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SUMMARY
Some methods for the statistical analysis of surface shapes and asymmetry are introduced. We focus dh
a case study where magnetic resonance images of the brain are available from groups of 30 sch|zophra-
nia patients and 38 controls, and we investigate large-scale brain surface shape differences. Key aspects
of shape analysis are to remove nuisance transformations by registration and to identify which parts oft
one object correspond with the parts of another object. We introduce maximum likelihood and Bayesiang
methods for reg|ster|ng brain images and providing Iarge -scale correspondences of the brain surfaceg
Brain surface size-and-shape analysis is considered using random field theory, and also dimension re
duction is carried out using principal and independent components analysis. Some small but significant>
differences are observed between the the patient and control groups. We then investigate a particular
type of asymmetry called torque. Differences in asymmetry are observed between the control and patier§
groups, which add strength to other observations in the literature. Further investigations of the midlineg
plane location in the 2 groups and the fitting of nonplanar curved midlines are also considered.
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610 C. J. RRIGNELL AND OTHERS

1. INTRODUCTION

Statistical shape analysis has developed rapidly since the pioneering vikekaill(1984) andBookstein

(1986. The primary focus has been the analysis of landmark data where points of correspondence (land-
marks) are located on each object, and shape analysis of the points is invariant under certain geometricg
transformations of the object. The most commonly considered geometrical invariances are translation3
rotation, and scaling.

There is growing interest in developing methodology for analysis of the shapes of curves, surfaces
and volumes, as well as landmark data. Applications include brain shape in medical image analysis, fac 3]
shape, cell shape in biomedical science, molecule shape in bioinformatics, and many other example&
(e.g.Grenander and Millerl994 Kentand others1994 200Q Stoyan and Molchangw997 Joshiand
others 1997 Bookstein 1997 Van Esserand others 1998 Morris and others 1999 Thompsonand
others 200Q Fischland others 2002, Hobolth and others 2002 Hobolth, 2003 Klassenand others
2003 Chungand others2003 Dryden 2005 Bock and Bowman2006 Qiu and others2006 Barry and
Bowman 2008.

There are several general approaches for carrying out shape analysis of objects. One method is te
register the objects using simple global transformations which are treated as nuisance parameters (sucg1
as translation and rotation), and statistical analysis is then carried out on the “residuals” after matchlng =
This approach will be our main focus. An alternative is to match the objects closely using sophisticated &
high-dimensional nonlinear deformations and then carry out statistical analysis using the deformationg
parameters and/or residuals. For this type of approach, we shall also consider nonlinear deformation
with the popular technique of voxel-based morphometry (VBBgHburner and Fristqr2000. Further
techniqgues include orthogonal basis function modeling and then carrying out statistical analysis on th
fitted parameters.

Our motivating application is the analysis of brain surface shape in neuroscience. The study involvess
the investigation of whether there are large-scale shape differences between schizophrenia patients arﬁéi
controls. The cortical surface of the brain tends to exhibit asymmetry, and in particular the right frontal §
region is larger than the left and the left occipital region is larger than the right on average. This particular 5
asymmetry is often called “brain torque.” We aim to investigate the asymmetry in the brain surfaces from <
magnetic resonance (MR) images, as well as other aspects of shape difference between schuophren%
patients and controls.

Of fundamental importance in shape analysis is the choice of registration used to remove the unwanted’;
transformations and the labeling used to ensure correspondence of parts between objects. For examplg,
patients in an MR scanner are not located in exactly the same position or orientation, and so there is a need
to carry out some form of registration to remove these rigid body transformations as part of the analysis.Z
In our data set, if we were to ignore the registrations, we would end up making meaningless comparisons?
of different parts of brains. S

The labeling of each brain specifies which parts of one brain correspond to which parts of another. ™
Correspondence can be either in terms of biological homology or in a geometrical sense. The geometricaf
properties of a labeled object that are invariant under a registration group of transformations are called
the “shape” of the object. Specific examples include size and shape where the registration group is the
rigid body transformation group of translation and rotation (as in our application) and similarity shape ™
where the registration group includes translation, rotation, and scaling (e.g. for object recognition from =
photographs at different scales). There are a variety of ways to deal with registration invariance and la-
bel correspondence, including estimating optimal registration and labeling parameters using a statistical
model. In our case study, there are 3 main stages to the analysis:
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1. Segmentation of the brain surface from each image.
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2. Estimation of the midline (midsagittal cross-section) and internal landmarks so that each brain
image can be translated and rotated into a standardized frame of reference.
3. Inference about the shape and asymmetry of the brain surface.

At the first stage, the brain surface itself is identified in each image, and then the second stage involve§
registration of each brain image by translation and rotation. Once registration has been carried out, th&
labeling of the surface can be defined, and we take a large number of points located on the surface usir@
polar coordinates. Finally, the shape and asymmetry analysis of the high-dimensional point sets can b&
carried out. 3

In Section2, we provide more detail about the application that forms the main part of the work. We =
describe the data set, the preprocessing used to extract the brain surface boundary, and introduce so@l_'e

wo.

notation and the parameters of interest. In Sec8Bowe describe our mathematical representations ofa &
continuous surface size and shape. In Sedfiowe investigate a statistical model for the MR images, §
specifying the likelihood in independent regions of the image. We consider maximum likelihood esti- %
mation (MLE) for registering the images, and we also consider a Markov chain Monte Carlo (MCMC) &
method for simulating from the posterior distribution in a Bayesian approach. In Séctioa investi- )
gate different aspects of shape analysis—brain surface shape analysis, asymmetry and torque, and curv%d

midline analysis. We conclude with a brief discussion.

2. BRAIN SURFACE DATA
2.1 The data

Our main motivation for this work is a study in neuroscience investigating shape and symmetry in the
surface of the brain in schizophrenia patients and controls. The data set congists683D MR images

of the brain from 29 male healthy controls, 25 male schizophrenia patients, 9 female healthy controls,2
and 5 female schizophrenia patients. The mean ages are male controls (36.6), male patients (33.2), fema?fle
controls (33.9), and female patients (33.4). The MR images are proton density—weighted images and werg
collected by Sean Flynn at the University of British Columbia, Canada. All scans in our case study were<
from individuals under 50 and nearly all the subjects were right-handed (writing hand) except 1 male S
patient and 1 male control. Each volunteer’s image consists ok286 x 256 voxels (3D pixels of size

1mmnp).
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2.2 Preprocessing: brain surface segmentation
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There are many sophisticated image analysis programs available to assist with common tasks in medicébl
image analysis. We use a medical image analysis tool to extract the brain surface boundary, which is,
the boundary between the gray matter and the cerebral spinal fluid (CSF). Since we are interested in
large-scale shape differences, we wish to extract the bounding region of the cortical surface, which is arg
envelope over the cortical surface itself. The actual cortical surface is very complicated geometrically,2
containing folds, sulci and gyri, and methods using high-dimensional spherical basis functions such a{)
spherical harmonics or spherical wavel&b¢nand others2004 Chungand others2007 Yu and others N
2007 aim to model such structure. However, in our case, we are interested in large-scale shape differences
in a bounding region of the cortical surface, and so we use the brain extraction tool (B&T)jto{2002

which is available in the FSL librany§mithand others2004). The tool requires a tuning parameter to be

set (between 0 and 1—the default is 0.5) and fits a balloon-like template through an energy minimization
scheme. The preprocessing parameter is chosen manually by comparing the BET image and the magnetic
resonance imaging scan to see if any CSF has been included or if not enough gray matter has been
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included. For our images, it was often necessary to raise the tuning parameter to values in the range
0.5-0.7, as too much of the CSF was being included. We call the output a “BET image,” which is an
image of the same size as the original but with a mask of zero value on voxels placed outside the brain,
with the brain surface at the boundary. Note that any error in estimating the brain surface is considerably
less than the variability between different brains, and so it is a reasonable practical approach to treat th&
brain surface boundary as part of the data (i.e. as known). 5

2.3 Parameterization

1Y Wwouj papeo]

Each brain has been approximately oriented in the scanner but there are differences in translation an_ﬁ_’
rotation that we wish to remove so that we can compare the brain surfaces of different individuals. We§
use the following Euclidean coordinate system throughmaxis: posterio— anterior (back to front),
y-axis: inferior— superior (bottom to topk-axis: right— left (n.b. “left” = patient’s left). The sagittal
plane is thex-y plane, the coronal plane is tlyez plane, and the axial plane is tikez plane.

The registration of each brain is obtained by estimating rigid body transformations, with translation
represented by = (éx,éy,fz)T € R2 and a rotation using 3 Eulerian anglds: (pitch angle about
x axis), 6 (roll angle abouty axis),fy (yaw angle abour axis). We writep = (&, &y, &7, 0p, O, ey)T for
the registration parameters.

We consider registration of each brain into Talairach spaatairach and Tournoyx.988 and this
procedure involves locating a midline plane (which is the midsagittal cross-section joining the 2 hemi-
spheres), locating 2 landmarks called the anterior commissure (AC) and posterior commissure (PC) i
this plane, and then finally rotating and translating the brain such that the line joining the commissures
(AC—PC line) in the midline plane is horizontal with the midpoint of the AC—PC line at the origin. The
locations of the AC and PC landmarks in the original image are determined by the registration parameter
¢ and an additional paramet&y > 0 specifying the distance between them.

me/Sonse}soIq/woo dno-olwape:
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3. SURFACE SIZE AND SHAPE

We can regard a surface inRis a functior{ X (t) € RY:t € D} on some domaifD. For our application

d = 3. In general, the functioX (t) contains the shape and registration information of the surface. We can
derive a shape function by placing the surface in a standardized registration, for example, by matching to &
template, or registering on particular landmarks, or standardizing to a particular plane. In our application,Q
we will estimate the midline of the brain, the AC and PC, and then translate and rotate the brain into a2
standard frame of reference. The registration method is described in detail in Skection

The labeling of an object is a one-to-one and onto function (i.e. a diffeomorptiam)D — D
which assigns the correspondence between parts of surfaces, so a relabeled sutfaga)is In our
application, we will havén(u) = u, after registering each brain and identifying a large number of points
on the brain surface.

We focus on the particular case of star-shaped objectsYinvich have a surface represented by a
radial functionR(t) from an internal point, wher&(t) > 0 andt € D C S°~1 are suitable spherical
coordinates. Her&% 1 is the unit radius sphere hdimensions. Star-shaped objects are very common in
many applications, and the simple univariate polar representation lends itself to convenient mathematical
and statistical analysis. In our application, we consider radial vectors from a central point of the brain to
the surface, after it has been registered to a standardized position using translation and rotation. The radial
functionsR(t) then represent the size and shape of the continuous surface. In order to compare different
star-shaped objects, we will first need to obtain a standardized registration and then compare the radial
functions. Possible models for the size-and-shape functions include Gaussian processes, and an alternative
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is to work with logR(t), sinceR(t) > 0. If shape (with scale invariance) is required, we could work with
U (t) = R(t)/Sfor a suitable size measuf&(Dryden 2005, but in our application, we wish to retain
size.

In practice, a discrete set of points will be available, and we assume that the points are identified on &,
surface fork values oft; € D,i =1, ..., k (e.g. on regularly spaced rays from the origin). Assuming the £
object is in a standardized registration, the collection of rRdi (Ry, ..., Rq)" measures the size and Q%
shape of the surface. Suitable models in this case include multivariate normal distributions, eiiher for <
(logRy, ..., log Rq)T. Given the high-dimensional nature of the data, some form of dimension reduction =
such as prlnC|paI components analysis (PCA) or independent components analysis (ICA) may be useful

We taket; to be regularly spaced in angles on the sphere and the Rétlii are the distances from the
origin to the brain surface when a ray fired from outside the head at dirécfiost hits the brain surface
boundary( = 1, ..., k). In our casek = 62501. Note that th&(tj) are deterministic functions of the
registration parameters conditional on the brain surface boundary being known (having been estimated b
BET in our case).

dny
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4. BRAIN REGISTRATION
4.1 Maximum likelihood registration

In order to carry out statistical inference for the paramefgrg.), we first need to specify the likelihood
function for the voxels in the preprocessed BET images. Consider a single BET Ymadth Y; denoting
the voxel value at locatioh = (tx,ty,t;) € S = {1,..., 256}3. The center of the image is denoted
(Ox, Oy, O,) and in our case this is equal {©€28.5128.5128.5. After preprocessing, the voxels in
the BET image outside the brain surface are identically zero. We construct the likelihood for the nonzeroZ
voxels only. We shall partition the voxel grid into distinct regions which depend on the parameters of 3
interest and then specify independent distributions for each region.

For our analysis, the brain surface labeling is determined by the registration of the images. We shall:
consider registration based on the approximate symmetrical structure in the brain in the close vicinity Ofcr
the midline, and so a very important part of the model is the distribution of the voxel values in the mldllne c
region.

We shall divide each BET image into 5 parts:

/1 | /81211E/SoNsNeIS0Iq/Wwod dno ol
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1. The midline regionM (defined as the nonzero voxels within distarge of the midline plane,
whose mirror image about the midline is also nonzero).

2. The AC regionA (defined as the voxels withiap < em in the X, y, or z direction of the AC
landmark).

3. The PC regiorP (defined as the voxels withiap < ey in the X, y, or z direction of the PC

landmark).

. The remaining nonzero pixet? of the BET image.

5. The region outside the brain surface containing zero-value pixels (which do not contribute to the
likelihood).

Note thatA C M andP C M. In our application, we takey = 15,ea = 10 = ep (in millime-
ters/voxels). When registering into Talairach space, the procedure consists of first finding a midline and
then finding the AC and PC landmarks. We shall specify our likelihood in 2 stages as well, first of all
specifying the likelihood for the midline region and then for the AC/PC regions.

The first stage of registration involves a rigid body transformation with rotatiofl,b$ and trans-
lation in z to &; 4+ O. Each voxelt is sent to a new locatios = s(t, 0) = (s«, Sy, Sz) (rounded to the
nearest integer). The midline plane is given by the new coordiratesy, &, + O), and we take the

N
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614 C. J. RRIGNELL AND OTHERS

midline as lying at a half-integer position féf + O; (lying halfway between 2 planes of voxels). Lt

indicate voxels which are left of the midling,(> &;+ O;). For any registration, the new registered image

is defined on the same voxel grid as the old image using a suitable wrap around the edges of the image.
Let s’ be the reflection 06 = (s«, Sy, s;) about the midline, that is' = (s, Sy, & + Oz — IS, —

& — Og]). We shall regard the voxels at sitesands’ as paired voxels. The midline region.jgl =

{s:|s; — & — Oz < em}, where both pairs of voxels are nonzero. Each pair of voxel vaMgsry) in

M is transformed tdJs = (Ys — Yy)/2, Vs = (Ys + Yg¢)/2 (with Jacobian 12). We assume that alls

are independent of alls, and the likelihood o¥/s is assumed constant with respectdg 6p, ;).

For voxels inM, we consider a model where the expected values of the gray Myate symmetrical
about the midline, that i[Ys] = us = E[Yy], and soE[Ug] = 0. For simplicity, we assume that thi
are independent. Note thet in M \ {A U P} are not necessarily independent, but below we do require
Vs in AU P are independent. If the dependencie¥iimre strong in the regiond or P then we are using
a pseudo-likelihood approximation in that small p&@egag 1986.

Note that we are not assuming independence of most of the voxel intensities themselves, but ratheg-
independence of thdg is assumed, which is a much less restrictive assumption. If a model with dependent 2
Us really was required, then we could still use our method, but it would again be a pseudo-likelihood
approach. We have investigated the autocorrelatidg; afith neighboring values, and it soon decreases
to zero after a very short distance. Thus, uncorrelbkeskems a reasonable assumption. Independence is
of course stronger, but we think it is not unreasonable.

Exploratory data analysis was carried out by examining the histograldy &r a good choice of
midline for some example MR scans. We observed that a Laplace (double exponential) distribution fits
well to the data inM for the images, as seen in the example in the middle plot of Fifjufée Laplace
model seems appropriate in many image problems perhaps due to the presence of occasional large errols
(e.g. segmentation differences at boundaries of structures). Although by far the majority of voxels matchA
up well for a good choice of midline plane, there will be a few large discrepancies (due to tissue boundariesg
or other nonmatching parts). A model that can accommodate some large positive or negative values is morEz
appropriate here than a short-tailed distribution, such as the Gaussian.

Therefore, a suitable model foks with s(t, 9) € M has density

speoe//:sd)y Wwoi) papeojuMo(]
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fus) = 2
wherews = wg are predetermined weights, that is, a Laplace distribution with scale parameter
for s € M. The weight of thesth voxel at a perpendicular distansg from the midline is taken as
ws = max{(10.5— |s; — & — Oy|)/10, 0.5}.

In order to specify a model in the commissure regighandP, we use some training data obtained
by manually locating the AC and PC on the midplanaof= 7 scans. After translating and rotating the
images into their final registration the data, Wg in the region4 U P, are standardized for each scan to
a common mean and variance by means of a transformation of theviorm i Vs + yj, j = 1,..., n;.
For each voxels, in 4 andP, we can calculate an estimate for the mean and variansg éfom the
training data. The training data here define 2 templates, which represent typical distributions of voxels in
the AC and PC regions.

To locate the AC for each scan, we use the m;wgl-w ~ N(uh, (68?/wh), s € A, independently
and to locate the PC, we modgVs + y ~ N(uk, (05)2/105) s € P, independently, wherg and
y specify a linear transformation of the voxel values to match the mean and variance of the templates
in A U P. Note that the mean and variance parameters do depend on voxel logafibe wSA and
wf are weights based on the distance of voxéiom each commissure, and we take the weights as
1/{1+ (cx — )% + (cy — sy)2 + (c; — 2)%}, where(cy, Cy, Cz) is the location of a commissure. The
additional parameterg andy are to be estimated based on the pixel valued ia P at each possible
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Fig. 1. Histograms ofis for several choices of midline and fitted Laplace distributions. From left to right, the top row
shows the histogram correspondingifoequal to—2, —1, 0; the middle row shows histograms corresponding,to
equal to 12, 3; and the bottom shows the histogramsdgequal to 45, 6. The middle plot withtz = 2 appears to

be the best choice here, which is confirmed by MLE.

registration. Recall that the location of the AC and PC landmarks also requires an additional pafameter
which is the length between the landmarks. Finally, we simply take the likelihood contribution from the
remaining voxels irQ to be constant with respect to the model parameters.

Hence, the log-likelihood for the nonzero voxels in an individual scan is taken to be

w
1//2 S) - l//U)s|Us|]

wA
+ ZA |Iog/3 —~ 2(0—2)2('&)5 +y - ué\)Z]

Iog L(U’ V|¢)’ v, 50) = Z [Iog(

seM

+ Z | ogp — p)z (Bos+7 — ub) ] + constant.
seP
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Note that the mean parameter8, 12 and variance parameteis?)?, (6F)? in the AC and PC templates
are regarded as known (having been estimated from training data).
The profile MLE of 1 given the other parameters is obtained by solving

ologL Nm A1 1
=0=—— > wlusl, =y = > wslus|
seM:s;>0 se M:s;>0

andny is the number of voxels in the midline. In order to maximize over the other parameters we consider
4 stages.
MLE Algorithm

1. The midline plane is estimated with a simple grid search at steps of 0.01 radi#gstoand unit
steps fors;.

2. Approximate estimates @, &y, 0y, &, f andy are found by maximizing the likelihood of the
region.A U P given the midline plane estimates in step 1.

3. The estimates af and&y are refined by maximizing the likelihood of the regign

4. The estimates @k, a rotation about the AC obtained in step 3, dadhe intercommissure distance,
are finalized by maximizing the likelihood of the regi®h

F21501q/Wo0°dno-olWapeoe;/:sdpy Woly papeojumoq

In each case, a simple grid search over the parameters is performed, with angular steps of 0.01 radia
and unit translations. Although we could consider iterating the steps in the algorithm, it made no difference
when we tried it in some example images.

1S

ExAMPLE We evaluate the log-likelihood for an example image using a grid of values with rotations
0.01 radians apart and translations at 1 mm intervals. We find that the approximate maximum likelihood
estimators at step 1 of the algorithm &ge= —0.07,6; = —0.06, and’, = 2.0, withyy~! = 3.3613. Inthe

upper row of Figure, we see the image transformed from its original orientation to the MLE registration
of the midline. Note that after the transformation, the crosshairs bisect the brain's 2 hemispheres. In2

0.£€/609/¥/1 L/219111E/sO

Figure 1, we see histograms of the voxels .M and the fitted Laplacian density for different choices ;
of & with & = 2.0 in the middle plot. Proceeding to regis}er the image on the ,AAC and PC, we find c
the approximate discretized maximum likelihood estimatesare —4.0,¢y = 41.0 6y = 0.29, and <
& = 26. In the lower row of Figure, we see the image translated and rotated from its midline registration %
such that the origin coincides with the AC and the AC—PC line is horizontal. o
@)

z

4.2 Bayesian registration %

An alternative approach involves Bayesian inference for the registration parameters. The priors for the3
parameter®, &, f andy are taken as independent and uniform as we have no prior knowledge. We also 3
takey ~ T'(ao, fo) independently and choosg and f to give a fairly vague prior. The log-posterior
density is given by

Iogﬂ(¢a v, §Ca ﬂs Y |U9 V) = Iog L(Us V|¢’ v, QZCs ﬂ9 y) + (0(0 - l) Iog V= t/lﬂo + ConStant'

120¢ JaqusAoN

One can simulate from the posterior using an MCMC algorithm. In particular, we use Metropolis—Hastings
updates for the registration parameters, and a Gibbs step $arce

(Wlp.&e. f. 7, U V) ~T [nm+ao, D wslus|+ fo
seM:s;>0
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Fig. 2. An image transformed from its original orientation (top left) to the MLE registration of the midline (top right),
using axial views. The image in the coronal view at the midline (bottom left) is then translated and rotated to have the
crosshair on the AC, and the AC—PC line horizontal in the final registration (zoomed in—bottom right).

We took the conditional modes gfandy at each iteration, and our prior hyperparameters wgre 0.1
andfo = 1/3, which results in a fairly vague prior.

ExampPLE We implement the MCMC algorithm for the same image as for the MLE example. Fijure
shows the parameters after 15000 iterations. The starting value was taken as the approximate maximu
likelihood estimate, as obtained in the previous example. The “maxienpasteriorf (MAP) estimate is

& =-39¢& =408¢& =2.00, =-0.07Q 4, = —0.057 0y = 0.289 & = 25.79 andy ~* = 2.8868.

Over the first 2000 iterations, we use an adapting stageBsaene and Draper2000 to choose the
variances for the sampling distributions, and we take the next 2000 iterations as the burn-in period. The
adapting stage involves changes in the proposal variances with the aim of achieving 50% acceptance for
each parameter. The proposal variances are fixed once the acceptance rate remains in the range 40—-60%.
Similar results after burn-in were obtained using MCMC simulations with starting values away from the
maximum likelihood estimate.
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Fig. 3. Plots of parameter values and the log-likelihood from the MCMC algorithm over the first 15000 iterations.
There are 2000 iterations for the adapting stage, 2000 iterations for burn-in, and 11 000 iterations post burn-in.

As expected the apprOX|mate MLE and MCMC-based estimates are similar, and the posterlor vari-
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in many further images, with small posterior variability. For example, in Tablee give the MAP and

yo

approximate MLEs for a set of 7 further example images and there is close agreement. Hence, we sha@
proceed with shape analysis of the brain surfaces by fixing the registration at the estimated reglstratlor){;

given by the approximate MLE, as the MLE is much faster to compute.

We compared the automatically located AC and PC from the MLE procedure with manually located
landmarks in all the images. The landmarks using both methods were in similar positions (exactly the

same position in 30 scans and very small departures in the rest).

5. SHAPE ANALYSIS
5.1 Labeling

Each brain is registered to Talairach space using the maximum likelihood method given in 8ektion

1202 J8qUWIBAON ¢ uo J

and we now consider the labeling of each brain. The actual cortical surface of the brain is complicated
and highly variable between individuals, and so estimating a natural labeling of the actual cortical surface
is difficult. Our approach using correspondence of the BET image surface would not allow detailed shape
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Table 1. The MAP estimates from the MCMC algorithm and the approximate MLEs for an example set of
7 brain images. In the ML case, tifemeasurements are obtained to the nearest millimeter exceg for
which is to the neare€.5 mm. There is close agreement betweerestanates

Image  Method & & & b Or by & g

1 MAP —-11.72 34.26 7.58 —0.05 —0.08 0.25 28.82 =

1 MLE —-12 34 8 —0.06 —0.08 0.25 29 a

2 MAP —15.06 41.38 3.2 -0.01 -0.01 0.30 26.95 C_cblh

2 MLE -15 41 3 -0.01 -0.01 0.32 27 g

3 MAP —12.07 39.05 —-1.97 0.01 0.01 0.23 27.59 =

3 MLE -12 39 -2 0.01 0.02 0.24 27.5 -g

4 MAP —12.42 354 —4.26 0.02 -0.07 0.26 25.1 5

4 MLE —-12 35 -4 0.02 —-0.07 0.25 245 8

5 MAP —13.75 34.95 —0.68 0.01 0.01 0.16 27 §

5 MLE -14 35 -1 0.02 0.00 0.16 27 )

6 MAP —7.78 30.15 3.74 —0.07 0.00 0.07 25.51 2

6 MLE -7 29 4 -0.07 0.00 011 25 3

7 MAP —-11.72 40.77 2.28 —0.03 —-0.03 0.22 27.69 3

7 MLE —-12 41 2 —0.03 —0.03 0.23 285 =

5

@

analysis of small regions of the surface (since corresponding parts would not match precisely) but it does}
allow the comparison of global large-scale shapes. S
We have located radii lengths in a group ofi people, where the lengths are denotedRpy; | = %
1,...,n, for personj at equally spaced anglési = 1,...,k, emanating from a central point (AC— 45;

PC midpoint). We decided to restrict our analysis to the part of the brain surface lying above the axial

plane in which the AC—PC lies, as the labeling in this part of the surface gives a reasonable meaningfug
correspondence between parts of the brain surface. The ddriaiaur application is therefore the upper S
hemispherésfr. The number of radii taken on the upper hemispheke=s62 501. Note that this labeling 5
gives a sensible approximate correspondence. g
Alternatively more complicated transformations could be used to match up parts of a surface if desired 5

for exampleFischland otherg2001) consider an ontogenetically informed deformation method involving
matching homologous structures on a flattened gray—white matter interface. For the broad large-scalg
shape analysis that we consider our approach seems reasonable. %
=

5.2 Brain surface analysis §

SinceR;j are positive lengths, it makes sense to consider the geometric mean of the quantities, calculated
by averaging the logarithms of the radii and then taking the exponential. Hence, we carry out statistical
analysis on the log-radij; = logRij, wherei = 1,...,k, j = 1,...,n which are radii observed at
fixed directions on the unit upper hemisphere in 3 dimensiorsS?,i = 1, ..., k. An estimate of the

mean form is the geometric mean of each of the radii

120¢ JaqusAoN

{exp(x)t:i =1,...,k},

wherex; = %Z?zl log Rij. We could alternatively have used the actual radii rather than taking loga-
rithms (and in fact it makes little practical difference in this particular application as the mean is large
relative to the standard deviation). Both the radii and the logarithms look reasonably normal at each point.
To investigate group differences first of all we provide an explanatory plot in Fig(ajeof the mean
control brain and highlight the few areas where the mean patient brain radii are more than 2.5% larger
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Fig. 4. The mean brain surface for the control group (a) (left) and patient group (b) (right) are shown in light gray. In
(a) we indicate in dark gray which radii on the surface are at least 2.5% larger for the mean patient and in (b) we shows
in gray which radii are at least 2.5% larger for the mean control brain surfaces. The dark gray ratistaistic at
least 3, and this area is significantly smaller in the patient group.

n,sue],so!q/woo

than the mean control. These areas are primarily on the top of the brain around the midline. We alsog
provide a plot in Figurel(b) of the patient mean brain surface and plot the areas where the control mean & 3_
is more than 2.5% larger than the mean patient. These areas are on the right temporal lobes. We now wish
to examine whether these features are statistically significant.

We carry out an analysis of covariance for each log-radius, with 2 factors (patient/control and sex) 5 3
and 1 covariate (age). For each log-radius, we fit a linear model with 4 parameters, and we are prlmarllyco
interested in the patient/control effect. Under the null hypothé4$ {hat there is no difference in mean
between the patients and controls, we consider the tidasi on the patient/control parameter after fitting
the linear model for each log-radius. A positivetatistic is obtained when the mean control is larger at a
location. We have, = 30 andn; = 38 for the schizophrenia and control sample sizes.

Since we have a very large number of teéts{ 62 501), we have to take into account the multiple
testing problem. Undeidy, we assume that we have a smooth stationary, isotropic Studelisibuted
random field on a hemisphere, and so we can use the resutomsiey (1994 in order to provide a
correctedp-value for the test. There arg + nc — 4 = 64 degrees of freedom. We need to estimate
the roughnesd, which is the variance of the derivative of the random field in any direction. We fit a
local polynomial spline\(Vand and Jonesl995 to great circles of neighboringstatistics around the
hemisphere at a particular distance apartBy choosing the bandwidth parameter by visual inspection,
we then compute the sample variance of the estimated first derivatives obtained from the KernSmoot
library in R (Wand and Ripley2009 R Development Core Tear2008. We arrive at a final estimate
7 ~ 3 using local polynomials of degree 1 and bandwidth @0 d

We consider thg-value based on the maximuiiyax Of the random field and a threshold The
correctedp-value for a hemisphere is given by

/VILLI
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P(Tmax > 2) = po(2) + 7 p1(2) + 27 p2(2),

where

po(2) = P(t, > 2), @
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172 o\ (1-)/2
p1(2) = o (1 + %) ) 2
p2(2) = on)32 (%)1/2 T 1+ 7) z (3)

(seeCao and Worsley2001). For a threshold of = 3, we have a correctgavalue of 0.065 for a one-
sided test withh = 3. The most extremestatistic in the data is 3.28 and there is a clustargihtistics
more than 3 in the right temporal lobe (in the dark gray cluster in Fig(ly, where the schizophrenia
patients’ brains are smaller. It is rather difficult to estimate the roughness parameter, ahevas iarger
the evidence would be weaker (although the opposite is triigsitmaller). In conclusion, we may have
some weak evidence for a mean reduction in the right temporal lobe for the schizophrenia group.

5.3 Dimension reduction

q/Luoo'an'o!Luepeoeu:sduq woJ) papeojumoq

Due to the very high-dimensional nature of the data, it is also worthwhile considering dimension reduc-
tion techniques. We consider PCA in order to examine important lower-dimensional projections of the 5 S
data. The procedure involves obtaining the eigenvalues and eigenvectors of the sample covariance m

trix of the xjj’s. Let 71, ..., ym be the eigenvectors corresponding to eigenvaﬁ,ies. ., Am, Where
M = min(k,n — 1) and writey; for theith elementofy;, | = 1,..., M. If n << k these high-

dimensional eigenvectors can be compute®in®) steps (see e.@ryden 2005.
The effect of the théth principal component (A can be examined by viewing

{exp(X; + C/A1|l/2j?i|)tiii =1...,k}

L20LE/B09/Y/L L/o[0nIE/SONSASO

for various values ot Here PCA has been carried out on the Iog ra@]iiand then the exponential
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abbreviation PC to mean ‘principal component’.
Investigating the variability in size and shape, we see that PC1 is highly significantly different between c

un Aq 0

the sexes, and given that this measures overall size this is expected (se®}iB@2 is also displayed in 2
Figure5, and we see that it shows the effect of larger frontal and temporal lobes versus smaller rear braire.
surface. PC1 and PC2 account for 53.6% and 10.1% of the variability in size and shape in the data. ;

The first 20 PCs account for 88.8% of the size-and-shape variability, and we investigate group dif- Q
ferences in this linear subspace. We carry out a two satdglet on each of the first 20 PC scores, and &
then address the fact that we have multiple tests using the false discovery rate (FB&)jarhini and é

Hochberg(1995. The smallesp-values are 0.015 for PC11 and PC19 but these are not significant at FDR S
=0.1. We also carry out symmetrical PC analysis, where each residual vector from the overall mean has ité
reflection also included in an augmented data setTbseebaldand others2004). This procedure forces
the PCs to either be symmetrical or asymmetrical. The first 20 PCs explain 85.9% of the size-and-shape
variability, and again we restrict our analysis to this linear subspace. We see that PC10 is highly signif-2
icantly different between patients and controls, witlralue 0.001, which is also significant at FDR = R
0.03, taking account the multiple tests. This PC is a symmetrical PC that picks up the size of the temporal
lobes as well as other effects including the height of the brain surface. The effect of this PC is shown
in Figure5. PCs 1-9 and 11-20 do not show significant differences in the groups, taking into account
multiple comparisons (with smallest unadjuspedalue 0.046 for PC11).

Independent components analysis (ICHAy¢arinenand others2001) is an alternative dimension re-
duction technique that can sometimes reveal differences between groups by projecting data into directions
of maximum non-Gaussianity. We also carry out ICA of the surfaces after first reducing to 10 PCs, using

ON ¢
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Fig. 5. The effects of the PCs. We display the overall mean brain surface in light gray, and in dark gray we display
exp(X + 6?1]-1/23?1-) for all values with radius greater than the mean. The choice of 6 is made to exaggerate the effect of

each component. The plots are (top left) PC1, (top right) PC2, (bottom left) symmetrical PC10, (bottom right) an IC.

symmetrical PCA again. We use the fast ICA implementation in the packadéaRlfini and others
2003 R Development Core Tear2008. We find that one of the independent component (IC) scores is
significantly different in the 2 groups. The effect of this IC is shown in Fiduaad it includes asymme-
try in the temporal lobe, as well as other effects such as the height of the brain surface. In particular, theo
schizophrenia patients have slightly higher brain surfaces around the midline on average.

A major disadvantage of the PC and ICA is that each PC contains a number of effects, and so itz
is difficult to disentangle which effects are significant and which effects are noise. Given the small dif- 3
ferences, one most be cautious about the practical importance of the differences despite the statistic
significance. There is considerable overlap between the schizophrenia and control distributions, so thesé
measures alone would be poor discriminators but may be helpful as part of a classification method using®
data from different modalities.
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5.4 Asymmetry and torque

The final part of the investigation into shape is a study of asymmetry in the brain surface. In each registered
scanng = 100 equally spaced axial slices are taken, and we estimate the volumes contained within brain
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surface boundaries in each slice and above the horizontal plane containing the commissures for the the left-
hand S|de‘(/r ) and right-hand S|de\,(R) r=1,...,nsofthejthscan { =1, ..., n). The asymmetry
function has components

7rj =(VrT_VrII)/Vi’ r=1....ns

whereV;j is the maximum slice volume in thith scan,—1 < 7] < 1. Write 5j = (11}, ..., nsj) "

for the asymmetry function for th¢th person. We perform a small amount of smoothing with a Loess
smoother (with fractionf = 0.05). Smoothing is commonly carried out at a preliminary stage in func-
tional data analysis (sé@amsay and Silverma2005. Note that similar measures of asymmetry were
described in outline bZhanceand otherg1999 and in more detail bBarrick and otherg2005 based

on the difference in volume in the 2 hemispheres in a series of slices but without normalizing by the
maximum slice volume in th¢th scan.

In Figure 6, we see a plot of the mean smoothed asymmetry function and the loadings of the first 3
PCs from the pooled sample nf= 68 smoothed asymmetry functions. It is clear in the mean asymmetry
function that there is rightward asymmetry toward the frontal region of the brain. From the plots of the PC 2
loadings, it seems clear from PC1 that the main source in variability is in the occipital region. PC2 showsg
a gradual increase in variability nearer the front. PC3, however, highlights a more general twisting in theB
brain and will best detect regions where the control group is more asymmetric. We shall focus further ono
this PC below.

In Figure7, we see the results of conducting-test of Ho: 1. — up = 0 at each slice, wherg. and
up are the means of the control and patient group. Taking into account multiple comparisons, these result§
are not statistically significant, but it is worth noting that the controls have greater rightward asymmetry 5
between slices 83 and 87 in the sample.

We consider fitting a linear regression model with response PC score 3. We see that there are statiss
tically significant differences in PC score 3 between patients and congrotdfe = 0.049) but there is
no significant association with age or sex. The result provides some weak evidence that controls are morg
likely to display torque, with greater rightward asymmetry than patients in the frontal lobe. This effect <
reverses in the rear half of the brain. The number of females in this study is particularly small, so partic-2
ular care should be taken with interpreting that twisting is not associated with sex. We also consider ICAZ
of the asymmetry functions, after first reducing to 10 PCs. None of these ICs was significantly different 2
between the 2 groups.
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5.5 Midline plane and curve analysis

_dIYY Ip EYISIS

In all our analysis so far we have used a flat midline plane to register the brain images and to calculate thé
symmetry functions. However, it is somewhat of a simplification to assume that the join of the left and 5 s
right brain hemispheres is the flat plafye= 0. In reality, inspection of the scans shows a tendency forthe
midline to curve, especially at anterior and posterior extremities and, to a lesser extent, in superior regions=
We therefore also wish to investigate what difference a curved midline would make to our interpretations
about asymmetry. In particular, we estimate a curved midline plane separating to the 2 hemispheres ar@l
adjust the left and right slice volumes for this correction in the midline location.

To estimate the location of the curved midline, we first of all register each brain with a flat midline
using MLE, as in Sectiod.l We fix all parameters at the MLE excefit which is allowed to vary
throughout the the midline regiaf. We consider localized regions i and estimate a possible dif-
ferenté; in each region. The size of the localized regignwas chosen large enough to avoid detecting
local symmetries not centered on the join and reflect general movement in the join, andexyefix5
mm. Eachl was centered on locations at 5 mm intervals inxkgplane and, recorded, after a discrete
grid search in unit steps, as the displacement ffgrs 0 at that location.

uo

4
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Fig. 6. The mean (top left) and loadings for PCs 1-3 for the smoothed asymmetry functions. A low index (left end %
of each picture) corresponds to slices in the occipital region of the brain and a high index (right end of each picture) 2.
corresponds to the frontal region of the brain. Q
2
2
3
The maximum likelihood estimates &§f at each location were analyzed ustrgsts ofHo: yc—up=0, S
whereuc andup are the mean leftward displacements of the control and patient groups, respectively. In the o
N

region between 25 and 50 mm posterior of the AC and extending up to 60 mm above the axis containing-
the commissures the midline is further to the right in the patient group, as seen in idNote that the
patient curved midline is more to the right in the patients compared to the controls, between the temporalE
lobes. This feature might explain the reduced rightward asymmetry seen in controls, compared to patientyz
seen between slices 34 to 37 (approximately) in Figura further difference between the 2 groups is §
observed in the occipital region.

To incorporate a curved midline in the symmetry analysis, a curved midplane is fitted to the midplane
coordinates by means of a thin-plate smoothing spline for each scam(gden and Mardia1998
Chapter 10). The thin-plate smoothing spline is fitted to the estimated midline ggimsach of the
local regions. The fitted thin-plate spline for one of the scans is shown in Fglirelearly demonstrates
that a curved midline fits the interhemispherical join better than a straight midline.

QA0
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Fig. 7. Thet-statistics fromi-tests between control and patient groups at each slice. tHighues indicates greater
rightward asymmetry in the control group.
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Repeating the symmetry analysis with a curved midline showed no significant differences between the2
4 subgroups (male/female and control/patient combinations). This suggests that there is possibly anothe:"r
explanation for differences between the control and patients. Either the differences in asymmetry are due
to a difference about a flat midline (as found in Sectof) or the differences could be due to differences 3
in the curvature of the midline plane. As is always the case in shape analysis, the interpretation of a:
difference depends on the choice of registration, and this is demonstrated well in this example. We cam
choose a simple registration method and more variability is retained in the shapes or we can choose a moge
sophisticated registration method which reduced the variability in the shapes. The choice to be made |§
very much up to the user.

The simpler planar midline registration is the more conventional method and with its use we have =
conferred with findings in the literature. The curved midline does provide a more highly parameterized @
and unusual method of registration, and it is worth further exploration in future studies.

1_IYD

6. DISCUSSION

QUIBAON ZZ Uo J

We have explored a number of aspects of the shape analysis of brain surfaces. Our main findings hav%
been that there is weak evidence for a reduction in size in the right temporal lobe on average in the pa§
tients. A reduction in the temporal lobes has been noted in the literature previously (Semnaig.and

others 2002, and so our study provides further evidence for this effect. Dimension reduction analysis
did produce some significant differences including a slightly higher brain surface in the patient group.
However, it is rather difficult to disentangle multiple effects in the components, and so we are cau-
tious about interpreting this difference. This difference was not deemed significant in the random field
method.
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Fig. 8. Top row: The mean of the interhemispherical join’s displacement from the §laaed at 5 mm intervals in

the x—y plane for the control group (left) and the patient group (right), with darker areas indicating a displacement to
the “right.” Middle row: The variance of displacement at each location for the control group (left) and patient group
(right), with darker areas indicating low variance. Bottom leftalues for the difference in the 2 groups, with darker
areas indicating the control group displaced further to the right than the patient group. Bottomp-tightes for each

t-test thresholded gt = 0.1. Darker areas indicate higher significance.
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We have found significant differences in average brain torque: the feature where the right frontal
region is larger than the left and the left occipital region is larger than the right. It has been observed in the
literature that brain torque differs with handedness and gemdstdszand others 1990, with females
tending to exhibit less torque on average. It has been suggested that schizophrenia patients also tend to
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20 40 60 &80 100 120 140 160 180 200 220

Fig. 9. The interhemispherical join for an example brain image and the fitted curved midline (dark gray line) on axial
slices aty = 0, 10, 20, 30 mm above the AC—PC line. Clear curvature of the fitted midline can be seen.
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have less torqueB(lder and others 1994 Barrick and others2005. Our own findings have confirmed
small differences between the schizophrenia patients and the controls, with the schizophrenia patien
having less torque. Our samples were dominated by male right-handers, and so we could not investiga
handedness. We did not pick up any significant asymmetry differences with gender, although care shoul
be taken with this interpretation as the number of females in our study was small.

An alternative and very popular technique for comparing brain images is VBM in SRstib(rner
and Friston2000. The optimized VBM protocolGoodand others 2001) has been carried out on our
data set and details of the analysis are giveBrignell (2007). The VBM procedure is very different from
our own in that it works on the gray matter intensities after nonlinear registration to an average templates:
brain. A significant difference was observed in a small part of the left superior temporal lobe, with the
patients having less concentrated gray matter (or less volume) than the controls.

It is noteworthy that small significant differences have been obtained with several different methodsZ
in our study: the random field method, the surface shape PCA and ICA methods, the curved midline anal®
ysis and VBM. All analyses are complementary, being consistent with small differences in the temporalS
lobes, but the interpretation of the differences is dependent on the method of registration. The application3
illustrates that the choice of registration is fundamental in interpreting size and shape differences. Thif
feature is an unavoidable but sometimes overlooked aspect of shape analysis.

~
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