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Development and testing of an artificial
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intelligence tool for predicting end-stage
kidney disease in patients with immunoglobulin

A nephropathy

Francesco Paolo Schena'”, Vito Walter Anelli’, Joseph Trotta’, Tommaso Di Noia”, Carlo Manno',
Giovanni Tripepi’, Graziella D'Arrigo”, Nicholas C. Chesnaye’, Maria Luisa Russo®, Maria Stangou’,
Aikaterini Papagianni’, Carmine Zoccali®, Vladimir Tesar”, Rosanna Coppo”, and members

of the VALIGA study”

'Department of Emergency and Organ Transplant, University of Bari, Bari, Italy; *Research Laboratory, Fondazione Schena, Valenzano,
Bari, Italy; >Department of Electrical and Information Engineering, Polytechnic of Bari, Bari, ltaly; *CNR Institute of Clinical Physiology,
Reggio Calabria, Italy; >Department of Medical Informatics, Public Health Research Institute, University of Amsterdam, Amsterdam, The
Netherlands; °Research Laboratory, Fondazione Ricerca Molinette, Torino, Italy; “Department of Nephrology, Hippokration General

Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece; and BDepartment of Nephrology, 1st Faculty of Medicine and General

University Hospital, Charles University, Prague, Czech Republic

We have developed an artificial neural network prediction
model for end-stage kidney disease (ESKD) in patients with
primary immunoglobulin A nephropathy (IgAN) using a
retrospective cohort of 948 patients with IgAN. Our tool is
based on a two-step procedure of a classifier model that
predicts ESKD, and a regression model that predicts
development of ESKD over time. The classifier model
showed a performance value of 0.82 (area under the
receiver operating characteristic curve) in patients with a
follow-up of five years, which improved to 0.89 at the ten-
year follow-up. Both models had a higher recall rate, which
indicated the practicality of the tool. The regression model
showed a mean absolute error of 1.78 years and a root
mean square error of 2.15 years. Testing in an independent
cohort of 167patients with IgAN found successful results
for 91% of the patients. Comparison of our system with
other mathematical models showed the highest
discriminant Harrell C index at five- and ten-years follow-up
(81% and 86%, respectively), paralleling the lowest Akaike
information criterion values (355.01 and 269.56,
respectively). Moreover, our system was the best calibrated
model indicating that the predicted and observed outcome
probabilities did not significantly differ. Finally, the
dynamic discrimination indexes of our artificial neural
network, expressed as the weighted average of time-
dependent areas under the curve calculated at one and two
years, were 0.80 and 0.79, respectively. Similar results were
observed over a 25-year follow-up period. Thus, our tool
identified individuals who were at a high risk of developing
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ESKD due to IgAN and predicted the time-to-event
endpoint. Accurate prediction is an important step toward
introduction of a therapeutic strategy for improving clinical
outcomes.
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using electronic health records. Artificial intelligence

and machine learning combined with human intelli-
gence can help physicians to provide better care for their
patients and to improve individual health outcomes. Machine
learning is a robust methodology used to extract information
from large datasets based on experience. Several applications
in health care,' " especially those based on deep learning,™
have been proposed.

Artificial neural networks (ANNs) represent one of the
most notable advances in artificial intelligence; they are
advanced models using a multivariate analysis. Inspired by the
structure of the human brain, ANNs are composed of
computational units called neurons that are interconnected
and that estimate functions that depend on a large number of
inputs. Each connection between the neurons is based on a
weight representing the influence of one neuron on another
neuron. Each ANN can learn from a training set of data by
adapting its own weight, and then, if the learning phase is
successful, the model can be used to predict the outputs.
ANNSs are relatively flexible because they tolerate missing data
and noise in single variables well and translate multivariate
nonlinear relationships into continuous functions without the
need to understand the underlying relationships between the

T oday’s physicians create large amounts of health data
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. 'J ’8 . .
variables.”” ANNs as nonlinear, flexible, and general tools are

capable of declining with any sort of arbitrary function.

IgA nephropathy (IgAN) is the most common biopsy-
proven primary glomerulonephritis in the world’ and is
characterized by a progressive development of end-stage
kidney disease (ESKD) in 30% to 40% of individuals after
20 years from kidney biopsy.'” The heterogeneity of the
clinical phenotype may influence the outcome of the disease.
Many investigators have tried to search for the risk factors of
ESKD (Supplementary Table S1), and others have developed
various scoring systems'' ™" (Supplementary Table S2). More
recently, a risk predictor tool based on a conventional Cox
regression analysis has been used by Barbour et al.'” to predict
ESKD in a large multiethnic cohort of patients with IgAN.
However, there are many constraints and difficulties in col-
lecting data because some outpatients visit the hospital irreg-
ularly. Moreover, the nonlinearity of some predictors and the
effects of drugs complicate the interpretation of the data and
their use for clinical practice. Artificial intelligence research has
developed ANNs and deep learning. By jointly exploiting the
research results in the 2 fields, today we may take advantage of
deep neural networks to refine risk prediction.

The aims of our study are (i) to identify risk factors and
covariates affecting ESKD in patients with IgAN using the
traditional regression model; (ii) to develop a neural network
classifier, the clinical decision support system (CDSS), that
may be able to predict ESKD at the time of the diagnosis
based on clinical findings and histologic data of the renal
biopsy; and (iii) to use joint model analysis of repeated ANN
measures and time-to-event data to provide the adequate risk
discrimination of our tool.

RESULTS

Characteristics of the study cohort

The demographic characteristics and laboratory and histo-
logic findings of 948 patients with IgAN are shown in Table 1.
Patients had a mean age of 40.6 £14.0 years at the time of
renal biopsy. The male-to-female ratio was 2.6:1. Hyperten-
sion was observed in 30.3% of the patients. The median
values of laboratory findings were serum creatinine 1.20
(range, 0.96-1.70) mg/dl, estimated glomerular filtration rate
(eGFR) 67.30 (range, 44.89-89.85) ml/min per 1.73 m? and
daily proteinuria 1.30 (range, 0.60-2.50) g/d. Patients were
categorized into chronic kidney disease stages according to
the Kidney Disease Outcomes Quality Initiative classification:
stage I (25.0%), stage I (32.7%), stage III (32.3 %), stage IV
(8.5%), and stage V (1.5%). Mild proteinuria (<1 g/d) was
present in 37.9% of the patients, moderate proteinuria (1-3 g/
d) in 43.0%, and severe proteinuria (>3 g/d) in 19.1% of the
patients with IgAN at the time of kidney biopsy. The duration
of follow-up was 89.0 (50.0-134.0) months and 7952 years—
man (mean follow-up per number of patients). The primary
outcome was ESKD (eGFR <15 ml/min per 1.73 m?), dial-
ysis, or transplantation. After the kidney biopsy 60.9% of
patients received renin-angiotensin system blockers (RASBs),
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Table 1| Baseline characteristics of patients with IgAN
enrolled in the cohorts at the time of kidney biospy®

Characteristics

Study cohort

Test cohort

Patients (n) 948 167

Age at biopsy, yr 406 + 14.0 40.1 £ 15.5
Sex (male/female) 685/263 120/47
Systolic blood pressure, mm Hg 134.1 £ 186 1355 £ 178
Diastolic blood pressure, mm Hg 83.2 £ 109 81.2 £ 11.0
Mean arterial pressure, mm Hg 100.2 £ 124 993 £ 124
Hypertension, n (%) 287 (30.3) 58 (35.0)
Serum creatinine, mg/dl 1.20 (0.96-1.70) 1.12 (0.88-1.50)

eGFR MDRD, ml/min
per 1.73 m?

KDOQI stage, ml/min
per 1.73 m?, n (%)

67.30 (44.89-89.85) 69.00 (48.80-91.00)

I >90 236 (25.0) 42 (25.1)

Il 60-89 310 (32.7) 64 (38.3)

Il 30-59 306 (32.3) 43 (25.7)

IV 15-29 81 (8.5) 13 (7.8)

V<15 15 (1.5) 5(3.0)

Proteinuria, g/d, n (%) 1.30 (0.60-2.50) 1.00 (0.50-1.80)

Mild <1 359 (37.9) 80 (47.9)

Moderate 1-3 408 (43.0) 68 (40.7)

Severe >3 181 (19.1) 19 (11.4)

Renal biopsy, n/n (%)

Mesangial (M) 1 307/948 (32.4) 99/164 (60.4)

Endocapillary (E) 1 108/948 (11.4) 19/164 (11.6)

Glomerular sclerosis (S) 1 710/948 (74.9) 106/164 (64.6)

Tubulointerstitial damage (T) 1 194/948 (20.5) 52/164 (31.7)

Tubulointerstitial damage (T) 2 44/948 (4.6) 15/164 (9.1)

Crescent (C) 1 86/948 (9.1) 35/120 (29.2)

Therapy, n (%)

RASBs 577 (60.9) 110 (65.9)

Corticosteroids/cytotoxic 258 (27.2) 65 (38.9)
agents

Follow-up, mo 89.0 (50.0-134.0) 76.1 (45.5-143.2)

Year-man, yr 7952 1411

Clinical outcome

ESKD or eGFR < 15 ml/min 210 (22.2) 23 (13.8)

per 1.73 m? n (%)

eGFR, estimated glomerular filtration rate; ESKD, end-stage kidney disease; IgAN, IgA
nephropathy; KDOQI, Kidney Disease Outcomes Quality Initiative; MDRD, Modifica-
tion of Diet in Renal Disease; RASBs, renin-angiotensin system blockers.

*Therapy, follow-up, and clinical outcome are included.

Data are expressed as mean + SD, median (interquartile range), absolute, and
percent frequency.

whereas corticosteroids with or without cytotoxic agents were
used in 27.2% of patients.

Risk factors and renal survival
During a median follow-up of 89.0 months, 210 patients
(22.2%) had reached the endpoint of ESKD, dialysis, or trans-
plantation. The 5-, 10-, 15-, and 20-year renal survival rates in
all patients from the time of the renal biopsy were 88.9% (pa-
tients at risk, 666); 77.2% (patients at risk, 297); 67.7% (patients
at risk, 115); and 56.3% (patients at risk, 35), respectively.
Unadjusted and adjusted hazard ratios (HRs) that can
estimate the association between the different risk factors and
ESKD are reported in Table 2. The risk of ESKD significantly
increased for every 1.0-mg/dL increase in the serum creati-
nine level (adjusted HR 1.53, 95% confidence interval [CI]
1.35-1.73, P < 0.001) and increased for every 1.0 g/d in the

Kidney International (2021) 99, 1179-1188
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Table 2| Unadjusted and adjusted risk estimates by Cox proportional hazard models for ESKD in 948 patients with IgA

nephropathy in the study cohort

Unadjusted risk (HR) Adjusted risk (HR)

Risk factor Unit of increase or reference (95% ClI) P value (95% CI) P value
Age, yr 1 1.02 (1.01-1.03) <0.001 1.00 (0.99-1.01) 0.726
Gender (female/male) Female 1.38 (0.99-1.92) 0.050 0.78 (0.54-1.09) 0.137
Arterial hypertension 0 = absent 1 = present 1.98 (1.51-2.60) <0.001 1.25 (0.93-1.67) 0.131
Systolic arterial presssure, mm Hg 1 1.02 (1.01-1.03) <0.001 Not selected
Diastolic arterial presssure, mm Hg 1 1.03 (1.02-1.05) <0.001 Not selected
Mean arterial presssure, mm Hg 1 1.03 (1.02-1.04) <0.001 Not selected
Proteinuria, g/d 1 1.17 (1.13-1.22) <0.001 1.16 (1.11-1.22) <0.001
Serum creatinine, mg/d| 1 1.72 (1.64-1.90) <0.001 1.53 (1.35-1.73) <0.001
eGFR (MDRD), ml/min per 1.73 m? 1 0.96 (0.95-0.97) <0.001 Not selected
Mesangial (M) 0 = absent 1 = present 1.69 (1.29-2.23) <0.001 1.06 (0.79-1.43) 0676
Endocapillary (E) 0 = absent 1 = present 1.22 (0.80-1.85) 0.359 1.14 (0.74-1.76) 0.556
Glomerular stenosis (S) 0 = absent 1=present 3.27 (2.12-5.06) <0.001 1.87 (1.19-2.96) 0.007
Tubulointerstitial damage (T) TO
T 5.30 (3.93-7.14) <0.001 3.19 (2.26-4.51) <0.001
T2 9.50 (6.16-14.65) <0.001 4.74 (2.94-7.63) <0.001
Crescent (C) 0 = absent 1 = present 0.94 (0.56-1.59) 0.826 0.71 (0.43-1.22) 0.212
Renin-angiotensin system blockers 0=no; 1 =yes 1.71 (1.28-2.28) <0.001 1.40 (1.03-1.88) 0.030
Corticosteroids/cytotoxic drugs 0=no; 1 =yes 1.13 (0.82-1.54) 0.462 0.58 (0.41-0.82) 0.002

Cl, confidence interval; eGFR, estimated glomerular filtration rate; HR, hazard ratio; MDRD, Modification of Diet in Renal Disease.

Basic (initial) - 2 log L = 2544.540; Lower (lowest) - 2 log L = 2286.248; P < 0.0001,

daily proteinuria (adjusted HR 1.16, 95% CI 1.11-1.22, P <
0.001). Furthermore, there was a strong association between
the risk of ESKD and the presence of tubulointerstitial lesions
and glomerular sclerosis at renal biopsy (tubulointerstitial
damage [T] 1: adjusted HR 3.19, 95% CI 2.26-4.51, P <
0.001; T2: adjusted HR 4.74, 95% CI 2.94-7.63, P < 0.001;
glomerular sclerosis [S] 1: adjusted HR 1.87, 95% CI 1.19-
2.96, P = 0.007). Finally, therapy with corticosteroids or
cytotoxic drugs significantly reduced the risk of ESKD
(adjusted HR 0.58, 95% CI 0.41-0.82, P = 0.002).

Performance of the ANNs

The combined panel of 7 clinical variables: age, sex, hypertension,
serum creatinine, proteinuria, MEST-C (mesangial, endocapil-
lary, glomerular stenosis, tubulointerstitial damage, crescent)
classification for histologic lesions, and therapy, selected by Cox
regression analysis was used for our ANN model.

To provide a good performance of the prediction model,
our study cohort dataset was randomly divided into 2 subsets
(Supplementary Table 53). The training subset was formed by
758 patients (80%) and the test subset by 190 patients (20%).
The first subset was used to perform 10-fold cross-validation
to select the best ANN model. The second subset was used to
evaluate the technologies described in the Supplementary
Methods section. The 7 wvariables selected by regression
analysis were used in both subsets.

The performance value was 0.82 (area under the receiver
operating characteristic [ROC] curve [AUC]) in patients with
IgAN with a median follow-up of 5 years (Figure la). The
ROC curve had 0.92 sensitivity (recall), 0.80 accuracy, and
0.83 precision. In the model of 10-year median follow-up, the
AUC was 0.89 with a sensitivity (recall) of 0.89, accuracy of
0.83, and precision of 0.81 (Figure 1b). We have shown here

Kidney International (2021) 99, 1179-1188

that both models have a high recall rate, indicating the
practicality of the ANN.

Dynamic prediction of ESKD by ANN

The dynamic prediction of ANN as assessed at 1 and 2 years
to predict ESKD over 5 and 25 years of follow-up was
investigated in 932 patients—that is, in the combined cohort
of training and test subsets. Over a 5-year follow-up period,
the dynamic discriminations (AUCs) of 1- and 2-year ANN
were 0.80 and 0.79, respectively, and similar results were
obtained over the extended (25-year) follow-up period (1-
year ANN, AUC 0.82; 2-year ANN, AUC 0.78).

Regression model

The second step was based on the development of a regression
model trained to analyze the event-time interval of ESKD
prediction. To test our second model, we considered the set of
study cohort patients who had reached ESKD during the
follow-up of 10 or more years. The mean absolute error and
root mean square error were used as the metrics to evaluate the
performance of our model and were applied to 2 independent
cohorts: the training subset and the test subset, which was
composed of randomly selected 20% of the patients. The
regression model showed mean absolute error and root mean
square error values of 1.78 years and 2.15, respectively.

Test cohort

We collected clinical and laboratory findings of an indepen-
dent cohort of 178 patients with biopsy-proven IgAN from 6
renal units. We removed 11 patients because of missing data;
thus, the reproducibility of our model was evaluated in 167
patients. As shown in Table 1, at the time of the kidney bi-
opsy, the mean patient age was 40.1 £ 15.5 years; the median
values of serum creatinine were 1.12 (0.88—1.50) mg/dl; eGFR
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Figure 1| Receiver operating characteristic curves of the

artificial neural network models at (a) 5 years and (b) 10 years of
end-stage kidney disease risk. AUC, area under the curve.

69.00 (48.80-91.00) ml/min per 1.73 m? and daily protein-
uria 1.00 (0.50-1.80) g/d. Hypertension was present in 35%
of patients. The median duration of follow-up was 76.1 (45.5—
143.2) months. As shown in Figure 2, our model predicted
the development of ESKD in 44 of 167 patients (26.3%).
Sixteen individuals received dialysis or renal transplant. In 20
subjects with eGFR higher than 45 ml/min per 1.73 m?
proteinuria higher than 1.0 g/d, and moderate to severe renal
lesions, their renal function improved after RASBs and
corticosteroid therapy (pulse in 8 patients, oral in 112 patients
for 6 months with gradual daily dose reduction). ESKD was
erroneously predicted in 8 patients who maintained normal
renal function. The tool predicted no ESKD in 123 of 167
patients (73.6%), 6 of whom reached ESKD. In conclusion, a
prediction error was observed in 14 to 167 patients (8.4%) of
the test cohort.

Comparisons of different models
Many investigators have proposed different risk score models,
based on mathematical models and statistical analyses, to
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predict ESKD in patients with IgAN (Supplementary
Table S2). We blindly compared our CDSS model with
those of Okonogi et al.,”’ Berthoux et al,'* Tanaka et al,'"®
and Barbour et al.'® Therefore, we established a cohort of
150 patients with [gAN with 5-year follow-up randomly
selected in the study cohort (baseline characteristics of the
patients are shown in Supplementary Table S4). Then, all
scores, save those for Barbour et al,'” were also tested to
predict ESKD in a cohort of 83 patients with IgAN with 10-
year follow-up randomly selected in the study cohort
(Supplementary Table S4).

As shown in Tables 3 and 4, the short-term (81%) and
long-term (86%) discriminatory power of CDSS for pre-
dicting ESKD was superior to the scores provided by Okonogi
etal.” (76% and 74%), Berthoux et al.'* (58% and 55%), and
Tanaka ef al.'* (78% and 76%). At 5 years, the discriminatory
power of the CDSS was almost identical to that of Barbour
et al.'"® (81% vs. 82%). The CDSS also showed the lowest
Akaike information criteria (the lower the Akaike informa-
tion criterion, the better the prognostic estimates) in both the
short-term and long-term follow-up periods (Tables 3 and 4).
In more detail, the calculation of Akaike weights showed that
the model including the ANN had 83.1% chances to be the
best model to predict the 5-year risk of ESKD followed by the
scores of Barbour et al.'® (13.7%), Tanaka et al.'® (3.0%),
Okonogi et al."’ (0.16%), and Berthoux et al.'* (0.04%). Of
note, at 10 years the probability of the ANN to perform the
best among the 4 candidate risk prediction rules was 99.9%.

The CDSS-based model was also the best calibrated rule at
5-year follow-up because the P values of the formal com-
parison between the observed and predicted risk of ESKD, as
provided by the CDSS, were higher (i.e., further from the
statistical significance) than those provided by the 4 tradi-
tional scores. At 10 years, the calibration ability of the CDSS
was satisfactory.

CDSS description

Supplementary Figures S1 and S2 illustrate the structure of
the ANN tool that may be widely used by physicians for
predicting the ESKD at the 5- and 10-year follow-ups for
patients with IgAN at the time of kidney biopsy diagnosis.
The CDSS is available at https://igan.poliba.it/, and the web-
site can be accessed by cell phone. Physicians may use the

167 IgAN patients

| |

a4.y) 123 (N)

16 (ESKD) 20 (CS) *8 (NRF) 117 (NRF) *6 (ESKD)

Figure 2| Tool results in the test cohort. CS, corticosteroids;
ESKD, end-stage kidney disease; IgAN, IgA nephropathy; N, no ESKD;
NRF normal renal function; Y, yes ESKD. *Error prediction.

Kidney International (2021) 99, 1179-1188
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Table 3| Short-term (5-year) prognostic accuracies of the 4
predictive scores compared with ANN tool

Harrell C Akaike information

Authors index criterion May-Hosmer test

Okonogi et al."” 76% 367.48 %2 =536 (P = 0.15)
Berthoux et al.'"  58% 390.08 72 =226 (P=052)
Tanaka et al.'® 78% 361.64 o =282 (P=042)
Barbour et al."® 82% 358.62 2% = 4.05 (P = 0.26)
ANN model 81% 355.01 % =121 (P = 0.76)

ANN, artificial neural network.

model by entering the features at the time of the kidney bi-
opsy. The tool predicts the ESKD (yes or no), and in the
presence of the potential development of ESKD, the tool in-
dicates the time to reach the outcome (5-10 years). The
physician may test the effect of RASBs or immunosuppressive
therapy on the outcome of the patient. We have reset the
CDSS tool lyear after the kidney biopsy as baseline in a
subgroup of 314 patients with IgAN who continued RASB
therapy. As shown in Supplementary Figure S3, our tool still
predicted no deterioration of the renal function in 216 pa-
tients and ESKD in 50 subjects, demonstrating the correct
prediction of our tool in 266 of 314 patients (84.7%) and the
benefit of RASB therapy in 216 of 239 subjects (90.4%) as
recently suggested by the last Kidney Disease Improving
Global Outcomes clinical practice guidelines on Glomerular
Diseases.’” The reset was also done for 61 patients of the test
cohort treated with RASBs; the prediction of no deterioration
of renal function was confirmed in 48 of 52 (92.3%) and
ESKD in other patients. In conclusion, these results
strengthen the data of the study cohort.

DISCUSSION

We developed a CDSS that can predict ESKD in patients with
IgAN with a median follow-up of 5 and 10 years. The CDSS is
simple to use because it acquires the bulk of the data at the
time of kidney biopsy, a time when it is important for the
physician to know if the patient will reach the final outcome
of ESKD.

Our CDSS has been built on links between clinical data
and good standards for accuracy. In the first phase, we
assembled a panel of risk factors by reviewing the clinical and
histologic studies published over the past 30 years, as shown
in the Supplementary Table S1. Then we chose 7 variables
selected by the Cox regression analysis in the study cohort.

Table 4| Long-term (10-year) prognostic accuracies of the 3
predictive scores compared with ANN tool

Harrell C Akaike information
index

May-Hosmer

Authors criterion test

Okonogi et al.”®  74% 304.32 +? = 12.67 (P = 0.005)

Berthoux et al'  55% 330.87 x> = 2.68 (P = 044)
Tanaka et al.”” 76% 297.40 %> =896 (P =0.03)
ANN model 86% 269.56 12 =473 (P =019

ANN, artificial neural network.

Kidney International (2021) 99, 1179-1188

The combination of variables for assessing the risk of ESKD
in the general population was first reported by Hallan et al.”"
Many investigators have used combined clinical variables
recorded at the time of kidney biopsy to improve the accuracy
of prediction of renal outcome in patients with IgAN
(Supplementary Table S2). The combination of clinical pa-
rameters has been based on statistical methods, but these
studies'''® have shown several limitations. First, the different
histologic classifications, not the MEST-C classification, were
used in the studies in references 11 through 17. Second, the
risk scores were not tested in independent cohorts in those
studies. We tested our tool using an external cohort of 167
patients with biopsy-proven IgAN. Finally, the comparison
with other mathematical models has shown that our predic-
tion tool is more precise than others (Tables 3 and 4). Further,
the calibration ability of our tool is acceptable at 10 years.
Recently Barbour et al.'" developed a risk prediction tool in
which the MEST classification (without the crescent [C]
lesion) was used and where the time prediction was 60 to 80
months. Comparisons between these 2 tools are shown in
Supplementary Table S5. Principally, Barbour ef al.'® use an
endpoint composed of eGFR < 15 ml/min per 1.73 m?’
ESKD, transplantation, and permanent reduction in eGFR to
less than 50% of the baseline value. The last endpoint is
questionable. When hard clinical outcomes are too expensive
to study in randomized clinical trials in nephrology, an
alternative is to target surrogate endpoints, such as permanent
reduction of more than 50% of the baseline eGFR, is used.
This outcome should not be used in long-term retrospective
studies. Moreover, IgAN is a slow, progressive indolent long-
term disease that may maintain a permanent reduction of
more than 50% of baseline eGFR for more than 80 months,
mainly in patients with chronic kidney disease stage 2 and 3.
Therefore, we choose the endpoint ESKD (yes or no) and the
time-to-event of 60 to 120 months.

Machine learning can assemble large clinical databases
and generate tools for making decisions in various fields of
human health.” ANNs have the advantage of detecting
complex nonlinear relationships between independent and
dependent variables and all the possible interactions be-
tween the predictor variables, but an ANN cannot identify
possible causal relationships that can be studied by
computational resources. The methodology used in our
study was based on deep machine learning, using ANNs
that can (i) learn extremely complex relationships between
the heterogeneous kind of data generated by clinical care
and (ii) exceed human abilities in performing tasks.’
Recently new methods for the time-to-event prediction
were proposed by extending the Cox proportion hazard
model using neural networks.””

Our previous tool was based on a classic ANN formed by
2 hidden layers.” After exploiting the new ANN techniques,
we used 4 hidden layers with 100 neurons in each layer for
the classification model and 3 hidden layers with 125 neu-
rons for each layer for the regression model. Moreover, we
introduced additional advanced techniques, such as batch
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normalization, that reduce the internal covariate shift in the

classification model. Finally, we introduced a new proxy

AUC function,

Furthermore, we used the exponential linear unit (ELU)
function, which is more flexible than the rectified linear unit,
for the classification model and scaled ELU for the regression
task. The ELU avoids mean and bias shifts to improve
learning, and the scaled ELU is a slightly modified formula of
ELU. For the regression model, we introduced dropout layers.

Our CDSS can identify patients at low and high risk of
ESKD development in the next 5 to 10 years for whom
therapy may be crucial, as shown in the 20 patients with IgAN
of the test cohort who maintained renal function (eGFR > 60
ml/min per 1.73 m?) after corticosteroid therapy. When
combining different variables, the AUC increased from 0.82
to 0.89, suggesting that our model has better diagnostic ac-
curacy in predicting the long-term risk of potential ESKD
development in patients with IgAN.

Accurate prediction of the IgAN outcomes based on the
individual characteristics of the patient is an important step
toward developing personalized medicine, and it may
potentially improve the clinical course of the disease, as re-
ported in other diseases.”* The prediction of ESKD in indi-
vidual cases is important for the following indications:

« Screening of patients with IgAN who should or should not
receive regular examinations during the clinical course of
the disease, which can translate into saving time and money

« Therapeutic strategy, such as whether to use antiproteinuric
drugs (high doses of RASB) or immunosuppressive drugs
after the kidney biopsy

» Evaluating the response to therapy

« Monitoring disease progression

Our study has several strong points. (i) ANN is not
expressed by a conventional Cox regression analysis, and it
includes, for the first time, the complete MEST-C classifica-
tion used for histologic diagnosis of kidney biopsies. To
facilitate the application, we developed a tool that is easy to
use for consultation and to predict the time-to-event interval
to achieve ESKD. (ii) By using this approach, a reliable and
sustainable therapeutic approach can be achieved more easily
and quickly. This approach can improve patient outcomes.
(iii) A specific cost analysis should be performed to evaluate
the economic input of such tools. The potential future
application in clinical practice could be evaluated over the
next few years. (iv) The patients with IgAN included in our
study were not restricted to a single center. (v) The joint
model analysis for longitudinal and time-to-event data
showed an adequate time-dependent prognostic ability of our
ANN, indicating that the tool provides adequate risk
discrimination when measured repeatedly over time.

However, our study also has some limitations. (i) This
model has been developed and tested in retrospective cohorts
of patients with IgAN; therefore, multicenter prospective
cohort studies are needed to evaluate the validity of this tool
in other patients with IgAN, ranging from Caucasian to non-
Caucasian races. (ii) We need to confirm whether the
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therapeutic interventions may reduce the number of ESKD
events predicted by our tool.

In conclusion, our CDSS is a reliable tool for predicting
ESKD in patients with IgAN. It is simple to use because it is
based on the input of 7 indicators and can predict the
approximate number of years in which ESKD will develop. To
further explore the potential value and sustainability of this
tool in the management of the disease, a prospective multi-
center clinical study enrolling a large number of patients
would be helpful.

METHODS
Patient characteristics

Study cohort. In our cohort, we enrolled 2 groups of patients
with biopsy-proven IgAN. The first one was the retrospective
VALIGA cohort study”” that included 1147 patients from 13
participating European countries. The second group was composed
of 84 patients recruited from the Thessaloniki Renal Unit, Greece.

Figure 3 illustrates the selection process of patients enrolled in
our observational study. Patients younger than 18 years (n = 174)
were excluded because we focused on IgAN in adults. Then 109
patients were excluded because of missing data. In total, 948 patients
with IgAN were included in this retrospective observational longi-
tudinal study.

The diagnosis of IgAN was based on the histologic and immu-
nofluorescence study of the kidney biopsy. Patients with IgAN sec-
ondary to Henoch-Schonlein purpura, lupus nephritis, chronic liver
diseases, and other immunologic disorders were excluded.

The study cohort of patients with IgAN does not represent the
natural history of the disease because after kidney biopsy, 60.9% of
the patients were treated with RASBs, and 27.2% received cortico-
steroids or immunosuppressive drugs. The demographic character-
istics and baseline laboratory data of the patients at the time of
kidney biopsy are shown in Table 1.

Hypertensive patients were considered when at the time of the
renal biopsy, their systolic blood pressure was 140 mm Hg or higher,
their diastolic blood pressure was 90 mm Hg or higher, or both, or
the patients received antihypertensive drugs. Serum creatinine values
were expressed in milligrams per deciliter. The glomerular filtration
rate was estimated using the 4 variables in the Modification of Diet
in Renal Disease formula.”® Daily proteinuria was measured by
grams per day. Renal biopsy was categorized according to the Oxford
classification,””** which considers the 4 lesions as M (mesangial), E
(endocapillary), S (glomerular sclerosis), and T (tubulointerstitial
damage). The renal lesions were quantified as M (0,1), E (0,1), S
(0,1), and T (0,1,2). Then the renal biopsy reports were revised for
the capillary lesion (crescent, C) and quantified as either 0 (absent)
or 1 (Cl or C2). In conclusion, the kidney biopsy reports were
updated in accordance with the MEST-C classification, which was
recently published by the International IgAN Classification Working
Group.””

The primary variable endpoint of the renal outcome was ESKD
defined as eGFR less than 15 ml/min/173* or the initiation of pe-
riodic hemodialysis or kidney transplantation. The renal survival
time was calculated from the biopsy to the last follow-up visit.

Test cohort. An independent external cohort of 167 patients
with biopsy-proven IgAN from 6 European renal units was used for
our ANN model. The demographic characteristics and baseline
laboratory data of the patients at the time of kidney biopsy are shown
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VALIGA COHORT

1147 biopsy-proven IgAN patients

GREEK COHORT
84 biopsy-proven IgAN patients

174 children with IgAN were
excluded because the study
focused on IgAN in adults

.

973 patients

97 patients were excluded
formissing date

[y

12 patients were excluded

formissing date

\d

876 patients

72 patients

AN

e

Total number
948 patients

Figure 3| Flowchart of the patients with IgA nephropathy (IgAN) from the VALIGA and Greek cohorts included in the study.

in Table 1. The study was conducted according to the principles of
the Declaration of Helsinki and was approved by the local institu-
tional ethics review boards.

ANN models

In a previous article,”’ we compared ANNs with other machine
learning techniques, such as neuro-fuzzy systems, support vector
machines, and decision trees, for predicting ESKD in IgAN. ANNs
have the potential to analyze multidimensional and nonlinear data,
hence providing a correct interpretation that is difficult to obtain by
standard statistical analyses. Advances in deep neural networks in
medicine have suggested ways for improving our previous model by
exploiting new ANN techniques.”' ** In this study, we tested many
techniques described in the Supplementary Methods, and we then
developed 2 models, of which the classifier model could predict the
ESKD and the second, the regression model, could predict the time
to reach ESKD.

The classifier model is composed of 4 hidden layers with 100
neurons in each layer. Variables selected by a multivariate model of
adequate statistical power constructed by means of Cox regression
analysis were collected at the time of the kidney biopsy (age, sex,
hypertension, proteinuria, serum creatinine, histologic renal lesions,
and therapy), whereas the outcome (ESKD yes or no) represented
the output data.

The regression model consisted of 3 layers containing 125 neu-
rons each. We included patients with IgAN of the study cohort with
follow-up between 5 and 10 years or more than 10 years in the
dataset. In the ANN scaled exponential linear unit, the activation
function was used to better exploit fine differences in the feature
values.”” The mean absolute error, expressed in years in our model,
and root mean square error were used as performance metrics for
the regression model. Finally, the best ANN architectures and
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parameters were selected by the K-fold cross-validation for both the
classifier and regression models.

The performance of the models was evaluated by calculating the
sensitivity (recall), positive predictive value, negative predictive value
(specificity), accuracy, and AUC. The ROC curve is an important
criterion for evaluating the performance of a classifier. However,
because the AUC is not directly optimizable, we designed a new cost
function that works as a proxy function for the AUC maximization
task. The cost function is directly derived from proofs, and dem-
onstrations are already available in work by Rendle ef al.™®

Our ANN model was then compared with other published
mathematical models (listed in the Appendix, Table 2). Okonogi
et al."’ considered 2 parameters (proteinuria and eGFR). Berthoux
et al'" considered 3 parameters (hypertension, proteinuria, and
histological grade). Tanaka et al.'® considered 5 parameters (age,
hypertension, eGFR, proteinuria, and histologic grade). Barbour
et al.'® considered 7 parameters (race, age, hypertension, eGFR,
proteinuria, histologic MEST score, and medication used before the
renal biopsy). The Barbour model was not compared at 10 years
because it was not specifically developed to predict ESKD for more
than 80 months.

Statistical analysis

Baseline sociodemographic and clinical characteristics were calcu-
lated and expressed as the mean plus or minus the SD or median
(interquartile range 25th—75th percentile) for continuous variables
and as the absolute and percent frequency for categorical variables, as
appropriate. Renal survival time from the ESKD endpoint was
calculated from the biopsy to the last follow-up. Cumulative renal
survival was analyzed by Kaplan-Meier curves for censored data. The
potential nonlinear effects of the exposure factors were explored as
appropriate and reported if identified.
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Univariate and multivariate analyses based on the Cox regression
proportional hazard model™ were used to assess the relative risk of
ESKD based on the influence of baseline prognostic factors. Variables
that could significantly predict ESKD in a univariate analysis (P <
0.05) or if they were clinically relevant, were used to construct a
multivariate model of adequate statistical power by means of back-
ward or forward stepwise approaches. Risk estimates were presented
as unadjusted and adjusted HRs and their 95% Cls, which were
calculated by using an estimated regression coefficient and its stan-
dard error.

To assess the time-dependent prognostic ability of the ANN,
measured repeatedly over time, we applied joint models for longitu-
dinal and time-to-event data. The discriminative capability (AUC) of
the ANN score was assessed using a dynamic discrimination index,
defined as the weighted average of time-dependent AUCs, calculated
over 1- and 2-year time horizons, across the entire follow-up period.™

The CDSS for predicting ESKD was compared with 4 predictive
scores' "' by using the Harrell C index (an index of discrimi-
nation),”” the Akaike information criterion,”” and the May-Hosmer
test (an index of calibration).”’ In brief, discrimination measures
how well a prognostic model distinguishes (discriminates) patients
with and without the outcome of interest. Discrimination was
measured by the Harrell C index, which at a variance of the ROC
curve analysis, takes into account the survival time. This index can
take values ranging from 0.5 (no discrimination) to 1.0 (perfect
discrimination), and its interpretation is similar to that of the ROC
curve analysis. The higher the Harrell C index, the higher the ac-
curacy of the model for predicting the event of interest. In our study,
calibration measures how much the prognostic estimate of a specific
predictive model matches the real probability of the outcome (i.e.,
the observed proportion of an event in a given time period). In the
calibration analysis, the predicted and observed probabilities of the
event are compared with the May-Hosmer test. A nonsignificant
May-Hosmer test indicates that the predicted and observed proba-
bilities of the event do not differ, and thus the calibration of the
model is satisfactory. The Akaike information criterion provides an
objective way of determining which model among a set of candidate
models is the best for predicting the occurrence of a given event. The
lower the AIC, the better the prognostic model is for predicting the
event of interest. All analyses were performed using SPSS for Win-
dows version 17.0 (SPSS Inc., North Sydney, Australia) and Stata/IC
release 13.1 for Windows (StataCorp, College Station, TX). A P value
less than 0.05 was considered statistically significant.

APPENDIX
Nephrology units of the VALIGA study

We are deeply grateful to the nephrology units of the VALIGA study (asterisks
mark the centers that sent the update by 2016): V. Tesar, D. Maixnerova
(Nephrology, First Faculty of Medicine and General University Hospital, Prague,
Czech Republic)¥; S. Lundberg (Nephrology, Karolinska University Hospital,
Karolinska Institutet, Stockholm, Sweden)*; L. Gesualdo (Nephrology,
Emergency and Organ Transplantation, University of Bari “Aldo Moro,” Foggia-
Bari, Italy)*; F. Emma, L. Fuiano (Nephrology, Pediatrico Bambino Gesu Hospital,
Rome, Italy)*; G. Beltrame, C. Rollino (Nephrology, San Giovanni Bosco Hospital,
Turin, Italy)*; R. Coppo, A. Amore, R, Camilla, L. Peruzzi (Nephrology, Regina
Margherita Children’s Hospital, Turin, Italy)*; M. Praga (Nephrology, Hospital 12
de Octubre, Madrid, Spain)*; S. Feriozzi, R. Polci, (Nephrology, Belcolle Hospital,
Viterbo, Italy)*; G. Segoloni, L. Colla (Nephrology, S. Giovanni Battista University
Hospital, Turin, Italy)*; A. Pani, A. Angioi, L. Piras (Nephrology, G. Brotzu
Hospital, Cagliari, Italy)*; J. Feehally (John Walls Renal Unit, Leicester General
Hospital, Leicester, UK)*; G. Cancarini, S. Ravera (Nephrology, Spedali Civili
University Hospital, Brescia, Italy); M. Durlik (Transplantation Medicine and
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Nephrology, Warsaw Medical University, Warsaw, Poland)*; E. Moggia
(Nephrology, Santa Croce Hospital, Cuneo, Italy)¥; J. Ballarin (Nephrology,
Fundacion Puigvert, Barcelona, Spain)¥*; S. Di Giulic (Nephrology, San Camillo
Forlanini Hospital, Rome, Italy); F. Pugliese, I. Serriello (Nephrology, Policlinico
Umberto | University Hospital, Rome, Italy)¥; Y. Caliskan, M. Sever, I. Kilicaslan
(Nephrology, Internal Medicine, Istanbul Faculty of Medicine, Istanbul, Turkey)*;
F. Locatelli, L. Del Vecchio (Nephrology, A. Manzoni Hospital, Lecco, Italy)*;
J.F.M. Wetzels, H. Peters (Nephrology and Pathology, Radboud University
Nijmegen Medical Center, Nijmegen, The Netherlands)*; U. Berg (Pediatrics,
Department of Clinical Science, Intervention and Technology, Huddinge,
Sweden)*; F. Carvalho, A.C. da Costa Ferreira (Nephrology, Hospital de Curry
Cabral, Lisbon, Portugal)*; M. Maggio (Nephrology, Hospital Maggiore di Lodi,
Lodi, Italy)*; A. Wiecek (Nephrology, Endocrinology and Metabolic Diseases,
Silesian University of Medicine, Katowice, Poland); M. Ots-Rosenberg
(Nephrology, Tartu University Clinics, Tartu, Estonia)*; R. Magistroni
(Nephrology, Policlinic of Modena and Reggio Emilia; Modena, Italy); R.
Topalogly, Y. Bilginer (Pediatric Nephrology and Rheumatology, Hacettepe
University, Ankara, Turkey)*; M. D'Amico (Nephrology, S. Anna Hospital, Como,
Italy)*; M. Stangou (Nephrology, Hippokration General Hospital, Aristotle
University of Thessaloniki, Thessaloniki, Greece)*; F. Giacchino (Nephrology,
Ivrea Hospital, Ivrea, Italy)*; D. Goumenos, M. Papasotiriou, (Nephrology,
University Hospital of Patras, Patras, Greece)*; K. Galesic, L. Toric (Nephrology,
University Hospital Dubrava, Zagreb, Croatia)*; C. Geddes (Renal Unit, Western
Infirmary Glasgow, Glasgow, UK)*; K. Siamopoulos, O. Balafa (Nephrology,
Medical School University of loanina, loannina, Greece)*; M. Galliani
(Nephrology, S. Pertini Hospital, Rome, Italy); P. Stratta, M. Quaglia (Nephrology,
Maggiore della Carita Hospital, Piemonte Orientale University, Novara, Italy)*; R.
Bergia, R. Cravero (Nephrology, Deglilnfermi Hospital, Biella, Italy)*; M.
Salvadori, L. Cirami (Nephrology, Careggi Hospital, Florence, Italy)*; B. Fellstrom,
H. Kloster Smerud (Renal Department, University of Uppsala, Uppsala, Sweden)*;
F. Ferrario, T. Stellato (Nephropathology, San Gerardo Hospital, Monza, Italy); J.
Egido, C. Martin (Nephrology, Fundacién Jiménez Diaz, Madrid, Spain)*; J.
Floege, F. Eitner, T. Rauen (Nephrology and Immunology, Medizinische Klinik II,
University of Aachen, Aachen, Germany)*; A. Lupo, P. Bernich (Nephrology,
University of Verona, Verona, Italy); P. Mené (Nephrology, S. Andrea Hospital,
Rome, Italy); M. Morosetti (Nephrology, Grassi Hospital, Ostia, Italy); C. van
Kooten, T. Rabelink, M.EJ. Reinders (Nephrology, Leiden University Medical
Centre, Leiden, The Netherlands)*; J.M. Boria Grinyo (Nephrology, Hospital
Bellvitge, Barcelona, Spain); S. Cusinato, L. Benozzi (Nephrology, Borgomanero
Hospital, Borgomanero, Italy)*; S. Savoldi, C. Licata (Nephrology, Civile Hospital,
Cirig, Italy)*; M. Mizerska-Wasiak, M. Roszkowska-Blaim (Pediatrics, Medical
University of Warsaw, Warsaw, Poland); G. Martina, A. Messuerotti (Nephrology,
Chivasso Hospital, Chivasso, Italy)*; A. Dal Canton, C. Esposito, C. Migotto
(Nephrology Units, S. Matteo Hospital and Maugeri Foundation, Pavia, Italy); G.
Triolo, F. Mariano (Nephrology CTO, Turin, Italy)*; C. Pozzi (Nephrology, Bassini
Hospital, Cinisello Balsamo, Italy)*; R. Boero (Nephrology, Martini Hospital,
Turin, Italy)*.

List of pathologists included in the VALIGA study

G. Mazzucco (Turin, Italy); C. Giannakakis (Rome, Italy); E. Honsova (Prague,
Czech Republic); B. Sundelin (Stockholm, Sweden); A.M. Di Palma (Foggia-Bari,
Italy); F. Ferrario (Monza, Italy); E. Gutiérrez (Madrid, Spain); A.M. Asunis
(Cagliari, Italy); J. Barratt (Leicester, UK); R. Tardanico (Brescia, Italy); A.
Perkowska-Ptasinska (Warsaw, Poland); J. Arce Terroba (Barcelona, Spain); M.
Fortunato (Cuneo, Italy); A. Pantzaki (Thessaloniki, Greece); Y. Ozluk (Istanbul,
Turkey); E. Steenbergen (Nijmegen, The Netherlands); M. Soderberg (Huddinge,
Sweden); Z, Riispere (Tartu, Estonia); L. Furci (Modena, Italy); D. Orhan (Ankara,
Turkey); D. Kipgen (Glasgow, UK); D. Casartelli (Lecco, Italy); D. Galesic
Ljubanovic (Zagreb, Croatia); H. Gakiopoulou (Athens, Greece), E. Bertoni
(Florence, Italy); P. Cannata Ortiz (Madrid, Spain); H. Karkoszka (Katowice,
Poland), HJ. Groene (Heidelberg, Germany); A. Stoppacciaro (Rome, Italy); 1.
Bajema, J. Bruijn (Leiden, The Netherlands); X. Fulladosa Oliveras (Barcelona,
Spain); J. Maldyk (Warsaw, Poland); and E. loachim (loannina, Greece).

The authors are grateful to Stéphan Troyanov for his work on the first
analysis of the original VALIGA database. We thank Daniela Abbrescia, PhD,
who filled in the files for the joint model analysis, and the nephrologists of the
6 renal units who collected the findings of the IgAN patients for the test cohort:
Nikoleta Kouri, Maria Stangou, Aikaterini Papagianni, Department of
Nephrology, Hippokration General Hospital, Aristotle University of Thessaloniki,
Thessaloniki, Greece; Francesco Scolari, Elisa Delbarba, Nephrology Unit,
University of Brescia; Mario Bonomini, Luca Piscitani, Nephrology Unit,
University of Chieti; Giovanni Stallone, Barbara Infante, Giulia Godeas, Desiree
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Madio, Nephrology Unit, University of Foggia; Luigi Biancone, Marco
Campagna, Nephrology Unit, University of Torino; and Gianluigi Zaza, Isabella
Squarzoni, Concetta Cangemi, Nephrology Unit, University of Verona.
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