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Abstract: High-altitude locations are fascinating for investigating biological and physiological re-

sponses in humans. In this work, we studied the high-altitude response in the plasma and urine of 

six healthy adult trekkers, who participated in a trek in Nepal that covered 300 km in 19 days along 

a route in the Kanchenjunga Mountain and up to a maximum altitude of 5140 m. Post-trek results 

showed an unbalance in redox status, with an upregulation of ROS (+19%), NOx (+28%), neopterin 

(+50%), and pro-inflammatory prostanoids, such as PGE2 (+120%) and 15-deoxy-delta12,14-PGJ2 

(+233%). The isoprostane 15-F2t-IsoP was associated with low levels of TAC (−18%), amino-thiols, 

omega-3 PUFAs, and anti-inflammatory CYP450 EPA-derived mediators, such as DiHETEs. The 

deterioration of antioxidant systems paves the way to the overload of redox and inflammative 

markers, as triggered by the combined physical and hypoxic stressors. Our data underline the link 

between oxidative stress and inflammation, which is related to the concept of OxInflammation into 

the altitude hypoxia fashion. 
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1. Introduction 

High altitude exposure triggers marked physiological responses and adaptations [1]. 

For this reason, challenges to human homeostasis by such environmental stressors [2] 

provide an intriguing ecological model to reproduce physiological and pathophysiologi-

cal conditions that share hypoxemia as the common denominator. In fact, altitude travel 

has increased massively in the last few decades, and the combination of physical activity 

and altitude hypoxia, as in high-altitude treks, enables medical and physiological re-

sponses to be investigated in the field [3,4]. 

Hypoxia-induced inflammation impacts on the immune function and causes chronic 

disease and high-altitude illnesses [5]. In the same vein, redox homeostasis has been 

widely studied as disrupted by hypoxia conditioning [6]. Hypobaric hypoxia negatively 

affects redox homeostasis, leading to the generation of reactive species and consequently 

to damage of cellular compartments (i.e., lipids and proteins) and the degeneration of 

antioxidant systems [7,8]. On the other hand, ascent to high altitudes can lead to an exces-

sive inflammatory response [7,9,10] with increased levels of proinflammatory cytokines 

[7,9,10]. The reciprocal interplay between oxidative stress and inflammation has been 
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termed as OxInflammation, and it is a source of biomarkers for monitoring the pre-patho-

logical conditions triggered by environmental stressors [11]. 

Oxylipins are well-known markers of oxidative damage and inflammation [12] as 

well as powerful lipid mediators generated from both omega-3 and omega-6 polyunsatu-

rated fatty acids (PUFAs) [13]. PUFAs act as precursors of pro-inflammatory, anti-inflam-

matory, and specialized pro-resolving lipid mediators (SPMs) through enzymatic oxida-

tion reactions [14]. 

Pro-inflammatory mediators released at the very beginning of inflammation foster 

the appearance of its classic signs, whereas the switch to lipoxygenase-derived anti-in-

flammatory and pro-resolving mediators leads to a natural resolution of inflammation 

[15]. PUFAs can also undergo free radical-mediated oxidation, thus generating well-es-

tablished markers of oxidative stress such as isoprostanes (e.g., 15-F2t-IsoP, 15-E2t-IsoP) 

[16]. High levels of F2-isoprostane have been observed after both acute and chronic high-

altitude exposure and were correlated with increased plasma levels of total glutathione 

[17]. High-altitude research expeditions up to 4000–5000 m have induced a temporary in-

crease in F2-isoprostane concentration compared with that observed at sea levels [18,19], 

thus suggesting the combined effect of altitude exposure and exercise on cellular (even 

nervous system-related) oxidative damage [20]. 

It is thus clear that high-altitude treks increase oxidative stress and trigger a pro-

nounced inflammatory response. However, these phenomena and their interaction are 

currently still being characterized in depth. Our field study on high-altitude trekkers in 

the Himalayas explores the new concept of OxInflammation. We propose the comprehen-

sive monitoring of the redox status and antioxidant capacity together with the measure-

ment of a wide panel of oxylipins for a full characterization of oxidative damage and im-

mune-inflammatory response. 

2. Materials and Methods 

This work is part of the “Kanchenjunga Exploration & Physiology” research project, 

which is a subset of the project “environmentally-modulated metabolic adaptation to hy-

poxia in altitude natives and sea-level dwellers: from integrative to molecular (prote-

omics, epigenetics, and ROS) level”. The project was approved by the Ethical Review 

Board of the Nepal Health Research Council (NHRC, ref. no. 458). All the study proce-

dures complied with the ethical standards of the Helsinki declaration, and written in-

formed consent was obtained before sample and data collection. 

The group of trekkers was composed by one female and five males, aged 40 ± 20 

years, with a BMI of 26 ± 3 kg/m2. Participants completed a trek of 300 km in 19 days along 

a demanding route in the Kanchenjunga Mountain (Himalayas, Nepal), up to a maximum 

altitude of 5140 m (North Base Camp). 

Blood was drawn from the antecubital vein two weeks before the start of the trip and 

the day after the end of the Himalayan trek. The first blood sample was collected in Vacu-

tainer® tubes and immediately centrifuged (3000 rpm × 10 min). The second sample was 

stored at −5 °C during transport to Italy for later analyses. For the oxylipin analyses, the 

antioxidant butylhydroxytoluene (BHT, 15 mg/mL in methanol) was added (1:100, BHT: 

sample) before storage to preserve PUFAs from in vitro lipid peroxidation [21]. First-void 

urinary samples were immediately frozen at −20 °C and stored until analysis. Daily food, 

water, MUFA, and PUFA intake were self-recorded by the subjects, on three non-consec-

utive days during the trek [22]. 

An X band electron paramagnetic resonance spectroscopy (9.3 GHz) (E-Scan-Bruker 

BioSpin, GmbH, MA USA) was used to assess total ROS production and total antioxidant 

capacity (TAC) at pre- and post-high-altitude trek.  

CMH (1-hydroxy-3-methoxycarbonyl-2,2,5,5-tetramethylpyrrolidine) spin probe 

was used for ROS determination. 50 μL of sample were treated with CMH solution (1:1). 

50 𝜇L of the obtained solution were put in a glass EPR capillary tube (Noxygen Science 

Transfer & Diagnostics, Elzach, Germany) that was placed inside the cavity of the E-scan 
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spectrometer for data acquisition with the following parameters of acquisition: micro-

wave frequency 9.652 GHz; modulation frequency 86 kHz; modulation amplitude 2.28 G; 

sweep width 60 G, microwave power 21.90 mW, number of scans 10; and receiver gain 

3.17⋅101. A stable radical CP · (3-carboxy2,2,5,5-tetramethyl-1-pyrrolidinyloxy) was used 

as an external reference to convert ROS determinations in absolute quantitative values 

(μmol•min−1), as previously indicated [7,8,23]. 

TAC was measured using 1,1-diphenyl-2-picrylhydrazyl (DPPH•), a free radical 

compound soluble and stable in ethanol. 5 μL of plasma were added to 45 μL of buffer 

solution (5 mM potassium phosphate, pH 7.4 containing 0.9% sodium chloride) then re-

action was initiated by the addition of 50 μL of DPPH• as a source of free radicals, as 

previously indicated [24–26]. Reaction mixture was incubated for 30 min at dark room 

temperature (for the photochemical effect on DPPH) and then 50 μL of the obtained solu-

tion was put in the glass EPR capillary tube. The calculated antioxidant capacity was ex-

pressed in terms of Trolox equivalent antioxidant capacity (TAC, mM).  

All samples were stabilized at 37 °C with “Bio III” unit (Bio III—Noxigen Science 

Transfer & Diagnostics GmbH, Germany), interfaced to the spectrometer. Spectra were 

recorded and analyzed using Win EPR software (2.11 version) standardly supplied by 

Bruker. 

Assessment methods have been previously described [23,26,27]. Total aminothiols 

(Cys: cysteine; CysGly: cysteinylglycine; Hcy: homocysteine; and GSH: glutathione) were 

measured by high-performance liquid chromatography (HPLC) according to previously 

validated methods [28,29]. NO metabolites (NOx) concentrations were determined in 

urine via a colorimetric method based on the Griess reaction, using a commercial kit (Cay-

man Chemical, Ann Arbor, MI, USA) as previously described [26,30]. Urinary creatinine, 

neopterin, and uric acid concentrations were measured by the HPLC method as previ-

ously described [7]. 

The MS-based targeted profiling of 25 plasma oxylipins—i.e., isoprostanes (15-F2t-

IsoP and 15-E2t-IsoP), prostanoids (TXB2, PGE2 and 15-deoxy-delta12,14-PGJ2), hydroxy- 

and epoxy-fatty acids (8,9-EET, 11,12-EET, 14,15-EET, 13-HODE, 5-HETE, 12-HETE, 15-

HETE, 20-HETE, 8,9-DiHETE, 11,12-DiHETE, 14,15-DiHETE), and of omega-3/omega-6 

PUFAs (AdA, EPA, alpha-LA, la, DHA, DPA, AA) was performed using micro-extraction 

by packed sorbent (MEPS) liquid chromatography tandem mass spectrometry (MEPS-LC-

MS/MS) platform [31,32]. Briefly, plasma proteins were precipitated by the sequential ad-

dition of salts (i.e., 250 µL of CuSO4 · 5 H2O 10% w/v and 250 µL of Na2WO4 · 2 H2O 12% 

w/v) and acetonitrile (500 µL) to the plasma sample (500 µL). The supernatant was then 

diluted (1:6 v/v) with water and subjected to MEPS extraction. The methanolic extract was 

directly injected into the UHPLC-MS/MS system and oxylipins were analyzed as de-

scribed elsewhere [33]. 

Statistical analyses were carried out with the open-source R-based software Jamovi 

v. 1.6.18.0. Data were initially checked for normality with the Shapiro–Wilk test, then 

LEU-B4, 8,9-DiHETE, 8,9-EET, DPA and NOx data were log-transformed, whereas uric 

acid data were loglog-transformed; PGD2 was removed from the analysis due to missing 

data. After a Kolmogorov–Smirnov check for normality, a series of paired sample t-tests 

were carried out. The effect size (Cohen’s d) was adjusted to the unbiased value for low 

sample size as dunb= d[1-3/(4df-1)], then graphs were created using Prism v. 9.2.0 

(GraphPad Software, San Diego, CA, USA). 

Data were also analyzed by a multivariate exploratory method (principal component 

analysis, PCA [34]) using MetaboAnalyst v. 5.0 (Wishart Research group, The Metabolom-

ics Innovation Centre (TMIC), University of Alberta, Canada) [35,36]. The dataset in-

cluded the plasma levels of 23 oxylipins and the 11 markers of both the redox status and 

the antioxidant capacity. Two out of 25 oxylipins (i.e., 15-E2t-IsoP and PGD2) were ex-

cluded from the dataset as the concentrations were below the limit of quantification for 

more than 50% of samples. The original data were pre-processed (data integrity and 
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missing value check) and normalized (i.e., square root transformation and data autoscal-

ing) prior to the multivariate analysis [37]. 

3. Results 

The average daily intake of participants, estimated from food diaries loaded into an 

ad-hoc web database [22], included 39 ± 9 g (13 ± 2% of the total energy intake) of PUFAs 

among other nutrients and 3000 ± 500 g of water. The trekkers suffered the combined 

stress of physical exercise and hypoxia, as elsewhere reported with a suppression of the 

hypothalamus-pituitary gonadal axis and altered thyroid metabolic function [38], a 

weight loss and a reduction in total body water [22], while the mood disturbance scores 

were lower at high altitude [39]. 

Significant increases post-trek of ROS production rate (0.18 ± 0.01 vs. 0.22 ± 0.01 μmol 

min−1) (Figure 1a), NOx (300 ± 200 vs. 400 ± 200 μM) (Figure 1c), total Hcy and GSH (5.3 ± 

0.9 vs. 7 ± 2; 1100.0 ± 200 vs. 2000 ± 200 μmol L−1 respectively) were detected (Figure 1g,h). 

Conversely, TAC (3.5 ± 0.2 vs. 2.9 ± 0.2 mM), and total Cys and CysGly (58 ± 8 vs. 22 ± 8; 

80 ± 10 vs. 40 ± 10 μmol L−1 respectively) significantly decreased at post. Changes in uric 

acid levels were far from significance (0.4 ± 0.4 vs. 0.4 ± 0.5 μmol L−1, respectively). While 

at post, a significant increase in neopterin was observed (100 ± 30 vs. 160 ± 20 μmol mol−1 

creatinine, Figure 1d). The overall statistical results are reported in Table 1. 

 

Figure 1. Bar plots (mean ± SD) of redox results. (a) ROS production rate; (b) TAC; (c) NOx; (d) 

neopterin; (e–h) total concentration of aminothiols (Cys, cysteine; CysGly, cysteinylglycine; Hcty, 

homocysteine; GSH, glutathione) collected pre- and post- high-altitude trek (* p < 0.05, ** p < 0.01, 

*** p < 0.001, significantly different). 
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Table 1. Statistical results 

 Test p-Value 
Cohen’s d 

Unbiased 

95% CI 

Lower Upper 

15-F2t-IsoP Wilcoxon 0.035 −2.041 −4.046 −0.746 

TX-B2 Student 0.073 −0.777 −1.869 −0.080 

15-E2t-IsoP Wilcoxon 0.438 0.300   

PGE2 Student 0.043 −0.927 −2.110 −0.032 

14,15-DiHETE Student 0.073 0.777 −0.081 1.868 

11,12-DiHETE Student 0.075 0.772 −0.085 1.860 

LEU-B4 Student 0.001 2.192 0.833 4.339 

8,9-DiHETE Student 0.083 0.744 −0.106 1.817 

15-deoxy-delta12,14-PGJ2 Student 0.022 −1.128 −2.446 −0.174 

20-HETE Student 0.043 0.929 0.033 2.113 

13-HODE Student 0.136 0.611 −0.213 1.611 

15-HETE Student 0.405 0.312     

12-HETE Student 0.226 0.475     

5-HETE Student 0.564 0.212     

14,15-EET Student 0.039 0.953 0.051 2.153 

11,12-EET Wilcoxon 0.710 0.205     

8,9-EET Student 0.035 −0.986 −2.208 −0.075 

AdA Student 0.122 0.639 −0.189 1.654 

EPA Student 0.115 0.656 −0.176 1.679 

alpha-LA Wilcoxon 0.844 0.219     

DHA Student 0.008 1.486 0.410 3.067 

AA Student 0.610 0.187     

DPA Student 0.061 0.826 −0.043 1.946 

LA Student 0.018 1.188 0.215 2.548 

Creatinine Student 0.763 −0.109     

Neopterin / Creatinine Student 0.010 −1.396 −2.909 −0.353 

Uric acid Student 0.296 −0.402     

Uric acid / Creatinine Wilcoxon 0.688 0.044     

NOx Student 0.020 −1.156 −2.493 −0.194 

Cys ST Student <0 .001 2.458 0.983 4.829 

CysGly ST Student 0.002 1.930 0.681 3.863 

Hcy ST Student 0.029 1.039 0.112 2.295 

GSH ST Student <0 .001 −3.607 −6.967 −1.600 

ROS Student < 0.001 −4.134 −7.957 −1.873 

TAC Student <0 .001 2.989 1.273 5.812 

Note: Italics represent those values that decreased from pre to post expedition (as also expressed by 

the positive sign of the effect size); grey-background rows represent the significant results (p < 0.05), 

and among them dark-grey rows represent the most consistent findings (absolute range of 95% C.I. 

of effect size over 0.4). 

The PCA also highlighted a clear separation among samples collected pre- and post- 

high-altitude trek. Figure 2 shows the score (a) and loading plots (b) of PCA for the pre-

processed data. The two lowest-order principal components accounted for a total ex-

plained variance of about 56%. PC1 scores provided the main contribution to the separa-

tion between the two sample classes, with pre-trek samples (red circle) showing negative 

score values, whereas the post-trek (green circle) showed positive scores (Figure 2a). Post-

trek samples were mostly characterized by an upregulation of ROS, NOx, total GSH, uri-

nary neopterin, pro-inflammatory prostanoids (e.g., PGE2 and 15-deoxy-delta12,14-PGJ2), 

and isoprostane 15-F2t-IsoP (Figure 2b). These samples were associated with low levels of 
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TAC, total Gly and CysGly, omega-3 PUFAs (e.g., DHA, EPA, DPA) and, to a lesser extent, 

anti-inflammatory CYP450 EPA-derived mediators such as DiHETEs (Figure 2b). Ox-

ylipin mean concentration levels pre- and post-trek are reported in Table 2. 

  
(a) (b) 

Figure 2. (a) Score plot and (b) loading plot of PCA performed on the overall dataset. Red and green 

symbols represent trekkers pre- and post-high-altitude trek, respectively. Data were pre-processed 

(i.e., square root transformation and data autoscaling) prior to the multivariate analysis. 

Table 2. Oxylipin mean concentration levels measured pre- and post-high-altitude trek 

Compound * 
Pre-Altitude Trek Post-Altitude Trek 

Mean SD Mean SD 

15-F2t-IsoP 0.024 0.006 0.06 0.01 

TX-B2 0.6 0.5 1.1 0.4 

PGE2 0.05 0.03 0.11 0.07 

14,15-DiHETE 0.008 0.005 0.004 0.001 

11,12-DiHETE 0.008 0.006 0.003 6 × 10−4 

LEU-B4 0.1 0.2 0.03 0.03 

8,9-DiHETE 0.008 0.004 0.006 7 × 10−4 

15-deoxy-Δ12,14-PGJ2 0.006 0.006 0.02 0.02 

20-HETE 0.03 0.02 0.022 0.008 

13-HODE 20 6 13 4 

15-HETE 0.3 0.2 0.4 0.2 

12-HETE 20 20 30 6 

5-HETE 0.3 0.2 0.27 0.06 

14,15-EET 0.015 0.006 0.012 0.005 

11,12-EET 0.004 0.001 0.003 0.002 

8,9-EET 0.02 0.02 0.026 0.009 

AdA 4000 3000 3000 1000 

EPA 5000 3000 2500 900 

alpha-LA 20000 10000 16000 9000 

DHA 20000 7000 14000 5000 

AA 18000 9000 17000 4000 

DPA 4000 3000 3000 1000 
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LA 23000 3000 20000 3000 

* All concentration levels are reported as ppb. Significant changes (p < 0.05) are reported in bold. 

4. Discussion 

The combined effect of high altitude and physical exercise on oxidative stress has 

long remained unknown [40], and the limited knowledge available derives from a small 

number of recent field and lab simulation studies [41]. Omics sciences are however now 

helping to shed new light on the complex metabolic rearrangement caused by altitude 

hypoxia [42,43]. Muscles working under hypoxic environments are overstressed, and the 

deterioration of antioxidant systems leads to the loss of protective molecular processes 

[44]. Indeed, altered redox homeostasis as compromised by hypobaric hypoxia deter-

mines an impairment of muscle performance and paves the way to skeletal muscle atro-

phy [45]. 

Here, we combined a high-throughput analytical platform for the targeted metabo-

lomic profiling of oxylipins to the measurement of ROS and antioxidants for a compre-

hensive characterization of high-altitude induced redox homeostasis disruption and in-

flammatory response. In line with the literature [7,8,10,46], we found that high altitude 

increases the production of ROS and decreases the antioxidant capacity, thus modifying 

the weighing pan, as suggested by the increase in ROS, NOx, oxidative damage bi-

omarkers (i.e., 15-F2t-IsoP), and unbalanced redox status (i.e., total Cys and CysGly). We 

also observed a pronounced immune-inflammatory response at the post-trek sampling 

point, with a marked increase in urinary neopterin (a well-known marker of cellular im-

mune system activation), the simultaneous upregulation of pro-inflammatory prostanoid 

levels (e.g., TXB2, PGE2, and 15-deoxy-delta12,14-PGJ2) and downregulation of omega-3 

PUFAs and anti-inflammatory DiHETEs. These results clearly suggest an acute OxInflam-

mation outbreak in response to the hypoxic trek, where muscle damage may have led to 

increased circulating PUFAs and ROS-mediated peroxidation [47]. 

The overproduction of ROS represents a well-established response to exercise [48–

50]. High-altitude exercise induces oxidative stress and muscle fatigue to a greater extent 

since hypoxia increases ROS production and decreases antioxidant capacity [51–53]. Hu-

mans show complex multiple protective systems to maintain the redox homeostasis, start-

ing with transitory effects that are highly regulated and modulated within minutes to 

longer lasting ones (over periods of days to years) [54]. Since redox signaling is required 

for numerous physiological processes, a disruption in redox homeostasis can regulate det-

rimental signaling pathways and produce harmful effects on several substrates [55]. 

Among lipids, PUFAs are majorly affected by free radical peroxidation, thus gener-

ating isoprostanes as principal end-products. Isoprostanes, such as 15-F2t-IsoP and 15-E2t-

IsoP, have been found to amplify the vasoconstriction induced by angiotensin II (Ang-II) 

and endothelin-1 (ET-1) in hypoxic conditions [56]. The latter are strictly related to vascu-

lar xanthine oxidoreductase activity, which underlies hypoxia-induced oxidative damage 

combined with a reduction in mitochondrial redox potential [57], an increase in catechol-

amine production [58], and the activation of phospholipase A2. 

ET-1 also induces inflammatory processes in the vascular wall and to promote the 

expression of proinflammatory cytokines [59], which in turn activates the production of 

prostaglandins through cyclooxygenases (COX) enzymes. Prostaglandins are pro-inflam-

matory and vasodilator immuno-mediators originating from arachidonic acid, whose 

plasma concentrations increase in response to high altitudes [60]. The release of COX-me-

tabolites seems to be a key factor contributing to mountain sickness symptoms [61]. More 

broadly, hypoxia induces a substantial increase in the plasma concentration of most 

PUFA-derived eicosanoids, also produced from cytochrome P450 (CYP450) and lipoxy-

genase (LOX) enzymes [62]. Among LOX-metabolites, SPMs promote the resolution of 

inflammation thus enhancing the overall host response [63]. Nevertheless, whether the 

combination of high-altitude and exercise affects the resolution of inflammation or the 
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release and activity of SPMs is still not fully clear, thus representing an interesting topic 

for future investigations. 

5. Conclusions 

Current physiological methods and molecular biological tools are improving and ex-

tending altitude physiology, allowing accurate measurements of the variables of interest 

and the responsible mechanisms [64]. Omics approaches are entering into the field of high-

altitude medicine, since a comprehensive understanding of the biochemical response to 

hypoxia can define novel strategies for dealing with hypoxia-susceptible biomarkers in 

pathophysiology [65]. 

The wide set of potential biomarkers highlighted by this proof of concept entices for 

the design of case-control, hypothesis-testing studies to be proposed for enriching the the-

oretical and applicative insights in environmental and exercise physiology. Individual 

variability in hypoxia responses is growing interest for 5P medicine since oxygen defi-

ciency is a key factor in many pathological processes. Therefore, besides the biomarkers 

suggested in the literature—such as hypoxia-inducible factor (HIF)-1, heat-shock protein 

70 (HSP70), and nitric oxide (NO) [66]—oxylipins (as the ones targeted by this study) can 

be used to investigate the individual reactions to hypoxia. 
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