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Abstract
Incorporation of technical risk in compound real options has been considered in Cas-
simon et al. (2011) concerning the valuation of multi-stage pharmaceutical R&D.
There, the technical success probabilities at each development stage were assumed to
be generated independently of each other. This assumption can be unrealistic in many
applied problems, pharmaceutical R&D included. We present a valuation procedure
dealing with dependent success probabilities and random development stage times.
This greater flexibility allows a better description of the sequence of decision stages
and results, which in turn, impact the value of the considered project. The theoretical
results are illustrated through a numerical example that shows the implementation of
the model to a pharmaceutical R&D problem.

Keywords Real option · Technical risk · Compound option

JEL Classifications C02 · G11

1 Introduction

R&D investments play a fundamental driving force to guarantee firms the innovations
that allow them to adapt and survive in a rapidly changing economic environment.
High-tech products, new drugs as vaccines, innovative production systems, require a
high level of R&D investments. The traditional approach to valuing such investments
is the NPV (Net Present Value) criterion: if the project’s NPV exceeds the investment
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costs, one should invest; otherwise, if a project’s NPV is not positive, the project
should be rejected. However, traditionalmethods cannot properly grasp themanagerial
flexibility value that increases with the increase of uncertainty (see for example the
studies by Newton et al. 2004 and Hartmann and Hassan 2006). A long period elapses
from the starting of the original study to the obtention of the final products, with
technical and competitive uncertainties spread far and wide. Most successful firms
show that the flexibility to postpone a project, abandon or develop it based on market
revealed information is a key factor that needs to be evaluated (see Myers 1984). In
this context, the Real Options Analysis (ROA) meets the criteria required to support
managers decisions offering an alternative that allows for incorporating the strategic
issues and the profitable growth opportunities.1 Unlike most other types of investment
problems, the uncertainty of R&D investments does not only come from economic
circumstances as the discovery process is also highly uncertain. The two types of
uncertainty are usually referred to as economic uncertainty and technological one.
In the academic literature, a number of papers have appeared dealing with these two
types of uncertainty, among which it is worth to mention the one by Dixit (1988)
and Weeds (2002). Dixit (1988) derives analytical expressions in order to value R&D
project in a context of race between heterogeneous firms by assuming that the hazard
rate, the instantaneous probability of discovery, is constant over time. Weeds (2002)
identifies a real option trade-off in a stopping game in which two players choose when
to make an irreversible investment decision.
Although there is sufficient evidence showing management’s awareness of the options
thinking in the evaluation and selection of R&Dprojects, researchers have been argued
which theoretical real options models are more appropriate in valuing R&D projects.
Whenever the investment is made in a phased manner, with the commencement of
the subsequent phase being dependent on the successful completion of the preceding
phase, it is known as sequential investment. Each stage provides information for the
next, thus creating an opportunity (option) for subsequent investment in a new techno-
logical area. Therefore, models have tended to treat R&D investment as a sequential
compound option and to value them using the techniques of ‘Compound Options’,
also known as ‘Option on Options’. In the case of a 2-fold, Geske (1979) computes a
solution in continuous time of a call compound option. Carr (1988) proposes, in the
extensions of his model, an n-fold compound exchange option that collapses into a
traditional n-fold compound option assuming that the volatility of the delivery asset
is equal to zero.
Following this research, Cassimon et al. (2004) propose a continuous-time real option
analysis valuing a multi-staged pharmaceutical R&D which can be seen as a chain of

1 A critical aspect in the real option pricing approach is given by the impossibility to construct a replicating
portfolio, as the assets are non tradable. In general, investment problems are much too complex to be
modeled as a standard option, hence the option model must be tailor-made, with standard assumptions no
longer applicable. Classic ROA is based on the assumption that the project can be replicated by a portfolio
of market-driven instruments that are all exactly equivalent (Brennan and Schwartz 1985; Amram and
Kulatilaka 1999). To solve this shortcoming, one issue can be to link the evaluation of a real project with
quoted assets that have the same level of risk (see Borison 2005, Smith and Nau 1995). In fact, many
manager intuitively feel that NPV-based valuation has flaws when handling multi-stage R&D projects and
therefore even negative NPV project are undertaken, since it does not consider the value of opportunities
to wait and revise investment strategy (see e.g. Trigeorgis 1993).
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real options. Their model offers a closed-form solution for the valuation of new drug
development using a generalized n-fold compound optionmodel, but implicitly bundle
both commercial and technical risk in one riskmeasure.Besides,Cassimonet al. (2011)
extend their previous model, by explicitly incorporating technical risk. The closed-
form formula is still preserved for an n-fold compound option. In both papers, the
technical success probabilities at each development stage are assumed to be generated
independently from each other. Kelloss and Charnes (2000) explain the decision-tree
method and binomial latticemethod and use them to value a biotechnology company as
the sum of the values of its drug-development project. However, Kelloss and Charnes
(2000) consider the technical uncertainty to be deterministic to value the growth option
of a drug project.
Our paper aims to propose a valuation procedure dealing with dependent success
probabilities and random development stage times. This greater flexibility allows a
better description of the sequence of decision stages and results that in turn impact
the value of the considered project. Our methodology is based on Markov chains
in continuous time, which allows the management to receive a more general and
efficient description of the technical risk process. This choice is motivated by the
high versatility demonstrated by Markov chains and some of its generalizations in
describing different real life problems, see e.g. Ortobelli Lozza et al. (2011), Barbu
and Karagrigoriou (2018), D’Amico et al. (2019) and De Blasis (2020).
To the best of our knowledge, the combination of real options and the Markov chains
model represents an innovative approach that has few precedents. For instance, Elliott
et al. (2009) investigate the investment timing problem with technical uncertainty
considering project costs via Markov chains. Song et al. (2017) employ an irreversible
regime-switching Markov chain to model the multi-stage and technology life cycle
of the project in the high-tech industry. Maier et al. (2020) study a large portfolio
of options (deferment, staging, mothballing, abandonment) under conditions of four
underlying uncertainties. Theymodel as stochasticMarkovian processes, the evolution
of endogenous uncertainties depending on the decisionmaker’s strategy or the system’s
state.
Thus, in summary, this work advances the knowledge of how technical risk impacts
the value of a real option in a realistic scenario where success probabilities at each
stage are generated according to a Markov process. The Markov process modulates
the timeline of decision times. This allows us to reject usual limiting and simplifying
assumptions of independence of success probabilities and deterministic timeline of
action times which are, at authors knowing, always advanced in the literature.
The remainder of this paper is structured as follows. Section 2 describes the role
of technical risk in real options analysis and its description using a continuous time
Markov chain. In particular, we analyze also the scenario in which the decision times
are dependent on the Markov chains describing the technical risk process.
Section 3 propose some numerical analysis and the comparison of our methodology
with Cassimon et al. (2011) approach. Finally, Sect. 4 concludes.
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2 Compound real optionmodels: the role of technical risk

In this section, we first provide a short description of the approach proposed by Cas-
simon et al. (2011) for the valuation of a n-fold compound real option. We illustrate
informally the main idea and features of the valuation procedure. Subsequently, we
advance our generalizationwhich allows amore efficient and general description of the
technical risk process using a continuous-time Markov chain. Theoretical and applied
implications of this choice are analyzed and discussed also in relation to previous
research articles.

2.1 Technical risk process with independent success events

We recall that, in a scheme of n-compound options, the assumptions on which the
(Cassimon et al. 2011) model are based foresee that there are two sources of risk:
the commercial risk and the technical risk. The commercial risk is related to the
normal business activity of the considered company and is usually measured by the
volatility of the project return. The technical risk is generally introduced to incorporates
uncertainty in the development of the project where each phase can result in a success
or not. These two risks need to be modelled and Cassimon et al. (2011) advance two
basic hypotheses:
A1: The technical risk process is characterized by success probabilities pi to several
phases i = 1, . . . , n. These probabilities are assumed to be generated independently
from each other and also independently of the commercial risk. Furthermore, the
completion times of each phase of the project are assumed to be known.
A2 The commercial risk is described by the Black and Scholes formula. Thus, a
no-arbitrage system with two assets is assumed. One asset is risk-free and evolves
according to the dynamic

dBt = r Btdt, B0 = b,

where r is the so-called risk-free rate of interest.
The second asset is a risky one and evolves according to the dynamic

dVt = μVtdt + σVtdWt , V0 = v,

where Wt is a standard Brownian motion.
Consequently, the set of assumptions underlying the Black and Scholes model are
assumed to be true.

2.2 Technical risk process with Markov chain dynamic

AssumptionA1may be unrealistic in many situations, pharmaceutical R&D included.
The major reason of inadequacy resides in the excessive simplifying idea behind the
technical risk process. For this reason, we replace the unrealistic assumption A1 with
a more general and flexible hypothesis:
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A3: The technical risk process is described by a continuous-time Markov chain
{X(t)}t ∈R with a finite state space E = {1, . . . ,m} and generator matrix A =
(ai j )i, j∈E .We recall that

ai j = lim
t→0

pi j (t) − δi j

t
∀i, j ∈ E,

where

pi j (t) = P(X(t) = j |X(0) = i),

expresses the transition probability function and δi j =
{
1 if i = j
0 if i �= j

is the Kronecker

delta. Obviously, it results that aii = −∑
j �=i ai j .

Let us consider a n-fold compound option whose vector of known maturities is
Tn
1 = (t1, t2, . . . , tn) and corresponding exercise prices Kn

1 = (K1, K2, . . . , Kn).
At every instant ti , we must decide whether to make and continue the investment or
abandon it. About that, we define the subset of successful states at i th stage:

Uti := {x ∈ E such that the phase i is successful }.

Thus, we state that if X(t1) ∈ Ut1 , then the first phase is passed and we know also
the degree of acceptance of this phase which is expressed by the given value assumed
by the Markov chain, i.e. X(t1). This means that we can consider an ordering relation
on the state space of the Markov chain which rates state i as better in term of degree
of acceptance of the phase of the project as compared to state j whenever i is lower
than j , i.e. i < j .

Similarly, if X(t2) ∈ Ut2 , then the second phase of the project is passed and so on
for the remaining phases. Hence, we say that the project has a complete success if and
only if

X(ti ) ∈ Uti ∀ i = 1, . . . , n,

and then it is launched in the market.
For instance, consider a two-fold compound option and a Markov chain {X(t)}t∈R
with state space E = {1, . . . , 5} to describe the technical risk of the project. Assume
that Ut1 = {1, 2} and Ut2 = {1}. This means that the first phase is realized with an
acceptable success if the Markov chain is either in state 1 or 2, being state 1 preferred
to state 2. Consequently, the second phase is successful if and only if X(t2) = 1.
Unfortunately, in several real life problems, the vector of decision times Tn

1 =
(t1, t2, . . . , tn) cannot be considered deterministic and known in advance. This point is
also highlighted, although only at a descriptive level, in Cassimon et al. (2011). There,
the authors affirm that a Poisson approach can be used when the technical process does
not follow predefined and predictable paths. As stated by the authors, this approach
assumes technical probability of success and failure to be constant along the life of the
project, the latter being a strong limitation. To overcome this problem we advance the
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use of a random vector of decision times Tn
1 = (T1, T2, . . . , Tn) which is dependent

on the Markov chains describing the technical risk process. This idea is formalized in
the next assumption:
A4: The set of random decision times Tn

1 = (T1, T2, · · · , Tn) is a random vector such
that:

(i) Tk < Tk+1 a.s. with Tn ≤ t̃ ∈ R;
(ii) Denoted by Lk := Tk − Tk−1, for k = 1, . . . , n with T0 = 0 we have that

P(Lk ≤ lk |Tk−1, Tk−2, . . . , T1, T0, X(Tk−1), . . . , X(T1), X(T0))

= P(Lk ≤ lk |X(Tk−1)) = FX(Tk−1)(lk). a.s.
(1)

First, assumption A4 asserts that the total duration of the project is bounded by
a real number t̃ . It represents the maximum time the investor is available to wait
for the successful completion of the project. This is a reasonable choice due to
the investor’s willingness to get profits within a planned horizon time. Second, the
probability distribution function of next investment decision time, which is related
to the subsequent phase, depends only on the state of the technical risk process
in correspondence of the last decision time. It is worth mentioning that A4 makes
the sequence of random times {Ti }ni=1 dependent on the technical risk process.

In specific applications, or in view of a model simplification, it would be possible to
consider the particular case when

Fi (·) = Fj (·),∀i �= j, i, j ∈ E .

In this situation, the random decision times are independent on the technical risk
process in the sense that they do not change according to the states of the technical
risk expressed by the Markov chain {X(t), t ≥ 0}.
Let C (1;n)

j0,0
(V ; t̃) be the current value (at time 0) of the most outer call of a n-fold

compound option with technical risk process initially valued j0, random decision
times Tn

1 not exceeding time t̃ and value of the project denoted by V . Recursively, we

will denote by C (l+1;n)
X(tl ),tl

(V ; t̃) the value (at time tl ) of the compound call option on the

option C (l+2;n) with technical risk process valued X(tl) with random decision times
Tn
l+1 not exceeding time t̃ and value of the project denoted by V .

Before presenting the main result of this paper we provide an important definition:

Definition 1 Fix the horizon time t̃ ∈ R. A sequence of times and states (tn1 , j
n
1) is

called viable if the following conditions are fulfilled:

(i) ti ≤ ti+1, ∀i = 1, 2, ..., n − 1 and
∑n

i=1 ti ≤ t̃ ;
(ii) ji ∈ Uti , ∀i = 1, . . . , n.

According to this definition, a viable sequence consists of a collection of times (matu-
rities) where the project passes the stages.
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Proposition 1 Under assumptionsA2-A4, the value of a n-fold compound option with
technical risk obeys the following relation:

C (1;n)
j0,0

(V , t̃)

=
∫ t̃

0

∫ t̃−l1

0
· · ·

∫ t̃−∑n−1
s=1 ls

0

∑
Jn1

n∏
k=1

dlk
(
elkA

)
jk−1, jk

· f jk−1(lk) · V

· Nn

(
a1(l1, j1), . . . , an

(
n∑

s=1

ls, jn

)
;Rn

1

)

−
n∑

m=1

∫ t̃

0

∫ t̃−l1

0
· · ·

∫ t̃−∑m−1
s=1 ls

0

∑
Jm1

m∏
k=1

dlk
(
elkA

)
jk−1, jk

· f jk−1(lk) · Kme
−∑m

s=1 lsr

· Nm

(
b1(l1, j1), . . . , bm

(
m∑
s=1

ls, jm

)
;Rm

1

)
,

(2)
where the notation

∑
J k1

= ∑
j1∈Ut1

∑
j2∈Ut2

· · · ∑ jk∈Utk
is introduced.

Additionally, set ts = ∑s
k=1 lk, ∀s = 1, . . . , n, we have

al(tl , jl) = bl(tl , jl) + σ
√
tl − t0, l = 1, . . . , n;

bl(tl , jl) =
ln

(
V

V l ( jl )

)
+ (r − σ 2

2 )(tl − t0)

σ
√
tl − t0

, l = 1, . . . , n;

V l( jl) is the solution with respect to V of the equation

C (l+1;n)
jl ,tl

(V , t̃) = Kl , for l = 1, . . . , n − 1 and V n( jn) = Kn, ∀ jn ∈ Utn ,

ρi j =
√

ti − t0
t j − t0

, i < j

Rl
1 = (r (l)

i j )i, j=1,...,l , r (l)
i j =

⎧⎨
⎩

1 if i = j
ρi j if i < j
ρ j i if i > j

. (3)

Proof The price of an option can be expressed as the difference between the expected
present value of the underlying minus the expected present value of the exercise price
given the option is in the money.
Observe that, in our framework, the option can be in the money only if there is a
success at every phase of the project. This holds if

X(Ti ) ∈ UTi , ∀i = 1, . . . , n.

Assume, momentarily, to deal with a standard n-fold compound option with known
maturities tn1 = (t1, t2, · · · , tn) and no technical risk. According to Carr (1988) and
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Thomassen et al. (2002), the expected present value of the underlying given the option
is in the money is given by

V · Nn
(
a1(t1), . . . , an(tn);Rn

1

)
, (4)

while the expected present value of the exercise price is

n∑
m=1

Kme
−r(tm−t0) · Nm

(
b1(t1), . . . , bm(tm);Rm

1

)
, (5)

where

al(tl) = bl(tl) + σ
√
tl − t0, l = 1, . . . , n; (6)

bl(tl) =
ln

(
V
V l

)
+ (r − σ 2

2 )(tl − t0)

σ
√
tl − t0

, l = 1, . . . , n; (7)

V l is the solution with respect to V of the equation

C (l+1;n)
tl (V ; tnl+1, t̃) = Kl , for l = 1, . . . , n − 1 and V n = Kn

ρi j =
√

ti − t0
t j − t0

, i < j,

Rl
1 = (r (l)

i j )i, j=1,...,l , r (l)
i j =

⎧⎨
⎩

1 if i = j
ρi j if i < j
ρ j i if i > j

. (8)

In our more general framework, the expected values (4) and (5) depend on the value
assumed by the random vector Tn

0 and on those of the corresponding technical risk
process X(Tn

0). Thus, let R : R
(n+1) × E (n+1) × R −→ R be a function defined

according to the relation

R(tn0 , j
n
0, t̃) := V · Nn

(
a1(t1, j1), . . . , an(tn, jn);Rn

1

)
χ( ji ∈ Uti ,

∀i = 1, . . . , n, tn ≤ t)

−
n∑

m=1

Kme
−r(tm−t0) · Nm

(
b1(t1, j1), . . . , bm(tm, jm);Rm

1

)

·χ( ji ∈ Uti ,∀i = 1, . . . ,m, tm ≤ t). (9)

Formula (9) expresses the value of a n-fold compound option with viable technical
risk trajectory (tn1 , j

n
1).

A relevant difference characterizes our framework from that analyzed in Cassimon
et al. (2011) and relies on the need to modify the boundary conditions along any
viable technical risk trajectory (tn1 , j

n
1). Indeed, in our setting the technical success

probabilities are not independent and then, the value of the inner compound options
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depend on the specific state occupied by the technical process and completion times
of the phases. Thus, the new boundary conditions are:

C (i;n)
ji ,ti

(V , t̃) = max
(
0,C (i+1;n)

ji+1,ti+1
(V , t̃) − Ki

)
, ∀i = 1, . . . , n − 1, (10)

and
C (n;n)

jn ,tn
(V , t̃) = max(0, V − Kn). (11)

Equation (11) just says that, conditional on the success of the project, the payoff is
given by the positive difference between the value of the project at time tn and the
strike price Kn , thus the most outer call is exercised only if V (tn) > Kn (conditionally
to a viable technical trajectory).
As regard to relation (10) we observe that the boundary conditions vary depending on
the specific trajectory of the technical process because the value of the (i+1)-fold call
option depends both on the state ji+1 of the technical risk process and on the time
ti+1. Precisely, this is due to different probabilities of success in next phase according
to the state ji+1 of the Markov chain and also to the time ti+1 through the distribution
of the random variable Ti+2 and the constraint Tn ≤ t̃ .
Accordingly, the values of the project that identify the exercising or not exercising
actions depend on the trajectory and are denoted by V l( jl , tl) which are defined as
those values of the project that solve the equations

C (l;n)
jl ,tl

(V , t̃) = Kl−1, for l = 2, . . . , n − 1 and Ṽn( jn, tn) = Kn,∀ jn ∈ Utn , tn ≤ t̃ .
(12)

Thus, in turn equation (7) updates to

bl( jl , tl) =
ln

(
V

Ṽl ( jl ,tl )

)
+ (r − σ 2

2 )(tl − t0)

σ
√
tl − t0

, l = 1, . . . , n; (13)

and equation (6) becomes

al( jl , tl) = bl( jl , tl) + σ
√
tl − t0, l = 1, . . . , n. (14)

Now, we can consider the random variable R(Tn
0, X(Tn

0), t̃) as a functional of the
technical risk process (Tn

0, X(t), t ≥ 0) and we can express the price of the n-fold
compound option conditional on some initial conditions, say

T0 = 0, X(T0) = j0 ∈ E,

according to

C (1;n)
j0,0

(V , t̃) = E[R(Tn
0, X(Tn

0), t̃)|T0 = 0, X(T0) = j0]. (15)

Let us proceed now to the computation of (15) under the assumptions A2-A4. To this
end, define Li = Ti − Ti−1,∀i = 1, . . . , n and integrate over all possible values of
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the random vectors (L1, . . . , Ln) and (X(T1), . . . , X(Tn)) to get

C (1;n)
j0,0

(V , t̃)

=
∫ ∞

0
· · ·

∫ ∞

0

∑
j1∈E

· · ·
∑
jn∈E

P [L1 ∈ (l1, l1 + dl1),

. . . , Ln ∈ (ln, ln + dln), X(l1) = j1, . . . , X

(
n∑

s=1

ls

)
= jn

]

·
{
V · Nn

(
a1(l1, j1), . . . , an

(
n∑

s=1

ls, jn

)
;Rn

1

)

χ

(
X

(
i∑

s=1

ls

)
∈ U∑i

s=1 ls
,∀i = 1, . . . , n, tn ≤ t̃

)

−
n∑

m=1

Kme
−∑m

s=1 lsr · Nm

(
b1(l1, j1), . . . , bm

(
m∑
s=1

ls, jm

)
;Rm

1

)

χ

(
X

(
i∑

s=1

ls

)
∈ U∑i

s=1 ls
,∀i = 1, . . . ,m, tm ≤ t̃

)}

(16)

=
∫ ∞

0
· · ·

∫ ∞

0

∑
j1∈E

· · ·
∑
jn∈E

P [L1 ∈ (l1, l1 + dl1),

. . . , Ln ∈ (ln, ln + dln), X (l1) = j1, . . . , X

(
n∑

s=1

ls

)
= jn

]

· V · Nn

(
a1(l1, j1), . . . , an

(
n∑

s=1

ls, jn

)
;Rn

1

)

χ

(
X

(
i∑

s=1

ls

)
∈ U∑i

s=1 ls
,∀i = 1, . . . , n, tn ≤ t̃

)

−
n∑

m=1

∫ ∞

0
· · ·

∫ ∞

0

∑
j1∈E

· · ·
∑
jn∈E

P [L1 ∈ (l1, l1 + dl1),

. . . , Ln ∈ (ln, ln + dln), X(l1) = j1, . . . , X

(
n∑

s=1

ls

)
= jn

]

· Kme
−∑m

s=1 lsr · Nm

(
b1(l1, j1), . . . , bm

(
m∑
s=1

ls, jm

)
;Rm

1

)

χ(X

(
i∑

s=1

ls

)
∈ U∑i

s=1 ls
,∀i = 1, . . . ,m, tm ≤ t̃)

}

=: I1 + I2, (17)
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having denoted by I1 and I2 the two previous multiple integrals.
Now, by repeated applications of assumptions A3 and A4, we have

I1 =
∫ ∞

0
· · ·

∫ ∞

0

∑
j1∈E

· · ·
∑
jn∈E

P

[
X

(
n∑

s=1

ls

)
= jn|T0 = 0,

L1 = l1, . . . , Ln = ln, X(0) = j0,

X(l1) = j1, . . . , X

(
n−1∑
s=1

ls

)
= jn−1

]
· P [Ln ∈ (ln, ln + dln)|T0 = 0,

L1 ∈ (l1, l1 + dl1), . . . ,

Ln−1 ∈ (ln−1, ln−1 + dln−1), X(0) = j0, X(l1) = j1,

. . . , X

(
n−1∑
s=1

ls

)
= jn−1

]
·

. . . · P[X(l1) = j1|T0 = 0, L1 = l1, X(0) = j0]
· P[L1 ∈ (l1, l1 + dl1)|T0 = 0, X(0) = j0]

· V · Nn

(
a1(l1, j1), . . . , an

(
n∑

s=1

ls, jn

)
;Rn

1

)
χ(X

(
i∑

s=1

ls

)

∈ U∑i
s=1 ls

,∀i = 1, . . . , n, tn ≤ t̃)

=
∫ ∞

0
· · ·

∫ ∞

0

∑
j1∈E

· · ·
∑
jn∈E

P

[
X

(
n∑

s=1

ls

)
= jn|X

(
n−1∑
s=1

ls

)
= jn−1

]

· P
[
Ln ∈ (ln, ln + dln)|X

(
n−1∑
s=1

ls

)
= jn−1

]

. . . · P[X(l1) = j1|X(0) = j0] · P[L1 ∈ (l1, l1 + dl1)|X(0) = j0] · V

· Nn

(
a1(l1, j1), . . . , an

(
n∑

s=1

ls, jn

)
;Rn

1

)

· χ

(
X

(
i∑

s=1

ls

)
∈ U∑i

s=1 ls
,∀i = 1, . . . , n, tn ≤ t̃

)

=
∫ ∞

0
· · ·

∫ ∞

0

∑
j1∈E

· · ·
∑
jn∈E

P
[
X(ln) = jn|X(0) = jn−1]·

P[Ln ∈ (ln, ln + dln)|X
(
n−1∑
s=1

ls

)
= jn−1

]

. . . · P[X(l1) = j1|X(0) = j0] · P[L1 ∈ (l1, l1 + dl1)|X(0) = j0] ·

V · Nn

(
a1(l1, j1), . . . , an

(
n∑

s=1

ls, jn

)
;Rn

1

)
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·χ
(
X

(
i∑

s=1

ls

)
∈ U∑i

s=1 ls
,∀i = 1, . . . , n, tn ≤ t̃

)

where the latter equality is obtainedusing the timehomogeneity property of theMarkov
process (X(t), t ≥ 0).
The previous multiple integral assumes a non-zero value only when evaluated along
any viable trajectory of the technical risk process. Thus, the integration should be
limited to all those sample paths such that

∑n
s=1 ls ≤ t̃ which in turn implies that

ln−i ≤ t̃ −
n−(i+1)∑
s=1

ls, ∀i = 1, . . . , n − 1,

with the convention that
∑0

s=1 ls = 0. Furthermore, observe that viable trajectories
make provision for the belonginess of the Markov process (X(t), t ≥ 0) to the suc-
cessful states at each stage of the project, i.e.

X

(
i∑

s=1

ls

)
∈ U∑i

s=1 ls
, ∀i = 1, . . . , n.

Hence, once the abbreviate notation

∑
J k1

=
∑
j1∈Ul1

∑
j2∈Ul1+l2

· · ·
∑

jk∈U∑k
s=1 ls

,

is introduced, we can use the exponential representation of the transition probability
function of the Markov process and the definition of the density function on the
conditional distribution of (1) to get

I1 =
∫ t̃

0

∫ t̃−l1

0
· · ·

∫ t̃−∑n−1
s=1 ls

0

∑
Jn1

n∏
k=1

dlk
(
elkA

)
jk−1, jk

· f jk−1(lk) · V

· Nn

(
a1(l1, j1), . . . , an

(
n∑

s=1

ls, jn

)
;Rn

1

)
.

The computation of the integral I2 shares similar ideas as those underlying the integral
I1. Indeed, we have
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I2 =−
n∑

m=1

∫ ∞

0
· · ·

∫ ∞

0

∑
j1∈E

· · ·
∑
jn∈E

P [L1 ∈ (l1, l1 + dl1), . . . , Ln ∈ (ln, ln + dln), X(l1) = j1,

. . . , X

(
n∑

s=1

ls

)
= jn

]

· Kme
−∑m

s=1 lsr · Nm

(
b1(l1, j1), . . . , bm

(
m∑
s=1

ls, jm

)
;Rm

1

)
χ

(
X

(
i∑

s=1

ls

)

∈ U∑i
s=1 ls

,∀i = 1, . . . ,m, tm ≤ t̃
)

Repeated applications of assumptions A3 and A4 produce

I2 =−
n∑

m=1

∫ ∞

0
· · ·

∫ ∞

0

∑
j1∈E

· · ·
∑
jn∈E

P

[
X

(
n∑

s=1

ls

)
= jn|X

(
n−1∑
s=1

ls

)
= jn−1

]

· P
[
Ln ∈ (ln, ln + dln)|X

(
n−1∑
s=1

ls

)
= jn−1

]
· . . . · P[X(l1) = j1|X(0) = j0]

· P[L1 ∈ (l1, l1 + dl1)|X(0) = j0] · Kme
−∑m

s=1 lsr

· Nm

(
b1(l1, j1), . . . , bm

(
m∑
s=1

ls, jm

)
;Rm

1

)

· χ

(
X

(
i∑

s=1

ls

)
∈ U∑i

s=1 ls
,∀i = 1, . . . ,m, tm ≤ t̃

)

Observe now that

∑
jn∈E

P

[
X

(
n∑

s=1

ls

)
= jn|X

(
n−1∑
s=1

ls

)
= jn−1

]
= 1, (18)

and in turn

∫ +∞

0
P

[
Ln ∈ (ln, ln + dln)|X

(
n−1∑
s=1

ls

)
= jn−1

]
= 1. (19)
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Repeat the same considerations as in (18) and (19) for all stages i > m to get

I2 =−
n∑

m=1

∫ ∞

0
· · ·

∫ ∞

0

∑
j1∈E

· · ·
∑
jm∈E

P

[
X

(
m∑
s=1

ls

)
= jm |X(

m−1∑
s=1

ls) = jm−1

]

· P
[
Lm ∈ (lm, lm+dlm)|X

(
m−1∑
s=1

ls

)
= jm−1

]
· . . . · P[X(l1)= j1|X(0)= j0]

· P[L1 ∈ (l1, l1 + dl1)|X(0) = j0] · Kme
−∑m

s=1 lsr

· Nm

(
b1(l1, j1), . . . , bm

(
m∑
s=1

ls, jm

)
;Rm

1

)

· χ

(
X

(
i∑

s=1

ls

)
∈ U∑i

s=1 ls
,∀i = 1, . . . ,m, tm ≤ t̃

)
.

Now, the same arguments used for the computation of the integral I1 give

I2 = −
n∑

m=1

∫ t̃

0

∫ t̃−l1

0
· · ·

∫ t̃−∑m−1
s=1 ls

0

∑
Jm1

m∏
k=1

dlk
(
elkA

)
jk−1, jk

· f jk−1(lk) · Kme
−∑m

s=1 lsr

· Nm

(
b1(l1, j1), . . . , bm

(
m∑
s=1

ls, jm

)
;Rm

1

)
.

This completes the proof. 
�
Formula (2) is very general and includes, as particular cases, simpler results, some of
them already presented in literature. Therefore, it may be useful to discuss some of
them briefly.

2.2.1 Case with unbounded horizon time

Let us consider the case when the investor does not have any upper bound to the total
duration of the project. The price of the option can be obtained considering

C (1;n)
j0,0

(V ) = lim
t→∞

C (1;n)
j0,0

(V , t̃).

Thus, we conclude that

C (1;n)
j0,0

(V ) =
∫ ∞

0
· · ·

∫ ∞

0

∑
Jn1

n∏
k=1

dlk
(
elkA

)
jk−1, jk

× · f jk−1(lk) · V · Nn

(
a1(l1, j1), . . . , an

(
n∑

s=1

ls, jn

)
;Rn

1

)
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−
n∑

m=1

∫ ∞

0
· · ·

∫ ∞

0

∑
Jm1

m∏
k=1

dlk
(
elkA

)
jk−1, jk

· f jk−1(lk) · Kme
−∑m

s=1 lsr

· Nm

(
b1(l1, j1), . . . , bm

(
m∑
s=1

ls, jm

)
;Rm

1

)
. (20)

Equation (20) expresses the value of a n-fold compound option with technical risk
described by a Markov chain and random decision times correlated to the Markov
process in the case when the project is completed after the success of all the n-phases
without any bound to the duration of the contract.

Remark 1 The computation of formulas (2) and (20) is quite complex because it
requires integration and summation as well as the solution of the equation (12) over
all possible paths (trajectories) of the technical risk process.

Definition 2 Let consider an n-phase investment project with random decision times
Tn
1 = (T1, T2, . . . , Tn) and unbounded horizon time. Let X(0) = j0 be the value

of the technical risk process at the beginning of the project. The conditional success
probability of the first k phases, with k ∈ {1, 2, . . . , n}, is defined to be

hk,n( j0,Tk
1) := P(X(Tk) ∈ UTk , . . . , X(T1) ∈ UT1 |X(0) = j0). (21)

Corollary 1 Under assumptionsA3-A4, the conditional success probability of the first
k phases, with k ∈ {1, 2, . . . , n}, are given by

hk,n( j0,Tk
1) =

∫ ∞

0
· · ·

∫ ∞

0

∑
J k1

k∏
m=1

dlm
(
elmA

)
jm−1, jm

· f jm−1(lm) (22)

Proof We only observe that in the proof of Proposition 1 we integrated over the joint
distribution of the random vectors (L1, . . . , Ln) and (X(T1), . . . , X(Tn)). A repetition
of the previous computation limited to the first k phases gives the result. 
�

2.2.2 Case with deterministic decision times

If the vector of maturities {Li }ni=1 is a set of degenerate random variables with cumu-
lative distribution functions given ∀k = 1, . . . , n by the Heaviside function

Fjk−1(lk) =
{
1 if lk ≥ l∗k
0 if lk < l∗k

(23)

then, by substitution of (23) into formula (2) we get next formula (24) which expresses
the value of a n-fold compound option with deterministic maturities Tn

1 = (l∗1 , l∗1 +
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l∗2 , · · · , l∗1 + . . . + l∗n ). Thus, set tk = ∑k
s=1 l

∗
s to get

C (1;n)
j0,0

(V ; tn1 ) =
∑
Jn1

n∏
k=1

(
e(tk−tk−1)A

)
jk−1, jk

· V · Nn
(
a1(t1, j1), . . . , an(tn, jn);Rn

1

)

−
n∑

m=1

∑
Jm1

m∏
k=1

(
e(tk−tk−1)A

)
jk−1, jk

· Kme
−tmr

· Nm
(
b1(t1, j1), . . . , bm(tm, jm);Rm

1

)
.

(24)
In the case with deterministic decision times tn1 = (t1, t2, · · · , tn), the conditional

success probability of the first k phases, with k ∈ {1, 2, . . . , n}, is

hk,n( j0, tk1) := P(X(tk) ∈ Utk , . . . , X(t1) ∈ Ut1 |X(0) = j0). (25)

A simple iterative application of the Markov property gives

hk,n( j0, tk1) =
∑
J k1

k∏
s=1

p js−1 js (ts − ts−1),

where t0 = 0 and p js−1 js (ts − ts−1) = (e(ts−ts−1)A) js−1 js .

2.2.3 The Cassimon et al. (2011) model

Now let us consider a very particular case when the decision times are deterministic
and the technical risk process admits the same transition probabilities independently
on the state occupied by the Markov process. This occurs for a generator matrix
A = (ai, j )i, j∈E such that:

∀i �= h, ai j = ahj ∀ j ∈ E .

In this case, we may denote by p(k) := ∑
j∈Utk

(e(tk−tk−1)A)i, j and obtain that

hk,n(i, tk1) = hk,n( j, tk1) for all i �= j where

hk,n( j, tk1) =
k∏

s=1

p(s).

In this fashion, we recover exactly the Cassimon et al. (2011) formula, i.e.

C (1;n)(V ; tn1 ) = hn;n(tn1 ) · V · Nn
(
a1(t1), . . . , an(tn);Rn

1

)

−
n∑

m=1

hm;n(tm1 ) · Kme
−tmr · Nm

(
b1(t1), . . . , bm(tm);Rm

1

) (26)
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where

al = bl + σ
√
tl − t0, l = 1, . . . , n;

bl =
ln( V

V l
) + (r − σ 2

2 )(tl − t0)

σ
√
tl − t0

, l = 1, . . . , n;

V l is the solution with respect to V of the equation C (l+1;n)(V , tl) = Kl for l =
1, . . . , n − 1 and V n = Kn .

ρi j =
√

ti − t0
t j − t0

, i < j

Rl
1 = (r (l)

i j )i, j=1,...,l , r (l)
i j =

⎧⎨
⎩

1 if i = j
ρi j if i < j
ρ j i if i > j

2.2.4 The Geske (1979) model

The last case we consider is when n = 2 and the technical risk process is such that
hi,2(ti1) = 1, ∀i = 1, 2. This scenario coincides with the one studied by Geske
(1979) about a two-fold compound option.

C = V N2(a1, a2; R2) − K2 e
−r(t2−t0)N2(b1, b2; R2) − K1 e

−r(t1−t0)N1(b1),

where

b1 =
ln

(
V
V1

)
+ (r − σ 2

2 )(t1 − t0)

σ
√

(t1 − t0)
; b2 =

ln
(

V
K2

)
+ (r − σ 2

2 )(t2 − t0)

σ
√

(t2 − t0)

where

a1 = b1 + σ
√
t1 − t0; a2 = b2 + σ

√
t2 − t0; R2 = √

(t1 − t0)(t2 − t0);

N2 is the bivariate cumulative normal distribution function and V1 is the critical price
of V such that:

V N1(a1) − K2 e
−r(t2−t1)N1(b2) − K1 = 0,

with

b2 =
ln

(
V
K2

)
+ (r − σ 2

2 )(t2 − t1)

σ
√

(t2 − t1)
; a2 = b2 + σ

√
t2 − t1.
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Fig. 1 Structure of an n compound option as described in Cassimon et al. (2011)

3 Numerical application

In this section, we propose some numerical applications to highlight the method pre-
sented in our paper. An R&D investment in pharmaceutical sector can be seen as a
n-fold compound option, in which the start of a phase depends on the complete success
of the previous phase, as illustrated in Fig. 1.

If the initial R&D investment is successful, then the second phase will be started
otherwise, the research will be stopped. Each phase is an option on the next phase.
In particular, we focus on Vitosha R&D project proposed in Cassimon et al. (2011)
whose data concerning each phase are summarized in the left side of Table 1. The
six-fold compound European option (CEO) without technical risk given in Cassimon
et al. (2011) is 264.84 million and the real option value is obtained by subtracting
the initial research cost R0 = 10.00 million, i.e. 254.84 million. On the other hand,
considering the probability of success pi , the six-fold CEOwith technical risk is 32.61
million and the real option value becomes 22.61 million.
Due to the computational complexity, Perlitz et al. (1999) and Jensen and Warren
(2001) propose to break down the complex R&D process in two phases, as illustrated
in Fig. 2. The simplification of the complexR&Dprocesswith n-phases is done to keep
mathematics as simple as possible because, in this fashion, the two-period compound
option model of Geske (1979) can be used in the absence of technical risk.
However, reducing the drug development process to only two phases implies making
a choice where to put the first option exercise time t1. For this reason, Cassimon et al.
(2011) propose three alternatives in order to transform a six-fold plane into a two-stage
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Fig. 2 Structure of an n = 2 compound option as described in Cassimon et al. (2011)

one. Alternative I considers as the first stage the period between the discovery phase
and the drug proof-of-concept (past phase II). In case of success, this stage gives an
option on the second phase which is the clinical III phase and the approval phase.
Finally, this phase gives an option on the launch of the project by introducing it on the
market. So K0 is obtained by discounting the costs Ki of start of research, pre-clinical
test phase, clinical phase I and II using theWACC rate 0.10; K1 is clinical phase III and
approval by government and finally K2 is the commercialization investment. Entering
the first phase (discovery till clinical II) would cost K0 = 58.31 million. Obviously,
this cost does not enter into two-fold CEO evaluation but, investing it, management
obtains the investment opportunity. The exercise price K1 of the first option at time
t1 = 5 years is equal to the total cost of finishing the clinical III and the approval phase
and is estimated to be K1 = 197.22million. The exercise price ofmoving to the second
option is the cost of launching the product and it amounts to K2 = 38.87million,which
is the irreversible cost of the follow-up investment in production, marketing, etc. for
the market introduction of the product. The time to expiration of the final option is
t2 = 9 years; the volatility of the project return is estimated to be σ = 0.976 and
the risk-free interest rate amounts 0.0484. Concerning the technical risk of alternative
I, we determine that the success probability of first phase is p0 = 0.2717, namely
0.98 · 0.90 · 0.88 · 0.35; the probability of success of the second one is p1 = 0.6080,
i.e. 0.64 · 0.95 and finally, the probability of launch is assumed to be equal to p2 = 1.
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Table 2 Real option and two-fold CEO using Geske (1979), Cassimon et al. (2011) and Markov approach

Alternative I Alternative II Alternative III

Two-fold CEO without risk (Geske) 307.91 273.85 250.73

Real option value (Geske) 249.60 243.58 231.37

Two-fold CEO with risk (Cassimon) 50.42 37.15 28.52

Real option value (Cassimon) -7.88 6.88 9.16

Two-fold CEO with risk (Markov) 80.86 70.84 61.64

Real option value (Markov) 22.55 40.57 42.28

Markov probability h1 0.6152 0.6716 0.7224

Markov probability h2 0.2332 0.2417 0.2564

Initial probability Markov States 1 and 2 0.1358 0.3881 0.4410

Initial probability Markov States 3, 4 and 5 0.2428 0.0746 0.0393

In the same manner, Cassimon et al. (2011) also propose alternatives II and III about
Vitosha project according to Geske (1979) approach whose input data are summarized
in the right side of Table 1.

For this purpose, Table 2 shows, for each alternative, the results of two-fold CEO
evaluation taking into account both (Geske1979)methodology and the (Cassimonet al.
2011) approach. As said previously, the real option value is obtained by subtracting
the initial cost K0 from the two-fold CEO. Based on real options considerations, in
case of technical risk, manager should reject the project in the case of alternative I as
it is negative.
Let present our approach in order to value the technical risk using the Markov
metholodogy in the case of deterministic decision times. Our approach is based on a
different concept of evolution of technical uncertainty and presents a generalization
of Cassimon et al. (2011) model. Focusing on the data of altenative I, we analyse
a two-fold compound option with t1 = 5 years and t2 = 9 years. We also assume
E = {1, 2, 3, 4, 5} as description of the technical risk of the project and Ut1 = {1, 2}
and Ut2 = {1}.
Using our approach, we have the opportunity to define better the evolution of uncer-
tainty and so to describe in a more efficient manner the evolution of probability. In
this way, we propose a more general model that includes several situations. In order to
compare the Cassimon et al. (2011) approach, we assume that the success probability
of first phase p0 = 0.2717 is split equally between Ut1 = {1, 2}, i.e. only the states 1
and 2 give the accomplishment of the first phase and, in the same manner, the unsuc-
cess probability 1 − p0 = 0.7283 is distributed equally among the states 3, 4 and 5.
So, a possible distribution of the initial probabilities among the m = 5 states will be:

pM
0 = [0.1358, 0.1359, 0.2428, 0.2428, 0.2427]

This means that the first phase is realized with an acceptable success if the Markov
chain is in state 1 or 2 being state 1 preferred to state 2. Consequently, the second phase
(market launch) is successful if and only if Xt2 = 1. We assume that the generator
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matrix is:

A =

⎛
⎜⎜⎜⎜⎝

−0.50 0.40 0.10 0.00 0.00
0.45 −0.80 0.25 0.10 0.00
0.15 0.35 −0.80 0.25 0.05
0.05 0.35 0.35 −1.00 0.25
0.00 0.15 0.15 0.30 −0.60

⎞
⎟⎟⎟⎟⎠

Table 2 summarizes the results obtained for three alternatives and the comparison
between the two methodologies when the technical risk is considered. For instance,
using our approach for the alternative I, we have that the Markov prababilities are
h1 = 0.6152 and h2 = 0.2332 and the two-fold CEO with technical risk is 80.86
million and the real option value 22.55 million is obtained subtracting the initial cost
K0 = 58.31 million. Obviously, the analysis is carried out for all alternatives.

Some economic results emerge. It is interesting to observe that, when the time
to maturity t1 was set at the beginning of the clinical II phase and the clinical I
phase, as can be expected, reducing the lifetime of the first option reduces the two-
fold CEO. However, a more complete analysis between the two approaches can be
achieved through a sensitivity study considering the values of alternative I. For this
purpose, Fig. 3 shows how the two-fold compound option values changewhen themost
important parameters vary. We obseve that, based on the chosen generator matrix A,
the value of two-fold CEO based on Markov technical uncertainty is greater than
the one used by Cassimon et al. (2011). In particular, when the project value V , the
volatility σ and the maturity time t1 of realization of investment K1 increase, then the
values of two-fold CEO option go up. Instead, when the research investment K1 and
the developing cost K2 increase, the values of two-fold CEO decrease.
Finally, Table 3 shows the effects that a different splitting of initial probability distri-
bution p0 between the states {1, 2} produces on the project value. For this reason, we
assume α ∈ [0, 1] and the initial distribution of probabilities concerning alternative
I is:

pM
0 = [α p0, (1 − α) p0, 0.2428, 0.2428, 0.2427)]

with p0 = 0.2717. The analysis has been conducted on the three proposed alternatives.
The first consideration is that when α increases, i.e. the initial probability of state
E = 1 goes up, the value of the project increases in the three alternatives. Based on
our numerical simulations, as State 1 is preferred to State 2, an improving of initial
success probability of State 1 increases the two-fold CEO and the real option value.
Furthermore, alternative III is more sensitive than alternative II which, in turn, is more
sensitive than I. This effect is due to two factors: the first is that the instant t1 is closest
in alternative III and which therefore increases the technical uncertainty between t1
and final time t2; the second is that the initial success probability in alternative III is
higher than in the other cases.

123



Valuation of R&D compound option using a Markov chain approach 401

Fig. 3 Sensitivity analysis when the most important parameters change between Cassimon et al. (2011) and
Markov approaches using the data of alternative I
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4 Concluding remarks

In this paper we have proposed a valuation procedure dealing with depending suc-
cess probabilities and random developing stage times in order to value multi-phase
R&D projects. As we have seen, an R&D project can be considered as an investment
made in a phased manner with the commencement of subsequent phase being depen-
dent on the successful completion of the preceding one. For the previous motivation,
this kind of investment can be assumed as a Compound Option in which each stage
provides information for the next phase creating an opportunity for the subsequent
investment. We have argued the importance of technical uncertainty in the valuation
of such projects that increases the value of the flexibility that such investments can be
postponed, abandoned or increased. Starting fromCassimon et al. (2011), who assume
that the success probabilities are independent from each other, we have improved this
unrealistic assumption considering that these probabilities are generated according to
a a Markov chain and that the decisions times are random variables dependent on the
state of theMarkov chain. In this fashion, the decision making is more appropriate and
complete in order to capture all the managerial flexibility. Finally, we have discussed
the Vitosha R&D pharmaceutical project and we have compared our results with those
of Cassimon et al. (2011).
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