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Abstract
Objective. Being able to characterize functional connectivity (FC) state dynamics in a real-time
setting, such as in brain–computer interface, neurofeedback or closed-loop neurostimulation
frameworks, requires the rapid detection of the statistical dependencies that quantify FC in short
windows of data. The aim of this study is to characterize, through extensive realistic simulations,
the reliability of FC estimation as a function of the data length. In particular, we focused on FC as
measured by phase-coupling (PC) of neuronal oscillations, one of the most functionally relevant
neural coupling modes. Approach. We generated synthetic data corresponding to different
scenarios by varying the data length, the signal-to-noise ratio (SNR), the phase difference value, the
spectral analysis approach (Hilbert or Fourier) and the fractional bandwidth. We compared seven
PC metrics, i.e. imaginary part of phase locking value (iPLV), PLV of orthogonalized signals, phase
lag index (PLI), debiased weighted PLI, imaginary part of coherency, coherence of orthogonalized
signals and lagged coherence.Main results. Our findings show that, for a SNR of at least 10 dB, a
data window that contains 5–8 cycles of the oscillation of interest (e.g. a 500–800 ms window at
10 Hz) is generally required to achieve reliable PC estimates. In general, Hilbert-based approaches
were associated with higher performance than Fourier-based approaches. Furthermore, the results
suggest that, when the analysis is performed in a narrow frequency range, a larger window is
required. Significance. The achieved results pave the way to the introduction of best-practice
guidelines to be followed when a real-time frequency-specific PC assessment is at target.

1. Introduction

The characterization of the physiological and patho-
logical organization of the human brain requires the
assessment of functional connectivity (FC), defined as
the statistical dependency between neural signals (He
et al 2018). Reliable FC estimation is crucial to unravel
the integrated cooperation of several spatially separ-
ated brain regions and its role in cognition (Bressler
and Menon 2010). While the assessment of static FC,
i.e. obtained under the assumption that the FC does
not change over the data acquisition time period,

requires a limited number of parameters to be set
(e.g. frequency of interest), the estimation of dynamic
FC depends on a larger set of factors to be chosen in
the analysis pipeline. Albeit being more complex in
nature, the estimation of dynamic FC may provide
important insights when fluctuations over the data
acquisition time period (either in ongoing or epoched
paradigms) are relevant (e.g. perception, learning
or memory related studies; Goddard et al 2016).
Similarly, brain–machine interface, closed-loop or
neurofeedback approaches used to guide interven-
tion in neurorehabilitation may require the real-time
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Figure 1. Connectivity estimates are biased by finite data length. (A) Left: time-courses of two ideal (i.e. noiseless) phase-coupled
oscillators in the frequency band 9−11 Hz, with constant phase difference (∆θ = π/4) and independent amplitudes; center: polar
histogram and mean-resultant-length (MRL) vector for the instantaneous phase difference sampled at all time points in the range
from 0 to 1 s; right: polar histogram and MRL vector for the instantaneous phase difference sampled at all time points in the
range from 0 to 0.2 s. (B) Same as in panel (A) for two uncoupled oscillators. (C) Box plots of the distribution of connectivity
estimates, as measured by the imaginary part of phase-locking value (iPLV), displayed as a function of data length; results were
obtained from 5000 realizations of phase-coupled oscillators (in purple) and uncoupled oscillators (in green); the dot, the
rectangular box and the whiskers for each box plot denote the median value, the range from the 16th to the 84th percentile and
the range from the 5th to the 95th percentile of the distribution, respectively.

estimation of dynamic FC (Sitaram et al 2017). This
real-time estimation is best achieved by relying on
electrophysiological techniques, which feature a high
temporal resolution (on a millisecond time scale)
that is fundamental to track and interfere with the
brain. These techniques offer also a unique opportun-
ity to investigate, with high spectral resolution, neural
oscillations, which are known to subserve brain con-
nectivity (Varela et al 2001, Engel et al 2013). Indeed,
it has been hypothesized that only coherently oscillat-
ing neuronal groups can effectively interact (Commu-
nication Through Coherence; Fries 2005), and that
phase-coupling (PC) between oscillatory signals from
different brain areas properly represents a measure of
long-range connectivity (Engel et al 2013).

To detect such PC in a dynamic FC framework,
several aspects need to be taken into account, among
which the length of the data window is crucial. As
an illustrative example, we considered the estima-
tion of PC, using the imaginary part of the phase
locking value (iPLV; Palva and Palva 2012), in the
two extreme scenarios of always coupled or always
uncoupled noiseless signals (figures 1(A) and (B),
respectively). This example shows that, for shorter
data window lengths, high iPLV values are obtained
also for uncoupled signals (panel (C)). In the practical
situation of noisy signals, not only false connectiv-
ity can be detected but also true connectivity can be
missed.

In this simulation study, we assess the reliability
of PC estimates as a function of the data length and
with different metrics used in the literature to detect
this neural coupling mode (Marzetti et al 2019). In

particular, we focus on realistic (synthetic) data cor-
responding to different situations realized by varying
the following parameters: the data length, the signal-
to-noise ratio (SNR), the phase difference value, the
specific spectral analysis method and the fractional
bandwidth.

Previous studies investigated the performance of
FC metrics with various parameters under simulated
conditions as well as real data (Astolfi et al 2007,Wang
et al 2014, Fraschini et al 2016, Bakhshayesh et al
2019, Liuzzi et al 2019, Sommariva et al 2019, Tewarie
et al 2019). Wang et al (2014) benchmarked 42 dif-
ferent connectivity metrics from seven metric fam-
ilies, including coherence, mutual information, and
Granger causality. They evaluated the performance
of the metrics on electroencephalographic (EEG)
and functional magnetic resonance imaging signals
simulated by relying on different generative models
(GMs), incorporating both linear and non-linear sys-
tems. Accuracy in recovering the ground truth was
estimated for different data lengths, sizes of sliding
window, time delays as well as noise levels. Liuzzi et al
(2019) investigated sensitivity of connectivity met-
rics to time-varying dynamics of connectivity states.
Estimation accuracy was assessed for two classes of
connectivity metrics: phase- and amplitude-based.
Analysis was performed on synthetic signals repres-
enting a two-node system and a large-scale network.
Performance was evaluated under different paramet-
ers of connectivity state durations, length of sliding
windows, and SNR levels. Sommariva et al (2019)
studied the reliability of connectivity estimation using
model-based and data-driven metrics with respect to
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different data length constraints. Furthermore, artifi-
cially generated source signals were projected to EEG
sensor space with different levels of biological noise,
and then estimated again via source reconstruction.
They demonstrated metric-dependent effects of the
number of available samples as well as of the noise
level on the reliability of estimated connectivity.

Tewarie et al (2019) compared time-resolved
methods based on sliding window approach with
methods incorporating data-driven (adaptive) win-
dowing, similar to the approach used in de Pasquale
et al (2010). They showed that adaptive windowing
outperforms fixed-window approach in recovering
fast-dynamic fluctuations in connectivity. However,
adaptive windowing is not easily applicable to real-
time analysis scenario.

All the aforementioned studies demonstrated the
sensitivity of connectivity estimates to data length
and sliding window length. However, most of them
did not consider an extensive set of phase-based
connectivity metrics. In addition, this is the first
study that, to our knowledge, addresses this issue
by also comparing two spectral approaches: the
Hilbert-based approach and the Fourier-based one.
For example, Liuzzi et al (2019) and Bakhshayesh
et al (2019) directly focused on the Hilbert approach,
while only the Fourier-based one was used in
Sommariva et al (2019). Moreover, we extensively
investigated the effects induced by the choice of the
frequency bandwidth on the metric performances.
Indeed, previous work focused on standard band
definition regardless of the relevant central frequency.
For instance, Bakhshayesh et al (2019) simulated a
coupling in the alpha band, while Liuzzi et al (2019)
studied two specific frequency bands (alpha band for
the neural mass model, and the beta band for the
autoregressive (AR) model). We also varied the SNR
and the phase of the simulated couplings in order to
account for different possible scenarios. Finally, we
expressed the window length in terms of the number
of cycles of a given oscillatory signal component, thus
reducing possible confounds in the results induced by
the specific frequency of interest.

2. Material andmethods

In brief, signal time-courses were generated as pairs
of time-courses of variable length, describing band-
limited processes with a given center frequency and
bandwidth of the oscillation of interest, associated
with two cortical sites. The two sources could be
either uncoupled or phase-coupled. The generated
source time-courses were projected to the sensor
level using realistic head and sensor models. Biolo-
gical and instrumental noise was added to different
extents. The reconstructed source time-courses were
then obtained from the simulated signals through
the exact low-resolution electromagnetic tomography
(eLORETA) spatial filter (Pascual-Marqui 2007a) as

implemented in the FieldTrip toolbox (Oostenveld
et al 2011). Pairwise coupling between sources was
assessed by means of several connectivity metrics
intrinsically robust to source leakage effects: iPLV,
phase lag index (PLI), debiasedweighted PLI, imagin-
ary part of coherency, and lagged coherence. Addi-
tionally, connectivity using coherence and PLV was
assessed after orthogonalization (Brookes et al 2012,
O’Neill et al 2015) of the reconstructed source time-
courses since thesemetrics are not intrinsically robust
to source leakage effects (Marzetti et al 2019). Ten
thousand repetitions (5000 for phase-coupled sources
and 5000 for uncoupled sources) were obtained by
varying the source locations and the center fre-
quency of the oscillation interest. All details are given
below.

2.1. Head and sensor models
The head and sensor models used in this study were
based on the publicly available ‘New York Head’
model (Huang et al 2016), downloaded from www.
parralab.org/nyhead. Themodel data contain (but are
not limited to): (a) a segmentation of the ICBM-152
template head (Fonov et al 2009, 2011) into six differ-
ent tissue types (skin, skull, cerebrospinal fluid—CSF,
greymatter, whitematter, and air cavities); (b) a high-
density triangular mesh (74 382 nodes) for the cor-
tical surface; (c) the labels and locations of 231 EEG
scalp electrodes defined in accordance with the 10–5
electrode system (Oostenveld and Praamstra 2001);
(d) the lead-field matrix evaluated for all electrodes
and unit-strength current dipoles located at the nodes
of the cortical surface mesh, with orientations nor-
mal to the local cortical surface, by using a finite-
element method (FEM) with a six-tissue volume-
conductor model derived from head segmentation
(tissue conductivities in S m−1: gray matter 0.276;
white matter 0.126; CSF 1.65; skull 0.01; skin 0.465;
air 2.5 × 10−14); and (e) triangular meshes (1922
nodes each) for the inner- and outer boundaries of
the skull and for the outer boundary of the skin (i.e.
the scalp). We refer to (Huang et al 2016) for further
details on the New York Head model.

From the mentioned data, we modeled a 128-
channel EEG system by using a selection of 128 EEG
scalp electrodes of the 10–5 system according to the
configuration of conventional high-density EEG sys-
tems (Oostenveld 2006). We used a uniform sub-
sample of 9788 nodes of the cortical surface mesh,
with the exclusion of the medial wall, for the source
space; source-current distributions were modeled
using normally oriented current dipoles placed at
these nodes. For the selected EEG sensors and sources,
we built two forward models, based on different
volume-conductor modeling details and numerical
computationmethods, to independently generate the
EEG signals and solve the inverse problem. The first
model was the FEM model provided along with the
New York Head used as a GM for simulating the
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Figure 2. Illustrative representation describing the generation and reconstruction of source time-courses. For each realization, we
generated a pair of time-courses (either coupled or uncoupled) of variable length associated with two random cortical sites, black
dots. The generated source time-courses were projected to the sensor level using realistic head (six tissue-type FEM) and sensor
models. Biological and instrumental noise was added to different extents at the sensor level. The estimated source time-courses
were obtained through the eLORETA spatial filter (with leadfield based on a three-shell BEM model).

EEG signals. The lead-field matrix was obtained by
taking the entries of the full 231 × 74 382 lead-
fieldmatrix corresponding to the selected sensors and
sources, eventually re-referenced to common average
reference.

The second forward model was built using a
simplified three-shell volume-conductormodel along
with a boundary-element method (BEM) (de Munck
1992, Mosher et al 1999). The surface meshes for
the inner-skull, outer-skull and scalp were used as
conductivity boundaries in a three-shell boundary-
element volume-conductor model (skin, skull and
intracranial volume). Tissue conductivities were set
equal to 0.33 S m−1 for the skin and intracranial
volume, and 0.0041 S m−1 for the skull, as in Huang
et al (2016).Within this volume-conductor geometry,
we computed the lead-field matrix by using a lin-
ear collocation BEM (Stenroos et al 2007) formu-
lated with the isolated source approach (Hämäläinen
and Sarvas 1989, Stenroos and Sarvas 2012). In addi-
tion, we computed the source estimator using one
of the most commonly used methods for the solu-
tion of EEG inverse problem: the eLORETA method
(Pascual-Marqui 2007a). This model was used as a
test model (TM) for source reconstruction and con-
nectivity analysis.

A schematic of the overall pipeline is shown in
figure 2.

2.2. Simulated EEG data
We generated pairs of signals of variable length,
sampled at 512 Hz, representing the time-courses of
the activity at two cortical sites. To include noise con-
tamination and interference signal (crosstalk) from
other cortical sites, the final source time-courses were
generated as described below.

We simulated two dipolar sources, s1 and s2, with
locations randomly chosen from the nodes of the cor-
tical surfacemesh and orientations normal to the cor-
tex. The source time-courses, s1 (t) and s2 (t), were
modeled as band-limited processes with center fre-
quency fc and fractional bandwidth Bf (i.e. the abso-
lute bandwidth divided by the center frequency). The
center frequency fc was randomly sampled from a
uniformdistribution in the range from10 to 50Hz;Bf
was fixed to 0.5, i.e. a value that roughly approximates
conventional EEG frequency bands (e.g. 4.5–7.5 Hz
for theta, 7.5–12.5Hz for alpha, or 15–25Hz for beta).
The two sources could be either uncoupled or phase-
coupled. To simulate uncoupled sources, s1 (t) and
s2 (t) were generated as the sum of sinusoids with fre-
quencies from fc (1−Bf/2) to fc (1+Bf/2), in steps of
0.01 Hz, and independent and identically distributed
random amplitudes and phases for each frequency
component, eventually passed through an AR filter
of length 0.2/fc. To simulate phase-coupled sources,
we first generated s1 (t) and s2 (t) as in the case of
uncoupled sources; we then computed their analytic
signals using the Hilbert transform, and we set the
instantaneous phase of s2 (t) equal to the instantan-
eous phase of s1 (t) plus a constant phase difference
∆θ, while keeping the instantaneous amplitude of
the original signal; ∆θ was randomly sampled from
a uniform distribution in the range from−π to π.

The generated source time-courses were projec-
ted to the sensor level through multiplication by the
source topographies (i.e. the columns of the lead
field matrix) calculated using the GM. Additive noise
was modeled as a mixture of independent standard
normal processes distributed over cortical nodes and
electrodes. This approach allowed us to model the
presence of both biological (i.e. correlated brain-)
noise and instrumental (i.e. sensor) noise. Specific-
ally, the N-dimensional vector noise time-course,
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n(t), with N being the number of EEG sensors,
was sampled from a multivariate Gaussian distribu-
tion with zero mean and covariance matrix of the
form:

Cn = LL
T +λI (1)

where L denotes the GM lead-field matrix, the sym-
bol T denotes the transpose operator, I is the identity
matrix, and λ is a scalar parameter that weighs the
contribution of instrumental noise to the biological
noise covariance matrix. The diagonal/non-diagonal
entries of the first term of the sum in equation (1)
models the variance/covariance of the sensor-level
signals that is due to biologically realistic spread
(which is in turn modeled by the lead-field matrix)
and the second term of equation (1) codes the incre-
ment of each sensor variance due to instrumental
noise. In particular, we set λ= 0.01 trace

{
LLT

}
/N,

where trace{·} denotes the trace of a matrix. This
value of λmodeled a 10% increase of the sensor vari-
ance that is due to instrumental (and not to biolo-
gical) noise.

The reconstructed source time-courses, σ1 (t) and
σ2 (t), were obtained from the simulated EEG signals
through multiplication by the source spatial filters
(i.e. the rows of the eLORETA estimator matrix cor-
responding to the simulated sources s1 and s2) calcu-
lated with TM, i.e. σ1 (t)

σ2 (t)

=

 wT
1

wT2

[l1 l2]

 γ1s1 (t)

γ2s2 (t)

+n(t)


(2)

where li (for i= 1,2) denotes the topography of
source i calculated using the GM, wi (for i= 1,2)
denotes the spatial filter of source i calculated using
the TM, and γ1 and γ2 are two parameters that weight
the contribution of the actual source time-courses
to the reconstructed source time-courses. We var-
ied γ1 and γ2 in order to manipulate the SNR (see
section 2.4.2).

2.3. Source connectivity analysis
Source connectivity was estimated from the recon-
structed source time-courses, σ1 (t) and σ2 (t), as
follows. We computed the spectra Σ1 ( f) and Σ2 ( f)
of the source time-courses σ1 (t) and σ2 (t). From
these spectra, which are complex-valued functions of
the frequency f, we extracted the spectral amplitudes,
A1 ( f) = |Σ1 ( f)| and A2 ( f) = |Σ2 ( f)|, and phases,
ϕ1 ( f) = arg{Σ1 ( f)} and ϕ2 ( f) = arg{Σ2 ( f)},
where |·| and arg{·} denote the absolute value and
the argument, respectively, of a complex-valued
number. We computed the phase difference as
∆ϕ12 ( f) = ϕ1 ( f)−ϕ2 ( f). The source connectiv-
ity was then estimated by using seven different PC
metrics, as listed below.

The PLV (Tass et al 1998, Lachaux et al 1999) was
estimated as

• PLV12 ( f) = | ⟨exp{ı∆ϕ12 ( f)}⟩| (3)

where ı is the imaginary unit, exp{·} denotes the
exponential function, and ⟨·⟩ denotes the expecta-
tion value. The latter is evaluated as the average across
time, see section 2.4.3 below.

The iPLV (Palva and Palva 2012) was estimated
as

• iPLV12 ( f) = | ⟨ℑ{ exp{ı∆ϕ12 ( f)}}⟩| (4)

whereℑ{·} denotes the imaginary part of a complex-
valued number.

The PLI (Stam et al 2007) was estimated as

• PLI12 ( f) = |⟨sign{∆ϕ12 ( f)}⟩| (5)

where sign{·} denotes the sign function.
The debiased weighted phase-lag index

(wPLIdeb) (Vinck et al 2011) was estimated as

• wPLIdeb12 ( f) =

√∣∣∣∣ ⟨ℑ{S12 ( f)}⟩2 −⟨ℑ{S12 ( f)}2⟩
⟨|ℑ{S12 ( f)}|⟩2 −⟨|ℑ{S12 ( f)}|2⟩

∣∣∣∣
(6)

where S12 ( f) = A1 ( f) A2 ( f) exp{ı∆ϕ12 ( f)}.
The coherence (Coh) (Rosenberg et al 1989,

Halliday et al 1995) and the imaginary part of coher-
ency (imCoh) (Nolte et al 2004) were derived from
the complex-valued coherency. In particular, the
former was computed as

• Coh12 ( f) =

∣∣∣∣∣ ⟨A1 ( f)A2 ( f) exp{ı∆ϕ12 ( f)}⟩√
⟨A2

1 ( f)⟩⟨A2
2 ( f)⟩

∣∣∣∣∣
(7)

and the latter as

• imCoh12 ( f) = ℑ

{
⟨A1 ( f)A2 ( f) exp{ı∆ϕ12 ( f)}⟩√

⟨A2
1 ( f)⟩⟨A2

2 ( f)⟩

}
.

(8)

Hence, Coh and imCoh coincide with the abso-
lute value and the imaginary part of the complex-
valued coherency, respectively. imCoh, which can be
negative-valued, was considered as absolute value.

The lagged coherence (lagCoh) (Pascual-Marqui
2007b) was estimated as

• lagCoh12 ( f)

=
ℑ{⟨A1 ( f)A2 ( f) exp{ı∆ϕ12 ( f)}⟩}2

⟨A2
1 ( f)⟩⟨A2

2 ( f)⟩−ℜ{⟨A1 ( f)A2 ( f) exp{ı∆ϕ12 ( f)}⟩}2

(9)

whereℜ{·} denotes the real part of a complex-valued
number.

A source-leakage compensation by using a pair-
wise orthogonalization procedure (Brookes et al 2012,
O’Neill et al 2015)was applied to source time-courses,
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σ1 (t) and σ2 (t), prior to the estimation of Coh and
PLV. Such compensation was not required for estim-
ating other connectivity metrics, which are robust to
artificial PC detection due to source leakage (Marzetti
et al 2019). An in-house implementation of the above
connectivitymetricswas used. Eachmetricwas estim-
ated for all frequencies within a band around the
center frequency (see section 2.4.4 for the selection
of the frequency band), and then averaged over this
band.

2.4. Simulation repetitions
We generated 10 000 two-source configurations by
varying the locations of the cortical nodes s1 and
s2 and the center frequency fc. Of these, 5000 were
used to test connectivity estimates for phase-coupled
sources and 5000 for uncoupled sources. For each
two-source configuration, source connectivity was
estimated by independently varying the following
four parameters in the simulations: (a) the data
length; (b) the output signal-to-noise ratio (oSNR);
(c) the spectral analysis approach; and (d) the test
fractional bandwidth. These parameters are described
below in more detail.

2.4.1. Data length
The length L of the source time-courses, hereinafter
the data length, wasmeasured as the number of cycles
of an oscillation at the center frequency fc (e.g. L = 5
cycles is equal to 1000 ms for fc = 5 Hz, or 500 ms for
fc = 10 Hz, or 250 ms for fc = 20 Hz). We varied L in
the range from 1 to 20 cycles, in steps of 0.5.

2.4.2. oSNR
For each of the two reconstructed sources, we defined
the oSNR in the frequency band of the simulated sig-
nal, ∆f= 0.5 fc, as the ratio between the projected
actual-source-signal variance and the projected-noise
variance, i.e.

oSNRi = 10 log10

(
var∆f

{
wTi li γi si (t)

}
var∆f

{
wTi n(t)

} )
, for i= 1,2

(10)

where var∆f {·} denotes the variance of a signal which
has been band-pass filtered (two-pass fourth-order
Butterworth filter) in the frequency band ∆f. We
independently varied γ1 and γ2 in equation (2) to set
three levels of oSNR, i.e. 20 dB, 10 dB and 3 dB.

2.4.3. Spectral analysis approach
The estimation of source connectivity from continu-
ous signals, such as σ1 (t) and σ2 (t), relies on a time-
resolved representation of signal spectra. That is, the
spectra of the source time-courses were computed
as functions of both frequency and time, i.e. Σ1 (f, t)
and Σ2 (f, t). For each frequency, source connectiv-
ity estimates were computed as in equations (3)–(8),
in which the expectation values were evaluated as

an average over time (segments for the Fourier-
based approach and instants for the Hilbert-based
approach). Such a time-resolved representation of
signal spectra was obtained using either a Fourier-
based approach or a Hilbert-based approach.

In the Fourier-based approach, σ1 (t) and σ2 (t)
were divided into overlapping segments of equal
length W; the value of W was set to control the fre-
quency resolution (see section 2.4.4); the step width
between successive segments was chosen equal to
the sampling interval of the signal. By construc-
tion, each segment was centered around a differ-
ent time-instant t. Within each segment, the signal
was first multiplied by a Hanning window function
to reduce effects related to spectral leakage (Harris
1978), and then Fourier transformed to compute the
frequency-dependent Fourier coefficients. The collec-
tion of the Fourier coefficients estimated from dif-
ferent segments yielded the time-resolved represent-
ation signal spectra, Σ1 (f, t) and Σ2 (f, t).

In the Hilbert-based approach, σ1 (t) and σ2 (t)
were first band-pass filtered around the center fre-
quency, with a given bandwidth (see section 2.4.4),
by using a two-pass fourth-order Butterworth filter.
The analytic signals of the filtered source time-courses
were then computed by using the Hilbert transform.
Particular attention was paid to the minimization
of the edge effects induced by both the filter and
by the Hilbert transform. For the former, we used
the Gustafsson’s method to set the filter initial con-
ditions (Gustafsson 1996) as in Scipy (scipy.signal)
filtfilt function. For the latter, we used the filtered
source time-courses to generate the coefficients of an
AR model (Yule–Walker, order 30 or 2/3 of the data
length for shorter data), which served to iteratively
pad the time-courses by one-cycle-length at both ends
prior to the computation of the Hilbert transform.
The analytic signals provided the time-resolved rep-
resentation signal spectra,Σ1 (f, t) andΣ2 (f, t), for the
frequency band of interest.

2.4.4. Test fractional bandwidth
In real-data applications, the frequency band associ-
ated with the (potentially present) PC of interest may
be unknown.We thus wanted to analyze the impact of
the choice of the fractional bandwidth (a frequency
band normalized by the center frequency) on the
minimum data length required to have reliable con-
nectivity estimates. We termed the fractional band-
width used in connectivity analysis as ‘test fractional
bandwidth’, Btestf . We recall that, instead of using an
unnormalized absolute bandwidth, it is convenient to
use the fractional bandwidth, since it does not change
as the center frequency of the bandpass process is
moved.

This study is conducted under the assumption
that, as described in section 2.2, the underlying PC
shows a frequency-band specificity corresponding to
fractional bandwidth Bf = 0.5 (value that roughly
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approximates standard EEG frequency bands e.g. for
a center frequency fc = 10 Hz, we have the band 7.5–
12.5 Hz, which approximates the alpha frequency
band).

The test fractional bandwidth, Btestf , depends on
the choice of specific parameters in spectral ana-
lysis, discussed below. In particular, we defined Btestf

as the ratio between the 6 dB bandwidth ∆f−6dB

(namely the range of frequencies comprised between
the−6 dB points of the frequency response function)
and the center frequency fc, i.e.

Btestf =
∆f−6dB

fc
(11)

For instance, estimating connectivity between filtered
time-course with a ∆f−6dB = 10 Hz or a ∆f−6dB =
1 Hz, with the same center frequency fc = 10 Hz (i.e.
in the frequency-bands 5–15 Hz and 9.5–10.5 Hz),
means to analyze the statistical dependency with a
Btestf = 1 or a Btestf = 0.1, respectively. In the following,
we describe the dependency of theBtestf on the selected
parameters for the Fourier-based and Hilbert-based
approaches.

For the Fourier-based approach, Btestf solely
depends on the length W of the segments in which
the source time-courses are divided for the com-
putation of Fourier coefficients, and on the shape
of the window function which is multiplied with
each signal segment to reduce spectral leakage
(Harris 1978); in this study we used a Hanning win-
dow, for which Btestf = 2/W, where W is measured
in number of cycles of an oscillation at the cen-
ter frequency fc. For the Hilbert-based approach,
Btestf = 2

(
fhigh − flow

)
/
(
fhigh + flow

)
, where flow and

fhigh denote the lower and higher cutoff frequencies
of the band-pass Butterworth filter applied to source
time-courses prior to the calculation of the analytic
signal (note that the 3 dB attenuation at the cutoff fre-
quency of a one-pass Butterworth filter is enhanced
to 6 dB after two-pass filtering).

In this work, we varied the segment lengthW (for
the Fourier-based approach) and the cutoff frequen-
cies flow and fhigh (for the Hilbert-based approach)
to vary Btestf in the range from 0.1 to 1, in steps of
0.1. Since the fractional bandwidth Bf used in data

generation is fixed to 0.5, the above choice for Btestf

corresponds to analyzing, for each realization, fre-
quency bandwidths in the range from 0.2 to 2 times
the one of the simulated data (e.g. for a center fre-
quency fc = 10 Hz, and thus a simulated frequency
band of 7.5–12.5 Hz, the analyses will cover bands
from 9.5–10.5 Hz to 5–15 Hz).

2.5. Performance assessment
The performance of each connectivity metric was
assessed by using the area under curve (AUC) of the
receiver operating characteristic (ROC) curve (Egan
1975, Fawcett 2006). For each combination of sim-
ulation parameters (i.e. data length, oSNR, spectral
analysis approach, and fractional bandwidth), we col-
lected npos = 5000 connectivity estimates obtained
from phase-coupled sources, defined as positives
(Fawcett 2006) and nneg = 5000 connectivity estim-
ates from uncoupled sources as negatives. We defined
a threshold T(p), which is a function of p (0< p⩽
100), as the connectivity value at the pth percentile of
the connectivity metric distribution of the uncoupled
sources. Given a value for p, all the scores exceed-
ing T(p) were classified as positives (coupled), other-
wise as negatives (uncoupled); the true positive rate
(TPR) was computed as the ratio between the num-
ber of positive samples ‘correctly’ detected as posit-
ives (coupled) and the total number of positives; the
false positive rate (FPR) was computed as the ratio
between the number of negative (uncoupled) samples
‘incorrectly’ detected as positives and the total num-
ber of negatives. Note that, in this simulation, FPR
is equal to 1− p. The specificity and sensitivity were
computed as TPR and 1-FPR, respectively.

The ROC curve was obtained by plotting TPR
against FPR for successive values of p in the range
from 0 to 100, in steps of 1. The AUC was estimated
from the ROC curve using the trapezoidal approx-
imation. The 95% confidence interval for AUC was
estimated under large sample size approximation as

CI95% (AUC) = AUC± 1.96 SE(AUC) (12)

where SE(AUC) is the standard error of AUC of the
form (Hanley and McNeil 1982)

SE(AUC) =

√
AUC(1−AUC)+

(
np − 1

)(
Q1 −AUC2

)
+(nn − 1)

(
Q2 −AUC2

)
npnn

(13)

with

Q1 =
AUC

2−AUC
, and Q2 =

2AUC2

1+AUC
. (14)

We used the AUC as a measure of the perform-
ance of a connectivitymetric in discriminating phase-
coupled sources from uncoupled sources, i.e. the
larger the AUC, the better the performance. The
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minimum data length required for accurate discrim-
ination was found according to a minimum AUC
value of 0.70, which is conventionally used as a
threshold value to define a diagnostic test as accur-
ate (Swets 1988). We looked at the AUC as a func-
tion of the data length and test fractional bandwidth;
approximate isolines for AUC = 0.7 were computed
after applying a two-dimensional Gaussian smooth-
ing kernel with unitary standard deviation.

2.6. Dependence on phase difference
To investigate the dependence of the connectivity
metric performance on the phase difference between
phase-coupled sources, we performed dedicated sim-
ulations in which the phase difference∆θ during data
generation was parametrically set in the range from 0
to π, in steps of π/18. At each value of ∆θ, we eval-
uated the minimum data length required to obtain
AUC larger or equal to 0.70.

2.7. Edge response analysis
To show practical implications of the use of finite
data length for connectivity analysis in real-life exper-
iments, we simulated an example case of a dynamic
connectivity analysis experiment, as described
below.

We generated pairs of signals, sampled at 512 Hz,
representing the activity of two sources at 10 Hz, with
5 Hz bandwidth. The signal length was 6 s, centered
at t = 0 s (i.e. from −3 s to 3 s). We simulated dif-
ferent source connectivity profiles. In the first pro-
file, the data comprised two consecutive segments
each of length 3 s; the sources were phase-coupled
(∆θ = π/2) in the first segment (i.e. one from −3 s
to 0 s) and uncoupled in the other segment (i.e. from
0 s to 3 s); this profile will be referred to as ‘edge’.
The other profiles comprised three consecutive seg-
ments, i.e. one central segment of length D, centered
t = 0 s, and two lateral segments; the sources were
phase-coupled in the central segment (∆θ=π/2) (i.e.
from −D/2 s to D/2 s) and uncoupled in the lateral
segments (i.e. from −3 s to −D/2 s, and from D/2 s
to 3 s); these profiles will be referred to as ‘steps’. We
varied D across 0.125 s, 0.25 s, 0.5 s, and 1 s. Addit-
ive uncorrelated noise was sampled from a univariate
Gaussian distribution; the SNR was measured as the
ratio between the signal variance and the noise vari-
ance in the frequency band 7.5−12.5 Hz and set to be
equal to 10 dB.

For each connectivity profile, we generated a total
of 1000 signal realizations. We estimated the time-
courses of dynamic source connectivity by using a
sliding window approach. Specifically, connectivity
was estimated within sliding windows of data of
length L, moved in steps of 7.8 ms across the whole
signal length. We varied L across 250 ms, 500 ms,
750 ms, and 1000 ms.

3. Results

In this section, we first present the performances
of different connectivity metrics in discriminating
phase-coupled sources from uncoupled sources as
measured by ROC AUC; we consider an accept-
able performance level when AUC is at least equal
to 0.7. Then, we present how the minimum data
length required to reach the acceptable performance
level depends on the phase difference between phase-
coupled sources. Last, we discuss the practical implic-
ations of the use of finite data length in a simulated
experiment of dynamic connectivity analysis using a
sliding-window approach.

We found similar patterns of AUC dependence
on data length L and test fractional bandwidth
Btestf across the different connectivity metrics and
oSNR values. The AUC dependence patterns will be
described below for the representative case of PLV
estimated from source signals with oSNR= 10 dB.

Figure 3(A) shows the heat map of the AUC for
PLV estimated by using the Hilbert-based approach
as a function of L and Btestf . Small AUC values
(AUC < 0.7) are found for small values of L (i.e. L < 3
cycles), as well as for larger L if Btestf is small (i.e.
L < 13 cycles at most if Btestf = 0.1). For fixed Btestf ,
AUC increases with increasing L (up to values in the
range from about 0.7 at Btestf = 0.1 to about 0.9 at
Btestf > 0.4). For fixed L, AUC shows an initial increase
with increasing Btestf and approaches to a maximum
at a value of Btestf , which is roughly equal to the frac-
tional bandwidth of the simulated signal (i.e. 0.5), fol-
lowed by a plateau or a slight decrease at higher Btestf .
Figure 3(B) left plot shows the heat map of the AUC
for PLV estimated using the Fourier-based approach
as a function of L and Btestf . While AUC still increases
for increasing L, we emphasize a few key differences
between this AUC pattern and the PLV one estimated
by using the Hilbert-based approach. First, the sig-
nal spectra and, consequently, the connectivity estim-
ates and AUC could not be evaluated for L < 2/Btestf

(i.e. the white region in the AUC heat map), since the
data length was not sufficient to build segments of
length W = 2/Btestf necessary to achieve the desired
frequency resolution. Second, for a given combina-
tion of L andBtestf , the AUC is smaller than the respect-
ive value calculated using theHilbert-based approach.
Third, the AUC pattern reflects the number of aver-
aging segments used for the computation of Four-
ier spectra (see figure 3(B), right plot, for quantitat-
ive values), with small AUC values being paired to a
small number of averaging segments. Last, as an effect
of AUC dependence on the number of averaging seg-
ments, the value of Btestf at which, for fixed L, AUC
reaches its maximum is slightly larger than 0.5.

For a comparative evaluation of the perform-
ance of the connectivity metrics, we looked at the

8



J. Neural Eng. 19 (2022) 016039 A Basti et al

Figure 3. Area under the curve (AUC) of the receiver operating characteristic (ROC) curve. (A) Heat map of AUC for PLV
estimated by using the Hilbert-based approach, as a function of data length (expressed as number of cycles, cyc.) and test
fractional bandwidth, for oSNR= 10 dB; the black line indicates the isoline for AUC= 0.7. (B) Left: heat map of AUC for PLV
estimated by using the Fourier-based approach, as a function of data length and test fractional bandwidth, for oSNR= 10 dB; the
black line indicates the isoline for AUC= 0.7; right: heat map of the number of averaging segments used for the computation of
Fourier spectra, as a function of data length and test fractional bandwidth. (C) Isolines (solid lines) for AUC= 0.7 with the
respective uncertainty regions (shaded regions, calculated as the area within the isolines for the 95%-confidence-interval bounds
of AUC equal to 0.7), as a function of data length and test fractional bandwidth, for the different connectivity metrics (PLV, iPLV,
PLI, wPLIdeb, Coh, imCoh, lagCoh); the plots in different rows refer to different spectral analysis approach (Hilbert-based and
Fourier-based); the plots in different columns refer to different values of oSNR (20 dB, 10 dB, and 3 dB).

data length required to reach the minimum per-
formance level, i.e. AUC = 0.7; this quantity will
be hereinafter denoted as Lmin. For each connectiv-
ity metric, we extracted the isoline for AUC = 0.7
in the plots of AUC as a function of L and Btestf ; this
isoline indicates the values of Lmin for various val-
ues of Btestf . The results are shown in figure 3(C); the
plots in different rows refer to different spectral ana-
lysis approach (Hilbert-based and Fourier-based); the
plots in different columns refer to different oSNR val-
ues (20 dB, 10 dB, and 3 dB); within each plot, the
solid lines represent the isolines for AUC= 0.7 calcu-
lated for the different connectivity metrics, and the
shaded regions represent the respective uncertainty
regions calculated as the area within the isolines for
the 95%-confidence-interval bounds of AUC equal

to 0.7. We distinguish two main trends for Lmin as
a function of Btestf : (a) Lmin rapidly increases with
decreasing Btestf if the latter is smaller than the value
that is close to (Hilbert-based approach) or slightly
above (Fourier-based approach) the fractional band-
width of the simulated signal (i.e. 0.5 in this simula-
tion); and (b) above this value, Lmin slightly decreases
(oSNR = 20 dB), remains constant (oSNR = 10 dB)
or slightly increases (oSNR = 3 dB) with increas-
ing Btestf . In the comparison between spectral analysis
approaches, we found that, for a given value of Btestf ,
Lmin obtained by using the Hilbert-based approach is
globally smaller than the Lmin obtained by using the
Fourier-based approach. In the comparison between
the different connectivity metrics, the main differ-
ences arise if the Hilbert-based approach is used and
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Figure 4. Area under the curve (AUC) of the receiver operating characteristic (ROC) curve for Btestf = 0.5. Plot of AUC (dots) with
95% confidence interval (error bars) as a function of data length and test fractional bandwidth, for the different connectivity
metrics (PLV, iPLV, PLI, wPLIdeb, Coh, imCoh, lagCoh) and a value of test fractional bandwidth Btestf = 0.5; the plots in different
rows refer to different spectral analysis approach (Hilbert-based and Fourier-based); the plots in different columns refer to
different values of oSNR (20 dB, 10 dB, and 3 dB).

Btestf is small, where the values of Lmin for Coh and
lagCoh are smaller than the ones of the other con-
nectivitymetrics; overall, the values of Lmin for imCoh
and iPLV are systematically larger than the one of the
other connectivity metrics.

Figure 4 shows the AUC as a function of L in
the particular case of Btestf = 0.5, i.e. a value that
roughly corresponds to the bandwidth of conven-
tional EEG frequency bands (e.g. 4.5–7.5 Hz for
theta, 7.5–12.5 Hz for alpha, or 15–25 Hz for beta)
and that corresponds to the fractional bandwidth of
the simulated signals. For all connectivity metrics,
AUC increases for increasing L starting from a value
around 0.5 (no discrimination ability) up to values
greater than 0.8 (high discriminability) in high oSNR
conditions.

In high oSNR conditions (20 dB and 10 dB),
and using the Hilbert-based approach, we found
that a Lmin of about 2–3 cycles is needed for PLV,
PLI and wPLIdeb to reach the AUC threshold value
(AUC = 0.7), while at least 5 cycles are needed for
iPLV and imCoh. Conversely, with a oSNR equal to
3 dB, about 10 cycles are needed to reach AUC = 0.7
for basically all methods.

In accordance with the previous results, the
Fourier-based approaches were associated with lower
performance than those obtained by relying on the
Hilbert transform. In particular, using the former
approach, the Lmin is almost doubled.

We also evaluated the performance of differ-
ent connectivity metrics as a function of the phase

difference between the simulated phase-coupled sig-
nals. Figure 5 shows the minimum number of cycles
needed to obtain an AUC ⩾ 0.7, as a function of the
phase difference.

Consistently with the previous findings, we
obtained that the methods based on the Hilbert
approach outperforms the Fourier-based ones, since
the Lmin obtained with the latter is approximately
two times larger than the Lmin obtained by using
the former approach. Figure 5 shows that the curves
always have their minimum at phase differences close
to π/2. The range of phase differences in which
each metric reaches AUC values close to (its) min-
imum depends on the level of oSNR: the higher
the oSNR the larger this range (that approximately
spans 100◦ for a oSNR equal to 20 dB, and 60◦ for
a oSNR = 3 dB). Interestingly, global minima for
Lmin are reached by imCoh, while other metrics, e.g.
lagCoh and iPLV, reached these minima only in par-
ticular conditions.

Finally, we showed some practical implications of
using a finite data length in the example case of a
dynamic connectivity analysis experiment. We simu-
lated time-courses pairs composed of phase-coupled
(in the alpha frequency band, i.e. 7.5–12.5 Hz) sig-
nals of different durations (length = 1, 0.5, 0.25 and
0.125 s), which are preceded/followed by uncoupled
signals. Then, we estimated the dynamic connectiv-
ity using the PLV with the sliding-window lengths
L = 10, 7.5, 5 and 2.5 cycles, which correspond to
a sliding-window of 1, 0.75, 0.5, 0.25 s, respectively.
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Figure 5.Minimum data length in the range 1−20 cycles (cyc.) required to obtain AUC⩾ 0.7 as a function of phase difference
between source time-courses, calculated for the different connectivity metrics (PLV, iPLV, PLI, wPLIdeb, Coh, imCoh, lagCoh)
and for a value of test fractional bandwidth Btestf = 0.5; the plots in different rows refer to different spectral analysis approach
(Hilbert-based and Fourier-based); the plots in different columns refer to different values of oSNR (20 dB, 10 dB, and 3 dB).

Figure 6.Median value (solid lines) and the range from the 16th to the 84th percentile (shaded regions) for 5000 estimates of
dynamic connectivity as measured by PLV using a sliding-window approach; the black solid line represents the theoretical
phase-coupling profile, i.e. equal to 1 for phase-coupled signals, or 0 for uncoupled signals. The plots in different rows refer to
different sliding-window lengths (250 ms, 500 ms, 750 ms, and 1000 ms); the plots in different columns refer to different dynamic
connectivity profiles (edge, and steps of length 1 s, 0.5 s, 0.25 s, and 0.125 s).

Figure 6 shows the obtained dynamic connectivity
profiles.

The detection of coupling is relatively easy when
it lasts for 1 s, although the connectivity profile for
each sliding-window length has different slope and
peak value. In particular, a short sliding-window is
associated with a connectivity profile with a steep
slope, whereas the opposite is found for longer
windows.

In addition, our results showed that short win-
dows have a clear detection peak also when the

coupling has a short duration, and, on the oppos-
ite, larger windows failed to detect short couplings.
Another interesting aspect is that uncoupled signal
pairs result in an increased average value of PLV as the
window gets shorter. Using a short sliding-window,
uncoupled signals may thus be wrongly detected as
coupled, but it is likely thatmost of the phase-coupled
sources are detected as functionally. Conversely, using
a larger window, uncoupled signals are hardly detec-
ted as coupled, but it is possible that short-term PCs
are not detected at all.

11



J. Neural Eng. 19 (2022) 016039 A Basti et al

4. Discussion

In this study, we investigated the impact of the data
length to reliably estimate PC in a dynamic FC frame-
work. Overall, our results show that in the com-
parison between the spectral analysis approaches,
the Hilbert-based approach outperforms the Fourier-
based one. Moreover, we showed that five oscilla-
tion cycles may be considered sufficient to conduct a
reliable analysis for almost all the analyzed (Hilbert-
based) metrics, assuming a conventional threshold
for the AUC equal to 0.7 (Swets 1988), and an oSNR
greater than or equal to 10 dB. In fact, a substantial
fraction (approx. 25%) of spontaneous PC at the fre-
quency of the µ-rhythmwithin interhemispheric cor-
tical motor network can be captured by windows of
about five oscillation cycles (Ermolova et al 2021). In
general, we found some similarities among the beha-
vior of the analyzed methods, which may depend on
mathematical relations among them (Nolte et al 2020;
see the supplementary material (available online at
stacks.iop.org/JNE/19/016039/mmedia) of this paper
for a proof of the theoretical relations among the
three PC methods that were not considered in the
above-mentioned study). However, since these rela-
tions hold for an infinite amount of data and we deal
with short windows of data, it is reasonable that some
statistical differences arise. Specifically, the metrics
that reached an AUC of 0.7 with the smallest num-
ber of cycles for high SNRs (i.e. 20 dB and 10 dB)
were those relying on both the imaginary part and the
real part, such as PLV and coherence of orthogonal-
ized signals, and the lagged coherence. Unfortunately,
these metrics might be prone to false positives (figure
S2 shows e.g. an overall inflation of Coh with respect
to imCoh values also where no connectivity is expec-
ted). Moreover, a direct comparison between the dif-
ferent metrics depends on the specific application,
e.g. in relation to the accepted FPR, and is beyond the
scope of this work. Our findings also demonstrated
that the phase difference influences the number of
cycles to be chosen to get an AUC equal or greater
than 0.7, but this influence is limited. For example,
for an oSNR greater than or equal to 10 dB, the min-
imum data length required to obtain AUC ⩾ 0.7 is
always smaller than five cycles for a phase difference
in the range 40◦ − 140◦ for all connectivity metrics,
with a minimum corresponding to ±90◦. This min-
imum value can be easily explained since artifactually
zero-lag correlated sources are associated with phase
differences either close to 180◦ or to −180◦, which
are maximally distant from ±90◦. For a frequency
of 10 Hz, the range 40◦ − 140◦ would correspond
to a lag between source time-courses in the range
10 ms–40 ms.

In addition, our results showed that the fractional
bandwidth chosen for the analysis also influences the
number of cycles to be chosen to get an AUC equal
or greater than 0.7. For example, for an oSNR greater

than or equal to 10 dB, choosing a bandwidth approx-
imately equal to (or greater than) the one associ-
ated with the underlying coupling would be the best
choice. Since it is difficult to have a priori knowledge
regarding the exact frequency range of the couplings
in real data, unless previous neuroscientific know-
ledge is available, our suggestion is to avoid select-
ing a very narrow frequency range since this choice
would imply using larger windows of data to reach
the desired performance. In practice, the unmotiv-
ated reduction of the analyzed frequency range may
worsen the performance of PC methods. In our sim-
ulation study, we assumed the individual central fre-
quency to be known. Indeed, even though in real-data
applications the individual central frequencymay also
be a priori unknown, power or time-frequency ana-
lyses can be performed, e.g. to inform us about indi-
vidual frequency peaks (which can be successively
used as the central frequency for a PC analysis).

Finally, we investigated some practical implica-
tions of using short/long windows of data in case of
neural couplings with different duration. In partic-
ular, short sliding-window showed higher sensitivity
and lower specificity then longer sliding-window. In
real-time settings, it will be fundamental to decide
whether more specificity or more sensitivity is of
interest, also considering that the value of these vari-
ables depends on the chosen metric (see figure S1).
The aspects should be carefully considered in sci-
entific experiments, such as those based on closed-
loop EEG with concurrent Transcranial Magnetic
Stimulation (TMS) (Zrenner et al 2016, 2018, Tervo
et al 2022), in which a stimulation pulse might
be triggered by the real-time detection of specific
functional couplings. Although in the main analysis
we only showed, as a representative example, the
dynamic profiles associated with PLV, we also per-
formed edge response analysis with the other PCmet-
rics. The results showed that all metrics have a sim-
ilar behavior for a sliding-window length larger than
250 ms. When the shortest sliding-window length
is used, PLI and wPLIdeb tend to reach values that
are close to 1 also for phase-uncoupled sources (see
figure S2). This behavior might be due to the fact
that these metrics take into account, in the expecta-
tion value, the sign-function of the phase-difference,
which is computationally equal to either 1 or −1,
thus being almost always larger (in magnitude, and
in case of uncoupled sources) than a plain raw value.
The above-described negative behavior is mitigated
by considering a higher number of cycles.

One aspect that has not been taken into account
in this study is the potential advantage of usingmulti-
dimensional (MD) connectivity methods instead of
one-dimensional (1D) methods (see e.g. Basti et al
2020). The MD methods allow to analyze the stat-
istical dependency between two sets of multivari-
ate time-courses, such as the parcel activity or
the three-dimensional time-course associated with
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reconstructed cortical activity with free source orient-
ation. Instead, 1D-methods, such as the approaches
analyzed in this study, are those that can only be
applied to pairs of scalar time-courses, e.g. to two
EEG sensor signals or to two time-courses associated
with orientations normal to the local cortical surface.
Since recent studies showed the sub-optimality of 1D-
methods when standard-length data have amultivari-
ate nature (Geerligs and Henson 2016; see also Basti
et al 2019 for the concept of ‘multivariate nature’), it
might be possible that the difference in performance
also arises when shorter data are considered. Never-
theless, a comprehensive comparison between 1D and
MD is out of the scope of this paper. Similarly, here we
focused on the performance of undirected PC meth-
ods and, thus, we did not consider e.g. amplitude-
based methods (O’Neill et al 2015), cross-frequency
methods (Palva et al 2005, Chella et al 2016), and dir-
ected PC methods, such as phase slope index (Nolte
et al 2008, Basti et al 2017) and phase transfer entropy
(Lobier et al 2014).

The synthetic study reported here relied on sim-
ulations of interacting neural sources. While we here
limited our analyses on pairs of phase-coupled source,
in future studies it will be interesting to quantit-
atively analyze the changes in the metric perform-
ances induced by the presence of complex PC net-
works composed of more than two sources (which
may in addition be the framework for analyzing
also multivariate and MD PC approaches). We pre-
ferred to rely on a model providing phase-coupled
time-courses in a frequency band of interest (resem-
bling frequency-specific neural phase-coupled activ-
ities). Several other models have been used in the
past for conducting synthetic connectivity analysis;
two typical examples are AR models (Chella et al
2019, Sommariva et al 2019) and neural mass mod-
els (Liuzzi et al 2019). In future studies, it will also be
interesting to analyze whether the presence of amp-
litude correlated time-courses, such as those obtained
by relying on AR models, may affect the perform-
ance of some connectivity methods (e.g. wPLI, which
explicitly weighs the amplitudes). Furthermore, in
our simulation pipeline we explicitly used two for-
wardmodels in order to (independently) generate the
EEG signals and solve the inverse problem. For pursu-
ing the latter step, we relied on eLORETAmethod and
assumed the source locations to be perfectly estimated
by this method. The source-leakage effects are, how-
ever, not significantly reduced by this step: the biolo-
gical noise couples to the estimate through the leakage
inherently present in the inverse estimator. Since we
only used robust PC methods, we do not expect sig-
nificant metric performance inflations.

In conclusion, the achieved findings pave the way
to the definition of guidelines necessary when an
online frequency-specific PC assessment is of interest.
Such estimation might be crucial in a non-invasive

closed-loop EEG-TMS or in a neurofeedback frame-
work.
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