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Abstract

Let G = (V,E) be a finite undirected graph. An edge set E′ ⊆ E is a dominating
induced matching (d.i.m.) in G if every edge in E is intersected by exactly one edge
of E′. The Dominating Induced Matching (DIM ) problem asks for the existence of a
d.i.m. in G; this problem is also known as the Efficient Edge Domination problem; it
is the Efficient Domination problem for line graphs.

The DIM problem is NP-complete even for very restricted graph classes such as
planar bipartite graphs with maximum degree 3 but is solvable in linear time for P7-
free graphs, and in polynomial time for S1,2,4-free graphs as well as for S2,2,2-free
graphs and for S2,2,3-free graphs. In this paper, combining two distinct approaches,
we solve it in polynomial time for S1,1,5-free graphs.

Keywords: dominating induced matching; efficient edge domination; S1,1,5-free graphs; polyno-

mial time algorithm;

1 Introduction

Let G = (V,E) be a finite undirected graph. A vertex v ∈ V dominates itself and its
neighbors. A vertex subset D ⊆ V is an efficient dominating set (e.d.s. for short) of
G if every vertex of G is dominated by exactly one vertex in D. The notion of efficient
domination was introduced by Biggs [1] under the name perfect code. The Efficient

Domination (ED) problem asks for the existence of an e.d.s. in a given graph G (note
that not every graph has an e.d.s.)

A set M of edges in a graph G is an efficient edge dominating set (e.e.d.s. for short) of
G if and only if it is an e.d.s. in its line graph L(G). The Efficient Edge Domination

(EED) problem asks for the existence of an e.e.d.s. in a given graph G. Thus, the EED
problem for a graph G corresponds to the ED problem for its line graph L(G). Note that
not every graph has an e.e.d.s. An efficient edge dominating set is also called dominating
induced matching (d.i.m. for short), and the EED problem is called the Dominating

Induced Matching (DIM) problem in various papers (see e.g. [2, 3, 4, 5, 6, 7, 9, 10]);
subsequently, we will use this notation instead of EED.
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In [8], it was shown that the DIM problem is NP-complete; see also [2, 7, 11, 12].
However, for various graph classes, DIM is solvable in polynomial time. For mentioning
some examples, we need the following notions:

Let Pk denote the chordless path P with k vertices, say a1, . . . , ak, and k − 1 edges
aiai+1, 1 ≤ i ≤ k − 1; we also denote it as P = (a1, . . . , ak).

For indices i, j, k ≥ 0, let Si,j,k denote the graphH with vertices u, x1, . . . , xi, y1, . . . , yj,
z1, . . . , zk such that the subgraph induced by u, x1, . . . , xi forms a Pi+1 (u, x1, . . . , xi), the
subgraph induced by u, y1, . . . , yj forms a Pj+1 (u, y1, . . . , yj), and the subgraph induced
by u, z1, . . . , zk forms a Pk+1 (u, z1, . . . , zk), and there are no other edges in Si,j,k; u is
called the center of H. Thus, claw is S1,1,1, and Pk is isomorphic to Sk−1,0,0.

For a set F of graphs, a graph G is called F-free if no induced subgraph of G is
contained in F . If |F| = 1, say F = {H}, then instead of {H}-free, G is called H-free.

The following results are known:

Theorem 1. DIM is solvable in polynomial time for

(i) S1,1,1-free graphs [7],

(ii) S1,2,3-free graphs [10],

(iii) S2,2,2-free graphs [9],

(iv) S1,2,4-free graphs [5],

(v) S2,2,3-free graphs [6],

(vi) P7-free graphs [3] (in this case even in linear time),

(vii) P8-free graphs [4].

In [9], it is conjectured that for every fixed i, j, k, DIM is solvable in polynomial time for
Si,j,k-free graphs (actually, an even stronger conjecture is mentioned in [9]); this includes
Pk-free graphs for k ≥ 9.

In this paper we show that DIM can be solved in polynomial time for S1,1,5-free graphs
(generalizing the corresponding result for P7-free graphs). The approach is based on that
described in [4], i.e. by fixing an edge in the possible e.d.s. and studying the corresponding
distance levels, and is developed thanks to that described in [9, 10], i.e., by seeing the
problem in terms of “coloring” and defining polynomially many families of feasible partial
colorings. The proposed solution considers a sequence of more and more general instances,
with respect to the assumption that distance levels could be empty, until to consider the
general case. In particular it seems that in view of a possible extension of the result for
S1,1,k-free graphs, for k ≥ 6, the main obstacle would be that of solving the very first
instances of the sequence.

2 Definitions and Basic Properties

2.1 Basic notions

Let G be a finite undirected graph without loops and multiple edges. Let V (G) or V
denote its vertex set and E(G) or E its edge set; let n = |V | and m = |E|. For v ∈ V , let
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N(v) := {u ∈ V : uv ∈ E} denote the open neighborhood of v, and let N [v] := N(v) ∪ {v}
denote the closed neighborhood of v. If xy ∈ E, we also say that x and y see each other,
and if xy 6∈ E, we say that x and y miss each other. A vertex set S is independent in G
if for every pair of vertices x, y ∈ S, xy 6∈ E. A vertex set Q is a clique in G if for every
pair of vertices x, y ∈ Q, x 6= y, xy ∈ E. For uv ∈ E let N(uv) := N(u) ∪ N(v) \ {u, v}
and N [uv] := N [u] ∪N [v].

For U ⊆ V , let G[U ] denote the subgraph of G induced by vertex set U . Clearly
xy ∈ E is an edge in G[U ] exactly when x ∈ U and y ∈ U ; thus, G[U ] can simply be
denoted by U (if understandable).

For A ⊆ V and B ⊆ V , A ∩ B = ∅, we say that: A 0©B if each vertex of A misses
each vertex of B; A 1©B if each vertex of A sees each vertex of B; A contacts B if some
vertex of A sees some vertex of B. For A = {a}, we simply denote A 1©B by a 1©B, and
correspondingly A 0©B by a 0©B, and correspondingly say that a contacts B. If for A′ ⊆ A,
A′ 0©(A \ A′), we say that A′ is isolated in G[A].

For graphs H1, H2 with disjoint vertex sets, H1+H2 denotes the disjoint union of H1,
H2, and for k ≥ 2, kH denotes the disjoint union of k copies of H. For example, 2P2 is
the disjoint union of two edges.

As already mentioned, a chordless path Pk, k ≥ 2, has k vertices, say v1, . . . , vk, and
k − 1 edges vivi+1, 1 ≤ i ≤ k − 1; the length of Pk is k − 1. We also denote it as
P = (v1, . . . , vk).

A chordless cycle Ck, k ≥ 3, has k vertices, say v1, . . . , vk, and k edges vivi+1, 1 ≤ i ≤
k − 1, and vkv1; the length of Ck is k.

Let Ki, i ≥ 1, denote the clique with i vertices. Let K4 − e or diamond be the graph
with four vertices, say v1, v2, v3, u, such that (v1, v2, v3) forms a P3 and u 1©{v1, v2, v3}; its
mid-edge is the edge uv2.

A butterfly has five vertices, say, v1, v2, v3, v4, u, such that v1, v2, v3, v4 induce a 2P2

with edges v1v2 and v3v4 (the peripheral edges of the butterfly), and u 1©{v1, v2, v3, v4}.
We often consider an edge e = uv to be a set of two vertices; then it makes sense to

say, for example, u ∈ e and e ∩ e′ 6= ∅, for an edge e′. For two vertices x, y ∈ V , let
distG(x, y) denote the distance between x and y in G, i.e., the length of a shortest path
between x and y in G. The distance between a vertex z and an edge xy is the length
of a shortest path between z and x, y, i.e., distG(z, xy) = min{distG(z, v) : v ∈ {x, y}}.
The distance between two edges e, e′ ∈ E is the length of a shortest path between e and
e′, i.e., distG(e, e

′) = min{distG(u, v) : u ∈ e, v ∈ e′}. In particular, this means that
distG(e, e

′) = 0 if and only if e ∩ e′ 6= ∅.
An edge subset M ⊆ E is an induced matching if the pairwise distance between its

members is at least 2, that is, M is isomorphic to kP2 for k = |M |. Obviously, if M is a
d.i.m. then M is an induced matching.

Clearly, G has a d.i.m. if and only if every connected component of G has a d.i.m.;
from now on, connected components are mentioned as components.

Note that if G has a d.i.m. M , and V (M) denotes the vertex set of M then V \V (M)
is an independent set, say I, i.e.,

V has the partition V = V (M) ∪ I. (1)

From now on, all vertices in I are colored white and all vertices in V (M) are colored
black. According to [9], we also use the following notions: A partial black-white coloring
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of V (G) is feasible if the set of white vertices is an independent set in G and every black
vertex has at most one black neighbor. A complete black-white coloring of V (G) is feasible
if the set of white vertices is an independent set in G and every black vertex has exactly
one black neighbor. Clearly, M is a d.i.m. of G if and only if the black vertices V (M) and
the white vertices V \ V (M) form a complete feasible coloring of V (G).

2.2 Reduction steps, forbidden subgraphs, forced edges, and excluded

edges

Various papers on this topic introduced and applied some forcing rules for reducing the
graph G to a subgraph G′ such that G has a d.i.m. if and only if G′ has a d.i.m., based
on the condition that for a d.i.m. M , V has the partition V = V (M) ∪ I such that all
vertices in V (M) are black and all vertices in I are white (recall (1)).

A vertex v ∈ V is forced to be black if for every d.i.m. M of G, v ∈ V (M). Analogously,
a vertex v ∈ V is forced to be white if for every d.i.m. M of G, v /∈ V (M).

Clearly, if uv ∈ E and if u, v are forced to be black, then uv is contained in every
(possible) d.i.m. of G.

An edge e ∈ E is a forced edge of G if for every d.i.m. M of G, e ∈ M . Analogously,
an edge e ∈ E is an excluded edge of G if for every d.i.m. M of G, e 6∈ M .

For the correctness of the reduction steps, we have to argue that G has a d.i.m. if and
only if the reduced graph G′ has one (provided that no contradiction arises in the vertex
coloring, i.e., it is feasible).

Then let us introduce two reduction steps which will be applied later.

Vertex Reduction. Let u ∈ V (G). If u is forced to be white, then

(i) color black all neighbors of u, and

(ii) remove u from G.

Let G′ be the reduced subgraph. Clearly, Vertex Reduction is correct, i.e., G has a
d.i.m. if and only if G′ has a d.i.m.

Edge Reduction. Let uv ∈ E(G). If u and v are forced to be black, then

(i) color white all neighbors of u and of v (other than u and v), and

(ii) remove u and v from G.

Again, clearly, Edge Reduction is correct, i.e., G has a d.i.m. if and only if the reduced
subgraph G′ has a d.i.m.

The subsequent notions and observations lead to some possible reductions (some of
them are mentioned e.g. in [2, 3, 4]).

Observation 1 ([2, 3, 4]). Let M be a d.i.m. of G.

(i) M contains at least one edge of every odd cycle C2k+1 in G, k ≥ 1, and exactly one
edge of every odd cycle C3, C5, C7 in G.
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(ii) No edge of any C4 can be in M .

(iii) For each C6 either exactly two or none of its edges are in M .

Proof. See e.g. Observation 2 in [3].

In what follows, we will also refer to Observation 1 (i) (with respect to C3) as to the
triangle-property, and to Observation 1 (ii) as to the C4-property.

Since by Observation 1 (i), every triangle contains exactly one M -edge, and the pair-
wise distance of M -edges is at least 2, we have:

Corollary 1. If G has a d.i.m. then G is K4-free.

Assumption 1. From now on, by Corollary 1, we assume that the input graph is
K4-free (else it has no d.i.m.).

Clearly, it can be checked (directly) in polynomial time whether the input graph is
K4-free.

Recall that a d.i.m. M in G is an induced matching, and the distance between every
pair of edges in M is at least 2 (which is the distance property). By Observation 1 (i) with
respect to C3 and the distance property, we have the following:

Observation 2. The mid-edge of any induced diamond in G and the two peripheral edges
of any induced butterfly in G are forced edges of G.

Assumption 2. From now on, by Observation 2, we assume that the input graph is
(diamond,butterfly)-free.

In particular, we can apply the Edge Reduction to each mid-edge of any induced dia-
mond and to each peripheral edge of any induced butterfly; that can be done in polynomial
time.

2.3 The distance levels of an M-edge xy in a P3

If for xy ∈ E, an edge e ∈ E is contained in every d.i.m. M of G with xy ∈ M , we say
that e is an xy-forced M -edge, and analogously, if an edge e ∈ E is contained in no d.i.m.
M of G with xy ∈ M , we say that e is xy-excluded. The Edge Reduction for forced edges
can also be applied for xy-forced edges (then, in the unsuccessful case, G has no d.i.m.
containing xy), and correspondingly for xy-forced white vertices (resulting from the black
color of x and y), the Vertex Reduction can be applied.

Based on [4], we first describe some general structure properties for the distance levels
of an edge in a d.i.m. M of G. Since G is (K4, diamond, butterfly)-free, we have:

Observation 3. For every vertex v of G, N(v) is the disjoint union of isolated vertices
and at most one edge. Moreover, for every edge xy ∈ E, there is at most one common
neighbor of x and y.

Since it is trivial to check whether G has a d.i.m. M with exactly one edge, from now
on we can assume that |M | ≥ 2. Since G is connected and butterfly-free, we have:

Observation 4. If |M | ≥ 2 then there is an edge in M which is contained in a P3 of G.
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Proof. Let xy ∈ M and assume that xy is not part of an induced P3 of G. Since G is
connected and |M | ≥ 2, (N(x) ∪N(y)) \ {x, y} 6= ∅, and since we assume that xy is not
part of an induced P3 of G and G is K4- and diamond-free, there is exactly one neighbor of
xy, namely a common neighbor, say z of x and y. Again, since |M | ≥ 2, z has a neighbor
a /∈ {x, y}, and since G is K4- and diamond-free, a, x, y, z induce a paw. Clearly, the edge
za is xy-excluded and has to be dominated by a second M -edge, say ab ∈ M but now,
since G is butterfly-free, zb /∈ E. Thus, z, a, b induce a P3 in G, and Observation 4 is
shown.

Recall [4] for Observation 4. Let xy ∈ M be an M -edge for which there is a vertex r
such that {r, x, y} induce a P3 with edge rx ∈ E. By the assumption that xy ∈ M , we
have that x and y are black, and it could lead to a feasible xy-coloring (if no contradiction
arises).

Let N0(xy) := {x, y} and for i ≥ 1, let

Ni(xy) := {z ∈ V : distG(z, xy) = i}

denote the distance levels of xy. We consider a partition of V into Ni = Ni(xy), i ≥ 0,
with respect to the edge xy (under the assumption that xy ∈ M).

Recall that by (1), V = V (M) ∪ I is a partition of V where V (M) is the set of black
vertices and I is the set of white vertices which is independent.

Since we assume that xy ∈ M (and is an edge in a P3), clearly, N1 ⊆ I and thus:

N1 is an independent set of white vertices. (2)

Moreover, no edge between N1 and N2 is in M . Since N1 ⊆ I and all neighbors of
vertices in I are in V (M), we have:

N2 is a set of black vertices and G[N2] is the disjoint union of edges and isolated vertices.

(3)

Let M2 denote the set of edges uv ∈ E with u, v ∈ N2 and let S2 = {u1, . . . , uk} denote
the set of isolated vertices in N2; N2 = V (M2) ∪ S2 is a partition of N2. Obviously:

M2 ⊆ M and S2 ⊆ V (M). (4)

Obviously, by (4), we have:

Every edge in M2 is an xy-forced M -edge. (5)

Thus, from now on, after applying the Edge Reduction for M2-edges, we can assume
that V (M2) = ∅, i.e., N2 = S2 = {u1, . . . , uk}. For every i ∈ {1, . . . , k}, let u′i ∈ N3

denote the M -mate of ui (i.e., uiu
′
i ∈ M). Let M3 = {uiu

′
i : 1 ≤ i ≤ k} denote the set of

M -edges with one endpoint in S2 (and the other endpoint in N3). Obviously, by (4) and
the distance condition for a d.i.m. M , the following holds:

No edge with both ends in N3 and no edge between N3 and N4 is in M. (6)
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As a consequence of (6) and the fact that every triangle contains exactly one M -edge
(recall Observation 1 (i)), we have:

For every C3 abc with a ∈ N3, and b, c ∈ N4, bc ∈ M is an xy-forced M -edge. (7)

This means that for the edge bc, the Edge Reduction can be applied, and from now
on, we can assume that there is no such triangle abc with a ∈ N3 and b, c ∈ N4, i.e., for
every edge uv ∈ E in N4:

N(u) ∩N(v) ∩N3 = ∅. (8)

According to (4) and the assumption that V (M2) = ∅ (recall N2 = {u1, . . . , uk}), let:

Tone := {t ∈ N3 : |N(t) ∩N2| = 1},

Ti := Tone ∩N(ui), 1 ≤ i ≤ k, and

S3 := N3 \ Tone.

By definition, Ti is the set of private neighbors of ui ∈ N2 in N3 (note that u′i ∈ Ti),
T1 ∪ . . . ∪ Tk is a partition of Tone, and Tone ∪ S3 is a partition of N3.

Observation 5 ([4]). The following statements hold:

(i) For all i ∈ {1, . . . , k}, Ti ∩ V (M) = {u′i}.

(ii) For all i ∈ {1, . . . , k}, Ti is the disjoint union of vertices and at most one edge.

(iii) G[N3] is bipartite.

(iv) S3 ⊆ I, i.e., S3 is an independent subset of white vertices.

(v) If a vertex ti ∈ Ti sees two vertices in Tj , i 6= j, i, j ∈ {1, . . . , k}, then uiti ∈ M is
an xy-forced M -edge.

Proof. (i): Holds by definition of Ti and by the distance condition of a d.i.m. M .
(ii): Holds by Observation 3.
(iii): Follows by Observation 1 (i) since every odd cycle in G must contain at least one
M -edge, and by (6).
(iv): If v ∈ S3 := N3 \ Tone, i.e., v sees at least two M -vertices then clearly, v ∈ I, and
thus, S3 ⊆ I is an independent subset (recall that I is an independent set).
(v): Suppose that t1 ∈ T1 sees a and b in T2. If ab ∈ E then u2, a, b, t1 would induce a
diamond in G. Thus, ab /∈ E and now, u2, a, b, t1 induce a C4 in G; by Observation 1 (ii),
no edge in the C4 is in M , and by (6), the only possible M -edge for dominating t1a, t1b is
u1t1, i.e., t1 = u′1.

By Observation 5 (iv) and the Vertex Reduction for the white vertices of S3, we can
assume:

(A1) S3 = ∅, i.e., N3 = T1 ∪ . . . ∪ Tk.

By Observation 5 (v), we can assume:
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(A2) For i, j ∈ {1, . . . , k}, i 6= j, every vertex ti ∈ Ti has at most one neighbor in Tj.

In particular, if for some i ∈ {1, . . . , k}, Ti = ∅, then there is no d.i.m. M of G with
xy ∈ M , and if |Ti| = 1, say Ti = {ti}, then uiti is an xy-forced M -edge. Thus, we can
assume:

(A3) For every i ∈ {1, . . . , k}, |Ti| ≥ 2.

Let us say that a vertex t ∈ Ti, 1 ≤ i ≤ k, is an out-vertex of Ti if it is adjacent to
some vertex of Tj with j 6= i, or it is adjacent to some vertex of N4, and t is an in-vertex
of Ti otherwise.

For finding a d.i.m. M with xy ∈ M , one can remove all but one in-vertices; that
can be done in polynomial time. In particular, if there is an edge between two in-vertices
t1t2 ∈ E, t1, t2 ∈ Ti, then either t1 or t2 is black, and thus, Ti is completely colored. Thus,
let us assume:

(A4) For every i ∈ {1, . . . , k}, Ti has at most one in-vertex.

Observation 6. If v ∈ Ni for i ≥ 4 then v is an endpoint of an induced P6, say with
vertices v, v1, v2, v3, v4, v5 such that v1, v2, v3, v4, v5 ∈ {x, y} ∪ N1 ∪ . . . ∪ Ni−1 and with
edges vv1 ∈ E, v1v2 ∈ E, v2v3 ∈ E, v3v4 ∈ E, v4v5 ∈ E. Analogously, if v ∈ N3 then v is
an endpoint of a corresponding induced P5.

Proof. If i ≥ 5 then clearly there is such a P6. Thus, assume that v ∈ N4. Then v1 ∈ N3

and v2 ∈ N2. Recall that y, x, r induce a P3. If v2r ∈ E then v, v1, v2, r, x, y induce a
P6. Thus assume that v2r /∈ E. Let v3 ∈ N1 be a neighbor of v2. Now, if v3x ∈ E then
v, v1, v2, v3, x, r induce a P6, and if v3x /∈ E but v3y ∈ E then v, v1, v2, v3, y, x induce a P6.
Analogously, if v ∈ N3 then v is an endpoint of an induced P5 (which could be part of the
P6 above). Thus, Observation 6 is shown.

Observation 7. There is no S1,1,1 in G[N3] with vertices a, b, c, d and center a such that
d ∈ Ti, 1 ≤ i ≤ k, while no vertex of {a, b, c} belongs to Ti.

Proof. Suppose to the contrary that such an S1,1,1 exists in G[N3]. By Observation 6, the
vertex d is the endpoint of a P5 whose vertices are d, ui, v1, v2, v3 where ui is a neighbor of
d in N2 and every vertex of {v1, v2, v3} belongs to N1 ∪ {x, y}. Since no vertex of {a, b, c}
is adjacent to a vertex of {ui, v1, v2, v3}, it follows that {a, b, c, d, ui, v1, v2, v3} induces a
S1,1,5 in G with center a, which is a contradiction.

By Observation 7, we have:

Observation 8. Let ti be a vertex of Ti. The following statements hold:

(i) If ti ∈ Ti is part of an edge in Ti and ti has a neighbor in Tj, i 6= j, then ti has no
other neighbor in N3 \ (Ti ∪ Tj).

(ii) If ti ∈ Ti is not part of an edge in Ti and ti has two neighbors in Tj ∪ Ts (possibly
j = s), then ti has no other neighbors in N3 \ (Tj ∪ Ts).
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Proof. (i): Without loss of generality, let t1t
′
1 ∈ E for t1, t

′
1 ∈ T1, and suppose to the

contrary that t1 has two neighbors ti ∈ Ti, tj ∈ Tj, i 6= j, i, j ≥ 2. Since G is diamond-free,
t′1ti /∈ E and t′1tj /∈ E, and since G is butterfly-free, titj /∈ E. But then t1, t

′
1, ti, tj (with

center t1) induce an S1,1,1 in N3, which is a contradiction.
(ii): Now without loss of generality, t1 ∈ T1 is not part of an edge in T1. Suppose to the
contrary that t1 has three neighbors ti ∈ Ti, tj ∈ Tj , th ∈ Th (possibly i = j) and h 6= i, j,
then clearly, ti, tj , th is independent (else there would be a triangle and thus, an M -edge
in N3 – recall (6)). But then t1, ti, tj , th (with center t1) induce an S1,1,1 in N3, which is
a contradiction.

Observation 9. Assume that G has a d.i.m. M with xy ∈ M . Then there are no three
edges between Ti and Tj , i 6= j, and if there are two edges between Ti and Tj , say titj ∈ E
and t′it

′
j ∈ E for ti, t

′
i ∈ Ti and tj, t

′
j ∈ Tj then any other vertex in Ti or Tj is white.

Proof. First, suppose to the contrary that there are three edges between T1 and T2, say
t1t2 ∈ E, t′1t

′
2 ∈ E, and t′′1t

′′
2 ∈ E for ti, t

′
i, t

′′
i ∈ Ti, i = 1, 2. Then t1 is black if and only if

t2 is white, t′1 is black if and only if t′2 is white, and t′′1 is black if and only if t′′2 is white.
Without loss of generality, assume that t1 is black, and t2 is white. Then t′1 is white, and
t′2 is black, but now, t′′1 and t′′2 are white, which is a contradiction.

Now, if there are exactly two such edges between T1 and T2, say t1t2 ∈ E, t′1t
′
2 ∈ E,

then again, t1 or t′1 is black as well as t2 or t′2 is black, and thus, every other vertex in T1

or T2 is white.

Thus Observation 9 is shown.

By Observation 9, we can assume:

(A5) For i, j ∈ {1, . . . , k}, i 6= j, there are at most two edges between Ti and Tj .

Then let us introduce the following forcing rules (which are correct). Since no edge in
N3 is in M (recall (6)), we have:

(R1) All N3-neighbors of a black vertex in N3 must be colored white, and all N3-neighbors
of a white vertex in N3 must be colored black.

Moreover, we have:

(R2) Every Ti, i ∈ {1, . . . , k}, should contain exactly one vertex which is black. Thus, if
t ∈ Ti is black then all the remaining vertices in Ti \ {t} must be colored white.

(R3) If all but one vertices of Ti, 1 ≤ i ≤ k, are white and the final vertex t ∈ Ti is not
yet colored, then t must be colored black.

Since no edge between N3 and N4 is in M (recall (6)), we have:

(R4) For every edge st ∈ E with t ∈ N3 and s ∈ N4, s is white if and only if t is black
and vice versa.

Subsequently, for checking if G has a d.i.m. M with xy ∈ M , we consider the cases
N4 = ∅ and N4 6= ∅.
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3 The Case N4 = ∅

Let Axy := {x, y} ∪ N1 ∪ N2 ∪ N3 and Bxy := V \ Axy. In this section we show that
for the case N4 = ∅ (i.e., Bxy = ∅), one can check in polynomial time whether G has a
d.i.m. M with xy ∈ M ; we consider the feasible xy-colorings for G[Axy]. Recall that for
every edge uv ∈ M , u and v are black, for I = V (G) \ V (M), every vertex in I is white,
N2 = S2 = {u1, . . . , uk} and all ui, 1 ≤ i ≤ k, are black, Ti = N(ui) ∩ N3, and recall
assumptions (A1)-(A5) and rules (R1)-(R4). In particular, S3 = ∅, i.e., N3 = T1∪ . . .∪Tk.

Clearly, in the case N4 = ∅, all the components of G[S2 ∪ N3] can be independently
colored. G[{ui} ∪ Ti] is a trivial component in G[S2 ∪N3] if Ti 0©Tj for every j 6= i. Obvi-
ously, checking a possible d.i.m. M with xy ∈ M can be done easily (and independently)
for trivial components; for a vertex u′i ∈ Ti let uiu

′
i ∈ M .

From now on we can assume that every component K in G[S2 ∪N3] is nontrivial, i.e.,
K contains at least two Ti, Tj , i 6= j which contact to each other. Every component with
at most four S2-vertices has a polynomial number of feasible xy-colorings. Thus, we can
focus on components with at least five S2-vertices.

Lemma 1. There is no P5 (t1, t2, t3, t4, t5) in G[N3] with vertices ti ∈ Ti, 1 ≤ i ≤ 5.

Proof. Suppose to the contrary that there is a P5 (t1, t2, t3, t4, t5) in G[N3] with vertices
ti ∈ Ti, 1 ≤ i ≤ 5. Let q1 ∈ N1 be an N1-neighbor of u1, and without loss of generality,
assume that q1x ∈ E.

Since q1, x, u5, u1, t1, t2, t3, t4 (with center q1) do not induce an S1,1,5 in G, we have
q1u5 /∈ E.

Since q1, x, u1, u3, t3, t4, t5, u5 (with center q1) do not induce an S1,1,5 in G, we have
q1u3 /∈ E.

Since t4, t5, u4, t3, t2, t1, u1, q1 (with center t4) do not induce an S1,1,5 in G, we have
q1u4 ∈ E.

But then q1, x, u4, u1, t1, t2, t3, u3 (with center q1) induce an S1,1,5 in G, which is a
contradiction.

Thus, Lemma 1 is shown.

Lemma 2. If there is a P3 (t1, t2, t3), ti ∈ Ti, 1 ≤ i ≤ 3, in a nontrivial component of
G[S2 ∪N3] then there is no other edge titj ∈ E, ti ∈ Ti, tj ∈ Tj, i, j /∈ {1, 2, 3}.

Proof. Suppose to the contrary that there is another edge, say t4t5 ∈ E for t4 ∈ T4 and
t5 ∈ T5. Let u4 ∈ S2 with u4t4 ∈ E. Let u2 ∈ S2 with u2t2 ∈ E and let q2 ∈ N1 be
a neighbor of u2. Clearly, u2ti /∈ E for i ∈ {1, 3, 4, 5} and u4tj /∈ E for j ∈ {1, 2, 3, 5}.
If u2 and u4 do not have any common neighbor in N1 then there would be an S1,1,5 in
G[{x, y}∪N1∪{u2, u4}] with center t2. Thus, assume that q2u4 ∈ E. If {t1, t2, t3} 0©{t4, t5}
then t2, t1, t3, u2, q2, u4, t4, t5 (with center t2) would induce an S1,1,5. Thus, {t4, t5} contacts
{t1, t2, t3}. Assume without loss of generality that t4 is black. Then t5 is white.

Case 1. t2 is black.
Then t1, t3 are white, and the only possible edges between {t1, t2, t3} and {t4, t5} are

t1t4, t3t4, or t2t5.
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If t2t5 ∈ E then t2, t1, t3, t5 (with center t2) would induce an S1,1,1. Thus, by Observa-
tion 7, t2t5 /∈ E.

If t1t4 ∈ E and t3t4 ∈ E then t4, t1, t3, t5 (with center t4) would induce an S1,1,1.
Thus, by Observation 7, either t1t4 /∈ E or t3t4 /∈ E; without loss of generality, assume
that t3t4 ∈ E and t1t4 /∈ E. But then (t1, t2, t3, t4, t5) induce a P5 in G[N3], which is a
contradiction to Lemma 1.

Case 2. t2 is white.
Then t1, t3 are black, and the only possible edges between {t1, t2, t3} and {t4, t5} are

t2t4, t1t5, or t3t5.
If t2t4 ∈ E then t2, t1, t3, t4 (with center t2) would induce an S1,1,1. Thus, by Observa-

tion 7, t2t4 /∈ E.
If t1t5 ∈ E and t3t5 ∈ E then t5, t1, t3, t4 (with center t5) would induce an S1,1,1.

Thus, by Observation 7, either t1t5 /∈ E or t3t5 /∈ E; without loss of generality, assume
that t3t5 ∈ E and t1t5 /∈ E. But then (t1, t2, t3, t5, t4) induce a P5 in G[N3], which is a
contradiction to Lemma 1.

Thus, Lemma 2 is shown.

Lemma 3. If there is a P3 (t1, t2, t3), ti ∈ Ti, 1 ≤ i ≤ 3, in a nontrivial component K of
G[S2 ∪N3] then there are at most polynomially many feasible xy-colorings of K.

Proof. Let K = G[{u1, . . . , up} ∪ T1 ∪ . . . ∪ Tp] be a nontrivial component in G[S2 ∪N3],
and without loss of generality, assume that (t1, t2, t3) is a P3 with ti ∈ Ti, 1 ≤ i ≤ 3.
By Lemma 2, any other Ti, i ≥ 4, contacts T1 ∪ T2 ∪ T3. If Ti contacts a white vertex
t ∈ T1 ∪ T2 ∪ T3, say tit ∈ E for ti ∈ Ti, then ti is forced to be black, and thus, Ti is
completely colored. Now we consider Ti which only contacts a black vertex in T1∪T2∪T3.

Case 1. t2 is black.
Then let t′1 ∈ T1 and t′3 ∈ T3 be black vertices. By Observations 7 and 8, each of

t′1, t2, t
′
3 contacts at most two Ti, i ≥ 4. Thus, there are at most n6 feasible xy-colorings

of K. In this case, it can be shown even more, namely t′1 as well as t′3 have at most
one such neighbor: Suppose to the contrary that t′3 has two neighbors ti, tj. Then ti, tj
are white. Clearly, titj /∈ E, and t2ti /∈ E, t2tj /∈ E (else there is an S1,1,1 in N3 with
center t2). Clearly, t3t

′
3 /∈ E (else there is an S1,1,1 in N3 with center t′3). But now,

t′3, ti, tj, u3, t3, t2, t1, u1 (with center t′3) induce an S1,1,5, which is a contradiction. Thus,
there are at most n2 feasible xy-colorings of K.

Case 2. t2 is white.
Then t1, t3 are black, and let t′2 ∈ T2 be a black vertex. Clearly, t1 and t3 have at most

one neighbor in some Ti, and t′2 has at most two such neighbors. Thus, there are at most
n4 feasible xy-colorings of K.

Thus, Lemma 3 is shown.

From now on we can assume:

(A6) There is no P3 (ti, tj , th), ti ∈ Ti, tj ∈ Tj , th ∈ Th, in any nontrivial component K of
G[S2 ∪N3].

We first consider cycles in K: Let (t1, (u1), t
′
1, t2, (u2), t

′
2, . . . , th, (uh), t

′
h) with h ≥ 2

be a cycle in G[S2 ∪N3]; if tit
′
i ∈ E then ui is not part of the cycle.
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Lemma 4. Assume that G has a d.i.m. M with xy ∈ M . Then for any cycle (t1, (u1),
t′1, t2, (u2), t

′
2, . . . , th, (uh), t

′
h) with h ≥ 2 and ti, t

′
i ∈ Ti such that t′iti+1 ∈ E (i+ 1 modulo

h), either ti or t′i is black, and thus, any other vertex in Ti is white.

Proof. Recall Observation 9 for h = 2. Now assume that h ≥ 3 and suppose to the
contrary that t1 and t′1 are white. Then t2 is black, t′2 is white, t3 is black and so on until
finally, th is black, t′h is white and the edge t′ht1 consists of two white vertices, which is a
contradiction. Thus, either ti or t

′
i is black, and thus, any other vertex in Ti is white.

Thus, Lemma 4 is shown.

Every such cycle in K has at most two feasible xy-colorings. Now, for coloring K,
we start with a cycle C in K and one of the two feasible xy-colorings of C. Then every
out-vertex t′′i ∈ Ti having a neighbor in some Tj which is not part of C is forced to be
white since either ti or t

′
i (which are part of the cycle C) are black (and by (A6), the black

vertex of ti, t
′
i has no other neighbor in some Tj). This leads to a black-forced neighbor

tj ∈ Tj , h+1 ≤ j ≤ p, of t′′i , and it continues in the same way with every other contact in
K. For the second feasible xy-coloring of C, it will be done in the same way.

Thus, the DIM problem for K (i.e., there is either a d.i.m. for K or there is a contra-
diction) is solved in polynomial time.

If K has no chordless cycle then DIM for K can be solved in polynomial time since
in this case, K is K4-free chordal and thus, the treewidth and the clique-width of K is
bounded. In [7], it was mentioned that DIM is solvable in polynomial time for graph
classes with bounded clique-width.

Summarizing, in the case N4 = ∅, the previous results show that DIM for K has a
polynomial time solution since all the components of G[S2 ∪ N3] can be independently
colored. This leads to:

Theorem 2. If N4 = ∅ then one can check in polynomial time whether G has a d.i.m.
containing xy.

4 The Case N4 6= ∅

Recall Axy := {x, y} ∪N1 ∪N2 ∪N3 and Bxy := V \ Axy.

Next we show:

Lemma 5. G[Bxy \N4] is S1,1,1-free.

Proof. Suppose to the contrary that there is an S1,1,1 in G[Bxy \ N4], say with vertices
a, b, c, d and edges ab, ac, ad ∈ E (i.e., center a). Assume that the minimum distance level
containing a vertex of a, b, c, d is Np, p ≥ 5, and let z ∈ Np−1 be a neighbor of the S1,1,1

and (z, z2, . . . , z6) be a P6 in G[{x, y} ∪N1 ∪ . . . ∪Np−1] as in Observation 6.
First assume that za ∈ E. Since z, a, b, c do not induce a diamond, we have zb /∈ E

or zc /∈ E, and analogously, z, a, b, d as well as z, a, c, d do not induce a diamond. Then
z is adjacent to at most one of b, c, d, say without loss of generality, zb ∈ E, zc /∈ E,
and zd /∈ E. But then a, c, d, z, z2 , . . . , z5 (with center a) induce an S1,1,5, which is a
contradiction. Thus, za /∈ E.
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Now, without loss of generality, assume that zb ∈ E. Since z, b, c, z2, . . . , z6 (with
center z) do not induce an S1,1,5, we have zc /∈ E, and analogously, since z, b, d, z2, . . . , z6
(with center z) do not induce an S1,1,5, we have zd /∈ E. But now, a, c, d, b, z, z2 , z3, z4
(with center a) induce an S1,1,5, which is a contradiction.

Thus, Lemma 5 is shown.

4.1 The Case |N2| ≤ 4

Lemma 6. If |N2| ≤ 4, then G[Axy] has at most O(n4) feasible xy-colorings.

Proof. This directly follows by the above structure properties since |N2| ≤ 4 say N3 =
T1∪T2∪T3∪T4. In particular, for each (t1, t2, t3, t4) ∈ T1×T2×T3×T4, one can assign the
color black to vertices t1, t2, t3, t4 (and then assign the color white to the remaining vertices
of T1 ∪ T2 ∪ T3 ∪ T4), and check if {xy, u1t1, u2t2, u3t3, u4t4} is a d.i.m. of G[Axy].

Lemma 7. If the colors of all vertices in G[Axy ] are fixed then the colors of all vertices
in N4 are forced.

Proof. Let v ∈ N4 and let w ∈ N3 be a neighbor of v. Since by (6), every edge between
N3 and N4 is xy-excluded, we have: If w is white then v is black, and if w is black then v
is white.

Theorem 3. If |N2| ≤ 4 then one can check in polynomial time whether G has a d.i.m.
containing xy.

Proof. The proof is given by the following procedure:

Procedure 4.1.

Input: A connected (S1,1,5)-free graph G = (V,E), and
an edge xy ∈ E, which is part of a P3 in G.

Task: Return either a d.i.m. M with xy ∈ M
or a proof that G has no d.i.m. containing xy.

(a) if N4 = ∅ then apply the approach described in Section 3. Then return either a
d.i.m. M with xy ∈ M or “G has no d.i.m. containing xy”.

(b) if N4 6= ∅ then for Axy := {x, y} ∪N1 ∪N2 ∪N3 and Bxy := V \ Axy do

(b.1) Compute all black-white xy-colorings of G[Axy] by Lemma 6. If no such xy-
coloring without contradiction exists, then return “G has no d.i.m. containing
xy”

(b.2) for each xy-coloring of G[Axy ] do

Derive a partial xy-coloring of G[Bxy] by the forcing rules; in particular all
vertices of N4 will be colored by Lemma 7 according to the xy-coloring of
G[Axy];

if a contradiction arises in vertex coloring then proceed to the next xy-
coloring of G[Axy]

else apply the algorithm of Cardoso et al. in [7] (see Theorem 1 (i)) to
determine if G[Bxy \N4] (which is claw-free by Lemma 5) has a d.i.m.
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if G[Bxy \ N4] has a d.i.m. then STOP and return the xy-coloring of G
derived by the xy-coloring of G[X] and by such a d.i.m. of G[Bxy].

(b.3) STOP and return “G has no d.i.m. containing xy”.

The correctness of Procedure 4.1 follows from the structural analysis of S1,1,5-free
graphs with a d.i.m. and by the results in the present section.

The polynomial time bound of Procedure 4.1 follows from the fact that Step (a) can
be done in polynomial time by the results in Section 3, and Step (b) can be done in
polynomial time by Lemma 6, since the forcing rules can be executed in polynomial time,
and since the solution algorithm of Cardoso et al. (see Theorem 1 (i)) can be executed in
polynomial time. Thus, Theorem 3 is shown.

4.2 The Case |N2| ≥ 5

Lemma 8. If |N2| ≥ 5 and there is an end-vertex ui ∈ N2 of a P4 (ui, ti, z1, z2) with
ti ∈ Ti, z1 ∈ N4, and z2 ∈ N4 ∪N5 then there exists a vertex qi ∈ N1 such that qiui ∈ E
and qi has a second neighbor uj ∈ N2, i 6= j, i.e., ui and uj have a common N1-neighbor.

Proof. Without loss of generality, assume that (u1, t1, z1, z2) is a P4 with u1 ∈ S2, t1 ∈ T1,
z1 ∈ N4, and z2 ∈ N4∪N5. Let q1 ∈ N1 be a neighbor of u1. Recall that by Observation 3,
x and y have at most one common neighbor in N1, and recall that |N2| ≥ 5 in this section.

First assume that q1 is a common neighbor of x and y. Then there are at least two
vertices u2, u3 ∈ N2 with N1-neighbors q2, q3 which see either the same x or y (but not
both of them); without loss of generality, assume that q2u2 ∈ E and q3u3 ∈ E for q2x ∈ E
and q3x ∈ E. Suppose to the contrary that u2, u3 do not see q1 (else u1 has a common
N1-neighbor with u2 or u3).

If u3q2 ∈ E then, since (q2, u2, u3, x, q1, u1, t1, z1) do not induce an S1,1,5 with center
q2, we have u1q2 ∈ E, i.e., u1 and u2 have a common N1-neighbor q2.

If u3q2 /∈ E and u3q3 ∈ E, q2u2 ∈ E, u2q3 /∈ E with q2x ∈ E and q3x ∈ E then,
since (x, q2, q3, q1, u1, t1, z1, z2) do not induce an S1,1,5 with center x, we have u1q2 ∈ E or
u1q3 ∈ E, i.e., u1 and u2 have a common N1-neighbor q2 or u1 and u3 have a common
N1-neighbor q3.

Next assume that q1 is no common neighbor of x and y, say without loss of generality,
q1x ∈ E and q1y /∈ E. Suppose to the contrary that u2 does not see q1 (else u1 has a
common N1-neighbor with u2). Let q2 ∈ N1 with q2u2 ∈ E. If q2x ∈ E and q2y /∈ E then,
since (x, q2, y, q1, u1, t1, z1, z2) do not induce an S1,1,5 with center q2, we have u1q2 ∈ E,
i.e., u1 and u2 have a common N1-neighbor q2.

Now assume that q2y ∈ E. First assume that q2x ∈ E and q2y ∈ E. If there are two
neighbors u2, u3 ∈ N2 of q2 which do not see q1 then, since (q2, u2, u3, x, q1, u1, t1, z1) do
not induce an S1,1,5 with center q2, we have u1q2 ∈ E, i.e., u1 and u2 have a common
N1-neighbor q2. Now assume that q2 has only one N2-neighbor u2. Clearly, every other
vertex ui, i ≥ 3, in N2 has an N1-neighbor which sees only y.

Assume that q3u3 ∈ E and q3u4 ∈ E as well as q3y ∈ E, and suppose to the contrary
that u3, u4 do not see q1. Then, since (q3, u3, u4, y, x, q1, u1, t1) do not induce an S1,1,5

with center q3, we have u1q3 ∈ E, i.e., u1 and u3 have a common N1-neighbor q3.
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Finally assume that q3u3 ∈ E and q3u4 /∈ E, q4u4 ∈ E and q4u3 /∈ E, as well as
q3y ∈ E and q4y ∈ E. Then, since (y, q3, q4, x, q1, u1, t1, z1) do not induce an S1,1,5 with
center q3, we have u1q3 ∈ E or u1q4 ∈ E, i.e., u1 and u3 have a common N1-neighbor q3,
or u1 and u4 have a common N1-neighbor q4.

Thus, Lemma 8 is shown.

Lemma 9. If |N2| ≥ 5 then there is no P5 (ui, ti, z1, z2, z3) with ui ∈ N2, ti ∈ Ti, z1 ∈ N4,
z2 ∈ N4 ∪N5, and z3 ∈ N4 ∪N5 ∪N6.

Proof. Suppose to the contrary that there is such a P5 (u1, t1, z1, z2, z3) with u1 ∈ N2,
t1 ∈ T1, z1 ∈ N4, z2 ∈ N4 ∪N5, and z3 ∈ N4 ∪N5 ∪N6. Let q1 ∈ N1 with q1u1 ∈ E, and
without loss of generality, let q1x ∈ E. By Lemma 8, there is a second vertex u′ ∈ N2

with q1u
′ ∈ E. But then q1, x, u

′, u1, t1, z1, z2, z3 (with center q1) induce an S1,1,5, which
is a contradiction.

Thus, Lemma 9 is shown.

Since N6 6= ∅ would lead to such a P5 as in Lemma 9, we have:

Lemma 10. If |N2| ≥ 5 then N6 = ∅.

Thus, from now on, we can assume that Bxy = N4 ∪N5.

4.2.1 The Case N5 = ∅

In this case, we show that one can check in polynomial time whether G has a d.i.m. M
with xy ∈ M . Recall Lemma 7.

Let K be a nontrivial component of G[S2 ∪ N3 ∪ N4]. Clearly, K can have several
components in G[S2 ∪N3] which are connected by some N4-vertices. K can be colored by
starting with a component in G[S2 ∪N3] which is part of K.

For every i ∈ {1, . . . , k}, let

Ext(Ti) := N(Ti) ∩N4.

Since N5 = ∅ and by (6), every edge between N3 and N4 is xy-excluded, we have:

If v ∈ N4 with N(v) ∩N4 = ∅ then v is white. (9)

Thus, from now on, by the Vertex Reduction, we can assume that every vertex in N4

has a neighbor in N4. Recall that G is (diamond,butterfly)-free and therefore triangles are
disjoint. We first claim:

Lemma 11. G[N4] is P3-free.

Proof. Suppose to the contrary that there is a P3 (a, b, c) in G[N4], and let t1 ∈ T1 be a
neighbor of b in N3. Recall that by (8), t1a /∈ E and t1c /∈ E (and recall Observation 6
where t1 is the endpoint of a P5). But then, b, a, c, t1, u1, q1, x, y (with center b) induce an
S1,1,5 if for the N1-neighbor q1 of u1, q1x ∈ E and q1y /∈ E, and correspondingly for the
other cases of q1-neighbors (since y, x, r induce a P3).
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Thus, Lemma 11 is shown.

Now let us consider an edge vw ∈ E, with v,w ∈ N4, which is isolated in G[N4]. Again,
since N5 = ∅ and by (6), every edge between N3 and N4 is xy-excluded, we have: If v is
white then w is black but there exists no vertex w′ such that ww′ ∈ M , i.e., there is no
d.i.m. M with xy ∈ M . Thus:

If for v,w ∈ N4, N(v) ∩N4 = {w} and N(w) ∩N4 = {v} then v,w are black. (10)

Next we show:

Lemma 12. At most one Ext(Ti) has a C3 in G[N4].

Proof. Suppose to the contrary that there are two such cases. Without loss of generality,
suppose that there is a C3 z1z2z3 in Ext(T1), and there is a C3 z4z5z6 in Ext(T2). Without
loss of generality, assume that z1, z2 are black and thus, z3 is white as well as z4, z5 are
black and thus, z6 is white. Let t1, t

′
1, t

′′
1 ∈ T1 be the neighbors of z1, z2, z3, i.e., t1z1 ∈ E,

t′1z2 ∈ E, and t′′1z3 ∈ E as well as t2z4 ∈ E, t′2z5 ∈ E, and t′′2z6 ∈ E for t2, t
′
2, t

′′
2 ∈ T2.

Recall that by (8), t1, t
′
1, t

′′
1 ∈ T1 are distinct, and t2, t

′
2, t

′′
2 ∈ T2 are distinct. By the colors

of z1, . . . , z6, we have that t1, t
′
1, t2, t

′
2 are white and t′′1, t

′′
2 are black.

First assume that u1 and u2 do not have a common neighbor in N1; for q1, q2 ∈ N1,
let q1u1 ∈ E and q2u2 ∈ E but q1u2 /∈ E and q2u1 /∈ E. Recall that t1, t

′
1, t2 are white. If

q1x ∈ E and q2x ∈ E then u1, t1, t
′
1, q1, x, q2, u2, t2 (with center u1) would induce an S1,1,5,

and analogously, for q1y ∈ E and q2y ∈ E. If q1 and q2 do not have a common neighbor
x or y then without loss of generality, let q1x ∈ E, q1y /∈ E, and q2y ∈ E, q2x /∈ E. But
then u1, t1, t

′
1, q1, x, y, q2, u2 (with center u1) induce an S1,1,5, which is a contradiction.

Thus, we can assume that there is a common neighbor q1 ∈ N1, q1u1 ∈ E, q1u2 ∈ E.
By the colors (recall that t2, t

′
2, t1, z3 are white), and since t2, t

′
2, u2, q1, u1, t1, z1, z3 (with

center u2) do not induce an S1,1,5, we have t2z1 ∈ E or t′2z1 ∈ E; without loss of generality,
assume that t2z1 ∈ E. Recall Observation 6 where t2 is the endpoint of a P5.

But then z1, t1, z3, t2 and the P5 with endpoint t2 induce an S1,1,5 (with center z1),
which is a contradiction.

Thus, Lemma 12 is shown.

If there is no C3 in any Ext(Ti) then clearly, by Lemma 11, (9) and (10), the colors
of all vertices in K are forced. If there is a C3 in exactly one of the Ext(Ti), then for
the three possible M -edges in the C3, one can color all the other vertices accordingly in
polynomial time. This leads to:

Theorem 4. If |N2| ≥ 5 and N5 = ∅ then one can check in polynomial time whether G
has a d.i.m. containing xy.

4.2.2 The Case N5 6= ∅

Lemma 13. Let z ∈ N4. Then the following statements hold:

(i) If z has a neighbor z′ ∈ N5 and z′ has a neighbor z′′ ∈ N5 then zz′′ ∈ E.

(ii) If z has a neighbor in N5 then N(z) ∩N5 is an edge or a single vertex.
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(iii) If z contacts Ti and Tj for i 6= j then N(z) ∩N5 = ∅.

Proof. (i): Let ti ∈ Ti be a neighbor of z. By Lemma 9, (ui, ti, z, z
′, z′′) is no P5. Thus,

we have zz′′ ∈ E.
(ii): If z has two independent neighbors w1, w2 ∈ N(z) ∩ N5, i.e., w1w2 /∈ E then by
Observation 6, z is an endpoint of a P6 in {x, y} ∪N1 ∪ . . . ∪N4, and it leads to an S1,1,5

with the P6 and w1, w2 (with center z), which is a contradiction. Thus, N(z) ∩ N5 is an
edge or a single vertex.
(iii): Let z contact Ti and Tj for i 6= j, say zti ∈ E and ztj ∈ E for ti ∈ Ti and tj ∈ Tj . By
(6), titj /∈ E (else, z, ti, tj induce a triangle, and then, there is no d.i.m. M with xy ∈ M).

Suppose to the contrary that z contacts N5, say zz′ ∈ E for some z′ ∈ N5. But then,
by Observation 6, it leads to an S1,1,5 with the P6 along ti, and with tj, z

′ (with center z).

Thus, Lemma 13 is shown.

Lemma 14. G[N5] is P3- and C3-free.

Proof. First suppose to the contrary that there is a P3 (a, b, c) in G[N5]. Let za ∈ N4 be
a neighbor of a. Then, by Lemma 13 (ii), zac /∈ E. Let ti ∈ Ti be a neighbor of za. By
Lemma 9, (b, a, za, ti, ui) do not induce a P5. Thus, zab ∈ E but now (c, b, za, ti, ui) induce
a P5, which is a contradiction. Thus, G[N5] is P3-free.

Now suppose to the contrary that there is a C3 (a, b, c) in G[N5]. Let again za ∈ N4 be
a neighbor of a. Since G is (K4,diamond)-free, za is nonadjacent to b and c, and let again
ti ∈ Ti be a neighbor of za but now, (b, a, za, ti, ui) induce a P5, which is a contradiction.
Thus, G[N5] is C3-free.

Thus, Lemma 14 is shown.

Lemma 15. There is no P3 in G[N4 ∪N5] with at least one N5-end-vertex.

Proof. By Lemma 14, there is no P3 (a, b, c) with a, b, c ∈ N5. By Lemma 13 (i), there is
no P3 (a, b, c) with a ∈ N4 and b, c ∈ N5. By Lemma 13 (ii), there is no P3 (a, b, c) with
b ∈ N4 and a, c ∈ N5.

Finally, let (a, b, c) be a P3 with a, b ∈ N4 and c ∈ N5. Since for a neighbor ti ∈ N3 of
vertex a, (ui, ti, a, b, c) would induce a P5, we have tib ∈ E, i.e., ti, a, b induce a C3, but
by (8), after the Edge Reduction, there is no such triangle.

Thus, Lemma 15 is shown.

Recall that by (6), every edge between N3 and N4 is xy-excluded (and recall (9)).
Thus we have:

If v ∈ N4 is isolated in N4 ∪N5 then v is white. (11)

Now, by the Vertex Reduction, we can assume that every vertex in N4 has a neighbor
in N4 ∪N5.

Lemma 16. If z ∈ N5 is isolated in G[N5] and z has at least two nonadjacent neighbors
in N4 then z is xy-forced to be white.
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Proof. Let z1, z2 ∈ N4 be neighbors of z ∈ N5, z1z2 /∈ E, and let ti ∈ N3 be a neighbor
of z1. By Lemma 9, (ui, ti, z1, z, z2) do not induce a P5. Thus, ti is a common neighbor
of z1 and z2. Suppose to the contrary that z is black. Then, since ti, z1, z2, z induce a C4,
ti is black. Since z ∈ N5 is isolated in G[N5], there is a black neighbor z′ ∈ N4 of z (if
there is such a d.i.m. M in G with xy ∈ M). Since G is diamond-free, z′ does not see both
of z1, z2, say z′z1 /∈ E. But then (ui, ti, z1, z, z

′) induce a P5, which is a contradiction to
Lemma 9.

Thus, Lemma 16 is shown.

Now, by the Vertex Reduction, we can assume that every vertex which is isolated in
G[N5] has either exactly one neighbor or exactly two adjacent neighbors in N4.

A component of G[N4 ∪ N5] with at least one vertex in N5 is trivial if it has exactly
two vertices, namely a ∈ N4 and b ∈ N5 with ab ∈ E.

Lemma 17. Each nontrivial component of G[N4 ∪N5] with at least one vertex in N5, is
a triangle abc with one of the following two types:

(i) a, b ∈ N4, and c ∈ N5, or

(ii) a ∈ N4, and b, c ∈ N5.

Proof. Let K be a nontrivial component of G[N4 ∪N5] with at least one vertex in N5.
First assume that K has a triangle abc with a, b ∈ N4, and c ∈ N5. By Lemma 15,

there is no P3 with at least one end-vertex in N5.
If c has a neighbor d ∈ N5 then, since (a, c, d) do not induce a P3, we have ad ∈ E,

and since (b, c, d) do not induce a P3, we have bd ∈ E, but then a, b, c, d induce a K4 in
G, which is a contradiction. Thus, vertex c is isolated in N5.

If one of a, b has another neighbor in N4, say bd ∈ E for a vertex d ∈ N4 then,
since (d, b, c) do not induce a P3, we have cd ∈ E, which is a contradiction since G is
(diamond,K4)-free.

Next assume that K has a triangle abc with a ∈ N4, and b, c ∈ N5. By the same argu-
ments, since there is no P3 with at least one end-vertex in N5, and sinceG is (diamond,K4)-
free, there is no other neighbor of abc in N4 ∪N5.

Thus, Lemma 17 is shown.

Lemma 18. If the colors of all vertices in N4 are fixed then it implies the colors of all
vertices in N5.

Proof. Let K be a component in G[N4 ∪N5]. First assume that K is trivial with ab ∈ E
for a ∈ N4 and b ∈ N5. If a is white then G has no d.i.m. M with xy ∈ M . If a is
black then, since the edges between N3 and N4 are xy-excluded, and K is trivial (i.e., a
is nonadjacent to any black vertex in N4), b is black.

Now assume that K is nontrivial of type (i) in Lemma 17. If a or b is white then c is
black, else c is white.

Finally, assume that K is nontrivial of type (ii) in Lemma 17. If a is white then b and
c are black. If a is black then by Lemma 17 (ii), a is nonadjacent to any black vertex in
N4, and then the M -mate of a is b or c, i.e., b is black if and only if c is white.
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Thus, Lemma 18 is shown.

This finally leads to a polynomial number of feasible xy-colorings for each component
in G[N2 ∪N3 ∪N4 ∪N5] (recall that all these components can be independently colored).
This leads to:

Theorem 5. If |N2| ≥ 5 and N5 6= ∅ then one can check in polynomial time whether G
has a d.i.m. containing xy.

This completes the proof that DIM can be solved for S1,1,5-free graphs in polynomial
time.
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