , n, for person j at equally spaced anglesti , i = 1, . . . , k, emanating from a central point (AC–
PC midpoint). We decided to restrict our analysis to the part of the brain surface lying above the axial
plane in which the AC–PC lies, as the labeling in this part of the surface gives a reasonable meaningful
correspondence between parts of the brain surface. The domainD in our application is therefore the upper
hemisphereS2

+. The number of radii taken on the upper hemisphere isk = 62 501. Note that this labeling
gives a sensible approximate correspondence.

Alternatively more complicated transformations could be used to match up parts of a surface if desired,
for example,Fischland others(2001) consider an ontogenetically informed deformation method involving
matching homologous structures on a flattened gray–white matter interface. For the broad large-scale
shape analysis that we consider our approach seems reasonable.

5.2 Brain surface analysis

SinceRi j are positive lengths, it makes sense to consider the geometric mean of the quantities, calculated
by averaging the logarithms of the radii and then taking the exponential. Hence, we carry out statistical
analysis on the log-radiixi j = log Ri j , wherei = 1, . . . , k, j = 1, . . . , n which are radii observed at
fixed directions on the unit upper hemisphere in 3 dimensionsti ∈ S2

+, i = 1, . . . , k. An estimate of the
mean form is the geometric mean of each of the radii

{exp(x̄i )ti : i = 1, . . . , k},

where x̄i = 1
n

∑n
j =1 log Ri j . We could alternatively have used the actual radii rather than taking loga-

rithms (and in fact it makes little practical difference in this particular application as the mean is large
relative to the standard deviation). Both the radii and the logarithms look reasonably normal at each point.

To investigate group differences first of all we provide an explanatory plot in Figure4(a) of the mean
control brain and highlight the few areas where the mean patient brain radii are more than 2.5% larger
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620 C. J. BRIGNELL AND OTHERS

Fig. 4. The mean brain surface for the control group (a) (left) and patient group (b) (right) are shown in light gray. In
(a) we indicate in dark gray which radii on the surface are at least 2.5% larger for the mean patient and in (b) we show
in gray which radii are at least 2.5% larger for the mean control brain surfaces. The dark gray radii havet-statistic at
least 3, and this area is significantly smaller in the patient group.

than the mean control. These areas are primarily on the top of the brain around the midline. We also
provide a plot in Figure4(b) of the patient mean brain surface and plot the areas where the control mean
is more than 2.5% larger than the mean patient. These areas are on the right temporal lobes. We now wish
to examine whether these features are statistically significant.

We carry out an analysis of covariance for each log-radius, with 2 factors (patient/control and sex)
and 1 covariate (age). For each log-radius, we fit a linear model with 4 parameters, and we are primarily
interested in the patient/control effect. Under the null hypothesis (H0) that there is no difference in mean
between the patients and controls, we consider the usualt-test on the patient/control parameter after fitting
the linear model for each log-radius. A positivet-statistic is obtained when the mean control is larger at a
location. We havenp = 30 andnc = 38 for the schizophrenia and control sample sizes.

Since we have a very large number of tests (k = 62 501), we have to take into account the multiple
testing problem. UnderH0, we assume that we have a smooth stationary, isotropic Student’st distributed
random field on a hemisphere, and so we can use the results ofWorsley (1994) in order to provide a
correctedp-value for the test. There arenp + nc − 4 = 64 degrees of freedom. We need to estimate
the roughnessλ, which is the variance of the derivative of the random field in any direction. We fit a
local polynomial spline (Wand and Jones, 1995) to great circles of neighboringt-statistics around the
hemisphere at a particular distance apart dφ. By choosing the bandwidth parameter by visual inspection,
we then compute the sample variance of the estimated first derivatives obtained from the KernSmooth
library in R (Wand and Ripley, 2009; R Development Core Team, 2008). We arrive at a final estimate
λ̂ ≈ 3 using local polynomials of degree 1 and bandwidth 10 dφ.

We consider thep-value based on the maximumTmax of the random field and a thresholdz. The
correctedp-value for a hemisphere is given by

P(Tmax> z) ≈ ρ0(z)+ πρ1(z)+ 2πρ2(z),

where

ρ0(z) = P(tν > z), (1)
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(seeCao and Worsley, 2001). For a threshold ofz = 3, we have a correctedp-value of 0.065 for a one-
sided test withλ = 3. The most extremet-statistic in the data is 3.28 and there is a cluster oft-statistics
more than 3 in the right temporal lobe (in the dark gray cluster in Figure4(b)), where the schizophrenia
patients’ brains are smaller. It is rather difficult to estimate the roughness parameter, and so ifλ was larger
the evidence would be weaker (although the opposite is true ifλ is smaller). In conclusion, we may have
some weak evidence for a mean reduction in the right temporal lobe for the schizophrenia group.

5.3 Dimension reduction

Due to the very high-dimensional nature of the data, it is also worthwhile considering dimension reduc-
tion techniques. We consider PCA in order to examine important lower-dimensional projections of the
data. The procedure involves obtaining the eigenvalues and eigenvectors of the sample covariance ma-
trix of the xi j ’s. Let γ̂1, . . . , γ̂M be the eigenvectors corresponding to eigenvaluesλ̂1, . . . , λ̂M , where
M = min(k, n − 1) and write γ̂i l for the i th element ofγ̂l , l = 1, . . . ,M . If n << k these high-
dimensional eigenvectors can be computed inO(n3) steps (see e.g.Dryden, 2005).

The effect of the thel th principal component (PCl ) can be examined by viewing

{exp(x̄i ± cλ̂1/2
l γ̂i l )ti : i = 1, . . . , k}

for various values ofc. Here PCA has been carried out on the log-radiixi j and then the exponential
function is used to bring the vector back to the scale of the original surface. From now on we use the
abbreviation PC to mean ‘principal component’.

Investigating the variability in size and shape, we see that PC1 is highly significantly different between
the sexes, and given that this measures overall size this is expected (see Figure5). PC2 is also displayed in
Figure5, and we see that it shows the effect of larger frontal and temporal lobes versus smaller rear brain
surface. PC1 and PC2 account for 53.6% and 10.1% of the variability in size and shape in the data.

The first 20 PCs account for 88.8% of the size-and-shape variability, and we investigate group dif-
ferences in this linear subspace. We carry out a two samplet-test on each of the first 20 PC scores, and
then address the fact that we have multiple tests using the false discovery rate (FDR) ofBenjamini and
Hochberg(1995). The smallestp-values are 0.015 for PC11 and PC19 but these are not significant at FDR
= 0.1. We also carry out symmetrical PC analysis, where each residual vector from the overall mean has its
reflection also included in an augmented data set (seeTheobaldand others, 2004). This procedure forces
the PCs to either be symmetrical or asymmetrical. The first 20 PCs explain 85.9% of the size-and-shape
variability, and again we restrict our analysis to this linear subspace. We see that PC10 is highly signif-
icantly different between patients and controls, withp-value 0.001, which is also significant at FDR =
0.03, taking account the multiple tests. This PC is a symmetrical PC that picks up the size of the temporal
lobes as well as other effects including the height of the brain surface. The effect of this PC is shown
in Figure5. PCs 1–9 and 11–20 do not show significant differences in the groups, taking into account
multiple comparisons (with smallest unadjustedp-value 0.046 for PC11).

Independent components analysis (ICA) (Hyvärinenand others, 2001) is an alternative dimension re-
duction technique that can sometimes reveal differences between groups by projecting data into directions
of maximum non-Gaussianity. We also carry out ICA of the surfaces after first reducing to 10 PCs, using
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622 C. J. BRIGNELL AND OTHERS

Fig. 5. The effects of the PCs. We display the overall mean brain surface in light gray, and in dark gray we display

exp(x̄ + 6λ̂1/2
j γ̂ j ) for all values with radius greater than the mean. The choice of 6 is made to exaggerate the effect of

each component. The plots are (top left) PC1, (top right) PC2, (bottom left) symmetrical PC10, (bottom right) an IC.

symmetrical PCA again. We use the fast ICA implementation in the package R (Marchini and others,
2003; R Development Core Team, 2008). We find that one of the independent component (IC) scores is
significantly different in the 2 groups. The effect of this IC is shown in Figure5 and it includes asymme-
try in the temporal lobe, as well as other effects such as the height of the brain surface. In particular, the
schizophrenia patients have slightly higher brain surfaces around the midline on average.

A major disadvantage of the PC and ICA is that each PC contains a number of effects, and so it
is difficult to disentangle which effects are significant and which effects are noise. Given the small dif-
ferences, one most be cautious about the practical importance of the differences despite the statistical
significance. There is considerable overlap between the schizophrenia and control distributions, so these
measures alone would be poor discriminators but may be helpful as part of a classification method using
data from different modalities.

5.4 Asymmetry and torque

The final part of the investigation into shape is a study of asymmetry in the brain surface. In each registered
scannS = 100 equally spaced axial slices are taken, and we estimate the volumes contained within brain
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Surface shape analysis 623

surface boundaries in each slice and above the horizontal plane containing the commissures for the the left-
hand side (VL

r j ) and right-hand side (VR
r j ), r = 1, . . . , nS of the j th scan (j = 1, . . . , n). The asymmetry

function has components
ηr j = (VR

r j − VL
r j )/Vj , r = 1, . . . , nS,

whereVj is the maximum slice volume in thej th scan,−1 < ηr j < 1. Write η j =
(
η1 j , . . . , ηnS j

)T

for the asymmetry function for thej th person. We perform a small amount of smoothing with a Loess
smoother (with fractionf = 0.05). Smoothing is commonly carried out at a preliminary stage in func-
tional data analysis (seeRamsay and Silverman, 2005). Note that similar measures of asymmetry were
described in outline byChanceand others(1999) and in more detail byBarrick and others(2005) based
on the difference in volume in the 2 hemispheres in a series of slices but without normalizing by the
maximum slice volume in thej th scan.

In Figure6, we see a plot of the mean smoothed asymmetry function and the loadings of the first 3
PCs from the pooled sample ofn = 68 smoothed asymmetry functions. It is clear in the mean asymmetry
function that there is rightward asymmetry toward the frontal region of the brain. From the plots of the PC
loadings, it seems clear from PC1 that the main source in variability is in the occipital region. PC2 shows
a gradual increase in variability nearer the front. PC3, however, highlights a more general twisting in the
brain and will best detect regions where the control group is more asymmetric. We shall focus further on
this PC below.

In Figure7, we see the results of conducting at-test ofH0:μc − μp = 0 at each slice, whereμc and
μp are the means of the control and patient group. Taking into account multiple comparisons, these results
are not statistically significant, but it is worth noting that the controls have greater rightward asymmetry
between slices 83 and 87 in the sample.

We consider fitting a linear regression model with response PC score 3. We see that there are statis-
tically significant differences in PC score 3 between patients and controls (p-value= 0.049) but there is
no significant association with age or sex. The result provides some weak evidence that controls are more
likely to display torque, with greater rightward asymmetry than patients in the frontal lobe. This effect
reverses in the rear half of the brain. The number of females in this study is particularly small, so partic-
ular care should be taken with interpreting that twisting is not associated with sex. We also consider ICA
of the asymmetry functions, after first reducing to 10 PCs. None of these ICs was significantly different
between the 2 groups.

5.5 Midline plane and curve analysis

In all our analysis so far we have used a flat midline plane to register the brain images and to calculate the
symmetry functions. However, it is somewhat of a simplification to assume that the join of the left and
right brain hemispheres is the flat planeξz = 0. In reality, inspection of the scans shows a tendency for the
midline to curve, especially at anterior and posterior extremities and, to a lesser extent, in superior regions.
We therefore also wish to investigate what difference a curved midline would make to our interpretations
about asymmetry. In particular, we estimate a curved midline plane separating to the 2 hemispheres and
adjust the left and right slice volumes for this correction in the midline location.

To estimate the location of the curved midline, we first of all register each brain with a flat midline
using MLE, as in Section4.1. We fix all parameters at the MLE exceptξz which is allowed to vary
throughout the the midline regionM. We consider localized regions inM and estimate a possible dif-
ferentξz in each region. The size of the localized region,L, was chosen large enough to avoid detecting
local symmetries not centered on the join and reflect general movement in the join, and we fixεM = 15
mm. EachL was centered on locations at 5 mm intervals in thex-y plane and̂ξz recorded, after a discrete
grid search in unit steps, as the displacement fromξz = 0 at that location.
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624 C. J. BRIGNELL AND OTHERS

Fig. 6. The mean (top left) and loadings for PCs 1–3 for the smoothed asymmetry functions. A low index (left end
of each picture) corresponds to slices in the occipital region of the brain and a high index (right end of each picture)
corresponds to the frontal region of the brain.

The maximum likelihood estimates ofξz at each location were analyzed usingt-tests ofH0:μc−μp=0,
whereμc andμp are the mean leftward displacements of the control and patient groups, respectively. In the
region between 25 and 50 mm posterior of the AC and extending up to 60 mm above the axis containing
the commissures the midline is further to the right in the patient group, as seen in Figure8. Note that the
patient curved midline is more to the right in the patients compared to the controls, between the temporal
lobes. This feature might explain the reduced rightward asymmetry seen in controls, compared to patients,
seen between slices 34 to 37 (approximately) in Figure7. A further difference between the 2 groups is
observed in the occipital region.

To incorporate a curved midline in the symmetry analysis, a curved midplane is fitted to the midplane
coordinates by means of a thin-plate smoothing spline for each scan (seeDryden and Mardia, 1998,
Chapter 10). The thin-plate smoothing spline is fitted to the estimated midline pointsξz in each of the
local regions. The fitted thin-plate spline for one of the scans is shown in Figure9. It clearly demonstrates
that a curved midline fits the interhemispherical join better than a straight midline.
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Surface shape analysis 625

Fig. 7. Thet-statistics fromt-tests between control and patient groups at each slice. Hight-values indicates greater
rightward asymmetry in the control group.

Repeating the symmetry analysis with a curved midline showed no significant differences between the
4 subgroups (male/female and control/patient combinations). This suggests that there is possibly another
explanation for differences between the control and patients. Either the differences in asymmetry are due
to a difference about a flat midline (as found in Section5.4) or the differences could be due to differences
in the curvature of the midline plane. As is always the case in shape analysis, the interpretation of a
difference depends on the choice of registration, and this is demonstrated well in this example. We can
choose a simple registration method and more variability is retained in the shapes or we can choose a more
sophisticated registration method which reduced the variability in the shapes. The choice to be made is
very much up to the user.

The simpler planar midline registration is the more conventional method and with its use we have
conferred with findings in the literature. The curved midline does provide a more highly parameterized
and unusual method of registration, and it is worth further exploration in future studies.

6. DISCUSSION

We have explored a number of aspects of the shape analysis of brain surfaces. Our main findings have
been that there is weak evidence for a reduction in size in the right temporal lobe on average in the pa-
tients. A reduction in the temporal lobes has been noted in the literature previously (see e.g.Lawrie and
others, 2002), and so our study provides further evidence for this effect. Dimension reduction analysis
did produce some significant differences including a slightly higher brain surface in the patient group.
However, it is rather difficult to disentangle multiple effects in the components, and so we are cau-
tious about interpreting this difference. This difference was not deemed significant in the random field
method.
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626 C. J. BRIGNELL AND OTHERS

Fig. 8. Top row: The mean of the interhemispherical join’s displacement from the planeξz = 0 at 5 mm intervals in
the x–y plane for the control group (left) and the patient group (right), with darker areas indicating a displacement to
the “right.” Middle row: The variance of displacement at each location for the control group (left) and patient group
(right), with darker areas indicating low variance. Bottom left:t-values for the difference in the 2 groups, with darker
areas indicating the control group displaced further to the right than the patient group. Bottom right:p-values for each
t-test thresholded atp = 0.1. Darker areas indicate higher significance.

We have found significant differences in average brain torque: the feature where the right frontal
region is larger than the left and the left occipital region is larger than the right. It has been observed in the
literature that brain torque differs with handedness and gender (Kerteszand others, 1990), with females
tending to exhibit less torque on average. It has been suggested that schizophrenia patients also tend to
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Surface shape analysis 627

Fig. 9. The interhemispherical join for an example brain image and the fitted curved midline (dark gray line) on axial
slices aty = 0, 10, 20, 30 mm above the AC–PC line. Clear curvature of the fitted midline can be seen.

have less torque (Bilder and others, 1994; Barrick and others, 2005). Our own findings have confirmed
small differences between the schizophrenia patients and the controls, with the schizophrenia patients
having less torque. Our samples were dominated by male right-handers, and so we could not investigate
handedness. We did not pick up any significant asymmetry differences with gender, although care should
be taken with this interpretation as the number of females in our study was small.

An alternative and very popular technique for comparing brain images is VBM in SPM2 (Ashburner
and Friston, 2000). The optimized VBM protocol (Goodand others, 2001) has been carried out on our
data set and details of the analysis are given inBrignell (2007). The VBM procedure is very different from
our own in that it works on the gray matter intensities after nonlinear registration to an average template
brain. A significant difference was observed in a small part of the left superior temporal lobe, with the
patients having less concentrated gray matter (or less volume) than the controls.

It is noteworthy that small significant differences have been obtained with several different methods
in our study: the random field method, the surface shape PCA and ICA methods, the curved midline anal-
ysis and VBM. All analyses are complementary, being consistent with small differences in the temporal
lobes, but the interpretation of the differences is dependent on the method of registration. The application
illustrates that the choice of registration is fundamental in interpreting size and shape differences. This
feature is an unavoidable but sometimes overlooked aspect of shape analysis.
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