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Human postmortem Q8skeletal muscles are a unique source of satellite cells for skeletal
muscle regenerative studies. Presomite and somite satellite cells obtained by postmortem
muscles have been established as populations of human skeletal muscle precursor cells
able to proliferate and differentiate in vitro. It is extremely interesting to have access to a
large amount of postmortem human skeletal muscle precursor cells, especially from
craniofacial as well as limb skeletal muscles in order to evaluate their potential application
not only for the fundamental understanding of muscle physiology and diseases but also for
drug testing in a challenging 3D-shaping muscles like skeletal muscle microphysiological
systems.

Keywords: satellite cells, skeletal muscle regeneration, postmortem, presomitic muscles, somitic muscles, organ-
on-chip, organoids Q9

INTRODUCTION Q10

The skeletal muscle regeneration is a fundamental biological aspect based on activation of adult stem
cells and satellite cells (SCs) that accompany humans throughout their entire life. Indeed, SCs have
been found alive several days post mortem, and these cells are able to generate a progeny through few
steps in vivo (Latil et al., 2012; Scott et al., 2013). However, scarce data exist on postmortem SCs and
any of their functional features. Not to mention the craniofacial muscle stem cell biology, which only
recently has started to be gathered (Cheng et al., 2021). Indeed, most data of these muscles remain at
the level of tissue description, few indications about their SCs, and no data exist at the postmortem
level for presomite SC features. Briefly, it is worth remembering that the skeletal muscles originate
from two distinct embryonic districts: craniofacial muscles like thyrohyoid derived from pharyngeal
arches. The striated muscle of each arch (sometimes termed branchiomeric) is derived from the
rostral continuation of the paraxial mesoderm. The paraxial mesoderm of the head rostral to the
occipital region is unsegmented. The somitomeres, which are spherical clusters of mesenchymal cells
in the presomitic mesoderm, presage the segmentation of somites in the paraxial mesoderm. The
trunk/limb muscles derive from the lateral plate mesoderm. In this perspective, the human
postmortem SC functions, both from trunk and craniofacial derivations, deserve attention and
need to be explored to understand their regenerative potential and possible applications.
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We aimed to investigate some features of postmortem in vitro
SCs, namely human muscle precursor cells (hMPCs), both
obtained from somite and pharyngeal arch muscles,
specifically the retainment of alive postmortem hMPCs and
their ability to proliferate and differentiate along with their
intracellular calcium signaling, which was never investigated
before, to the best of our knowledge.

MATERIALS AND METHODS

The presomite muscles (from pharyngeal arches) thyrohyoid
muscles was obtained from the corpses of 40, 43, 45, and
71 years old, and the somite muscles considered were ileopsoas
obtained from the same corpses. Informed consents were signed
by the deceased subjects’ family members according to the Ethic
Committee approval (COET n 6065-04.03.2021).

Histopathological examination of tissue samples obtained
during autopsies showed no signs of pathologies that could
invalidate the value of further investigations. The muscle has
been sampled and immediately immersed in sterile solution
containing HAM’s F10 and gentamicin. Each sampling
involved the removal of tissue fragments for each muscle
through a small accessory cutaneous cut. The sampling on the
craniofacial muscle was carried out on the lateral margin, 2 cm
from the clavicular insertion; the removal of the vastus lateral
muscle will instead be carried out on the lateral margin 2 cm from
its origin at the level of the greater trochanter. The weight of the
muscle was about 1 g each.

Two different protocols were used to collect the muscle
samples: in the first protocol, the muscle sample was put into
a physiological medium containing HAM’s F10 and gentamicin
and stored for 24 h at 4°C. The medium was renewed three times
in order to wash the blood residues, and then the muscle sample
was treated for explant formation. In the second protocol, the
muscle sample was stored in liquid nitrogen in fetal bovine serum
(FBS, Euroclone) + 10% of dimethyl sulfoxide (DMSO, Sigma-
Aldrich). Frozen dissected muscle biopsies were thawed at 37°C
and washed with PBS before the treatment for explant formation.

Satellite Cell Cultures
Satellite cells were isolated from muscle tissues using the explant
procedure as previously described (Pietrangelo et al., 2011 and
Pietrangelo et al., 2015). Briefly, small pieces of muscles, named
explants, obtained by mincing using sterilized scissors, were put
on Petri dishes with a drop of FBS and stored in an incubator at
37°C, 5% CO2, and saturated humidity. During the following
2 weeks, the SCs migrated out of the explants and started to
proliferate. To be coherent with the literature, we name these cells
hMPCs. After detaching with trypsin-EDTA, the cells were
counted, and the population doubling level was calculated at
each passage with the following equation: log10(N/n)/ln2 with N
as the number of cells at the time of the passage and n as the
number of cells initially plated. At the first passage, the cell
population was considered at 1 population doubling level (PDL).
The proliferative state was maintained by feeding the MPCs with
a growth medium (GM) containing (% vol/vol): HAM’s F10

(Euroclone), 0.1 gentamycin and 1 penicillin/streptomycin 100X
(Euroclone), 20 FBS heat-inactivated (56°C, 36 min) (Hyclone),
and 1 L-Glutamax 100 × (Gibco). The percentages of myogenic
cells were obtained using an immunocytochemistry assay for the
marker desmin and with biotinylated streptavidin-AP kits (LSAB
+ System-AP Universal kits; Cat. No. K0678; DAKO,
DakoCytomation, Glostrup, Denmark). Cell cultures with
desmin positivity of less than 70% were sorted for surface
myogenic markers using CD56 (mouse monoclonal antibody
(Abcam, Cambridge, UK)) by flow cytometric analysis (Di
Filippo et al., 2016 Q11) in order to achieve high myogenic
populations.

The differentiation was induced by feeding the MPCs with a
differentiation medium (DM) containing (% vol/vol): DMEM
high glucose, 0.1 gentamycin, five heat-inactivated HS (56°C,
36 min), 10 μg/ml insulin, 100 μg/ml apo-tranferrin (Sigma), 1
sodium pyruvate 100 mM, 1 penicillin/streptomycin 100 ×, and
1 L- glutamine 100 × for 7 and 12 days. The myotubes were
positive for both the primary antibody against desmin and
myosin heavy chain using the MF20 anti-MHC monoclonal
antibody (diluted 1:50; Developmental Studies Hybridoma
Bank, University of Iowa, Iowa City, IA, United States).

Intracellular Calcium Concentration
Measurements
The proliferating MPCs in the range of 2–3 PDL and
differentiated myotubes (7 and 12 days differentiation) were
loaded with Fura2-AM (final concentration, 5 μM) for 30 min,
washed by removal solution, and incubated for further 30 min at
37°C prior to the intracellular calcium concentration at the
cytosolic level ([Ca2+]i) measurement, to allow intracellular
Fura2-AM de-esterification. The experiments were performed
at the room temperature of 21°C and sea-level O2 and CO2 partial
pressure. Images were acquired using the procedures and set-up
described by Pietrangelo et al. (2015).

Data Analysis
The analyses, mean and standard deviation, and unpaired t-tests
were performed using GraphPad Prism Software, version 5
(GraphPad Software, La Jolla, United States).

RESULTS

We isolated postmortem hMPCs from thyrohyoid and ileopsoas.
Their desmin positivity was tested, and if it was less than 70%, the
cells were sorted for CD56 marker. The cell yield was 5 × 103 ±
700 per mg of presomite muscles and for somite muscles, was 5 ×
103 ± 970 cells. Similar results were obtained for the postmortem
hMPCs from samples derived by the two procedures described
before in Materials and Methods, specifically samples stored at
4°C for 24 h and samples frozen for 2 weeks in liquid nitrogen.

Previously, we have demonstrated that the MPCs obtained
from alive donors, migrated out of the explants within 1 month
and reached the proliferative senescence (cells do not duplicate
anymore) in about 3–4 months (Pietrangelo et al., 2009).
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Postmortem hMPCs, both from presomite and somite muscles,
migrated out of the explant within 15 days, faster than those
migrating out of the explants from muscles of living volunteers.
Postmortem hMPCs showed an increased proliferation rate
(Figure 1A, postmortem hMPCs in green and orange curves)
compared with hMPCs derived from alive donors (Figure 1A
black curves). Moreover, postmortem thyrohyoid hMPCs
(Figure 1B) proliferate faster than postmortem ileopsoas
hMPCs (green vs. orange curve in Figure 1).

We measured the [Ca2+]i in postmortem hMPCs as
proliferating undifferentiated cells under resting conditions.
The [Ca2+]i in thyrohyoid hMPCs was significantly less than
[Ca2+]i in ileopsoas hMPCs (Figure 1C). Moreover, thyrohyoid
hMPCs showed peculiar spontaneous intracellular [Ca2+] waves.
The [Ca2+]i regularly oscillates with a peak followed by a resting
level for a period of few minutes. The [Ca2+]i oscillation was
recorded for 50 ± 15 min. These oscillatory pathways showed
different frequencies. Figure 1D shows a representative trace with
a frequency of about 30 [Ca2+]i peaks per hour; we also recorded
slower frequencies of about 13 and 6 [Ca2+]i peaks per hour. We
never recorded oscillatory [Ca2+]i in ileopsoas postmortem
hMPCs.

We analyzed the differentiation process in both somite and
presomite hMPCs along with their [Ca2+]i. Figure 2B shows
multinucleated myotubes of thyrohyoid hMPCs stained for
desmin, while panel C stained for myosin heavy chain protein
expression. It can be observed that not all the hMPCs were fused
into myotubes at 7 days despite being myogenic cells. Prolonging
the differentiation at 10–12 days, about 90% of hMPCs formed
myotubes. We measured the [Ca2+]i in myotubes under resting
conditions (Figure 2A) and found similar [Ca2+]i in presomite
and somite myotubes. We stimulated the myotubes with 500 μM
nicotine in order to reveal the presence and the opening of
achetylcholine channels. The somite-differentiated hMPCs
showed responsiveness to nicotine at 7 days while presomite
myotubes showed later at 10–12 days of differentiation.

DISCUSSION AND CONCLUSION

To our current understanding, no one has previously established
that postmortem presomite muscles were able to release hMPCs
in vitro to be cultured and differentiated. Our results demonstrated
that postmortem thyrohyoid hMPCs proliferate with features
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FIGURE 1 | Results on undifferentiated thyrohyoid and ileopsoas hMPCs. (A) Population doubling level (PDL) of postmortem hMPCs derived from thyrohyoid
muscles obtained from 40- (orange squared symbol) and 71 (green triangle symbols)-year-old corpses while black symbols represent the PDL of five different hMPC
populations derived from vastus lateralis of alive donors in the range of 40–71 years old. (B) Picture of thyrohyoid hMPCs in Petri dishes. Panel C shows mean and
standard deviation of [Ca2+]i measurement on undifferentiated thyrohyoid (UNDIF THY) and ileopsoas (UNDIF IL) hMPCs. They significantly differ with p ≤ 0.05. (C)
Representative [Ca2+]i oscillation recorded on thyrohyoid hMPCs. The bar represents 100 μm.Q21
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similar to somite ones, and both lineages are able to come out of the
explants earlier and proliferate faster than those from biopsies
obtained from alive donors. Postmortem thyrohyoid hMPCs
showed peculiar spontaneous [Ca2+] waves lasting tens of
minutes. It is worth mentioning that embryological pharyngeal
arches originate in not only neck muscles but also cardiomyocytes,
which have been demonstrated to be able to give the oscillatory
pattern of resting cytosolic calcium (Eisner et al., 2017; Cheng et al.,
2021). This creates proactive behavior of the presomiteMPCs, a sort
of pacemaking prone to contraction (Stojilkovic, 2011). Considering
the large amount of calcium mobilization during oscillatory waves
(peak more than 1 μM), we thought that this pattern could be a
death signal, but it is worth mentioning that any significant
apoptotic cell increase has been recorded on thyroyoid hMPCs.

The [Ca2+]i under resting conditions was significantly less in
presomite hMPCs with respect to somite and differentiated
myotubes. Following these results, the human postmortem
MPC functions, both from somite and craniofacial muscles,
need to be further explored to deeply understand their
regenerative potential and possible applications.

Distinct lineages of SCs are responsible for both head and
trunk/limb muscle tissue formation with specific genetic
differences in fiber development (Harel et al., 2009; Tzahor,
2009). It has been demonstrated that mutant mice lines that
show no development of trunk and limb muscles are still able to
form embryonic and fetal muscles of the head (Tajbakhsh and
Cossu, 1997Q12 ; Rudnicki et al., 1993).

Scott et al. (2013) well described the isolation of human skeletal
muscle satellite cells from postmortem somiticmuscles and proposed
their utility. Recently, Feige et al. (2021) established a “novel model”
to evaluate the human satellite cell fate using postmortem intact
human muscle myofibers with muscle stem cells within the niche
microenvironment but only on the somite human psoas.

However, to our knowledge, the datawe reported in this study are
the first demonstration that pre-somitic SCs can be achieved from

postmortem presomite muscles, established in culture, and used for
studies on muscle regeneration despite the fact that craniofacial
muscle regeneration has physiological peculiar properties and
promising characteristics observed during aging or muscle
disease. Interestingly, eye extrinsic muscles do not show signs of
sarcopenia and are less affected by muscular dystrophies (McLoon
et al., 2007; La Rovere et al., 2014; Cheng et al., 2021). The amount of
SCs we obtained by thyrohyoid is also impressive: if we consider that
1 mg of muscle furnished about 5 × 103 cells at the first PDL, we had
1 g of muscle. This means achieving more than 100 × 106 at the first
passage in vitro during culture. Considering that one of the main
limitations in microphysiological systems like building muscle
organoids is the requirement of large number of adult stem cells;
we suggest overcoming it by taking advantage of large-scale and
homogeneous postmortem hMPC populations. Human biopsy
sampling on living volunteers presents some limitations as very
small muscle sampling was performed to avoid the scar tissue
formation/muscle function impairment, very rare or rather
impossibility to sampling presomite muscle. Postmortem
presomite and somite sampling basically overcomes or postpones
these limitations. Indeed, the coroner has cut a large amount of
muscle for investigations, and further it is worthmentioning that our
preliminary data suggest that postmortem MPC lifespan
significantly increases, even with a certain variability, with respect
to the lifespan of MPC populations obtained by living donors. We
did not test the extent of lifespan yet, but it seems present in each
hMPC population we obtained. It will be very interesting to
investigate if postmortem thyrohyoid hMPCs change their
Hayflick limit for duplicative senescence with respect to somite ones.

Using postmortem SCs, we can produce not only a large
number of cells useful for organ-on-chip and organoid
differentiation protocol but also allow having a structure
mimicking nerve-dependent skeletal muscle contraction.
Muscle fiber contractions are visible in about 20 days and can
be maintained over a long period, thanks to the production of
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FIGURE 2 | Results of differentiated postmortem hMPCs. (A) [Ca2+]i recorded as the basal level in differentiated hMPCs derived from both thyrohyoid (DIF TY) and
ileopsoas (DIF IL) muscles. (B,C) Representative images of immunostaining for desmin and myosin heavy chain proteins on myotubes derived from postmortem
thyrohyoid hMPCs. The bars represent 100 μm.
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innervated multinucleated mature skeletal muscle fibers
(Mazaleyrat et al., 2020).

Since the discovery in humans of somite cell reprogramming into
pluripotent stem cells (hiPSCs), several protocols of cell lineage
proliferation and differentiation have been created aimed at
modeling physiological programs, starting the modern stem cell-
based regenerative medicine (Ortiz-Vitali and Darabi, 2019).
Matsuda et al. (2020) used iPSCs for studying the stepwise origin
that recapitulates more complex features of human mesoderm
development and in vitro induction of presomite mesoderm on
human somitogenesis, with the interesting demonstration of good
achievement on spondylocostal dysostosis. However, the skeletal
muscle differentiation studies based on iPSCs have lagged behind
those of other cell lineages. The protocols for generating mature
presomite muscle fibers with sarcolemmal organization using iPSCs
remain unexplored, and the investigation of the complexity of
mature skeletal muscle is still lacking. Not to mention modeling
and investigating specific interesting features of presomite skeletal
muscles under dystrophic conditions, in which presomite muscles
survive longer than other muscles also under very severe conditions
like Duchenne muscular dystrophies.

Overall, these efforts pave the way to demonstrate the great
potential of presomite iPSCs for disease modeling considering
several pathologies, as well as helping identify new pathologic
mechanisms involved (Dutta et al., 2017). Considering
regenerative medicine, several other conditions can take
advantage of the studies on presomite 2D and 3D organoids,
as those for the identification of physiological or pathological
mechanisms underlying the regeneration process as well as drug
interference (Ostrovidov et al., 2019).

Amazing possibilities may emerge from the advancement of
our perspective. First, the definition of protocols for muscle stem
cells-derived organ-on-chip and organoids;. second, the
subsequent disease modeling and no-patient clinical trials
(Mummery et al., 2014); and third, extending the field of
regenerative medicine models for organ transplants
(Hoogduijn et al., 2020) with postmortem models.

In perspective, this work opens a new field of investigation on
postmortem satellite cells from presomite and somite skeletal muscle
finalized to specific biobanks to be used for organoid formation.

In conclusion, our perspective work is in line with the
recent advances in regenerative and precision medicine and

the need of understanding the fundamental mechanisms in
presomite and somite SC models and their role in
microphysiological systems for skeletal muscle studies (Jalal
et al., 2021). Moreover, our ability to collect and manage
postmortem presomite as well as somite hMPCs can
significantly contribute to creating a new biobank shareable
with researchers involved in physiological and pathological
studies on skeletal muscle.
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