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In this paper, we study a nonlinear model of the interaction between trait selection and population

dynamics, building on previous work of Ghirlanda et al. [Theor. Popul. Biol. 77, 181–188 (2010)]

and Antoci et al. [Commun. Nonlinear Sci. Numer. Simul. 58, 92–106 (2018)]. We establish some

basic properties of the model dynamics and present some simulations of the fine-grained structure

of alternative dynamic regimes for chosen combinations of parameters. The role of the parameters

that govern the reinforcement/corruption of maladaptive vs. adaptive traits is of special impor-

tance in determining the model’s dynamic evolution. The main implication of this result is the

need to pay special attention to the structural forces that may favor the emergence and consolida-

tion of maladaptive traits in contemporary socio-economies, as it is the case, for example, for the

stimulation of dysfunctional consumption habits and lifestyles in the pursuit of short-term profits.

Published by AIP Publishing. https://doi.org/10.1063/1.5025163

Cumulative culture is a key feature of human civiliza-

tion. However, both adaptive and maladaptive traits

may be part of human cultural assets, and their relative

shares depend on a constellation of factors. Population

dynamics clearly reflect trait selection, in that adaptive

traits tend to favor human reproduction, whereas mal-

adaptive ones play against it. The interaction between

trait selection and population dynamics is more complex

than might be expected though, and in this paper, we

study a nonlinear model that builds on previous work of

Ghirlanda et al. (2010) and of Antoci et al. (2018). We

find in particular that in a realistically nonlinear social

environment, there is no necessary tradeoff between

adaptive and maladaptive traits: it can happen that both

thrive and the population gradually goes extinct or on

the contrary that it grows without bound. Of course, it

can also happen that one type of trait prevails at the

expense of the other, with more intuitive impact over

population dynamics. A crucial aspect relates to the

mechanisms through which adaptive traits turn mal-

adaptive and vice versa. The relative strength of these

effects is very important in determining which dynamic

regime prevails. Gaining a better understanding of such

mechanisms may be of great interest for several

research fields in the social sciences and, in particular,

for economics where cultural transmission issues are

becoming increasingly relevant in the research agenda,

but where nonetheless there is still a poor understanding

of the link between the social selection of maladaptive

traits and the diffusion of welfare-destroying dysfunc-

tional habits and behaviors, whose promotion is linked

to short-term profitability motives and may have serious

implications for the long-term social dynamics.

I. INTRODUCTION

The explosion of human adaptive evolution in the past

50 000 years is the product of the interaction between the

genetic selection effects of a large increase in the population

size and the size and pace of cultural and environmental

changes that are characteristics of the Anthropocene era

(Hawks et al., 2007). An especially important role in this

regard is played by the cumulative nature of human culture,

which allows the successful inter-generational transmission

of increasing volumes of adaptive knowledge, paving the

way for further accumulation (Hidalgo, 2015). However,

modeling the reciprocal influences of population dynamics

and cumulative trait selection is no easy task, and this issue

is of major relevance in many different fields of research. In

particular, if a large human population provides opportunity

for more systematic exploration of the fitness landscape and

for higher chances to reach global optima (Kobayashi and

Aoki, 2012), it also increases the risk of hitting the limits of

environmental carrying capacity (Nekola et al., 2013) and

makes space for a possible improved selection of maladap-
tive traits (Nesse, 2007) and for the development of behav-

ioral disorders as a consequence of increasing social pressure

to adapt (Nesse, 2004). Moreover, a large, rapidly evolving

population calls for a careful fine-tuning of ecological trade-

offs in the domestication of the natural environment

(Kareiva et al., 2007), with threatening prospects for human

survival (Bostrom, 2013). Furthermore, the very adaptive

success of the human species, e.g., in terms of availability of

food resources much beyond survival needs, makes room for
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the development of success-specific maladaptive traits such

as compulsive voracity leading to pathological obesity and

resulting in a socially driven global pandemic (Swinburn

et al., 2011).

Economics is a field of study that has, until recently,

paid little attention to cultural selection issues and has con-

sidered cumulative culture and its effects on human welfare

mostly through the relatively restricted lens of its direct

impacts on economic growth, that is, in its essentially instru-

mental dimension (Berkes and Folke, 1992). This has

brought about paradoxical social consequences, in that self-

interested norms of economic rationality have made it

entirely legitimate and have even prescribed the pursuit of

individual short-term advantages at the expense of large

social costs in terms of adaptive response to social and envi-

ronmental challenges (Sen, 1977). This has, for instance,

prompted private companies to manufacture and aggres-

sively promote dysfunctional foods (such as high-glucose

snacks) that clearly play a major role in the diffusion and

consolidation of the obesity pandemic (Candib, 2007). More

generally, there has been, until recently, no major public con-

cern about the massive provision and promotion of goods and

services with a clearly negative adaptive value for humanity

as a whole, such as cigarettes, alcoholic beverages, gambling,

and so on (Moodie et al., 2013), and likewise, there has been

little concern about the global adaptive impact of the diffusion

of consumerist lifestyles based upon an unconstrained deploy-

ment of non-reproducible natural resources (Frantz and

Mayer, 2009). On the other hand, the cultural implications of

growth in terms of the social selection and diffusion of adap-

tive vs. maladaptive cultural traits should be seriously taken

into account to successfully address the formidable challenges

of a massively anthropized planet and should be paid major

attention in the analysis of the welfare consequences of indi-

vidual and collective choices.

In perspective, in order to address these issues in rele-

vant and appropriate terms, economic theory should be able

to integrate a proper treatment of the social selection of cul-

tural traits into growth models and to fully consider the cul-

tural implications of certain types of policy measures. The

existing literature that has paid attention to the cultural

dimension has been more focused upon the impact of cul-

tural differences on economic outcomes than upon the cul-

tural consequences of economic choices (Guiso et al., 2006;

2009) or has reinterpreted cultural transmission itself as the

product of optimizing choices driven by paternalistic altru-

ism (Bisin and Verdier, 2001). We think instead that a proper

economic treatment of cultural transmission issues calls for a

consilient integration of research from other social science

domains such as human ecology, evolutionary anthropology,

and social psychology, which have studied these issues from

a broader perspective, are supported by a much stronger

basis of field research, and are not prompted by a reduction-

ist intent. In this spirit, we study here a human ecology-

motivated mathematical model of the interaction between

trait selection and population dynamics as a logical premise

to a full-fledged growth model in a consilient perspective, in

order to be eventually able to discuss not only the conditions

for the achievement of growth targets but also their cultural

implications in terms of adaptive value and therefore their

welfare consequences in a richer sense.

Taking as a reference the “macro” model of Enquist and

Ghirlanda (2007) which studies the social selection of adap-

tive vs. maladaptive traits for a constant population, Antoci

et al. (2018) relax the simple linear hypotheses of the original

model to assess the importance of nonlinear effects. They find

that in a relatively simple nonlinear model, a complex modu-

lating role is played by the switching of traits from adaptive

to maladaptive and vice versa. Therefore, as expected, the cul-

tural change dimension has a major impact upon the stability

and adaptive consequences of the social dynamics. In this

paper, we extend this analysis by taking into account the

dynamic interaction of trait selection and population change,

thus switching from a constant population to a full ecological

model. Once again, we take as a reference an analogous

model by Ghirlanda et al. (2010) and relax again its linear

structural components to explore a first, essentially nonlinear

model of the trait selection-population dynamics interaction.

We find that in an essentially nonlinear environment, the

dynamic behavior of the model becomes rather complex and

that regime switching bifurcations can occur, once again con-

firming the modulating role of the bi-directional transition

between adaptivity and mal-adaptivity of traits. As a conse-

quence of growth, therefore, traits that once were socially

beneficial may now become dysfunctional and vice versa.

Cultural change may have challenging social implications

that may be difficult to anticipate. This calls for a very careful

modeling and analysis of the incidence of cultural factors in

determining the fine-grained structure of the social dynamics

and its population effects and for an even more careful con-

sideration of their role in policy design and evaluation.

II. BASIC FEATURES OF THE MODEL

To model the interaction between trait selection and

population dynamics, we consider the following effects.

Denote by u the level of adaptive cultural traits, by v the

level of maladaptive ones, and by n the population level.

A. Trait (net) decay

Traits, both adaptive and maladaptive, may display dif-

ferent levels of persistence and tend to decay when they are

not socially reinforced. In this model, as in Antoci et al.
(2018), we consider a quadratic decay pattern: the decay of a

certain type of trait is size-dependent, so that the larger the

level of the type of trait (adaptive vs. maladaptive), the stron-

ger the decay. Specifically, for u, we have a decay factor bu
so that total decay is equal to bu2. There is moreover a linear

effect au which may take any sign (i.e., may further reinforce

decay or generate new traits), so that net decay is equal to

�au� bu2, and likewise for v. Let us focus on adaptive traits

to fix ideas. The sign of a will determine what happens to net

decay when the level of a certain type of trait is relatively

low. If a is positive, i.e., if there is a linear effect that recov-

ers adaptive traits at risk of extinction and counteracts the

quadratic decay effect in terms of generation of adaptive

traits, for a low enough u, the net effect will be positive, i.e.,

there will be a net generation of new traits, and not a decay.
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This is due to the fact that under certain conditions, when the

level of adaptive traits is relatively low, there may be a

strong social focus on them so that they tend to be socially

reinforced to the point of bringing back on stage previously

disregarded traits. However, this need not be the case neces-

sarily; if a is negative, even when adaptive traits are scarce,

such a component prompts the extinction of more traits.

a> 0 then parametrizes cases of adaptive resilience, whereas

a< 0 denotes adaptive decadence. We can reason accord-

ingly for maladaptive traits.

B. Trait corruption/filtering

Traits, both adaptive and maladaptive, may change their

nature in certain circumstances, turning from adaptive to

maladaptive or the other way round. If the level of maladap-

tive traits is high, it may be relatively easy that adaptive

traits will corrupt into maladaptive. Moreover, the larger the

level of adaptive traits, the larger the absolute number of

traits at risk of corruption. However, by the same token, a

high level of maladaptive traits might cause a strong filtering

of such traits and their transformation into adaptive traits,

the higher the level of existing adaptive traits, thus causing

the reverse effect. Corruption/filtering of adaptive traits will

therefore be equal to cuv, where again the sign of c will

depend on the net effect of the corruption/filtering social

mechanisms at work. We can again reason accordingly for

maladaptive traits.

C. Generation of new traits

As in Antoci et al. (2018), the generation of new traits

depends on the ratio of the levels of adaptive vs. maladaptive

traits, on the (constant) proportions of creation of new adap-

tive vs. maladaptive traits (q and 1 – q, respectively), on the

population level n, and on the effect factor d.

D. Population dynamics

The population dynamics is ruled by a logistic equation

that depends on the ratio of the levels of adaptive vs. mal-

adaptive traits and whose first-order term is linearly depen-

dent on the net level of adaptive vs. maladaptive traits. If

adaptive traits prevail over maladaptive ones, population

growth is further reinforced (i.e., adaptive traits in this model

are also growth-enhancing traits). Vice versa, if maladaptive

traits prevail, this may cause a further contractionary effect

on the population level in addition to the second-order effect

typical of the logistic dynamics.

With respect to the model studied by Antoci et al.
(2018), the present one introduces a varying population size

n, considers a first-order effect with no sign restriction in

addition to the second-order decay effect for both adaptive

and maladaptive traits, and makes the generation of new

traits explicitly dependent on the population size. Moreover,

it introduces, in the spirit of Ghirlanda et al. (2010), a

logistic-type modeling of the population dynamics. With

respect to the Ghirlanda et al. (2010) model, the present one

considers the possibility of second-order (and not only first-

order) decay of traits, two-sided trait corruption vs. filtering,

and dependency of both the generation of new traits and the

population logistic dynamics on the ratio of adaptive vs. mal-

adaptive traits.

Our model therefore provides a significant generaliza-

tion of previous research while at the same time encom-

passes it as special cases.

III. ANALYSIS OF THE MODEL

On the basis of the discussion presented in Sec. II, we

can formally write our model as

_u ¼ u �a� buþ cvþ qd
n

1þ v

� �
; (1)

_v ¼ v �� nvþ guþ ð1� qÞd n

1þ u

� �
; (2)

_n ¼ rn
u

1þ v
1þ hðu� vÞ � n½ �; (3)

defined in the prism �P ¼ fu; v; n � 0g. We will denote by P
the open prism, i.e., P ¼ fu; v; n > 0g. The parameters of

system (1)–(3) satisfy the following conditions: b;d;n;h;r>0;

0<q<1; a;c;�;gR0.

We will specifically address two types of issues:

1. Finding the possible equilibrium points in P and deter-

mining their stability.

2. Finding the necessary and sufficient conditions for the

existence of diverging trajectories (i.e., of trajectories

along which some of the variables u; v; n! þ1) and

describing some region where this occurs.

A. Local analysis

We start from the existence and stability of equilibrium

points, by proving the following theorem.

Theorem 1. System (1)–(3) can have at most four equi-
librium points in P. Such points correspond to the zeros of a
fourth degree polynomial PðuÞ in u, satisfying further
inequalities in u; v; n. At an equilibrium point ð�u;�v; �nÞ, the
Jacobian determinant has the sign of P0ð�uÞ. Such an equilib-
rium point is either a sink or a saddle with one-dimensional
stable manifold if P0ð�uÞ < 0 or else a saddle with two-
dimensional stable manifold if P0ð�uÞ > 0.

Proof. Let us look for the equilibrium points of system

(1)–(3) in P. Thus, we pose n ¼ 1þ hðu� vÞ and replace it

in the expressions for _u and _v. Setting the latter equal to

zero, we obtain

v ¼ vðuÞ :¼ �ð1þ uÞ þ guð1þ uÞ þ ð1� qÞdhu

nuþ ð1� qÞdhþ n
; (4)

where u> 0. Hence, in equation _u ¼ 0, we can replace both

n and v as functions of u, and eventually, we get an equali-

ty–inequality system, that is,

PðuÞ ¼ 0

u > 0

�ð1þ uÞ þ guð1þ uÞ þ ð1� qÞhu > 0

1þ hðu� vðuÞÞ > 0;
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where P(u) is a fourth degree polynomial in u, and v(u) is

given by (4).

Assume, now, that ð�u;�v; �nÞ is an equilibrium point in P
and write the Jacobian matrix Jð�u;�v; �nÞ. After straightfor-

ward computation, we get signðdetJð�u;�v; �nÞÞ ¼ signðdetJ0ð�u;
�vÞÞ, where J0ð�u;�vÞÞ is the Jacobian matrix of the equilibrium

point ð�u;�vÞ of the following system:

_u ¼ qdh
1þ v

� buþ c� qdh
1þ v

� �
vþ qd

1þ v
; (5)

_v ¼ ð1� qÞdh
1þ u

� guþ nþ ð1� qÞdh
1þ u

� �
v� ð1� qÞd

1þ u
: (6)

Thus, calling F(u, v) and G(u, v) the expressions of _u and _v
in (5) and (6), respectively, we get

detJ0ð�u;�vÞ ¼ @F

@u

@G

@v
� @F

@v

@G

@u
ð�u;�vÞ:

Moreover, Gðu; vÞ ¼ 0 is equivalent to v ¼ gðuÞ; g0ðuÞ
¼ � @G

@u =
@G
@v , where @G

@v ¼ nþ ð1�qÞdh
1þu > 0. Then, the stationary

points of system (5) and (6), with u; v > 0, are given by

Fðu; gðuÞÞ ¼ 0. Through straightforward steps, we get

Fðu; gðuÞÞ ¼ HðuÞPðuÞ, where H(u)> 0 when u> 0 and P(u)

is the previous fourth-degree polynomial. Then, Fðu; gðuÞÞ
¼ 0 as u> 0 corresponds to P(u)¼ 0.

Suppose �u is one of these roots. Then

d

du
Fð�u; gð�uÞÞð Þ ¼ @F

@u
� @F

@v

@G

@u
@G

@v

ð�uÞ ¼ Hð�uÞP0ð�uÞ;

and being @G
@v ð�u;�vÞ > 0, it follows that signðdetJ0ð�u;�vÞÞ

¼ signðP0ð�uÞÞ, when �u;�v > 0 and Pð�uÞ ¼ 0. Hence

signðdetJð�u;�v; �nÞÞ ¼ signðP0ð�uÞÞ;

where, moreover, we require �n¼1þhð�u��vÞ>0. Therefore,

as it is easily observed that traceJð�u;�v;�nÞ<0, the theorem’s

statements follow. In particular, if P0ð�uÞ<0, Hopf bifurcations

may occur for suitable values of the parameters. �

Theorem 1 tells us that, under certain parameter configu-

rations, there may be a locally stable stationary point for the

trait selection-population dynamics. When such conditions

are not met, the stationary point is a saddle whose stable

manifold has positive codimension, i.e., it can only be

reached along very specific trajectories.

B. Diverging trajectories

We provide necessary and sufficient conditions for the

existence of diverging trajectories of system (1)–(3) in the

open prism P ¼ fu; v; n > 0g (i.e., of trajectories along

which some variables tend to þ1 as t! �t � þ1) and

describe some regions where this occurs. To this end, we

start by proving the following theorem.

Theorem 2. Necessary conditions for the existence of
trajectories of system (1)–(3) along which vðtÞ ! þ1 as
t! �t � þ1 are that recalling b; n > 0

c; g > 0 and bn � cg: (7)

If bn < cg, such conditions are also sufficient.
If vðtÞ ! þ1, then uðtÞ ! þ1 as well, and asymptoti-

cally (that is, for a sufficiently high value of v(t)) u ¼ avþ b
þoð1=vÞ holds, where a and b are the rational functions of
the system parameters and oð1=vÞ denotes a quantity tending
to zero as vðtÞ ! þ1. Moreover, n(t) can tend to zero or to
þ1 as v, i.e., nðtÞ=vðtÞ ! c > 0, or to þ1 as vk; 0 < k
< 1, depending on the parameters of the system.

Proof. Assume that along a trajectory starting from

some P0 2P; ðuðt;P0Þ; vðt;P0Þ;nðt;P0ÞÞ; vðtÞ !þ1 holds.

Then, _v > 0, for any t0 > 0, in intervals I � ðt0;�tÞ, where
�t �þ1. It follows that in I either gu� nv or ð1� qÞdn=
ð1þ uÞ � nv. But the latter inequality implies that nðtÞ !
þ1 as well, and thus, _n > 0, i.e., n < 1þ hðu� vÞ, so that,

being h> 0; uðtÞ ! þ1 and ð1� qÞdn=ð1þ uÞ is bounded.

It follows that uðtÞ ! þ1 and guðtÞ � nvðtÞ in each of the I
above. Thus, g> 0 and

uðtÞ
vðtÞ �

n
g. Conversely, as uðtÞ ! þ1,

it is easily checked that c> 0 and
uðtÞ
vðtÞ �

c
b. Hence, c;g> 0,

and n
g�

c
b are necessary conditions for the existence of trajec-

tories along which vðtÞ ! þ1.

Now, we prove that the above conditions, when n
g <

c
b,

are also sufficient. In fact, consider a trajectory starting from

ðu0; v0; n0Þ, where v0 is sufficiently high (we write v0 � 1),

gu0 � nv0 and n0 � v0. Then, _vð0Þ > 0. Being b; c; g; n
> 0; bn < cg, consider

g
_u

u
þ b

_v

v
¼ d

dt
lnugvb ¼ �agþ b�þ ðcg� bnÞv

þ qdg
1þ v

nþ ð1� qÞdb
1þ u

n:

Then, also d
dt lnugvb > 0 at t¼ 0. If along such a trajec-

tory, v(t) does not tend to þ1, v at some �t must decrease

and so must u. But, until v > ag�b�
cg�bn ; ugvb keeps increasing;

then, if v decreases, u increases. Conversely, however, hav-

ing u increased, when v is close to ag�b�
cg�bn and started from a

much higher value, _v > 0 and v cannot decrease further. It

follows that both vðtÞ and u(t) tend to þ1.

Our next step is to prove that along a trajectory where

v(t) and u(t) tend to þ1 and bn < cg; u=v! a > 0, where

a ¼ ðcþ nÞ=ðbþ gÞ. In fact, assume vðtÞ ! þ1 and write

du

dv
¼

uv � a
v
� b

u

v
þ cþ qdn

ð1þ vÞv

� �

uv � �
u
� n

v

u
þ gþ ð1� qÞdn

ð1þ uÞu

� �

¼ u

v

� a
v
� b

u

v
þ cþ qdn

ð1þ vÞv

� �
u
� n

v

u
þ gþ ð1� qÞdn

ð1þ uÞu

0
BBB@

1
CCCA:

Hence, posing u ¼ ey and v ¼ ex, it follows

dy

dx
¼
�ae�x � bey�x þ cþ qdn

ð1þ exÞex

�e�x þ gey�x � nþ ð1� qÞdn

ð1þ eyÞey

:
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Moreover, as it is easily checked, when v! þ1, then

n=v < c for a suitable c> 0. Assume now, by contradiction,

that y(x) has infinitely many maxima and minima when

x! þ1. Then, take one such extreme value �x sufficiently

high. Then, for yð�xÞ ¼ �y, in order to satisfy y0ð�xÞ ¼ 0; e�y��x

must be quite close to c=b, and hence, e�y��x > q > n
g (since

n
g <

c
b) for a suitable q. As a consequence, through straight-

forward steps, we get in a neighborhood of �x

dy

dx
¼ �bey�x þ c
�nþ gey�x

þ e�xuðxÞ;

where uðxÞ and u0ðxÞ are bounded when x is sufficiently

high.

Hence, assume dy
dx ð�xÞ ¼ y0ð�xÞ ¼ 0 and compute y00ð�xÞ.

Posing y� x ¼ z, it follows

y00ð�xÞ ¼ bn� cgð Þe�z

�nþ ge�zð Þ2
yð�xÞ � 1ð Þ þ o e�xð Þ:

So, being y0ð�xÞ ¼ 0 and bn� cg < 0, we have y00ð�xÞ
> 0, and maxima and minima cannot alternate. Therefore,

y(x) and consequently u(v) do not oscillate when x and thus v
is high enough, so that u

v ! a > 0 when v! þ1; n
g

< a < c
g. It follows, when v is high enough, a ¼ limv!þ1

du
dv,

i.e.,

a ¼ �baþ c

� n
a
þ g

;

and therefore

a ¼ cþ n
bþ g

:

As far as n is concerned, it easily follows that n! 0

(when v! þ1) if a< 1 while, if a> 1, n
v ! c ¼ hða� 1Þ

þn� ga if the right term is strictly positive; otherwise, if

hða� 1Þ < ga� n; n! þ1 as vk, where k ¼ hða�1Þ
ga�n < 1.

Therefore, posing limv!þ1
n
v ¼ c0 � 0, it follows that,

when v is high enough, along any trajectory where

v; u! þ1; u ¼ avþ bþ o
1

v

� �
, being

b ¼
�a� �þ qdc0 � ð1� qÞdc0

a
bþ g

;

[e.g., compute _u
u � _v

v ¼ d
dt lnð u

v
Þ, setting u ¼ avþ bþ oð 1

v
Þ].

In fact, along any of the above trajectories, when v is

high enough, for any m> 1

u ¼ avþ bþ
Xm0
k¼1

dkv
�k þ o v�m�1ð Þ

or

u ¼ avþ bþ vk
Xm0
k¼1

d0kv
�k þ o v�m�1ð Þ

" #
;

but clearly, the formal power series in v�1 may not converge

(i.e., its radius of convergence may be zero). Similar argu-

ments can be applied to n(v). �

The only other case in which diverging trajectories exist

is the following.

Theorem 3. Assume g � 0 and qdh=ð1þ v	Þ � b,
where v	 � 0 is defined by the system parameters. These are
necessary conditions for the existence of trajectories along
which u(t) and nðtÞ ! þ1, as vðtÞ ! v	. Moreover, if g < 0

and qdh > b, such conditions are also sufficient, implying
v	 ¼ 0. In any case, along any diverging trajectory, asymp-
totically (i.e., when u is high enough)

n ¼ huþ k þ o
1

u

� �

holds, where k is defined by the system parameters.
Proof. Assume g � 0. So, recalling the expression of _n,

if uðtÞ ! þ1, v(t) tends to some v	 � 0. Then, assume

uðtÞ ! þ1 and vðtÞ ! v	 on some trajectory. Then, for any

t0, there exists some interval I � ðt0;�tÞ; �t � þ1, where

bu � qdn=ð1þ v	Þ, implying nðtÞ ! þ1 as well. On the

other hand

dn

du
¼

r

1þ v
1þ hðu� vÞ � n½ �

� a
n
� b

u

n
þ qd

1þ v

;

so that n/u must tend to h as uðtÞ ! þ1. Let n ¼ huþ k

þoð 1
u
Þ when u is high enough. Thus, if qdh=ð1þ v	Þ > b,

letting uðtÞ ! þ1, we get

h ¼

r

1þ v	
1� hv	 � kð Þ

� b
h
þ qd

1þ v	

;

and we can find the value of k. Otherwise, if qdh=ð1þ v	Þ
¼ b; k ¼ 1� hv	.

As to the sufficiency of the conditions g < 0 and

qdh > b, let us first divide the system equations (1)–(3)

by u> 0. In the consequent equivalent system, let w
¼ lnðelnrunqdÞ and consider

r _uþ qd
_n

n
¼ d

dt
lnðelnrunqdÞ ¼ _w

¼�raþ qd
1þ v

þ r
qdh

1þ v
� b

� �
uþ r c� qdh

1þ v

� �
v:

Let us start from a point ðu0; v0; n0Þ such that u0 � 1

(i.e., very large), qdn0 � bu0;�gu0 � qdn0; 0 < v0 < r,

where r is small enough. Then, _uð0Þ > 0; _vð0Þ < 0;

_wð0Þ > 0. Suppose, at some ~t > 0; _uð~tÞ ¼ 0 holds and pose

ðuð~tÞ; vð~tÞ; nð~tÞÞ ¼ ð~u;~v; ~nÞ. Thus, ~u > u0 and b~u ¼ �a

þc~v þ qd~n
1þ~v ~v v	. Since ~n is also high, @

@v cvþ qd~n
1þv

� �
¼ c� qd~n

ð1þvÞ2 < 0 holds. Moreover, _vð~tÞ < 0 and _wð~tÞ > 0.

Assuming, by contradiction, that u decreases in a small right
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neighborhood of ~t, it follows that in such a neighborhood, as

w increases, so does n, while v decreases. So, it follows that

_uðtÞ > 0, leading to a contradiction. �

Remark 1. The nongeneric cases (where the above nec-
essary but in those cases not sufficient conditions hold)
can exhibit quite different patterns. For example, assume
c; g > 0 and cg ¼ bn. Then

g
_u

n
þ b

_v

v
¼ d

dt
lnugvb ¼ �agþ b�þ qdgn

1þ v
þ ð1� qÞdbn

1þ u
:

It follows that, if �agþ b� > 0, all the trajectories in
the prism P diverge, i.e., along them u; v! þ1. Viceversa,
if �agþ b� < 0 and, for example, c=b < 1, it is easily
checked that no diverging trajectory exists. Similar examples
can be provided for the “critical” cases of Theorem 3.

Theorem 2 tells us that a necessary and sufficient condi-

tion for the divergence of v, i.e., for the level of maladaptive

traits to grow without bound (even in finite time in some

cases), is that c and g are positive and that moreover

bn < cg. The positivity of c and g implies that no corruption

effects exist, and both adaptive and maladaptive traits are

successfully filtered. Moreover, the product of the filtering

factors cg must be larger in size of the product of the (qua-

dratic) decay factors bn. In other words, if for both types of

traits decay effects are comparatively weak with respect to

filtering effects and if corruption effects do not occur, there

is no obstacle to the diffusion of maladaptive culture, and the

same occurs for adaptive culture: the levels of both types of

traits keep on growing at similar speed. The net effect on

population growth is ambiguous, however, and depends on

parameter values, so that we can have either unconstrained

population growth with various possible speeds or an even-

tual extinction.

Theorem 3, instead, helps us to understand what may

happen when maladaptive traits are subject to corruption

(i.e., when g is weakly negative). In this case, if the com-

bined strength (the product) of the rate of generation of

new adaptive traits (q), of the factor measuring the impact

of new adaptive traits on overall trait levels (d), and of the

factor measuring the impact of population growth on the

net level of adaptive vs. maladaptive traits (h) is strong

enough to counterbalance the (quadratic) decay of adaptive

traits, there is the possibility that both adaptive traits and

population levels grow without bound, whereas the level of

maladaptive traits remains bounded. If corruption of mal-

adaptive traits strictly occurs (i.e., g < 0) and if the com-

bined effect of the three factors described above strictly

dominates the decay factor for adaptive traits, not only

unbounded growth of both population and adaptive traits is

ensured but also maladaptive traits eventually become

extinct. Moreover, when both adaptive traits and popula-

tion grow without bound, they do it at similar speed. For

very specific combinations of parameters (such as

cg ¼ bn), however, as shown in Remark 1, very different

dynamic behaviors may result with respect to the ones

described in Theorems 2 and 3, including generalized

divergence of both types of traits and absence of

unbounded growth for all variables.

C. Trajectories tending to the sides of �P

Apart from the case described in Theorem 3, a simple

tool for investigating the existence of trajectories tending to

some side of �P (i.e., to u¼ 0 or v¼ 0 or n¼ 0) is to analyze

the local stability of stationary points lying on those sides.

For example, consider v¼ 0. Then, a stationary point lying

on the side v¼ 0, with u; n > 0, is a positive solution ð�u; �nÞ
of the system

�a� buþ qdn ¼ 0

1þ hu� n ¼ 0;

(

Assume such a solution exists (which implies �n > 1).

Then, there exist trajectories in P tending to ð�u; 0; �nÞ if

�þ g�u þ ð1� qÞd�n < 0:

This amounts to require that, at the stationary state

where maladaptive traits become extinct, the total strength of

the resilience factor of maladaptive traits decay (�), of the

corruption/filtering factor of maladaptive traits times the sta-

tionary level of adaptive traits, and of the combined effect of

the share of generation of new maladaptive traits (1� q)

with the impact factor of new traits on overall trait levels (d)

times the stationary population level must be negative. In

other words, there must be some force at work that nega-

tively affects the growth of maladaptive traits strongly

enough, be it decay, corruption, or weak generation of new

maladaptive traits, or a combination thereof. Moreover, these

adverse forces oppose the growth of maladaptive traits more

and more, the higher the stationary levels of adaptive traits

and of the population.

IV. SIMULATIONS

The objective of this section is to highlight, via numeri-

cal simulations, some effects on dynamics that may be

observed by varying two parameters of the model, namely, g
and c: the factors controlling the corruption/filtering of mal-

adaptive and adaptive traits, respectively. We choose to

focus on these two parameters in view of the importance that

their corresponding parameters played in the analysis of the

dynamic properties of the constant population case studied

by Antoci et al. (2018). In all our simulations, we will only

consider interior equilibria where all three state variables are

strictly positive (�u > 0;�v > 0; �n > 0).

In Fig. 1, we show how the equilibrium levels of the

state variable u (for the other state variables, the simulations

are similar) change with c for three different levels of g.

With H, we denote bifurcation points, and with LP, limit

points. [In our simulation, the normal form coefficients for

the Hopf and the limit point bifurcations were calculated.

Both first Lyapunov coefficients are negative (implying that

the Hopf bifurcations give rise to attractive cycles), while

the LP-coefficients are both nonzero.] Each point in the blue

(respectively, black and red) curves represents a saddle point

with a 2-dimensional stable manifold (respectively, a saddle

point with a 1-dimensional stable manifold and a sink). For

instance, for g ¼ �0:2, there are three equilibria (but no
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attractor as we are in Region VI of Fig. 2). As expected, for

positive values of both c and g, the equilibrium levels of all

the state variables tend to increase, and for given values of c,

the equilibrium population level increases more slowly the

higher the value of g.

To investigate the bifurcation curves denoting changes

in the number and stability of stationary points, we per-

formed codimension-two bifurcation analysis with respect to

the two parameters c and g. [The bifurcation diagrams in

Fig. 2 were computed for continuation from the H and LP
points in Fig. 1.] The main bifurcation diagram is shown in

Fig. 2, where the parameter plane ðc; gÞ is subdivided

into eight colored regions labelled I–VIII. Each of them dif-

fers from the others with respect to the numerosity and sta-

bility of equilibrium points. Region I represents parameter

configurations giving rise to a saddle point with a 2-

dimensional stable manifold and to a sink (with a 3-

dimensional stable manifold). We use the symbol I ! ð2; 3Þ
to indicate such a context. Analogously, in Region IV, two

saddle points exist, one with a 2-dimensional stable manifold

and the other with a 1-dimensional one [IV ! ð2; 1Þ].
Regions I and IV are separated by a supercritical Hopf bifur-

cation curve; when such a curve is crossed, then a stable

limit cycle arises. The following list associates with each of

the regions I–VIII the corresponding configuration of equilib-

rium points, using the same symbology introduced above:

• Region I ! ð2; 3Þ;
• Region II ! ð3Þ;
• Region III ! ð1Þ;
• Region IV ! ð2; 1Þ;
• Region V ! ð2; 3; 2Þ;
• Region VI ! ð2; 1; 2Þ;
• Region VII ! ð2Þ;
• Region VIII ! no equilibria;

Notice that a sink exists in Regions I, II, and V, while a

stable limit cycle exists in Regions III, IV, and VI.
In addition to the above regions, there are four

codimension-two bifurcation points denoted by black dots in

Fig. 2: two cusp points (CP1 and CP2) and two Bogdanov-

Takens bifurcation points (BT1 and BT2). [At each BT point,

the system has an equilibrium with a double zero eigenvalue,

while at the CP point, there is an equilibrium with a simple

zero eigenvalue but zero coefficient of the fold normal

form.] The cusp CP1 locates at ðc; gÞ ¼ ð�0:617; 0:087Þ,
where the value of variable u is equal to zero. The cusp CP2

locates at ðc; gÞ ¼ ð�1:385;�0:424Þ, where the black LP

bifurcation curve on the left and the black LP bifurcation

curve on the right meet tangentially. At the BT1 point

(�0.853,�0.166) and BT2 point (�0.037,�0.075), the

branches of the LP curve and Hopf bifurcation curve meet

tangentially.

In Fig. 3, we show two examples of an attractor and a

limit cycle in the phase space, for a given level of g and two

alternative values of c. Notice how, for a mildly positive g
(i.e., for a modest level of filtering of maladaptive traits), the

dynamic shifts from a stable equilibrium for a comparable

level of c (i.e., a very close level of filtering of the adaptive

trait) to a cyclic behavior for a negative level of c (i.e., cor-

ruption of adaptive traits).

In Fig. 4, we have an illustration of some of the results

of Theorem 2. Figure 4(a) shows an attractor �Q ¼ ð�u;�v; �nÞ
for nb > gc, i.e., for a combination of parameters that viola-

tes the assumptions of the theorem. Figures 4(b) and 4(c)

refer to the context in which Theorem 2’s assumptions on

parameter values are satisfied. Figure 4(b) shows a trajectory

along which unbounded growth of u, v, and n is observed,

while Fig. 4(c) presents the dynamics of the ratio
nðtÞ
vðtÞ which,

as predicted by the theorem, converges to a constant value.

Finally, Fig. 5 shows, for the same combination of

parameters of Fig. 2, three different trajectories for a given

couple of values of c and g. As it can be seen, one trajectory

(black curve) converges to a sink; the second one (red curve)

FIG. 2. Two parameter bifurcation diagram. The red curve refers to (codi-

mension-one) supercritical Hopf bifurcation and the black curve to LP bifur-

cation. The symbols CP and BT indicate the points where a (codimension-

two) cusp bifurcation and a Bogdanov-Takens bifurcation occur, respec-

tively. Parameter values are r¼ 1.5, q¼ 0.444, b¼ 1, n¼ 1, d¼ 1, � ¼ 0:01,

h¼ 7, and a ¼ 0:2461.

FIG. 1. Equilibrium curves varying the parameter c. Parameter values are

r¼ 1.5, q¼ 0.444, b¼ 1, n¼ 1, d¼ 1, � ¼ 0:01, h¼ 7, and a ¼ 0:2461.
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converges to the equilibrium point where the population
becomes extinct (n¼ 0) and both types of traits disappear
ðu ¼ v ¼ 0Þ; the third one (blue curve) leads to unbounded
growth of both types of traits and to the asymptotic extinc-
tion of the population.

V. DISCUSSION

In this paper, we have studied a nonlinear model of the

interaction between trait selection and population dynamics

that extends previous research by Ghirlanda et al. (2010) and

FIG. 3. Trajectories converging to sink (a) and to a limit cycle (b) arisen via a Hopf bifurcation. Parameter values are the same as in Fig. 2. (a) c ¼ �0:22;
g ¼ 0:13 and (b) c ¼ �0:13; g ¼ 0:13.

FIG. 4. Theorem 2. (a) Attractive equilibrium point in the phase space for nb > gc (theorem’s assumptions not met); (b) Divergent trajectory in the phase

space when theorem assumptions are met; (c) Time dynamics of the ratio
nðtÞ
vðtÞ when assumptions are met. Parameter values are

a ¼ 1; r ¼ 0:5; q ¼ 0:8; b ¼ 1; n ¼ 1; d ¼ 1; h ¼ 7; � ¼ 1; c ¼ 2. (a) g ¼ 0:1; nb > gc, (b) g ¼ 0:6; nb < gc, and (c) g ¼ 0:6; nb < gc.
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Antoci et al. (2018). As in the latter paper, we find that the

factors that control corruption/filtering of adaptive vs. mal-

adaptive traits play an especially important role. In particu-

lar, through some simulation analysis, we find that for

relatively small variations of the values of the parameters g
and c, major changes in the dynamic properties of the model

can occur. Moreover, even when locally stable equilibrium

points are shown to exist, the dynamics nonetheless exhibit a

variety of possible behaviors for different initial conditions.

This shows that the simple dynamic patterns that are found

in many economically motivated models of cultural trans-

mission are possibly obtained under very specific conditions

and possibly over-simplified theoretical frameworks. In order

to refine our understanding of these complex dynamics, a

closer look at the microforces that shape the corruption vs.

filtering of adaptive and maladaptive traits in specific con-

texts and situations is needed, so as to arrive at a precise cali-

bration of model parameters and to the formulation of

reliable predictions of the model’s asymptotic dynamics.

Our model shows that when both adaptive and maladap-

tive traits find favorable conditions to develop, they can both

thrive and spread over the population, and it is their relative,

precarious balance that determines whether this entails

unbounded population growth or, to the contrary, eventual

extinction. The basic message of the model is therefore that

unless structural forces are at work to determine parameter

constellations that limit the risk of population extinction, this

possibility cannot be ruled out in principle and is actually

very possible for certain parameter regions. As remarked in

the introduction, the fact that contemporary societies have

typically created ideal conditions for the proliferation of mal-

adaptive traits as a consequence of the pursuit of short-term

corporate profits is a cause of concern, in that, in terms of

our model, this can be reflected into the prevalence of param-

eter constellations where we find a strong filtering of mal-

adaptive traits, and possibly an increasing relative share

of such traits among newly created ones. As we have seen,

such shifts make it less likely to reach a situation where

maladaptive traits go extinct or are limited in their growth.

These results confirm that there is a need to take account of

this kind of effect in economic growth models, so as to eval-

uate the cultural implications of growth strategies that are

directly or indirectly conducive to favorable social environ-

ments for maladaptive traits.

This model has clearly many limitations due to its sim-

plified structure that explores the dynamic interaction of a

limited number of ecological effects. Although such a struc-

ture is not derived from a micro-founded social interaction

model, it has the merit of generalizing existing models which

have long served as benchmarks in the literature and can

therefore be regarded as a conceptual improvement which

introduces a basic level of theoretically grounded sources of

nonlinear complexity of the traits-population coevolution

dynamics. Future research should build more detailed mod-

els that account for even more complex nonlinear effects and

provide richer and more finely grained policy implications.

For instance, one could consider population-dependent filter-

ing of adaptive vs. maladaptive traits. In large populations,

lower levels of social control could make the filtering of mal-

adaptive traits progressively more difficult, thereby incentiv-

izing forms of social dysfunction that are typical of large

scale societies (Cumming et al., 2006), while at the same

time, a large population pool could make space for richer

forms of cultural selection of adaptive traits (Bell et al.,
2009), with an ambiguous net effect. Policy approaches

would consequently become sensitive to population size and

could be based upon dynamic adaptive strategies whose

parameters could provide further sources of complex

dynamic behavior at system level and interact in subtle ways

with the structural parameters studied in the present model.

However, the analysis of models with a realistic amount of

nonlinearity easily becomes very challenging and calls for

simulation experiments. This is a major difficulty that cannot

be easily dealt with and requires a further improvement of

our analytic capacity and a substantial effort toward model-

ing accuracy and parameter calibration. Nevertheless, this

paper makes a first important step toward relaxing linearity

assumptions that greatly limit the complexity of the dynamic

behavior of trait selection-population models with little guar-

antee of theoretical legitimacy if not in terms of tractability.

We feel that the most promising direction for future research

is not in modeling over-simplification, but rather in the

improvement of the capacity to understand the complexity of

socio-economies, and to take it into account when formulat-

ing our policy strategies and more generally when reflecting

on the unintended consequences of our social and individual

attitudes in a variety of dimensions that have major conse-

quences for the adaptive success of our species.
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