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Abstract: We consider the problem of determining a routing in all-optical networks, in which
some couples of nodes want to communicate. In particular, we study this problem from the point
of view of a network provider that has to design suitable payment functions for non-cooperative
agents, corresponding to the couples of nodes wishing to communicate. The network provider aims
at inducing stable routings (i.e., routings corresponding to Nash equilibria) using a low number
of wavelengths. We consider three different kinds of local knowledge that agents may exploit
to compute their payments, leading to three corresponding information levels. Under complete
information, the network provider can design a payment function, inducing the agents to reach
a Nash equilibrium mirroring any desired routing. If the price to an agent is computed only as a
function of the wavelengths used along connecting paths (minimal level) or edges (intermediate
level), the most reasonable functions either do not admit Nash equilibria or admit very inefficient
ones, i.e., with the largest possible price of anarchy. However, by suitably restricting the network
topology, a constant price of anarchy for chains and rings and a logarithmic one for trees can be
obtained under the minimal and intermediate levels, respectively.

Keywords: optical networks; WDM; pricing of optical network services; selfish routing; nash equilibria;
price of anarchy; algorithmic game theory

1. Introduction

Due to the possibility of managing thousands of users, covering wide areas and
providing a bandwidth which is orders of magnitude faster than traditional networks, all-
optical networks are widely exploited nowadays, and are considered to be used also in the
future of communication networks. In fact, wavelength division multiplexing (WDM) [1]
allows one to exploit the high bandwidth provided by all-optical networks by partitioning
it a large number of parallel high speed channels along the same optical fiber (see [2,3] for
a survey of the main related results). Motivated by this fact, in this paper, we investigate
the existence and performance of Nash equilibria in all-optical networks populated by
non-cooperative selfish agents corresponding to point-to-point communication requests.
Every agent is interested only in the minimization of its own cost, and, given a graph
modelling the optical network, has to choose among a set of possible paths (also called
routing strategy) connecting its endpoints. In particular, in our model, a service provider
has to design suitable payment functions, charging each agent a cost for her chosen routing
strategy. We consider three different kinds of local knowledge that agents may exploit to
compute their payments, leading to three corresponding information levels that will be
detailed in the following. It is worth noticing that any request is willing to be rerouted each
time it may be served by a cheaper path: the evolution of the network can be modelled
by the dynamics of a multi-agent system or multi-player game. A routing solution, that
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is an assignment of paths and colors (a color represents a wavelength) to the requests,
in which no request can lower its cost by choosing a different strategy, is said to be a pure
Nash equilibrium.

1.1. Related Work

Several routing games have been shown to possess pure Nash equilibria or to con-
verge to a pure Nash equilibrium independently from their starting state (see [4–14] for
some pioneering work and [15] for an introduction to algorithmic game theory). The price
of anarchy has been introduced in [12] for the first time in the literature; it measures the
loss of the global performance of the system at equilibrium due to the lack of cooperation
among the agents, and is defined as the worst-case ratio between the total cost of a Nash
equilibrium and that of an optimal solution. One of the most studied and interesting
research areas lying on the boundary between computer science and game theory con-
sists of bounding the price of anarchy of selfish routing under different models; see, for
example [13,14].

Game theory has been applied to optical networks in various contexts (e.g., see [16–18]).
For instance, it is worth noting that the optimization of the network cost due to expensive
hardware components (e.g., add-drop multiplexer) has been widely investigated in the
literature (see [19–22]), also considering the effect of collusion among agents (see [23]).
Moreover, in [16], the authors deal with a setting very similar to the one addressed in this
paper; they consider several natural cost functions, and for each of them, they examine the
problem of the existence of pure Nash equilibria, and of the complexity of recognizing and
computing such equilibria.

1.2. Our Contribution

As a first contribution, we determine three notable information levels for the com-
putation of the payment functions that have to be designed by the network provider.
In particular, each agent has knowledge of all the other agents and their routing strate-
gies under the complete information level of the wavelengths used along any given edge
under the intermediate level, and finally, only of the wavelengths used along any given
path connecting its source and destination under the minimal level. Notice that even the
minimal level contains the information needed in order to select an available wavelength,
without interfering with other requests.

We first show that, under complete level, the network provider can design a payment
function inducing the agents to reach a Nash equilibrium mirroring any desired routing.
This allows the use of a centralized algorithm for determining an (almost) efficient routing
assignment which can be then efficiently enforced to the agents. We then turn our attention
to the remaining two levels of information: unfortunately, it holds that the most reasonable
functions either do not admit equilibria or induce games with a very high (actually the
worst possible) price of anarchy; that is, the resulting Nash equilibrium could assign a
different color to each agent. Given this negative result, we focus on more specific network
topologies. In particular, we show that a price of anarchy of 8 and 16 can be obtained for
chains and rings, respectively, under the minimal level of information. These bounds can
be further reduced to 3 + ε and 6 + ε under the intermediate level, with ε converging to
0 as the load increases. Finally, a price of anarchy logarithmic in the number of agents is
shown to hold for tree networks under the minimal level of information.

1.3. Paper Organization

The paper is organized as follows. Section 2 provides the basic definitions and notation.
In Section 3 we give some preliminary results for our model: in particular, we present the
results related to the complete information level and we also define some suitable classes of
payment functions able to characterize convergent games in the context of more restrictive
information levels. Sections 4 and 5 are devoted to the study of payment functions for
the minimal and intermediate levels of information: in particular, in Section 4, results
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relative to general networks are presented, while in Section 5, results for specific network
topologies, that is chains, rings and trees, are provided. Finally, Section 6 gives some
conclusive remarks and discusses some open questions.

2. The Model

An all-optical network is modelled by an undirected graph G = (V, E), where nodes
in V represent sites and undirected edges in E bidirectional optical fiber links between the
sites. Given any two nodes x, y ∈ V, a communication request between x and y is denoted
as {x, y}. A communication instance in G is a multiset of requests I (i.e., I can contain
multiple requests between the same pair of nodes). A path system P for an instance I in G
is a set of paths containing a distinguished simple connecting path in G for each request
in I. A solution R(G, I) for an instance I in G, R for short, is a pair (PR, cR) in which
PR is a path system for I and cR : I → W (with W = IN+ being the set of wavelengths)
is a function associating a wavelength or color to each request in I. Let pR({x, y}) ∈ PR
denote the path connecting {x, y} inR and |pR({x, y})| be its length in terms of number
of edges. A solution R is feasible or is a routing for I in G if cR({x1, y1}) 6= cR({x2, y2})
for any two requests {x1, y1} ∈ I and {x2, y2} ∈ I whose connecting paths pR({x1, y1})
and pR({x2, y2}) share an edge in G, i.e., the associated colors are different.

Let ωR(G, I) be the number of colors used by the routingR for I in G and ω(G, I) =
minR ωR(G, I) be the minimum number of colors used by any routing for I. Analogously,
let πR(G, I) = maxe∈E|{p ∈ PR|e ∈ p}| be the maximum load of an edge in G induced
by the routing R and π(G, I) = minR πR(G, I) be the minimum maximum load of the
routings for I in G, also called load of I in G. Clearly, since all the requests sharing an edge
must have different colors, ωR(G, I) ≥ πR(G, I) for everyR and thus ω(G, I) ≥ π(G, I).
Given that the optical spectrum is a scarce resource, in this paper, we aim at determining
routings using a number of wavelengths close to the minimum one, i.e., ω(G, I).

In order to model our non-cooperative environment, we assume that each commu-
nication request {x, y} ∈ I is issued and handled by an agent α; for the sake of simplicity,
we consider it as coincident with the request, that is α = {x, y}. Our goal is to assign
payments (or costs) to the agents so that they are induced to choose in a non-cooperative
way a good solution, i.e., a routing with a small number of colors. A payment function
price associates each possible routing and agent to a cost; in particular, priceR(α) is the cost
that agent α ∈ I has to pay to the network provider in order to obtain the asked service if
the routingR is adopted. In order to give our payment functions a higher generality, we
assume the existence of a non-decreasing function f : W → IR+ associating a cost to every
color. Notice that f is non-decreasing because, in such a way, it is possible to implicitly
model the increasing cost incurred by the network provider when it has implemented a
routing using up to a given wavelength.

A game G = (G, I, price) among the |I| agents belonging to I on the network G
induced by the payment function price is defined as the set of agents’ strategies Pα ×W,
where Pα is the set of connecting paths for α and the utility function u(α) = −price(α).
A routing R is a (pure) Nash equilibrium if, and only if, for any agent α and routing
R′ differing from R only for the path and/or the color associated to α, it holds that
priceR(α) ≤ priceR′(α). Denoted as N , the set of the routings at Nash equilibrium,
the price of anarchy of the game G is defined as the worst case ratio ρ = supR∈N

ωR(G,I)
ω(G,I)

among all the possible games G.
The evolution of the game G is a sequence of moves (α, pold, colorold, pnew, colornew)

starting from an arbitrary routing, where α is an agent and (pold, colorold) ∈ Pα ×W and
(pnew, colornew) ∈ Pα ×W are the old and the new strategies of α, respectively. The Nash
dynamics of the game G are the directed graph (Φ, M), where Φ is the set of possible
routings for G and I and there exists an arc (R1,R2) ∈ M if there exists a selfish move
fromR1 toR2, i.e., there exists an agent α such that priceR2(α) < priceR1(α). If the Nash
dynamics are acyclic for every G and I, the game G is said to be convergent. Analogously,
any payment function price inducing only convergent games is said to be convergent.
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We say that game G converges to routing R whenever G is convergent and admits the
unique pure Nash equilibriumR. It is worth noting that, even if the Nash dynamics are
cyclic, the game might admit a Nash equilibrium.

Table 1 summarizes all the notations defined above. For ease of notation, when
clear from the context, in the following, we will drop the index R from the notation,
thus, for instance, writing price(α), p(α), c(α), σ(e) and σ̄(p) in place of priceR(α), pR(α),
cR(α), σR(e) and σ̄R(p). Before concluding the section, we finally observe that the payment
function priceR, in a strongly distributed non-cooperative environment, has to be computed
by each single agent requiring the communication service. However, the level of global
information they have can be limited by technological constraints, as well as privacy
policies carried out by the service provider or simply enforced by the law. Therefore,
in general, priceR is not computed, starting from the instance I and the routingR, but on a
more restricted set of information induced by them. To this aim, we introduce the concepts
of states and levels of information. The edge state (resp. path state) of the network G
induced by a routing R for I is a function σR : E → 2W (resp. σ̄R : P → 2W , where P is
the set of all the simple paths in G) associating to every edge e ∈ E (resp. path p ∈ P) the
set of the wavelengths used along e (resp. p). It is then possible to distinguish among three
basic levels of information:

• Minimal. Each agent α = {x, y} knows the available wavelengths along any given
path connecting x to y, that is, the function priceR can be computed, even knowing
only the restriction of the path state σ̄R(α) on the set of the paths from x to y.

• Intermediate. Each agent information knows the wavelengths available along any
given edge, that is, the function priceR can be computed, even knowing only the edge
state σR.

• Complete. Each agent α = {x, y} knows the instance I and the routingR, that is, the
function price is not restricted.

Table 1. Notation used in this paper.

G = (V, E) ,
The graph modelling the optical network, with V being the set
of sites and E, the set of bidirectional optical links between
the sites.

P , The set of all simple paths in G.
{x, y} , A communication request between sites x and y (x, y ∈ V).

I , A multiset of requests defining a communication instance.
P , A path system.

W , The set of available wavelengths or colors.

R(G, I) = (PR, cR) ,
R(G, I) is a routing (i.e., a solution) for an instance I in G;
PR is a path system for I; cR is a function associating a color to
each request.

pR({x, y}) , The path connecting {x, y} inR.
ωR(G, I) , The number of colors used by the routingR for I in G.

ω(G, I) , The minimum number of colors used by any routing for I in G.

πR(G, I) ,
The maximum load of an edge in G induced by the routingR
for instance I.

π(G, I) ,
The minimum maximum load of the routings for I in G,
also called load of I in G.

α = {x, y} , A generic agent associated to request {x, y}.

priceR(α) ,
The cost that agent α ∈ I has to pay to the network provider in
order to obtain the asked service if the routingR is adopted.

f : W → IR+ , A function associating a cost to every color.
G = (G, I, price) , A game among agents in I on the network G.

Pα , The set of connecting paths for agent α.
u(α) , The utility of agent α.
N , The set of Nash equilibria of a game.
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Clearly, even if not explicitly mentioned, in any level of information, for each agent α,
priceR(α) can depend also on the wavelength c(α) and the path p(α) assigned to α in R.
Recall that the players move sequentially and can choose, as their current strategy, only
valid strategies with respect to the current routing. Notice also that even with minimal
information, any agent is always able to compute a valid wavelength for the chosen path,
so as to not interfere with any other agent, and thus not compromising the feasibility of
the solution.

3. Preliminaries

In the first part of this section, we prove that, under complete information, any
centralized algorithm A for the all-optical routing problem can be suitably used in a non-
cooperative environment for achieving a price of anarchy either equal to 1 or k, according
to whether A is optimal or k-approximating, respectively.

Theorem 1. Given any routing R̃ for a game G, there exists a payment function letting G converge
to R̃ in at most 3|I| steps.

Proof. Given any routingR, the payment function is defined as follows.

priceR(α) =


0 if pR(α) = pR̃(α) ∧ cR(α) = cR̃(α),
2 if (pR(α) 6= pR̃(α) ∨ cR(α) 6= cR̃(α)) ∧ cR(α) ≤ ωR̃(G, I),
1 if (pR(α) 6= pR̃(α) ∨ cR(α) 6= cR̃(α)) ∧ cR(α) > ωR̃(G, I).

• Convergence. Since the payment function is such that any move of an agent does
not affect the cost of any other agent and has a codomain of cardinality 3, any agent
can perform at most 3 moves during the game, thus the game converges in at most
3|I|moves.

• Uniqueness. We now show that the only Nash equilibrium for G is R̃. Suppose,
by contradiction, that in the routing R at Nash equilibrium, there exists an agent α
such that priceR(α) = 2. Agent α can clearly perform a move by switching to a color
cR(α) > ωR̃(G, I), so as to pay a cost equal to 1, and this contradicts the hypothesis
that R is a Nash equilibrium. Analogously, suppose that in the routing R at Nash
equilibrium there exists at least one agent α such that priceR(α) = 1. In R, α is thus
assigned the color cR(α) > ωR̃(G, I). Having already proven that α cannot pay a cost
equal to 2, we have that no agent in the routingR is assigned a color cR(α) ≤ ωR̃(G, I)
unless R(α) = R̃(α) ∧ cR(α) = cR̃(α), that is, unless he is using the same path and
the same color of R̃. Thus, agent α can perform a move by choosing the same path
and color of R̃, so as to pay 0, and this contradicts the hypothesis that R is a Nash
equilibrium. We have shown that in a routingR at Nash equilibrium priceR(α) = 0
∀α ∈ I; by the definition of priceR, each agent uses the same path and color of the
routing R̃, thusR = R̃.

Corollary 1. Let A be any k-approximation algorithm for the all-optical routing problem (k = 1 if
A is optimal). Then, there exists a payment function yielding a game G, converging in at most 3|I|
steps and having a price of anarchy equal to k. Moreover, the time complexity of the computation of
the function is at most the same as A.

Proof. The claim is an immediate consequence of Theorem 1: by letting R̃ be the routing
returned by algorithm A, the price of anarchy of G is simply the approximation ratio of A,
and finally, each agent, in order to compute the payment function, has to find the same
path and color computed by the algorithm A.

In the sequel, we will focus on the minimal and intermediate information levels.
Before proceeding with the presentation of our results, let us first introduce two families of
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payment functions that provide a useful characterization of a class of convergent games
with the worst possible price of anarchy. Given a generic move µ performed by an agent α
fromRold toRnew, let A be the set of agents sharing at least one edge with α inRold and
no edges with α inRnew and B be the set of agents sharing at least one edge with α inRnew.
We denote with Π the set of payment functions, satisfying the following conditions:

∀β ∈ A, priceRnew(β) ≤ priceRold(β) (1)

∀β ∈ B, priceRnew(β) > priceRold(β)⇒ priceRnew(β) ≤ priceRnew(α) (2)

Roughly speaking, condition (1) means that all the players sharing at least an edge
with α before her move and no edge after such a move does not increase their costs.
Condition (2) means that given a generic player β sharing at least an edge with α after µ
and increasing their cost after such a move, the cost of β after µ is at most the cost of α after
mu. Such conditions will be useful for proving the convergence to equilibrium.

Theorem 2. All the payment functions belonging to Π are convergent.

Proof. Let Ψold be the sequence of costs priceRold(β) ∀β ∈ I ordered in a non-decreasing
way and let Ψnew be the sequence of costs priceRnew(β) ∀β ∈ I ordered in the same way,
that is, the new sequence of costs yielded by the execution of a move µ performed by
the agent α. By the definition of the class Π, µ can increase the cost of any other agent
to reach, at most, the value priceRnew(α). Since it holds priceRnew(α) ≤ priceRold(α), we
obtain that the sequence Ψnew is lexicographically smaller than Ψold. Notice that such a
lexicographic order induces a total order among the nodes of the Nash dynamics. The
sequence Ψ0 =< 0, 0, 0, . . . > is the bottom of the lexicographic ordering, hence the
thesis.

As can be easily seen, the number of steps needed to converge to an equilibrium may
not be polynomial in the dimensions of the instance.

We now define a subclass of Π of payment functions inducing games G, having a
price of anarchy ρ = |I|

ω(G,I) , which is clearly the worst possible, since any feasible solution
for the problem uses at most |I| colors, while ω(G, I) is the optimal solution.

We denote as Ξ = Ξ′ ∪ Ξ′′ the class of payment functions satisfying at least one of the
following conditions:

• Subclass Ξ′: ∀α ∈ I, price(α) depends only on the color c(α) and cR(α) ≥ cR′(α) ⇒
priceR(α) ≥ priceR′(α) for any R and R′; that is, the cost for each agent depends
only on its own color in the routing and any other agent α never gets a benefit in
performing a move (α, pold, colorold, pnew, colornew) where colornew ≥ colorold.

• Subclass Ξ′′: ∀α ∈ I, price(α) = maxe∈p(α)g(σ(e)) where g : 2W → IR is such that for
any sets of colors A and B, A \ {d} ⊆ B ⇒ g(A) ≤ g(B ∪ {d′}) with d ∈ A, d′ ≥ d
and d′ /∈ B. In other words, the image g(B ∪ {d′}) according to g of a set B ∪ {d′}
containing all the elements of another set A except for at most one element (d), which
has to be replaced in the first set by a strictly greater element d′, cannot be smaller
than the image g(A) of the second set.

Theorem 3. Ξ ⊆ Π, that is any function price ∈ Ξ is convergent. Moreover, for each payment
function price ∈ Ξ, there exists a game G = (G, I, price) having a price of anarchy ρ = |I|

w(G,I) .

Proof. We prove that for each payment function price, price ∈ Ξ′ ⇒ price ∈ Π and
price ∈ Ξ′′ ⇒ price ∈ Π. Let (α, pold(α), colorold, pnew(α), colornew) be a generic move
performed by the agent α from the routingRold to the routingRnew. If price ∈ Ξ′, then both
the conditions (1) and (2) are satisfied since ∀β 6= α, β ∈ I, priceRnew(β) = priceRold(β).
If price ∈ Ξ′′, then condition (1) is satisfied since, setting d = d′, d ∈ A, d /∈ B and
C = B ∪ {d}, it holds that A ⊆ C ⇒ A \ {d} ⊆ B ⇒ g(A) ≤ g(C), thus, the costs of the
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agents sharing no edges with α inRnew cannot increase. Condition (2) is satisfied by the
payment function price(α) = maxe∈Pα g(σ(e)), since we are assured that whenever the cost
of the agents now sharing an edge with α in Rnew increase, it can never exceed the cost
priceRnew(α).

In order to prove the result for the price of anarchy, let G be a ring of |I| nodes
(v1, . . . , v|I|), and I = {{vi, v(i+1)mod |I|}|i ∈ {1, . . . , |I|}} be the communication
instance. The routingR∗ = (PR∗ , cR∗), where ∀i ∈ {1, . . . , |I|}, PR∗({vi, v(i+1)mod |I|}) =
{{vi, v(i+1)mod |I|}} and cR∗({vi, v(i+1)mod |I|}) = 1, is such that ωR∗(G, I) = 1, thus
w(G, I) = 1. If we consider the routing R = (pR, cR) where ∀i ∈ {1, . . . , |I|},
pR({vi, v(i+1)mod |I|}) = {{vj mod |I|, v(j+1)mod |I|}|j ∈ {i + 1, . . . , i + |I| − 1}} and
cR({vi, v(i+1)mod |I|}) = i we have that R is, a Nash equilibrium by the definition of Ξ.
First we note that inR, σR({vi, v(i+1)mod |I|}) = {1, . . . , i− 1, i + 1, . . . , |I|}, ∀i ∈ {1, . . . , |I|},
that is, all the edges {vi, v(i+1)mod |I|} of the ring are occupied by all the colors except for
the color i. The proof then proceeds for cases. Depending on the particular subclass of
price, we have:

• Subclass Ξ′. No agent {vi, v(i+1)mod |I|}, i ∈ {1, . . . , |I|} gets a benefit in performing a
move, because he cannot use a color smaller than i;

• Subclass Ξ′′. No agent α = {vi, v(i+1)mod |I|}, i ∈ {1, . . . , |I|} gets a benefit in per-
forming a move, because if he moved to the edge {vi, v(i+1)mod |I|} which is the
only remaining one in the path of |I| − 1 edges thus changing his color, his new
path (in the routing R′) would contain at least an edge occupied by the set of col-
ors B ∪ {d′}|B ⊇ σR(e) \ cR(α) ∀e ∈ pR(α), d′ ≥ cR(α), which would result in
priceR′(α) ≥ priceR(α).

Since ωR(G, I) = |I|, we obtain that the price of anarchy ρ ≥ |I|. The claim for
w(G, I) = 1 comes observing that in any feasible routing R, it holds that ωR(G, I) ≤ |I|.
The claim for w(G, I) > 1 can be obtained by replicating each request w(G, I) times. By so
doing, we can construct, similarly as above, a routing in Nash equilibrium using |I| colors.

4. Minimal and Intermediate Payment Functions

Even though the results obtained in the case of complete information are fully satisfac-
tory, they have been obtained under the assumption that each agent has full knowledge of
the instance and the routing: this assumption is very strong and in real world networks
might not be true either due to technological or privacy policies reasons. For this reason,
in the sequel, we will focus on payment functions based on a more restricted level of
information. Let us first define a set of payment functions that can be computed under a
minimal or intermediate information level. Given a routingR, we first propose suitable
cost functions defined on the edges that will be used as building blocks for the definition
of the mentioned payment functions:

• col(e, α) = f (c(α)): the amount charged to α on the edge e is the cost, according to f ,
of the color he uses.

• max(e, α) = maxk∈σR(e) f (k): the amount charged to α on the edge e is the cost of the
highest color used along e (considering also the other agents).

• sum(e, α) = ∑k∈σR(e) f (k): the amount charged to α on the edge e is the sum of the
costs of all the colors used along e.

• avmax(e, α) = maxk∈σR(e)
f (k)
|σR(e)|

: the amount charged to α on the edge e is the cost of
the highest color used along e, averaged or shared among all the agents traversing e.

• avsum(e, α) = ∑k∈σR(e)
f (k)
|σR(e)|

: the amount charged to α on the edge e is the sum of
the costs of all the colors used along e, averaged on all the agents traversing e.

Starting from any edge cost function cost, it is possible to define the following
payment functions:

• max-cost(α) = maxe∈p(α) cost(e, α): the price asked to α is the maximum cost, accord-
ing to cost, of an edge used by α.
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• sum-cost(α) = ∑e∈p(α) cost(e, α): the price asked to α is the sum of the costs of the
edges used by α.

The combination of the introduced edge cost functions with the above two strate-
gies, that is, maximization or summation, gives rise to ten possible payment functions.
In all cases, since the function f is non-decreasing, agents have an incentive to choose
small colors so as to possibly minimize the overall number of used colors. Notice that
all the ten introduced payment functions are computable under an intermediate infor-
mation level. Moreover, max-col, sum-col and max-max require only the minimal level,
as max-col(α) = maxe∈p(α) col(e, α) = f (c(α)), sum-col(α) = ∑e∈p(α) col(e, α) = |p(α)| ·
f (c(α)) and max-max(α) = maxe∈p(α) maxk∈σ(e) f (k) = maxk∈σ̄(p(α)) f (k). The following
lemma shows how the families of functions defined in the previous section nicely charac-
terize the class of games induced by them.

Lemma 1. The payment functions max-col and max-max belong to the class Ξ.

Proof. It can be easily verified that, by definition, the payment function max-col belongs
to Ξ′, while the payment function max-max belongs to Ξ′′.

Moreover, a similar result holds for sum-col.

Theorem 4. The payment function sum-col belongs to Π, that is, it is convergent, but there exists
a game G = (G, I, sum-col) having a price of anarchy ρ = |I|

w(G,I) .

Proof. The payment function sum-col belongs to Π, since it clearly satisfies conditions (1)
and (2). We now show that the game induced by the function sum-col on the instance
I = {{a, b}︸ ︷︷ ︸

n times

} in the graph depicted in Figure 1 does not admit a Nash equilibrium. Let k

be d f (n)e + 1. The routing R∗ = (PR∗ , cR∗), where ∀{a, b} ∈ I, |PR∗({a, b})| = k,
i.e., each request is routed on a different chain of k edges, and cR∗({a, b}) = 1 is such
that ωR∗(G, I) = 1, thus w(G, I)=1. If we consider the routing R = (pR, cR) where
∀{a, b} ∈ I, |PR∗({a, b})| = 1, then there exists a request using at least color n. SinceR is
an equilibrium, the thesis follows.

a b

k edges

k edges

Figure 1. In this graph, nodes a and b are connected through a single edge and n chains of k edges.

Therefore, even if convergent, all the three minimal level functions yield the worst
possible price of anarchy. Unfortunately, the following results show that, also, the remaining
seven payment functions for the intermediate information level either are not convergent
or yield the worst possible price of anarchy.
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Theorem 5. The payment function max-sum belongs to the class Ξ.

Proof. We show that max-sum belongs to the subclass Ξ′′ of Ξ. To this aim, it suffices
to show that g(σ(e)) = sum(e, α) = ∑k∈σ(e) f (k) satisfies, for any sets of colors A and
B, the property A \ {d} ⊆ B ⇒ g(A) ≤ g(B ∪ {d′}) with d ∈ A, d′ ≥ d and d′ /∈ B.
Since A \ {d} ⊆ B and f is positive and non decreasing, we have g(B ∪ {d′}) = f (d′) +
∑k∈B f (k) ≥ f (d) + ∑k∈A\{d} f (k) = g(A).

Theorem 6. Nash equilibria are not guaranteed to exist for the games induced by the payment functions.

1. sum-max when the pricing function f is unbounded;
2. max-avmax and sum-avmax when f is such that ∃k : f (k) > 2 f (1);
3. max-avsum and sum-avsum when the f is such that ∃k : f (k) > f (1), that is, f is

non-constant.

The proof of Theorem 6 is deferred to the Appendix A. Finally, we have the following
theorem concerning sum-sum.

Theorem 7. The payment function sum-sum is not convergent when the pricing function f is
such that ∃k : f (k) > f (1) + f (2).

Proof. We show that, for the problem defined by the graph depicted in Figure 2 and by
the instance I = {α = {a, c}, β = {d, c}}, the Nash dynamics are cyclic for any pricing
function f , such that ∃k : f (k) > f (1) + f (2).

k edges

h edges

a

d b
c

q

r
s

Figure 2. In this graph, there exists a path consisting of h edges between the nodes a and d, and there
exist two paths, one consisting of a single edge and the other consisting of k edges between the nodes
b and c.

The parameters n, h and k depend on the pricing function f and must be suitably
tuned as shown in the sequel of the proof. Let q be the edge {a, b}, q′ be the path obtained
from the union of the path of h edges and the edge {d, b}, s be the edge {b, c}, s′ be the
path of k edges and r be the edge {d, b}.

The following conditions suffices to prove that the Nash dynamics are cyclic:

(k + 1) f (2) < 2 f (n) + f (n + 1), (3)

2 f (n) + f (1) < (k + 1) f (2), (4)

(h + 2) f (1) + f (2) < 2 f (n + 1), (5)
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2 f (n + 1) < (h + 2) f (1) + f (n). (6)

Consider the initial routingR0 = (R0, c0), displayed in Table 2.

Table 2. RoutingR0.

R0 R0 c0 Sum-SumR0(·)
α q, s n + 1 2 f (n + 1) + f (n)

β r, s n 2 f (n) + f (n + 1)

At this first step, β plays the move (β, {r, s}, n, {r, s′}, 2) because of condition (3), thus
leading to the routingR1 = (R1, c1), displayed in Table 3.

Table 3. RoutingR1.

R1 R1 c1 Sum-SumR1(·)
α q, s n + 1 2 f (n + 1)

β r, s′ 2 (k + 1) f (2)

Now, α plays the move (α, {q, s}, n+ 1, {q′, s}, 1) because of condition (5), thus leading
to the routingR2 = (R2, c2), displayed in Table 4.

Table 4. RoutingR2.

R2 R2 c2 Sum-SumR2(·)
α q′, s 1 (h + 2) f (1) + f (2)

β r, s′ 2 (k + 1) f (2) + f (1)

β plays the move (β, {r, s′}, 2, {r, s}, n) because of condition (4), thus leading to the
routingR3 = (R3, c3), displayed in Table 5.

Table 5. RoutingR3.

R3 R3 c3 Sum-SumR3(·)
α q′, s 1 (h + 2) f (1) + 2 f (n)

β r, s n 2( f (n) + f (1))

Finally, α plays the move (α, {q′, s}, 1, {q, s}, n+ 1) because of condition (6), thus leading
the game back to the initial routingR0 (displayed in Table 2).

In order to complete the proof, we have to show how to satisfy the conditions (3)–(6)
and how to tune the parameters n, k and h. The four conditions are satisfied by choosing k
and h, such that

0 <
2 f (n) + f (1)− f (2)

f (2)
< k <

2 f (n) + f (n + 1)− f (2)
f (2)

and

0 <
2 f (n + 1)− f (n)− 2 f (1)

f (1)
< h <

2 f (n + 1)− f (2)− 2 f (1)
f (1)

.

Choosing n : f (n) > f (1)+ f (2) assures that h and k always exist and are integers.

5. Results for Specific Topologies

In Section 4, we have shown that the price of anarchy for general topologies under
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the intermediate and minimal levels of information can be very high. For this reason,
always considering the intermediate and minimal levels of information, in this section,
we consider networks having specific topologies, like chains (i.e., sites are connected
along a line), and rings (i.e., cycles of sites) and trees. Let us first consider the minimal
information level. Any strictly increasing payment function computable under this level,
like price(α) = c(α), induces games in which a routing R at Nash equilibrium can be
seen as a solution of the classical first-fit algorithm for the all-optical routing problem that
assigns to each request the smallest available color. In particular, this solution is the one
returned by first-fit when requests are considered in non-decreasing order of color in R.
Therefore, the induced price of anarchy is bounded by the approximation ratio of first-fit.
Concerning the above-mentioned topologies, for any instance I, first-fit uses a number of
colors that are at most 8π(G, I) in chains [24] and at most O((log |I|)π(G, I)) in trees [25].
Recalling that ω(G, I) ≥ π(G, I), the following theorem holds.

Theorem 8. The payment function price(α) = c(α) induces games with a price of anarchy 8 in
chains and ρ = O(log |I|) in trees, both converging in ωR(G, I)2 steps from any initial routing.

For rings, it is possible to use the result of [24] by routing requests on the chain obtained
deleting an edge e ∈ E of the ring. In fact, denoted as P, the path system containing all
such connecting paths, for any routingR with PR = P, it results in πR(G, I) ≤ 2π(G, I).
In other words, this at most doubles the induced load. The following payment function
forces Nash equilibria using the set of paths P:

price(α) =

{
1 if e ∈ p(α)
1− 1

c(α) otherwise

Since the payment function belongs to Π and, when restricted to the routingsR with
PR = P, is strictly increasing, it follows that each agent has an incentive in choosing the
smallest available color. By recalling that, in this case, the load at most doubles with respect
to the chain topology, the following theorem holds.

Theorem 9. In ring networks, the above payment function induces games with price of anarchy 16
and converging in ωR(G, I)2 steps from any initial routingR.

In the remaining part of the section, we show how, raising the level of information
to the intermediate one, it is possible to further reduce the price of anarchy for chains
and rings. We first focus on ring topologies, as the corresponding results can be directly
extended to chains. Our purpose is to force the agents to simulate the behavior of the
online algorithm proposed by Slusarek [26]. In such an algorithm, the path system P is
fixed and the optical spectrum is divided in shelves, numbered consecutively starting from
1. The color assigned to an arriving agent α is the lowest available one in the minimal shelf
i, such that the load induced on the edges of α by all the agents up to shelf i is at most i.
More precisely, denoted as sh(w), the shelf of a given wavelength w, the load l(α,R) of an
agent α according to a routingR is

l(α,R) = max
e∈p(α)

|{w|w ∈ σ(e) ∧ sh(w) ≤ sh(c(α))}|.

Clearly, any routing R such that PR = P has the same load πR(G, I) and in the
routingR returned by the algorithm, at most πR(G, I) shelves are used to allocate all the
agents. Moreover, as shown in [26], during all the executions of the algorithm, the first
shelf contains only one color and the other ones no more than three colors, thus yielding
ωR(G, I) ≤ 3 · πR(G, I)− 2 colors, that is, at most 3 times above the optimum.

In devising a payment function that mimics Slusarek’s algorithm, it is necessary to
cope with several problems. First of all, it is necessary to fix a path system with a low
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induced load. This is obtained by giving agents an incentive to use shortest paths, as in
any routing R satisfying such a property πR(G, I) ≤ 2π(G, I), that is, the induced load
is at most doubled. Moreover, the convergence of the game is an issue, since the move of
an agent might compromise the minimality of the payments of the agents in his shelf and
in the above ones. Finally, in order for an agent to always find a proper shelf during the
evolution of the game, we have to allow an unlimited number of colors to be contained
in each shelf. Since, however, Nash equilibria will use only one wavelength of the first
shelf and at most three in the other ones, we have to choose the function sh associating
colors to shelves trying to minimize, for each i, the maximum third color of all the shelves
up to i. To this aim, we partition the set of wavelengths W in two subsets W1 and W2, in
which W2 = {2i|i = 0, 1, 2, . . .} is the set of the slack wavelengths. Each shelf has an infinite
number of wavelengths and the first one of shelf 1 and the first three ones of all the other
shelves correspond consecutively to small colors in W1, while the other ones to slack colors
in W2, assigned to the different shelves according to a dove-tail technique in such a way
that, for every i ≥ 1 and j > 3, there exists a finite wavelength w ∈W2 that corresponds to
the j-th color of shelf i. As can be easily checked, while the first color of shelf 1 is 3, the third
color of each shelf i > 1 is at most 3i + blog2 3ic+ 3. Assuming that the function sh realizes
the above mapping of colors and that n is the number of nodes in the ring, the payment
function price charges to agent α

min

⌊n
2

⌋
, |p(α)|+ n max{0, l(α,R)− sh(c(α))} − 1

2 + sh(c(α))− 1
2c(α)

.

Intuitively, a routing R is at Nash equilibrium if, and only if, each request uses a
shortest path and the color that Slusarek’s algorithm assigns to him when agents arrive in
non-decreasing order of color inR, clearly not using colors in W2.

Theorem 10. In ring networks, the game induced by the above payment function converges and
has a price of anarchy ρ = 6 +O( log(π(G,I))

π(G,I) ).

Proof. Let us consider any evolution of the game starting from any given configuration
and let us show that it converges to a Nash equilibrium in a finite number of agent moves.
At any intermediate configuration, let us partition I into two sets A and B, such that A
contains all the agents that, in the sequel of the game, will never perform a move to a
higher shelf. We show that, after a finite number of moves, a new agent will enter in A, so
that in a finite number of steps, it will finally result A = I. This proves the convergence
of the game, since starting from such final configuration, the agents cannot perform an
infinite number of moves without raising their shelf.

First of all, we note that, since by construction, the number of wavelengths in each
shelf is infinite, each agent α can always perform a move leading him in a feasible shelf
i, that is, such that i ≥ l(α,R). Moreover, the moves leading α on a shortest path and
in a feasible shelf are the only ones which can make α’s cost strictly smaller than b n

2 c.
Finally, an agent routing a shortest path and lying in a feasible shelf, maintaining his
connection path, decreases his cost if he moves to a lower feasible shelf or to a smaller color
of its shelf.

Consider a move of agent α1 to a shelf i1. The proof proceeds by cases: after the move

1. α1 will never perform a move increasing his shelf. In this case, α1 is entered in A.
2. At a certain point of the game, α1 performs a move increasing his shelf. This is due to

another agent α2 who has performed a move to a shelf i2 ≤ i1. However, it cannot be
i2 = i1, as α2 increases α1’s load to i1 + 1 and would have the same load i1 + 1 in shelf
i1 (i.e., i1 is not feasible for α2), thus not decreasing his cost. We can then continue
applying the same analysis to α2. Since the number of shelves in which agents can
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move is bounded by π(G, I), we must finally arrive to an agent αj with j ≤ π(G, I)
for which the first case holds.

As already observed, any routing R at Nash equilibrium corresponds to the out-
put of Slusarek’s algorithm without using colors in W2 when the agents arrive in non
decreasing order of color in R. Thus, the maximum used color in R is at most the third
one of shelf π(G, I) if π(G, I) > 1, while it is equal to the first one of shelf 1 otherwise.
This shows that the maximum used color is at most 3πR(G, I) + blog2 3πR(G, I)c + 3.
Since R uses shortest paths, πR(G, I) ≤ 2πR(G, I) and the resulting price of anarchy is
ρ = 6 +O( log(πR(G,I))

πR(G,I) ).

Clearly, a similar function

price′ = min

n, 1 + 2n max{0, load(α,R)− sh(c(α))} − 1
2 + sh(c(α))− 1

2c(α)


can be used also in chains, for which connection paths are unique and thus no doubling of
the load occurs.

Theorem 11. In chain networks, the game induced by the above payment functions converges and
has a price of anarchy ρ = 3 +O( log(π(G,I))

π(G,I) ).

6. Conclusions

We have considered the problem of determining suitable payment functions for the
non-cooperative agents of an all-optical network, in order to induce Nash equilibria using
a low number of wavelengths. In particular, we have identified three levels of information,
specifying the local knowledge that the agent can exploit when computing their payments.
While the complete information level has been fully understood, under the lower levels,
the main left open question is the determination of functions that on every topology yield
Nash equilibria with a performance better than the worst possible one assigning a different
color to each agent. Moreover, still under incomplete information, it would be also nice
to improve and extend our results on specific topologies. Furthermore, given that a lot of
literature, as discussed in the introduction, focuses on the minimization of the cost due
to hardware equipment in optical networks, it would be nice to study the characteristics
and performance of games combining our measure (the number of used wavelengths)
with other kinds of hardware costs. Moreover, since our findings outline nice connections
between payment functions and online algorithms, that allow one to cope with the arbitrary
order of the moves of the agents, it would be nice to understand the conditions and eventual
systematic methods allowing one to get converging payment functions preserving online
algorithms performances under incomplete information. Finally, we would like to remark
that this paper constitutes a theoretical contribution to the study of optical networks from a
decentralized multi-agent point of view, and it would be interesting to validate the obtained
results and proposed approach by some simulation studies to be performed in a future
work. To this respect, we believe that many worse lower bounds to the price of anarchy
are achieved by exploiting specific and pathological instances, and therefore, the price of
anarchy may turn out to be much lower, in practice, in the cases for which the existence of
instances with a very large price of anarchy has been theoretically proven.

Author Contributions: Conceptualization, V.B., M.F. and L.M.; methodology, V.B., M.F. and L.M.;
formal analysis, V.B., M.F. and L.M.; writing—original draft preparation, V.B., M.F. and L.M.; writing—
review and editing, V.B. and L.M.; funding acquisition, V.B., M.F. and L.M. All authors have read and
agreed to the published version of the manuscript.

Funding: This research was partially supported by the PRIN 2008 research project COGENT (Com-
putational and Game-Theoretic Aspects of Uncoordinated Networks), funded by the Italian Ministry
of University and Research.



Algorithms 2021, 14, 15 14 of 19

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A. Proof of Theorem 6

Proof. Claim 1. We show that the game induced by the function sum-max on the instance
I = {{a, ci}, {b, di}︸ ︷︷ ︸

m times

|i ∈ {1, 2, . . . , n, n + 1}} in the graph depicted in Figure A1, does not

admit a Nash equilibrium if f is unbounded. In such a graph, there exist two paths
between the nodes a and b, one consisting of a unique edge and the other one having h
edges. Similarly, there exist two paths between any pair of nodes b and ci having one and k
edges, respectively. The parameters m, n, h and k depend on f and must be carefully tuned,
as shown in the sequel.

c
1

k edges

d
1

k 
ed

ge
s

k edges

c
2

cn+1

d
2

dn+1

h edges

a

b

Figure A1. The graph not yielding a Nash equilibrium for the payment function sum-max.

We now give a set of conditions which is sufficient to prove the non-existence of a
Nash equilibrium. First of all, we have three technical conditions:

n > m > 1, (A1)

f (n + 1) > f (n), (A2)

f (m + 1) > f (m). (A3)

Clearly, in any Nash equilibrium, the agents {b, di} can use at most the color m + 1
(or a color x such that f (x) = f (m + 1)), if the edge {b, ci} is used by an agent {a, ci}with a
color at most m, and can use at most color m otherwise. Because of technical condition (A2)
and by imposing the following conditions,

2 f (n) < (h + k) f (1), (A4)

2 f (n) < h f (1) + f (m + 1), (A5)

(k + 1) f (m) < 2 f (n + 1), (A6)

(k + 1) f (m) < (h + k) f (1), (A7)

(k + 1) f (m) < h f (1) + f (m + 1), (A8)
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in a Nash equilibrium exactly n agents {a, ci} must use the edge {a, b} with colors ranging
from 1 to n. In the right side of (A5) and (A8), f (m + 1) replaces f (1), since we impose the
following condition, by which the m agents {b, di} have to use the edge {b, ci} if they can
use a color at most m + 1:

2 f (m + 1) < (k + 1) f (1). (A9)

In order to explain how exactly n agents {a, ci}must use the edge {a, b} with colors
ranging from 1 to n, we proceed by cases.

• If a color x ≤ m is free on the edges {a, b} and {b, ci}, the request {a, ci} is not in equi-
librium using a color y ≥ n + 1 or using the h edges chain (see conditions (A4), (A5)
and (A9)).

• If a color x ≤ m is free on the edge {a, b} and is not on the one {b, ci} (i.e., x is free on
the corresponding k edges chain), the request {a, ci} is not in equilibrium using a color
y ≥ n + 1 or using the h edges chain (see conditions (A6)–(A9)).

• If a color x such that m + 1 ≤ x ≤ n is free on the edge {a, b}, the request {a, ci}
is not in equilibrium using a color y ≥ n + 1 or using the h edges chain, since in
a Nash equilibrium, the agents {b, di} cannot use the edge {b, ci} with color x (see
conditions (A4), (A5) and (A9)).

Now let α = {a, cı̄} be the agent not involved in the previous analysis, and β1, . . . , βm
the m agents {b, cı̄}. α is not in equilibrium using the k edges chain by imposing

2 f (n + 1) < (h + k) f (1), (A10)

2 f (n + 1) < (1 + k) f (n + 1). (A11)

α is not in equilibrium using the k edges chain with a color y ≥ m + 1 by imposing

2 f (n + 1) < (h + 1) f (m + 1). (A12)

If the edge {b, cı̄} is free, α is not in equilibrium using the edges {a, b} and {b, cı̄}
where it can use a color y ≥ n + 1 by imposing

(h + 1) f (1) < 2 f (n + 1). (A13)

If the edge {b, cı̄} is used by the β agents, α is not in equilibrium using the h edges
chain and the edge {b, cı̄}, neither with color 1, by imposing

2 f (n + 1) < h f (1) + f (m + 1). (A14)

Moreover, because of condition (A9), the β agents are not in equilibrium using the k
edges chain if all the colors y ≥ m+ 1 are free on the edge {b, cı̄} , and are not in equilibrium
using the unique edge {b, cı̄} if on it a color greater or equal to n + 1 is present by imposing

k f (m) < f (n + 1). (A15)

We now prove that the agents α and β j can never be at equilibrium proceeding
by cases.

• The agent α uses the chain of h edges with a color at most equal to m (by condition (A12)),
and there exists at least one agent β j̄ using the chain of k edges.
This is not an equilibrium, since by condition (A9) β j̄ can move to the edge {b, cı̄}.

• The agent α uses the chain of h edges with a color at most equal to m (by condition (A12)),
and all the agents β use the edge {b, cı̄}.
This is not an equilibrium, since by condition (A14), α can move on the path formed
by two edges using the color n + 1.

• The agent α uses the edge {a, b} with a color at least equal to n + 1 and there exists at
least one agent β j̄ using the unique edge {b, cı̄}.
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This is not an equilibrium, since by condition (A15), β j̄ can move to the chain of
k edges.

• The agent α uses the edge {a, b} with a color at least equal to n + 1 and all the agents
β use the chain of k edges.
This is not an equilibrium since by condition (A13), α can move to the chain of h edges.

We conclude the proof by showing how the imposed conditions can be always satisfied.
We first note that some conditions are implied by other ones:

(A14) ∧ (A1) ∧ (A3)⇒ (A12)
since 2 f (n + 1) < h f (1) + f (m + 1) < h f (m + 1) + f (m + 1) = (h + 1) f (m + 1);
(A14)⇒ (A5) since 2 f (n) ≤ 2 f (n + 1) < h f (1) + f (m + 1);
(A9) ∧ (A14) ⇒ (A10) since 2 f (n + 1) < h f (1) + f (m + 1) < h f (1) + k f (1) =

(h + k) f (1);
(A10)⇒ (A4) since 2 f (n) ≤ 2 f (n + 1) < (h + k) f (1);
(A9) ∧ (A1) ∧ (A3)⇒ (A11) since k > f (m+1)

f (1) > 1⇒ 2 f (n + 1) < (1 + k) f (n + 1);
(A15)⇒ (A6) since (k+ 1) f (m) = k f (m) + f (m) < f (n+ 1) + f (n+ 1) = 2 f (n+ 1);
(A6) ∧ (A10)⇒ (A7) since (k + 1) f (m) < 2 f (n + 1) < (h + k) f (1);
(A6) ∧ (A14)⇒ (A7) since (k + 1) f (m) < 2 f (n + 1) < h f (1) + f (m + 1).
From the remaining conditions (A9), (A13), (A14) and (A15) we obtain

2 f (n + 1)− f (m + 1)
f (1)

< h <
2 f (n + 1)− f (1)

f (1)

and
2 f (m + 1)− f (1)

f (1)
< k <

f (n + 1)
f (m)

.

The existence of h and k integers is guaranteed by f (m + 1) > 2 f (1) and f (n + 1) >
2 f (m) f (m+1)

f (1) , which make the width of the above intervals greater than 1.
Finally, in order to meet all the conditions including the initial technical ones, it is

sufficient to choose

m such that


f (m + 1) > 2 f (1),
f (m + 1) > f (m),
m > 1.

and

n such that


f (n + 1) > 2 f (m) f (m+1)

f (1) ,
f (n + 1) > f (n),
n > m.

Since f is unbounded, all the constraints are satisfiable.
Claim 2. We show that, for the problem defined by the graph depicted in Figure A2

and by the instance
I = {{a, ci}, {b, ci}|i ∈ {1, 2, . . . , n}}

no Nash equilibrium exists for any pricing function f , such that ∃k : f (k) > 2 f (1).
The parameter n depends on f and must be suitably tuned. We set n as the smallest in-

teger for which f (n) > 2 f (1). In any routing, there must exist an agent {a, ci} using a color
at least equal to n. Let α = {a, cı̄} be one of these agents and β = {b, cı̄}. Clearly, in any
routing at Nash equilibrium, β must use a color strictly less than n. We prove the claim by
considering all the possible routings.
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a

b

c
1

c
2

c
n

Figure A2. In this graph, there exist two edges between any pair of nodes b and ci.

• α and β choose the same edge.
This is not an equilibrium, since β can always play a move so as not to share an edge
with α. This is assured by the condition

f (1) <
f (n)

2
.

We note that from β’s point of view, the two pricing functions max-avsum and
sum-avsum are essentially the same, since all the possible paths for β consist of a
single edge.

• α and β choose different edges.
This is not an equilibrium, since α can always play a move so as to share an edge with
β. This is assured by the condition

f (n)
2

< f (n).

We note that, in a routing at Nash equilibrium, the edge {a, b} has a cost of f (n)
n for

each agent {a, ci}. For the pricing function max-avmax, the above move is trivially an
improving one for α, while for the pricing function sum-avmax, this is assured by the
condition f (n)

n < f (n).

Claim 3. We show that for the problem defined by the graph depicted in Figure A2
and by the instance

I = {{a, ci}, {b, ci}|i ∈ {1, 2, . . . , n}}

no Nash equilibrium exists for any pricing function f such that ∃k : f (k) > f (1).
The parameter n depends on f and must be suitably tuned. We set n as the smallest
integer for which f (n) > f (1). In any routing, there must exist an agent {a, ci} using a
color at least equal to n. Let α = {a, cı̄} be such an agent and let β = {b, cı̄}. Clearly, in any
routing at Nash equilibrium, β must use a color strictly less than n. We prove the claim by
considering all the possible routings.

• α and β choose the same edge.
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This is not an equilibrium, since β can always play a move so as not to share an edge
with α. This is assured by the condition

f (1) <
f (1) + f (n)

2
.

We note that, from β’s point of view, the two pricing functions max-avsum and sum-avsum
are essentially the same, since all the possible paths for β consist of a single edge.

• α and β choose different edges.
This is not an equilibrium, since α can always play a move so as to share an edge with
β. This is assured by the condition

f (1) + f (n)
2

< f (n).

We note that, in a routing at Nash equilibrium, the edge {a, b} has a cost of (n−1) f (1)+ f (n)
n

for each agent {a, ci}. For the pricing function max-avsum, the above move is trivially
an improving one for α, while for the pricing function sum-avsum, this is assured by
the condition (n−1) f (1)+ f (n)

n < f (n).
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