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1 |  INTRODUCTION

High altitude (HA) has a multitude of pathophysiological 
effects (Young & Reeves, 2002). The condition is character-
ized by hypobaric hypoxia, decreased air density, and cold 
stress. Inspired oxygen pressure (PO2) and, consequently, ar-
terial and tissue PO2 decrease. Nevertheless, there are native 
populations living at HA, such as Sherpas in the Himalayas, 
Tibetans on the Tibetan Plateau, or Andeans in the Andes. 
These peoples are chronically adapted to chronic HA in all 
body systems (Horscroft et al., 2017; Julian & Moore, 2019). 
Concerning cardiorespiratory function, adaptive responses 
to HA consist of increases in cardiac output and ventilation, 

and increases in the number of capillaries and mitochondria 
(Di Giulio et al., 2003; Mohsenin, 2015). In non-acclimatized 
lowlanders, HA hypoxia causes an increase in cardiac out-
put in a few days, primarily explained by increased heart rate 
(HR). In contradistinction, in HA-acclimated lowlanders as 
well as in natives, cardiac output stays similar to that at sea 
level (Naeije, 2010). With acute ascent, HR at rest and at a 
standardized workload is higher than that at sea level, result-
ing in a systolic volume reduction (Princi, Zupet, Finderle, & 
Accardo, 2008).

Acute exposure to HA also increases blood pressure (BP), 
especially in the first days of exposure in lowlander (Calbet 
& Lundby, 2009) which persists after acclimatization (Parati 
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Abstract
The cardiopulmonary system is a physiological cornerstone in the adaptive response 
to hypobaric hypoxia. Portable devices make it feasible nowadays to precisely assess 
the response to high altitude (HA) expeditions. In this study, we investigated breathing 
and arterial blood pressure responses during a Himalayan trek from 665 m to 4,780 m 
altitude in a white European (Italian) sojourner and a native Nepali (Tamang) guide, 
both healthy males. Resting diurnal and nocturnal data were acquired by means of 
ambulatory blood pressure monitoring (ABPM) and sleep apnea monitoring. We 
found an increase in the mean diurnal arterial blood pressure. Nocturnal blood pres-
sure dipping was confirmed at all altitudes. Oxygen saturation decreased at altitude, 
with its additional nocturnal fall. Sleep apneic episodes, present in the Italian only, 
increased with altitude. We conclude that the nocturnal, more than diurnal, cardi-
orespiratory function is affected by HA hypoxia. Further studies should address the 
role of ethnicity, medications, and sociodemographic factors in the cardiorespiratory 
responses to hypobaric hypoxia.
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et  al.,  2015) and is accompanied by reduced nocturnal BP 
dipping, due likely to a nighttime reduction in PO2 (Parati 
et al., 2014). The chronic response is an increase in BP, de-
spite improved systemic O2 delivery with acclimatization 
(Calbet, 2003). The association of hypertension with altitude 
is population specific, for example Andean residents have a 
low prevalence of hypertension, whereas Tibetan highland-
ers have a high prevalence (Norboo et  al.,  2015). HA also 
evokes bradyarrhythmia during apneic periods in lowlanders, 
but not in Sherpas (Busch et al., 2018). However, population 
specificity of BP response to middle-term hypobaric hypoxia 
remains to be elucidated.

HA critically affects respiration. A hypobaric reduction in al-
veolar PO2 limits the perimetric oxygen supply leading to a drop 
in arterial oxygen saturation (SaO2) (Calbet & Lundby, 2009). 
A hallmark of HA is periodic breathing, especially during non-
REM sleep (Ainslie, Lucas, & Burgess, 2013). Periodic breath-
ing is characterized by periods of apnea lasting for 10–15  s, 
followed by hyperpnea caused by increased central chemore-
ceptor sensitivity to PaCO2 accumulation (Mohsenin,  2015). 
The hypoxic ventilatory response (HVR) to acute hypoxia is 
increased at HA, facilitating and extending nighttime periodic 
breathing (Lahiri, Maret, Sherpa, & Peters,  1984). Periodic 
breathing, duration and efficiency of sleep, and nighttime de-
saturations are life-threatening at HA. Of AMS based on the 
assessment of oxygen saturation and sleep abnormalities is a 
matter of controversy (Naeije, 2010; Tannheimer et al., 2017).

A recent massive increase in tourism and sports activities at 
HA raises a need for the evaluation of adaptive cardiorespiratory 
variables, with adequate and portable devices (Ridolfi, Vetter, 
Solà, & Sartori, 2010). Photoplethysmography (PPG) associ-
ated with sleep apnea monitors and probes assessing respiration 
and PO2 have been widely used in this regard (Allen, 2007). 
Additionally, ambulatory blood pressure monitoring (ABPM) 
system has been used to investigate arterial BP at HA (Bilo 
et al., 2011). Indeed, altitude-induced sleep disturbances have 
been widely reported and may negatively affect daytime perfor-
mances, despite some uncertainty in specific adaptations due to 
age, gender, altitude working habit, living altitude, and altitude 
sickness (Bloch, Buenzli, Latshang, & Ulrich, 2015).

The purpose of this study was to investigate the cardio-
vascular and respiratory responses to HA hypobaric hypoxia, 
with attention to nocturnal adaptive response, in two moun-
taineers trekking high Himalayas: a white European (Italian) 
sojourner and a native Nepali Tamang. We also aimed to 
search for the plausible differences depending on ethnicity 
and chronic living conditions.

2 |  MATERIALS AND METHODS

The study was part of the medical research “Kanchenjunga 
Exploration & Physiology”, a subset of the broad project 

approved by the Ethics Review Board of the Nepal Health 
Research Council (NHRC) and performed under the ethical 
standards of the 1964 Helsinki declaration and all its amend-
ments. All participants provided written informed consent to 
participate in the study.

The two participants completed a 19-day trekking cover-
ing a circuit of 300 km over 16,000 m difference in altitude, 
with a daily average of 6 hr walking in the Nepali Himalayas. 
They underwent the assessment of nocturnal cardiovascu-
lar and breathing function, which was conducted in Dobhan 
(665 m), Ghunsa (3,427 m altitude), and Lhonak (4,780 m 
of altitude) (Figure  1). Both participants were considered 
well-acclimated to altitude and neither suffered from altitude 
sickness. The Italian participant only took one acetazolamide 
pill of 250  mg daily, at 6 p.m. 2  days before reaching the 
highest altitude point.

Characteristics of the two participants were as follows: 
ethnic white European (Italian trekker), nonsmoker, aged 48, 
body mass index (BMI) of 30.5 kg/m2; and ethnic Tamang 
(Nepali guide), light smoker, aged 40, BMI of 28.8 kg/m2. 
Neither participant reported any cardiovascular or respiratory 
disease, particularly heart arrhythmias or upper airway ob-
struction. Both participants wore two portable devices during 
sleep (Figure  2). The Italian trekker's abode normally was 
at sea level. However, he reported past HA experience more 
than 3 years before the current expedition. The Tamang guide 
also resided at low altitude, but reported frequent work-re-
lated exposure to HA; on average, 3–5 expeditions per year.

Breathing and SpO2 were measured with two identical 
sleep apnea screening devices with 1  s intervals through a 
finger (WHO,  2011) and nasal probe (APN-100; Contec 
Medical Systems Co. China). Mean arterial (MAP), systolic 
(SBP), diastolic blood pressure (DBP), and pulse pressure 
(PP) were measured automatically every 30  min with two 
identical oscillometric recorders (ABPM50; Contec Medical 
Systems Co. China). Nocturnal assessment took place be-
tween 22:00 and 6:00 o'clock. The average sleep duration 
was approximately 6–7 hr for both participants. We noted the 
time of going to sleep and waking time, along with changes in 
sleep behavior, urinary frequency (0–2 per night), and sleep-
ing difficulty, such as delayed sleep onset or middle-of-the-
night insomnia.

Additionally, we assessed diurnal BP and SpO2 at daily 
basis in Kathmandu (1,450 m), before the expedition, and in 
Ghunsa and Lhonak, during the expedition. SBP and DBP 
data were taken in a sitting position at rest, with the cuff at 
heart level (Whelton et al., 2018), along with SpO2 and HR, 
in the morning before breakfast. Additionally, body weight 
and waist circumference were measured (World Health 
Organization, 2011). All the measurements were performed 
in duplicate.

Apnea was interpreted as a 80% decline in airflow or more 
of the baseline level lasting for 10 to 40  s (Thiriet,  2015). 
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Breathing rate (BR) was normalized for the non-apnea time, 
subtracting apnea time from the total time, and dividing the 
result by the number of breaths. From diurnal BP data, PP 
was calculated as a diastolic-systolic difference, and MAP 
was calculated as SBP + 2DBP ÷ 3. Owing to the individual 
diaries of sleeping time, we controlled for any missing or dis-
ordered data caused by untoward changes in sleeping time or 
behavior. Any software-related automatic removal of artifacts 
was manually rechecked.

3 |  RESULTS

Nighttime SBP and DBP increased during the ascent from 
665  m to 3,427  m in both trekkers. During continuing as-
cent to 4,780 m, SBP remained at the increased level, while 
DBP further increased in the Tamang but not in the Italian. 
There was an increase in MAP during the ascent, which was 
also greater in the Tamang. PP remained about stable in the 
Tamang, while it decreased in the Italian at mid-altitude, to 
increase even more at the highest altitude. HR continually 
increased from the lowest to highest altitude (Table 1), but 
the increase started from a lower value, being therefore rela-
tively greater, in the Tamang. The percent of apneic episodes 
at sleep increased during the ascent in the Italian, who pri-
marily showed such episodes also at low altitude, while it 
remained relatively low in Tamang. BR increased at the high-
est altitude in the Tamang, while it decreased in the Italian 
(Table 1).

Diurnal SpO2 reflected a rebound after nocturnal reduc-
tions at all altitude levels. BR tended to be lower than that at 
night, and remained overall higher in the Tamang (Table 2). 
HR fluctuated at about the same level as that at nighttime. 
The increment in BP during diurnal ascent was primarily ex-
pressed by DBP and MAP values, while PP, differently from 
nocturnal data, was reduced at altitude in both trekkers. They 
both lost weight progressively with altitude. This reduction 
was more pronounced in the Italian, as he also had a clear 

F I G U R E  1  Altimetric scheme of “Kanchenjunga Exploration and Physiology”. Vertical lines denote three time points of assessment of 
nocturnal arterial blood pressure and oxygen saturation

F I G U R E  2  Tamang and Italian participants equipped with 
ABPM and sleep apnea monitor devices before sleeping
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reduction in waist circumference when compared with the 
Tamang.

4 |  DISCUSSION

Sleep disturbances at altitude are common: in the system-
atic review of Bloch and colleagues (Bloch et  al.,  2015), 
the authors argued that subjective insomnia occurs at HA 
(i.e., 4,559  m) rather than at low (1,630  m) and moderate 
(2,590 m) altitudes, periodic breathing and arousals occur in 
lowlanders sojourning at altitude, and the effects of acclima-
tization on sleep are altitude dependent. However, sleep-dis-
ordered breathing occur in a large proportion of highlanders, 
and a greater prevalence of sleep central apneas in high-
landers compared with lowlanders has been reported (Pham 
et  al.,  2017), with a pathophysiological link to pulmonary 
hypertension (Latshang et al., 2017). So far, there is still un-
certainty about the role of ethnicity and that of altitude work-
ing habit on cardiorespiratory nocturnal response depending 
on ethnicity and altitude working habit. In this scenario, this 
study is a comparative report of the nocturnal responses of 

the cardiorespiratory system to environmental hypobaric hy-
poxia in two ethnically different male Himalayas trekkers, a 
sojourner Italian and a native Nepali Tamang.

We found that oxygen saturation decreased in a way char-
acteristic for HA sojourn in both participants (Baertschi, 
Dayhaw-Barker, & Flammer, 2016). Arterial blood pressure 
showed a characteristic increase at HA (Narvaez-Guerra, 
Herrera-Enriquez, Medina-Lezama, & Chirinos, 2018). The 
mean arterial pressure was the variable that showed the most 
expressive upward trends. We supplement current findings 
by showing day/night profile of BP changes and distinctly 
stronger increases at nighttime, which point to the potential 
peril of brain episodes developing during sleep in mountain-
eers. PP changes followed a diverse trend, ranging from 39 to 
51 mmHg at nighttime in the Italian, while remained stable 
in the Tamang. In contrast, diurnal data rather showed a re-
duction in PP with altitude. If we consider the nocturnal data 
at the lowest and the highest point, HR and PP changes were 
unrelated. A larger increase in PP in Italian versus Tamang 
(11.4% vs. 2.4%, respectively) was in contrast to a larger in-
crease in HR in Tamang versus Italian (26.9% vs. 14.9%, re-
spectively). We can speculate that a larger fall in nocturnal 

T A B L E  1  Nocturnal blood pressure (BP), heart rate (HR), breathing function, and oxygen saturation (SpO2) changes in high altitude trekkers

Trekker Altitude SBP1 DBP2 PP3 MAP4 HR5 SpO2
6

Apnea 
time7 BR8 nBR9 HR10

Italian 665 m 115.7 70.1 45.7 81.6 57.2 95 13.0 13 15.0 56

3,427 m 118.6 79.9 38.8 90.4 72.7 80 38.2 10 16.2 75

4,780 m 128.7 77.8 50.9 96.1 65.7 84 44.7 7 12.4 62

Tamang 665 m 90.9 53.8 37.1 64.5 73.1 95 1.3 13 12.7 66

3,427 m 103.8 67.8 36.0 78.0 72.9 89 0.7 17 17.3 77

4,780 m 114.4 76.4 38.0 86.2 92.8 79 2.6 18 18.4 92

Note: Accuracy of the BP oscillometric recorder was as follows: HR 2 bpm, and BR 2 rpm. Interval between measurement was 30 min. Accuracy of the sleep apnea 
monitor was as follows: SpO2 2%, BR 2 rpm, and HR 2 bpm. Interval between measurements was 1 s.
1Systolic blood pressure (mmHg); 2Diastolic blood pressure (mmHg); 3Pulse pressure (mmHg); 4Mean arterial pressure (mmHg); 5Heart rate per min, measured by the 
BP oscillometric recorder; 6Peripheral oxygen saturation (%); 7(% of sleep time); 8Breaths per min; 9normalized breaths per min; 10Heart rate per min, measured by the 
sleep apnea monitor.

T A B L E  2  Diurnal blood pressure (BP) and oxygen saturation (SpO2) in high altitude trekkers. Accuracy of the devices was as follows: SpO2 
2%, HR 2 bpm, BR 2 rpm, and BP 3 mmHg

Trekker
Altitude
(m)

BMI1

(kg/m2)
WC2

(cm)
SpO2

3*
(%)

HR4*
(bpm)

BR5

(bpm)
SBP6^
(mmHg)

DBP7^
(mmHg)

PP8

(mmHg)
MAP9

(mmHg)

Italian 1,450 30.6 110 97 64 14 136 82 54 100

3,427 29.1 106 94 88 13 139 92 47 108

4,780 28.7 103 92 86 10 137 94 43 108

Tamang 1,450 28.8 97 96 72 18 131 89 42 103

3,427 28.3 96 93 76 10 124 94 30 104

4,780 27.7 96 85 89 13 129 94 30 106

Note: Data are means of two measurements. 1Body mass index; 2Waist circumference; 3Peripheral oxygen saturation; 4Heart rate per min; 5Breaths per min; 6Systolic 
blood pressure; 7Diastolic blood pressure; 8Pulse pressure; 9Mean arterial pressure.
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SpO2 in Tamang versus Italian (−16.8% vs. −11.6%, re-
spectively) might provoke a more intense compensatory 
chronotropic response. A reason may lie in changes of ar-
terial stiffness (Said, Eppinga, Lipsic, Verweij, & van der 
Harst,  2018) caused by higher sympathetic activation with 
altitude.

The present study showed a nocturnal dipping of BP, with 
diurnal hypertension at altitude. Referring to nocturnal BP, 
although neither trekker had remarkable sleep disorders, the 
Italian took acetazolamide pills. Considering the time course 
of acetazolamide clearance (Van Berkel & Elefritz, 2018), it 
is rather doubtful that differential trends in BP changes be-
tween the Italian and Tamang trekkers could be due to the 
acetazolamide's diuretic effect.

We found that diurnal SpO2 was higher than nocturnal. 
However, the Italian had a lower SpO2 at moderate rather 
than HA. Considering the percentage of sleep-related ap-
neic episodes, which was increasing with altitude, there is 
a biological plausibility that an increase in periodic breath-
ing, mostly consisting of central apneas, a characteristic fea-
ture of HA particularly in mountaineers aged over 40 (Said 
et al., 2018), could actually increase SpO2 during sleep, as 
an adaptive response. Even if we could not differentiate be-
tween peripheral obstructive and central apneic episodes, it is 
a reasonable assumption that we dealt central apneas. In this 
context, acetazolamide fails to prevent the increase in sleep 
apneas (Ainslie et al., 2013).

Breathing rate appeared not to be subject to adaptive re-
sponses at HA as the diurnal resting rate was unrelated to 
nocturnal rate. Of note, breathing rate of our trekkers was 
in a range characteristic for healthy adults, that is below 20 
breaths/min (Cretikos et  al.,  2008). The Tamang trekker's 
breathing followed a typical response to hypoxia consisting 
of increased rate (San et  al.,  2013). In contrast, the Italian 
trekker's breathing rate, normalized for non-apneic sleep, de-
creased at HA; a trend that would have been masked by a lack 
of data normalization. The pattern of sleep in the Italian, with 
the presence of apneic episodes at HA, a likely adaptive fea-
ture of sleep-breathing function, deserves further exploratory 
research, particularly in the face of a report by Heinzer et al. 
showing the lack of breathing rate adaptation in response to 
hypobaric hypoxia (Heinzer et al., 2016). We suggest that a 
decrease in body weight that we noticed in the trekkers mass 
could affect the respiratory system, which entails an inter-
twined function (Homma & Masaoka, 2008; Littleton, 2012; 
Salome, King, & Berend, 2010; Thomas, Cowen, Hulands, & 
Milledge, 1989). We noticed an appreciable reduction in BMI 
and waist circumference in the Italian trekker as opposed to 
the Tamang. Therefore, in the context of typical respiratory 
adaptation, even in the absence of a specific mechanistic anal-
ysis, we suggest that a decrease in metabolism could reverse 
the hypoxia-related adaptive augmentation of breathing rate.

The study has typical limitations of a field research in 
extreme conditions. We conclude that the cardiorespiratory 
function at extreme HA seems more affected during night-
time sleep, than during daytime physical activities related to 
ascent. That implies the plausibility of potentially life-threat-
ening brain episodes, such as HA cerebral edema, that could 
happen during nighttime rest and sleep at HA. Further studies 
should address the role of ethnicity, medications, and socio-
demographic factors in the cardiorespiratory responses to hy-
pobaric hypoxia.
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