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In this paper, we introduce an innovative approach to the fusion between datasets in terms of

attributes and observations, even when they are not related at all. With our technique, starting from

datasets representing independent worlds, it is possible to analyze a single global dataset, and

transferring each dataset onto the others is always possible. This procedure allows a deeper

perspective in the study of a problem, by offering the chance of looking into it from other,

independent points of view. Even unrelated datasets create a metaphoric representation of the

problem, useful in terms of speed of convergence and predictive results, preserving the

fundamental relationships in the data. In order to extract such knowledge, we propose a new

learning rule named double backpropagation, by which an auto-encoder concurrently codifies all

the different worlds. We test our methodology on different datasets and different issues, to under-

line the power and flexibility of the Theory of Impossible Worlds. Published by AIP Publishing.
https://doi.org/10.1063/1.5024371

This article proposes an approach to the simultaneous

analysis of datasets of any kind, related or not, named

Theory of Impossible Worlds. The fusion involves two

main aspects: first, various different datasets can be

merged into a more complex one. Second, each dataset

can be rewritten using the hypothetical values of the vari-

ables of another one. One of the main reasons why this

technique is very useful is the change of viewpoint on the

data that, according to the experiments, results in an

important improvement in terms of information gain. In

the case of classification problems, for example, the

results obtained on the fused dataset are better than the

ones got by using the original ones. We have hypothesized

that the extra point of view works as a sort of metaphor,

that makes use of seemingly unrelated, but structurally

affine content to improve the understanding of the prob-

lem. Moreover, since the fusion process allows us to see

each record as belonging to other worlds, we can theoret-

ically build up new relationships. The fusion techniques

are essentially of two types: the double backpropagation

and the analytic strategy. In the case of the double back-

propagation, the datasets are learnt simultaneously from

the same auto-encoder. The weights are corrected and

updated through a new learning rule called double back-

propagation, and presented here for the first time. In the

case of the analytic strategy, starting from two distinct

datasets to be fused, we have two different auto-encoders

A1 and A2, equipped with the same number H of hidden

units, independently learning the two datasets.

Subsequently, the first dataset is rewritten by the varia-

bles of the second one using the previously trained A1

units, and vice versa. In this way, each dataset is pro-

jected into a transition world described by H variables,

and then rewritten into the variables of the chosen target

world.

I. INTRODUCTION

In relational database theory17 entities can be fused by

joining operations.30 Without filtering (no “where” condi-

tion), the join can be a Cartesian product, with each resulting

combined observation carrying all the attributes of both enti-

ties, unless otherwise specified. If, however, there is reason

to impose match criteria between some attributes during

the join (“where” condition), only filtered observations are

generated, which respect the match criteria. The other pairs

of observations, for which there has been no match, may or

may not be returned, depending on the type of join. In the

case of inner join, no observation is returned that does not

match the defined criteria. In the case of left join, all the first

entity observations that do not match the second entity ones

according to the criteria are also returned. In these cases,

attributes of the first entity will be valued, whereas those of

the second are set as null. Conversely, in the case of right
join, all the second entity observations which do not match

the first entity ones are also returned, nullifying the attributes

of the first entity and repeating the ones of the second.

Finally, with the full outer join, both left- and right-match

types of observations are returned.

Combining data in relational databases is usually done

through inner join on keys between tables that represent

different aspects of the same phenomenon. The relational

keys establish in these cases precise connections between
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observations from various entities. Any related observations

provide an enrichment of the information content of the

others. When relations become weak, inner joins return a

few combined observations and, to have results, match crite-

ria must be loosened. In this case, every observation from an

entity generally refers to more than one observation from

others. The informational content is thus enriched in a

weaker way. When the criteria are completely absent, there-

fore, the Cartesian product represents a fusion of all-with-all,

without any substantial reciprocal enrichment of the infor-

mation content of the observations. When known relation-

ships do not allow to get anything but a mere Cartesian

product between two entities, to enrich the information con-

tent of both, a different way to cause an interaction between

them is called for.

In this regard, one of the most challenging goals in

Machine Learning research24 is data fusion between datasets

in terms of attributes (variables) and observations (records),

no matter whether the entities refer to the same phenomenon,

or are only partially related, or even are not related at all. It

is important to emphasize that the in latter case, the coupling

of sources related to different phenomena extends the con-

cept of fusion to the connection of different “worlds,” and

this is the focus of the present paper. Fusion is the possibility

of considering two or more separate datasets as one. This

type of process can be seen in two different ways, both of

which are discussed below. On the one hand, it can be

thought of as a new dataset characterized by abstract varia-

bles into which both source worlds can be merged. On the

other hand, one can think of a transfer of one of the worlds

onto the other (or the others), translating it into the corre-

sponding variables of the destination world. In the classical

theory of possible worlds and its updates,6,7,22,23,27,31,32,38 an

entity can be transferred from a source world (dataset A) to a

destination world (dataset B) if at least one of its attributes is

shared in both worlds, but not in case of a void intersection

of attributes. In this paper, a way to make such “impossible”

transfer actually possible is presented. We have named this

approach Theory of Impossible Worlds (TIW for short) [The

Theory of Impossible Worlds has been developed by M.

Buscema and Semeion researchers at Semeion Research

Center (Rome, Italy), from 2017 to the present.] to the pre-

sent.]. It can be applied to both datasets from a same domain,

and to entirely heterogeneous datasets. As in human reason-

ing, where we often use mental models drawn from the anal-

ysis of a certain phenomenon to metaphorically infer

properties of a completely different phenomenon, we would

like to be able to perform the same kind of inferences in the

machine learning domain. TIW does exactly this, helping us

to empower machine learning environments with the capac-

ity to “fuse” different databases and variables belonging to

different phenomena into a same cognitive space, so that it is

possible to examine each phenomenon from the structural

viewpoint of the other. If this leads to a significant improve-

ment of our capacity to carry out pattern recognition in the

specific domains of the source phenomena, then this way of

proceeding makes sense and is conceptually useful. We will

show that this is actually the case for very diverse examples.

The fusion procedure requires a change of viewpoint upon

the data that, to a varying extent for different experiments,

yields significant gains in terms of information extraction

and correct classification. This approach proves to be partic-

ularly useful in those social sciences domains where phe-

nomena of interest are not fully amenable to empirical

analysis for lack of data on joint occurrences, but where par-

tial data for sub-phenomena are often available.

The idea that information may be considered the real

basic constituent of physics research has a long tradition, and

has been in recent times strongly advocated by the school of

thought originated in the Santa Fe Institute.4 This idea has

provided fertile ground for cross-disciplinary research aimed

at finding structural commonalities between phenomena

belonging to very different spheres. It has proved especially

effective in the application of physics-inspired methods to

the social sciences. H. Eugene Stanley coined the term econ-

ophysics in 1996 to describe the conceptual and methodolog-

ical contamination between physics and economics, and in

the space of a few years this intuition has led to the emer-

gence of a newly established research field.29

The TIW approach that we present in this paper sits in

this tradition of thought. In particular, we extend the

information-theoretic framework not only to the analysis of

information embedded in any dataset generated from any

natural or social process, but also to the informational rela-

tionships between any such couple of datasets, and in partic-

ular, to the detection of “hidden” information structures that

may emerge from the analysis of such relationships. Our

basic assumption is that relationships between elements of a

database (or of a composite database made of many data-

bases) explain the characteristics of the single elements to a

better extent than how the characteristics of the single ele-

ments explain their relationships: the relational dimension is

therefore the prime conceptual dimension of inquiry. Taking

this reasoning to the extreme level, we could say, that any

element exists only if connected to others through a complex

network of weighted relationships. Relationships “explain”

elements in the same way as information “explains” energy.

Establishing meaningful relationships between different

phenomena has always been a feature of human reasoning

and understanding, and here we try and explore the potential

of such feature to a new level, as a way to generate deeper

insights about the nature and structure of the individual phe-

nomena that we relate to each other.

II. THEORY

A. Definition of the model: The training phase

Definition 1. Given a M�N dataset, the N attributes are

the coordinates that characterize each observation as a hyper
point of that dataset.

Remark 1. We are allowed to consider each observation

as a hyper point since, after all the numerical transformations

of any qualitative variables, each dataset can be thought of

as a subset D � RN having cardinality jDj ¼ M.

Thus, we can consider attributes as points of view from

where it is possible to observe the data. The structure of a

generic dataset M�N is shown in Table I.
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Definition 2. A procedure that rewrites the attributes of

each dataset using a special set of matrix operations to

observe the same data from a different point of view is called

data transformation.

If the data transformation offers a point of view by using

a different number of coordinates with respect to the space

of origin, then it is called data projection.

Example 1. The Principal Component Analysis (PCA)3

is an example of data transformation. In this case, we get a

linear transformation of attributes: a new ordered set of

orthogonal variables is generated, with decreasing variances,

so that in the new system of coordinates the reading of the

data results optimally simplified.

Recently, Artificial Neural Networks (ANNs)

AutoEncoders (AE) have qualified as increasingly relevant

in deep learning strategies.5,21,26,34,37,39,40 Auto-encoders are

artificial neural networks used in the field of unsupervised

learning, generally with the aim to learn the main features of

the source data, and to make it possible to encode (and thus

decode) them with an economy of information. One of the

simplest possible ways to build an auto-encoder is to work

with Multi Layer Perceptron (MLP) equipped with at least

one hidden layer. and with a number of inputs and outputs

equal to the number N of variables in the dataset. The num-

ber of hidden units, i.e., the nodes sitting in the hidden layer,

may be arbitrary reduced or increased according to needs.

The flow diagram illustrating how an auto-encoder can be

used to rewrite the dataset is shown in Fig. 1.

An ANN AE can execute a non-linear data projection of

the attributes of the original dataset using its hidden units as

the new set of coordinates. The number of the hidden units

defines the dimensionality of the projection space. It is

known10 that each arrow connecting the different layers of a

neural network corresponds to a weight. Initially, the weights

are assigned random values, then each of the records of the

dataset is plugged into the input layer, and the output is cal-

culated accordingly. Inputs and outputs are then compared,

and weights are updated to ensure a closer correspondence

between inputs and outputs. The objective of the auto-

encoder is to learn to replicate as output what it sees as input,

encoding all the fundamental traits of the dataset into the

hidden units. At the end of the learning phase, the sum of the

squared differences between each input vector of the dataset

and its corresponding output vector [Eq. (1)] can be used to

define the accuracy of the new hidden coordinates: the closer

this amount to zero, the greater the accuracy of the hidden

coordinates.

Error ¼
XN

i¼1

Inputi � Outputið Þ2: (1)

As usual, N corresponds to the amount of variables of the

data.

Definition 3. Given n datasets DB1, DB2,…, DBn having

N1, N2,…, Nn attributes and M1, M2,…, Mn records, we call

Cartesian dataset the dataset whose records consist of the

Cartesian product DB1�DB2�� � � �DBn of the source data-

sets, i.e., the n starting datasets.

Remark 2. The number of inputs of the Cartesian dataset

is obviously given by the sum of the number of inputs of the

datasets we intend to fuse. In fact, if DB1 � RN1 ; DB2

� RN2 ;…;DBn � RNn then DB1 � DB2 � � � � � DBn

� RN1þN2þ���þNn . The number N ¼
Pn

i¼1 Ni is called input of
the Cartesian dataset. The number of patterns, given by the

product M ¼
Qn

i¼1 Mi, is called cardinality of the Cartesian
dataset. In the following, we will also use the notation M to

denote the summation of all the n cardinalities M1þM2

þ � � �þMn.

Our impossible worlds theory is based upon the idea that

ANNs AE can be trained simultaneously on different data-

sets, despite that both their variables and records have a void

intersection, with the primary goal of transporting the ele-

ments of the source world onto the others. In this paper, we

present two different ways to deal with this problem: the

double backpropagation and the analytic strategy.

1. Double backpropagation

The main idea behind the this approach is the data pro-

jection (see Definition 2) of the Cartesian dataset by means

of an autoencoder, considering as attributes the Cartesian

inputs. One of the most commonly used methods to correct

the weights of a MLP auto-encoder is back propagation.35 In

this paper, an innovative training algorithm, named double
backpropagation, is proposed as an alternative. The innova-

tion of this method is not in the architecture, which in fact

remains that of the MLP with the only difference that, for

this problem, the input consists of the Cartesian database,

TABLE I. Generic M�N dataset.

x11 x12 … x1N

x21 x22 … x2N

..

. ..
. ..

.

xM1 xM2 … xMN

2
666664

3
777775

FIG. 1. Example of AE architecture.
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that is the juxtaposition of n datasets, instead of a single one,

as shown in Fig. 2. To make the representation easier to

read, we chose to indicate by a single arrow all the links that

connect the input layer to the hidden, and the hidden layer to

the output, for each of the datasets. This means that each

arrow is intended as the union of all the arrows that start

from each of the nodes of DBa and arrive at each of the H
nodes of the hidden layer, in the case of the Input-hidden

links, and as the union of the arrows that start from the hid-

den layer and hit each of the nodes corresponding to DBb

in the case of the hidden-output connections, for all a, b
2 {1,…, n}.

In the case of a three-layer auto-encoder, as the one in

Fig. 1, three different types of units shall be considered: u
½in�
j ,

input units, u
½h�
j , hidden units, and u

½o�
j , output units, where j

2 {1,…, N} with N equal to the number of variables.

Equations (2) and (3) show the usual algorithm to compute

the output values. The ‘ superscript indexes the hidden and

output layers; in the case of a three-layer MLP, for instance,

‘ may be equal to 1 or 2. The input layer u
½in�
jðtÞ
¼ u

½in�
j ¼ xj is

sometimes associated with the value ‘¼ 0. The t subscript

indexes the iteration of the learning algorithm. The quantities

w
½‘�
jiðtÞ

correspond to the weights connecting unit i of layer ‘

� 1 to the unit j of layer ‘ during the iteration t. The function

f(x) is named activation, and it is often chosen as the sigmoi-

dal function f ðxÞ ¼ 1
1þe�x. Equations (4) and (5) calculate the

error value at the last layer. The entire output is compared

with the target value (the input itself in the case of AE).

Then the quantity (4) is calculated as the difference, for each

node, between the target and the output times the derivative

of f(x) at that point. Dwji
½2�
ðtÞ [Eq. (5)] is the value used to

update the weight. Equations (6) and (7) allow the error to be

calculated for all the layers preceding the last one—in our

case, only one. The r parameter is a learning coefficient cho-

sen according to the difficulty of the problem. By means of

Eqs. (8) and (9), weights are updated. The value M½‘�1�
denotes the number of units in the layer ‘ � 1, with the usual

convention such that, when ‘¼ 1, then ‘ � 1¼ 0 is the input

layer, so that u
½0�
iðtÞ ¼ u

½0�
i ¼ u

½in�
i

Net ‘
½ �
jðtÞ
¼
XM ‘�1½ �

i¼1

u ‘�1½ �
iðtÞ
� w ‘½ �

jiðtÞ
þ h ‘½ �

jðtÞ
; (2)

u ‘½ �
jðtÞ
¼ f Net ‘

½ �
jðtÞ

� �
: (3)

In the case of a 3-layer MLP

DoutjðtÞ ¼ targetj � u
o½ �

jðtÞ

� �
� f 0 Net 2½ �

jðtÞ

� �
; (4)

Dwji
2½ �
ðtÞ ¼ r � DoutjðtÞ � u

h½ �
iðtÞ
; (5)

D hiddeniðtÞ ¼ f 0 Net h½ �
iðtÞ

� �
�
XM o½ �

j¼1

DoutjðtÞ � wji
2½ �
ðtÞ; (6)

Dwik
1½ �
ðtÞ ¼ r � D hiddeniðtÞ � uk

in½ �
ðtÞ ; (7)

w 1½ �
jiðtþ1Þ
¼ w 1½ �

jiðtÞ
þ Dwji

1½ �
ðtÞ; (8)

w 2½ �
ikðtþ1Þ

¼ w 2½ �
ikðtÞ
þ Dwik

2½ �
ðtÞ: (9)

The reference to back propagation is motivated by Eq. (6),

where the error on the last layer is used to calculate the error

on the hidden layer. Unlike the classic back propagation, the

double back propagation does not consider the output as a

whole, but as composed of as many parts as there are data-

sets. Then, it calculates the error, one dataset DBp at a time,

by propagating the DoutjðtÞ value not only to the hidden layer

but also to all the other outputs not belonging to DBp, as

shown in Fig. 3. In this way, it is possible to rewrite Eqs. (6)

and (7) as Eqs. (10) and (11), respectively. The same proce-

dure must be repeated until the errors on all the n datasets

have been calculated

D hiddeni;DBp ðtÞ ¼ f 0 Net h½ �
iðtÞ

� �
�
XM DBp½ �

j¼1

DoutjðtÞ � wji
2½ �
ðtÞ; (10)

Dw ‘½ �
ik;DBp ðtÞ ¼

r � D hiddeni;DBp ðtÞ � uk
in½ �
ðtÞ if ‘ ¼ 1

r � D hiddeni;DBp ðtÞ � uk
o½ �
ðtÞ if ‘ ¼ 2;

8<
: (11)

where, in this case, k is an index running over all the input

units and all the output nodes but the ones of DBp.

Figure 3 shows the AE weights updating during the

learning phase. The output error of the i � th source dataset

corrects the hidden-output weights W[2](i) and, according to

the classic chain rule, is backpropagated to the all input-

hidden weights W[1](�). The great novelty of this network is

that the error is double-backpropagated also to the output

FIG. 2. Example of AE architecture with a Cartesian dataset as input. FIG. 3. Error propagation in the case of double back propagation.
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weights of the other source datasets W[2](k), where k 6¼ i.
This mechanism causes the weights that connect each data

source to the hidden layer to map the different sources in a

conjugate way on the same hidden layer. We call this error

propagation scheme double backpropagation.

To correctly synchronize the learning process, the updat-

ing is carried out in two phases: at first, in correspondence of

the presentation of a pattern, all the delta values are calcu-

lated and stored; then, in a second phase, at the end of the

cycle, the weights are updated. It should be noticed that each

weight is corrected once, but with the contribution of n
corrections per cycle.

At the end of the training phase, i.e., when the AE

reached convergence by making errors lower than the maxi-

mum threshold set by the user in replicating the input in

output, each combination of patterns of the source datasets,

i.e., each record of the Cartesian dataset, is represented by a

unique hidden vector as in the case of traditional auto-

encoders.

Definition 4. The unique hidden vector representing the

pth record (pattern) of the Cartesian dataset is called pth

fused component.
Consequently, all the weights matrices of the AE are the

parameters of the fusion of the source datasets in a unique

hyper-surface. This interesting aspect will be further

explored in the section on applications.

Once the learning process has finished, what we have

is an auto-encoder trained on the Cartesian dataset. In

order to obtain an actual fusion, it is necessary to introduce

the recall phase. Such phase allows the creation of both

types of previously introduced fused datasets: a dataset

made of virtual variables; and the transfer of any world

onto any other.

Definition 5. Given n heterogeneous datasets DB1,

DB2,…, DBn having N1, N2,…, Nn attributes and the same

numbers of records M, we define Leave one out dataset with

respect to the ith source dataset DBi the dataset obtained by

placing all the source datasets, except DBi, side by side

DBi ¼ DB1;DB2;…;DBi�1;DBiþ1…;DBn½ �: (12)

Definition 6. Given n heterogeneous datasets DB1,

DB2,…, DBn having N1, N2,…, Nn attributes and M1, M2,…,

Mn records, the dataset DBi ðDBiÞ that represents DBi consid-

ering just the N ¼ N1 þ N2 þ � � � þ Ni�1 þ Niþ1 þ � � � þ Nn

variables of the other n� 1 datasets, is called ith Slight
Dataset.

Remark 3. DBi ðDBiÞ represents how the ith Leave one

out dataset “sees” DBi, which corresponds to how each

record in dataset i would be expressed using variables from

the others.

To build each Slight dataset, we need to input the attrib-

utes of any pattern of each source dataset, xi, i 2 f1;…;Mg,
one at a time, setting all the other inputs to zero, and then

consider all the outputs except those corresponding to the

dataset itself (see Fig. 4). In other words, for each one of the

n datasets, at first, it is necessary to build a new dataset Cn

where each record x
½Cn�
i is expressed according to Eqs. (13)

and (14). Then, the previously trained network is interro-

gated by submitting the new records one at a time

x
Cn½ �

i ¼ xDB1

i ; xDB2

i ;…; xDBn
i

h i
; (13)

where

xDBk
i ¼ f0gNk ¼ f0;…; 0

zfflfflffl}|fflfflffl{Nk

g if xi 62 DBk

xi if xi 2 DBk;

8>><
>>:

(14)

with k 2 {1,…, n}.

Remark 4. It should be noted that, given xi 2 DBk; jxij
¼ Nk while jx½Cn�

i j ¼ N and xijDBj
¼ 0 when j 6¼ k. Moreover,

the order with which the vectors xi or f0gNk are arranged

must reflect the order according to which the Cartesian data-

set was created.

Each time a new record x
½Cn�
i is submitted to the network,

the activation values of the hidden units, hi, and the output

vector, yi are saved. If we consider the set of all the M hidden

vectors saved during the procedure, we obtain the fusion of

all the starting n datasets in one, described by the H abstract

variables corresponding to the cardinality of the hidden

nodes. If, instead, we consider the new dataset consisting of

the records described by Eq. (15), we obtain the translation

of the k � th dataset into the variables of all the n � 1 others,

i.e., the Slight dataset DBk ðDBkÞ

x
½DBk

i ðDBkÞ� ¼
[n

i ¼ 1

i 6¼ k

yi: (15)

Remark 5. x
½DBk ðDBkÞ�
i represents the i � th pattern of the k �

th Slight dataset. In this case jx½DBk ðDBkÞ�
i j ¼ N � Nk

Definition 7. The whole output of all datasets given by S

þTIW ¼ DBi þ DBi ðDBiÞ is named Combined Dataset.
Definition 8. The dataset obtained by collecting all the fused

components (Definition 4) relevant to the Cn dataset is said

Fused Dataset–DBP (FDDBP).

We created a new point of view through which we can

observe each individual in the light of all the specific attrib-

utes of the other datasets.

At the end of the learning phase, for each source dataset,

we get four different matrices of data:

FIG. 4. Recall strategy that allows the creation of the FD and the Slight

datasets.
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• The source dataset S ¼ DBi;
• The slight dataset TIW ¼ DBi ðDBiÞ (i.e., the same records

seen from the “point of view” of the other dataset);
• The combined dataset Sþ TIW ¼ DBi þ DBi ðDBiÞ.
• The Fused Dataset FDDBP.

2. Analytic strategy

Although double backpropagation presents an interest-

ing structure, in some cases it has shown a few limitations.

When the datasets to be fused are very large, the learning

phase could be slow. Furthermore, the double backpropaga-

tion strategy allows only the use of multilayer perceptron

ANNs. A different approach other than double backpropaga-

tion is possible, in order to speed up the learning phase, and

to allow the use of different ANNs. This different approach,

the analytic strategy, is summarized in Fig. 5.

In this case, we consider two completely different data-

sets: A, characterized by NA variables and MA records, and B,

with NB variables and MB records, for which we assume no

intersection between both variables and records. Each of the

datasets is analyzed by means of two independent auto associa-

tive neural networks, ANN1 and ANN2, which have a hidden

layer made of the same number H of nodes, although, obvi-

ously, they will take different values as the weights have been

trained on completely different datasets. The only precaution

necessary to ensure that the fusion will be correct is to start

from the same initial configuration of random weights. The

auto associative nets work as encoders and decoders of data-

sets. After the training phase, each record of dataset A is the

input of ANN1, and the relevant hidden layer is saved. The rele-

vant equation is shown in (16), where gA is the transfer func-

tion from the input to the hidden layer (encoding), and A
indicates that the weights w

½A�
1 are being used

AH ¼ ANN1ðAjHAÞ ¼ gA x A½ �;w A½ �
1

� �
: (16)

At the end of this procedure, we get a new dataset AH

having H variables and MA records, corresponding to the

encoding of the records of A. We use the weights of ANN2 in

order to decode AH and switch from H variables into NB. The

result of such transformation corresponds to the dataset

AðAÞ ¼ BðAÞ, composed by the starting MA records of data-

set A expressed by the M variables of dataset B

BðAÞ ¼ ANN2ðAHjHBÞ ¼ fB gA x A½ �;w A½ �
1

� �
;w B½ �

2

� �
; (17)

where fB is the transfer function from the hidden to the out-

put layer (decoding) of ANN2. In the same way, each record

of the dataset B is encoded into H variables according to the

relevant auto associative net. We get a MB�NA dataset cor-

responding to the point of view of A over B.

Equations (18) and (19) illustrate the traditional way by

means of which neural networks produce their outputs.

Equations (20) and (21), in contrast, show the innovative way

through which one can mix up the weight matrix and get the

output of dataset A from the point of view of dataset B

y A½ � ¼ fa ga x A½ �;w A½ �
1

� �
;w A½ �

2

� �
; (18)

y B½ � ¼ fb gb x B½ �;w B½ �
1

� �
;w B½ �

2

� �
; (19)

y BðAÞ½ � ¼ faðbÞ gb x B½ �;w B½ �
1

� �
;w A½ �

2

� �
; (20)

y AðBÞ½ � ¼ fbðaÞ ga x A½ �;w A½ �
1

� �
;w B½ �

2

� �
: (21)

This procedure actually allows us to obtain both types of

fusion we had in mind. Considering the concatenation of HA

and HB, we obtain the fusion of the starting datasets

expressed in terms of virtual variables not belonging to either

of the two worlds. If we consider A(B) and B(A), we obtain

the so-called transfer of one world onto another.

Thus, also in this case, we will have four different data

matrices:

• The source dataset S ¼ DBi.
• The slight dataset TIW ¼ DBi ðDBiÞ [i.e., the same records

seen from the “point of view” of the other dataset

FIG. 5. Impossible world flow chart

using the Analytic Strategy (n¼ 2).
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corresponding to corresponds to the juxtaposition of all

the i � th records of the datasets built as in Eqs. (20) and

(21)].
• The combined dataset Sþ TIW ¼ DBi þ DBi ðDBiÞ.
• The fused dataset FDAS.

Comparing the obtained datasets with the definitions of

Slight Dataset, Combined Dataset and Fused Dataset previ-

ously introduced (Definitions 6, 7, and 8), a difference

should be noticed. Although the first two definitions are still

valid, the definition of Fused Dataset in this case does not

work. In fact, the FDAS dataset was built by considering the

records of the source datasets rewritten by the hidden units

of the different auto-encoders. It therefore seems reasonable

to slightly modify definition 8 to make it more general.

Definition 9. Given n heterogeneous datasets DB1,

DB2,…, DBn having N1, N2,…, Nn attributes and M1, M2,…,

Mn records each, the dataset composed by all the source

records rewritten by the hidden units of one or more auto-

encoders used to learn the n source datasets according to any

of the two strategies is named Fused Dataset (FD).

B. The transfer fitness

An evaluation of the fitness of the combination of het-

erogeneous datasets (impossible worlds transfer) according

to the procedure described above is possible if each one of

the source datasets to be combined has an independent target

or, in other words, if we can put each one of these datasets

through a supervised learning process. If such independent

targets condition is satisfied, then we need to apply a K

Cross Validation25 test for each of the source datasets (a

supervised Multilayer Perceptron may be used). We repeat

the same K Cross Validation test for each dataset using the

new attributes generated by the fusion procedure (the values

of the variables that each dataset will take according to the

variables types of the other datasets, i.e., S and SþTIW

datasets), in order to compare the results. Figures 6 and 7

show a summary of the validation procedure.

The analysis of fitness may be done for two different

purposes:

1. In order to test which records maintain, reduce or increase

their informational content, passing from one dataset to

another one;

2. In order to test whether adding to the source input of a

dataset the new attributes that it inherits from the other

datasets, its global information content increases in a sig-

nificant way.

Definition 10. Given n heterogeneous datasets DB1,

DB2,…, DBn having N1, N2,…, Nn attributes, M1, M2,…, Mn

records and t1, t2,…, tn independent targets, we define as

TIW Fitness the hyperbolic tangent of the difference between

the real and the transferred accuracy

FðDBiÞ ¼ tan hðTIWi � RealiÞ; (22)

¼ eðTIWi�RealiÞ � e�ðTIWi�RealiÞ

eðTIWi�RealiÞ þ e�ðTIWi�RealiÞ
; (23)

where TIWi corresponds to the accuracy attained by perform-

ing the classification of the ith dataset after the fusion proce-

dure, while Reali is the original accuracy.

The choice of this specific function is linked to its prop-

erties. When TIWi>Reali, F(DBi) grows rapidly towards 1,

whereas if TIWi<Reali, F(DBi) takes opposite values close

to �1. In case TIWi�Reali then F(DBi)� 0, so the transfor-

mation did not bring any particular advantage in terms of

correct classification.

C. A step forward

Once the fusion phase is terminated, the trained AE is

able to generate a huge number of simulations of dynamic

scenarios, according to the What If Theory.16 When a subset

of inputs of the combined dataset is constrained to specific

FIG. 6. TIW validation procedure

where the datasets to be combined are

two. The two branches show how to

compare the classification performan-

ces obtained by the source dataset and

by the transferred one.
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values, the AE is dynamically able to adjust the values of all

the other variables in a finite number of cycles. The conver-

gence point reached by the trained AE represents the implied

scenario for the initial choice of constrained values.

Definition 11. The convergence hyper-point reached by

the trained AE is called Metaphoric Point.
Remark 6. We have called it “Metaphoric” since the sys-

tem is creating a scenario, i.e., is answering a question, by

providing a hyper-point belonging to the “Cartesian world.”

It means that the system is mixing together different (and

perhaps unconnected) worlds to make the answer clearer,

exactly as a human does by means of metaphoric examples

to clarify a concept.

According to this strategy, a trained AE, with the help

of specific algorithms, such as Spin Net,8,15 can work as a

Content Addressable Memory, mixing up variables and

records that originally belonged to different, unrelated data-

sets, into a new, common causal process. The typology of

problems that a trained AE, used as dynamic associative

memory, can cope with has already been studied for simple

cases.15 A same AE for the purpose of TIW may be imple-

mented using different ANNs: the traditional Multilayer

Perceptron with backpropagation learning rule is the most

common choice. Also a New Recirculation ANN9 is suitable,

and maybe more suitable than backpropagation,20 for this

kind of task. The AutoCM ANN15 has shown also to perform

pretty well in auto associative learning, and it is very effi-

cient as well as a Content Addressable Memory using its spe-

cific adaptive algorithm, the above-mentioned Spin Net, for

the recall phase.

III. APPLICATIONS

In this section, different applications of the theory of

impossible worlds will be presented. First, we consider

supervised datasets and classification issues. Four different

tests are reported. Two of them deal with pairs of datasets

belonging to the same domain—Digits and Credit scoring—

whereas the third and the fourth ones consider instead data

from couples of completely different, well-known problems:

Parity-Negation and Parity-Spirals. Subsequently, we apply

TIW in an unsupervised context, in order to show that fused

datasets preserve the knowledge stored in the data. We

choose to present several different applications to illustrate

the flexibility of application and the peculiar features of the

method, so that readers can appreciate aspects that especially

concern their particular research interests.

A. Examples of supervised applications

Supervised applications are those where the main task

of the artificial intelligence algorithm is to learn to recognize

the correct gold standard, called target, for each record in the

dataset.

1. Hand-written digits

The first application of TIW we present considers two

different datasets of hand written digits. The first one is

made of 5620 digits in a 8� 8 grid (64 inputs coded as inte-

gers between 0 and 16).28 The second is made of 1593 digits

in a 16� 16 grid (256 Boolean inputs).36 The two datasets

are completely different (input length, patterns and coding

format), but the target is the same (one of ten possible out-

puts). Some patterns selected from the datasets are shown in

Fig. 8. The target for each record corresponds to the class to

which it belongs: zero, one, …, nine.

We projected the 64 inputs onto 256 (D64 ! D256), and

the 256 onto 64 (D256 ! D64). After removing the targets

from D256 and D64, we considered their Cartesian Dataset.

We used it to train a back propagation AE, according to the

fusion strategy (Double Back Propagation) presented above

(see Sec. II A 1, Figs. 2 and 3).

At the end of the learning process, for each source data-

set, we are interested in the analysis of the following three

different matrices of data:

FIG. 7. TIW validation procedure

where the datasets to be combined are

two. In this case, the two branches

show how to compare the classification

performances obtained by the source

dataset and by the combined one.
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• The original dataset S ¼ D64 (respectively D256);
• The slight dataset TIW ¼ D64 ðD64Þ ¼ D256ðD64Þ (respec-

tively D256 ðD256Þ ¼ D64ðD256Þ) (i.e., the same records

seen from the “point of view” of the other datasets);
• The combined dataset S þ TIW ¼ D64 þ D256(D64)

[respectively D256 þ D64(D256)].

We can now carry out the same classification task in

multiple rounds: once upon the original data, once again

upon the transferred data, and finally upon the fused compo-

nents matrix for each of the datasets, and then compare the

results. The standard steps for a classification are: divide the

sample into training and testing sets; train the network by

repeatedly exposing it to the records in the training set and to

the correct targets; ask the net to predict the target of records

belonging to the testing set. To make the experiments com-

parable, we have split the datasets into two halves (training

and testing set) using the same criterion for each group. In

particular, S, TIW and SþTIW share the same subset A for

training, and the subset B for blind testing (and subsequently

the other way round). Table II shows the results for D64,

whereas Table III shows results for D256.

Remark 7. Both tables report in the first column the

name of the analyzed dataset, the ten targets to estimate, the

global accuracy, the number of the errors, and the error stan-

dard deviation. The other columns report the average accu-

racy of the double blind test validation (training on subset A,

testing on subset B, and the other way round) for each data-

set. Column 2 provides the results from using the source

dataset; Column 3 the results from using only the new TIW

input; and finally Column 4 the results from using the source

input and the new TIW input together (i.e., the input of the

Cartesian dataset).

The results show that the transformation of the dataset

64� 10 into the 256 variables of the other dataset generates

an equivalent or more informative dataset for pattern recog-

nition, whereas the transformation of the 256� 10 into 64

variables generates a dataset that is less informative for

supervision tasks. This means that the logic of the 256� 10

dataset applied to the 64� 10 dataset is effective, but not

vice versa. Figure 9 shows how some patterns of the 64� 10

dataset are projected onto the 256 dimensions of the other

dataset.

These results also show that when we augment the origi-

nal input with the new one generated by TIW [augmented

input: DBi þ DBi ðDBiÞ], the pattern recognition capacity for

both datasets increases significantly. That is to say: when we

observe the same phenomenon from different points of view

simultaneously, our understanding improves. Table IV

shows the relevant fitness values.

The fitness table confirms our remark. The D64 ! D256

transformation yields an improvement in terms of results,

whereas the D256 ! D64 one definitely does worse with

respect to the source dataset. What is interesting to notice is

that in both cases there is an improvement in prediction

when the SþTIW dataset is used. This example, therefore,

shows how in the transition from one world to another, clas-

sification capacity can improve or worsen. What is particu-

larly surprising is that even if the transfer results in a worse

performance, the combined dataset always improves.

2. Credit scoring datasets

In this experimentation, we consider two datasets report-

ing good vs. bad payers of two different banks: an Australian

bank,1 and a German one.2 The Australian dataset is made of

14 inputs (not declared) and 690 patterns (383 good payers

and 307 bad payers). The German dataset is made of 20

inputs and 1000 patterns (700 good payers and 300 bad

payers). Differently from the previous case, we choose Auto

CM NN15 as the AE, and adopt the analytic strategy while

TABLE II. D64! D256 results.

D64! D256 S TIW SþTIW

0 98.87 98.30 98.30

1 98.93 99.44 99.46

2 99.45 97.71 99.45

3 97.30 98.93 98.39

4 98.36 98.93 98.93

5 96.70 96.70 98.90

6 98.35 97.25 97.80

7 98.88 98.33 98.88

8 90.21 94.23 94.81

9 92.25 92.24 92.80

Global Acc. 96.93 97.21 97.77

Errors 27.50 25 20

St. Dev. 6.4 2.8 7.1

TABLE III. D256! D64 results.

D256! D64 S TIW SþTIW

0 96.93 82.56 96.93

1 91.52 58.35 93.06

2 91.84 58.45 91.84

3 88.47 64.43 89.69

4 88.27 56.53 89.38

5 91.94 50.08 91.37

6 97.51 64.00 95.54

7 87.96 47.41 88.45

8 87.94 54.67 90.80

9 89.22 48.80 89.86

Glob. Acc. 91.16 58.53 91.69

Errors 70.5 329 66

St. Dev. 14.85 9.90 22.63

FIG. 8. Random samples of hand written digits taken from the two datasets.
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following the usual TIW protocol already described [i.e., (i)

Remove the targets from the two datasets; (ii) Fusion learn-

ing by an Auto Encoder (Auto CM); (iii) Independent cross

validation of the two source datasets using supervised

ANNs; (iv) Independent cross validation of the transformed

datasets with the new inputs (TIW), using supervised ANNs;

(v) Independent cross validation of the two datasets with an

augmented input vector—source inputsþTIW inputs—

using supervised ANNs].

Tables V and VI show analogous results with respect to

the previous experiment. Using only the “point of view” of

each dataset on the other (TIW), we obtain, more or less, the

same results we get by using the source datasets (S). If we

combine the two input vectors (SþTIW), global accuracy

increases. Table VII shows the fitness values of both

transformations.

Furthermore, TIW has a strong potential for applications

in socio-economic research. As seen in the example, it

allows to synergize the informational content of non-

conformable databases covering analogous phenomena. It

can also enable the application of powerful “metaphorical”

thinking to databases covering very different phenomena,

including some largely overlooked by policy analyses, but

that might become more relevant once their potential con-

nections to more acknowledged ones are explored from mul-

tiple “viewpoints.” A relevant example is the emerging field

of research on culture-driven crossovers, namely, the still

under-developed investigation of the structural relationships

between active cultural participation (a variable that has so

far received very little attention in policy analyses) and a

variety of diverse, highly relevant policy domains such as

health; innovation; environmental sustainability; social cohe-

sion, etc.33 On another note, TIW may be very useful in

cases where abundant data exist on two separately relevant

FIG. 9. How the 16� 16 digits

(256� 10 dataset, the big digits) “see”

the 8� 8 digits (64� 10 dataset, the

smaller digits). First line from left: 3,

5, 8, 9. Second line from left: 3, 6, 7, 9.

TABLE IV. Fitness table for D64 and D256.

Source Dataset TIW SþTIW

D64 0.273 0.686

D256 �1 0.485

TABLE V. CrAU! CrGE results.

CrAU! CrGE S TIW SþTIW

ANN1 Bad payers 90.91 90.91 90.26

Good payers 86.91 86.39 90.58

Mean acc. 88.91 88.65 90.42

Weighted acc. 88.70 88.41 90.43

Errors 39 40 33

ANN 2 Bad payers 88.89 94.12 90.85

Good payers 82.81 78.12 83.85

Mean acc. 85.85 86.12 87.35

Weighted acc. 85.51 85.22 86.96

Errors 50 51 45

ANNavg Bad payers 89.90 92.52 90.56

Good payers 84.86 82.26 87.22

Mean acc. 87.38 87.39 88.89

Weighted acc. 86.96 86.96 88.70

Errors 45 45 39

TABLE VI. CrGE! CrAU results.

CrGE! CrAU S TIW SþTIW

ANN1 Bad payers 76.29 74.29 76.57

Good payers 65.33 65.33 68.67

Mean acc. 70.81 69.81 72.62

Weighted acc. 73.00 71.60 74.20

Errors 135 142 129

ANN 2 Bad payers 77.14 76.57 79.71

Good payers 70.67 69.33 72.67

Mean acc. 73.90 72.95 76.19

Weighted acc. 75.20 74.40 77.60

Errors 124 128 112

ANNavg Bad payers 76.72 75.43 78.14

Good payers 68.00 67.33 70.67

Mean acc. 72.36 71.38 74.41

Weighted acc. 74.10 73.00 75.90

Errors 129.5 135 120

TABLE VII. Fitness table for CrAU and CrGE.

Source Dataset TIW SþTIW

CrAU ANN1 �0.254 0.907

ANN2 0.264 0.905

ANNavg 0.005 0.906

CrGE ANN1 �0.762 0.948

ANN2 �0.740 0.980

ANNavg �0.753 0.967

055914-10 Buscema et al. Chaos 28, 055914 (2018)



phenomena whose mutual relationship is still ill-understood

(e.g., gender inequality and education, or organizational

behavior; consumer choice and psychological well-being,

etc.).

In this case, although the TIW fitness is not impressive,

the SþTIW fitness is pretty high. This example, besides

confirming what was observed in the previous application,

shows a further characteristic of the Theory of Impossible

Worlds. In this case, the 14 variables of the CrAU dataset

were not declared. By transferring from one world to

another, however, it is possible to see the TIW-reconstructed

value of the variables that Australian payers would face in

the world CrGE, thus obtaining additional information.

3. Parity4 and Negation4

In this experimentation, two independent datasets have

been used.

The Parity dataset is a small dataset made of 16 records,

4 boolean variables and the target t 2 {0, 1}. For each record

pi, ti¼ 1 if the occurrences of values equal to 1 in pi is an

odd number, and 0 otherwise.

The Negation dataset has 16 records, 4 boolean varia-

bles and the target t 2 {0, 1}3. For each record nj¼ (nj1, nj2,

nj3, nj4), if nj1¼ 0 then t¼ (nj2, nj3, nj4), whereas if nj1¼ 1

then t¼ (1 � nj2, 1 � nj3, 1 � nj4).

Both problems are famous for being challenging in

terms of convergence of learning processes. TIW can help

also for this kind of problem. The fusion of datasets has been

carried out with three different kinds of auto-encoders: Auto

CM NN,15 Multi Layer Perceptron (MLP),35 and New

Recirculation NN (NRC).9 Subsequently, a MLP with three

hidden units has been used to learn the following four data-

sets: the source dataset S, the CM fused dataset (TIWCM), the

MLP fused dataset (TIWBP), and the NRC fused dataset

(TIWNRC). Finally, the results have been comparatively

analyzed.

In the first case (S dataset used as input to the MLP), the

Root Mean Square Error (RMSE) value remained pretty con-

stant and equal to 35%, as shown in Fig. 10(a), and no learn-

ing occurred. The training was stopped after more than 6000

epochs.

In the case of TIWNRC, an interesting error reduction has

been observed. After a few epochs, the RMSE value dropped

from 35% to 15%. Furthermore, after about 2200 epochs, the

algorithm quickly converged to zero error [Fig. 10(b)].

The cases of TIWBP and TIWCM are even more interest-

ing, since learning occurred after about 1000 and 500

epochs, respectively, as reported in Figs. 10(c) and 10(d).

It should be noticed that in Fig. 10(a), the delta values of

hidden units were close to zero, while the ones for the output

were high. This implies that MLP was wrong on the output

and no learning took place. In Figs. 10(b)–10(d), after a start-

ing phase analogous to that of Fig. 10(a), the delta values for

the output went down to zero and the hidden units started to

learn. This example shows how TIW can be useful in

improving convergence speed. It also stresses the fact that no

noise is being added, but only real, hidden information.

4. Spirals and Parity8

The Spirals dataset is a 384� 2 dataset representing the

coordinates ðx; yÞ 2 R2 of points belonging to two concen-

tric spirals (see Fig. 11). The target is a Boolean value char-

acterizing the spirals: if t¼ 1 then the point belongs to spiral

A, if t¼ 0 the point belongs to spiral B. Parity8 is equivalent

to the dataset described above in III A 3, but involving 8 bits

instead of 4.

The same analysis of Sec. III A 3 has been carried out

and, also in this case, TIW proved to be important for con-

vergence as reported in Fig. 12. The source dataset RMSE

starts to decrease after 700 epochs, although slowly, whereas

already after 100 epochs the SþTIW’s RMSE is signifi-

cantly reduced.

By observing how inputs from Parity see Spirals data

after the fusion, an original behaviour has been noticed. The

fused dataset has been linearly scaled into the range [0; 1] to

make the values comparable, and the records belonging to

spiral A have been separated from those in B. Then, the lin-

ear correlation among rewritten parity input and the appro-

priate spiral coordinates has been computed, and the relevant

values are reported in Table VIII.

Table VIII shows low correlation among parity inputs

and the y values, and a pretty highly negative correlation

with the x coordinates. Then, parity input and the spirals

have been crossed over, so that the correlation between the

8 variables of parity of points belonging to A and the input

of B—and vice versa—can be computed. Results are shown

in Table IX. In this case, the correlation sign changes and,

especially for In3, In5 and In8 the values are rather large in

module. This “reversed” correlation appears evident by plot-

ting the input of Spirals and comparing them to the input of

Parity as shown in Figs. 13(a), 13(b), and 13(c), where the

values of In3, In5, and In8 are compared to the input of B.

This relationship seems to suggest that each Spiral can learn

from Parity something about the other one, and that this

fused knowledge plays a relevant role during convergence. It

seems like the Spirals’ input convey learning about which is

the right spiral for each record, while the Parity ones about

which one is not. The fusion of these two different but com-

plementary types of knowledge speeds up learning.

B. An example of an unsupervised application

Unsupervised applications are problems for which no

targets are introduced, and the purpose of the research is to

understand the deep structure of the data under study.

1. Gang and food

In this section, two unsupervised datasets are analyzed

to show how the impossible world transfer preserves the

relationships already present in the data. Gang is a small

database made of 27 records corresponding to members of

the “Jets vs. Sharks” gangs taken from the West Side Story

musical, and five variables that we use to characterize each

of them (name of gang member, gang name, age range, level

of education, marital status and occupation). The dataset is

summarized in Table X.
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Food is a 16� 9 dataset that reports the amount of 9 dif-

ferent kinds of foods eaten in 16 European countries (see

Table XI).13,14

After having fused the data by means of the double back

propagation method, a new dataset TIWG–F made of 43 varia-

bles and 14� 9¼ 126 records has been created. TIWG–F has

been processed with Auto CM NN15 to obtain the relevant

similarity graph,15 as shown in Fig. 14. The similarity graph

is the Minimum Spanning Tree (MST),18 whose weights are

derived from the Auto CM NN learning weights.15

The graph seems to show that the geographical relation-

ships are preserved. On the right, one finds the main coun-

tries of the Mediterranean diet: Italy, Greece and Spain. In

the central part, Portugal, Belgium, Germany, France,

Austria and the Netherlands are strongly linked to each

other. Great Britain and Ireland, as well as Sweden and

Norway, are very close. Furthermore, in the lower part of the

graph, there are Denmark, Finland and Iceland.

Another interesting aspect is shown in Tables XII and

XIII representing each dataset through the point of view of

the other. So we could say, in a metaphorical sense, that if

Italy were a gangster, he would be a 30-year-old high school

educated married pusher, and if Clyde were a country, milk

would be a very popular drink. So, as noticed before, TIW

allows to reason about a world by using attributes from

another one, exactly like a metaphor does.

IV. A STEP BY STEP EXAMPLE

Whereas the procedure introduced in this paper is rather

sophisticated and complex, this section is devoted to the

step-by-step explanation of a typical example in which the

FIG. 10. (a) Source Dataset: RMSE error curve and the delta values of hidden and output units. (b) TIWNRC Dataset: RMSE error curve and the delta values of

hidden and output units. (c) TIWBP Dataset: RMSE error curve and the delta values of hidden and output units. (d) TIWCM Dataset: RMSE error curve and the

delta values of hidden and output units. SOURCE: Semeion Software n.12 ver.29.1 Semeion.
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whole methodology is used. In this case we used the analytic

strategy (Sec. II A 2).

A. Step 1: Datasets

In order to apply the Theory of Impossible Worlds, it is

necessary to have at least two different datasets to join. As

has been repeatedly shown, there is no constraint on datasets,

that may have no intersection for both variables and records.

In addition, the two datasets can belong to completely sepa-

rate universes. In this case, we chose:

Food: The same 9� 16 dataset seen in III B, with the

addition of three targets that correspond to the geographical

position occupied by the various European countries (Table

XIV). The variables are: Cereals, Rice, Potatoes, Sugar,

Vegetables, Meat, Milk, Butter, Eggs. The targets are: Center

Europe, Scandinavian (North), Mediterranean (South).

FIG. 12. RMSE error curves and delta values of hidden and output units of Source (on the left) and TIW datasets (on the right). SOURCE: Semeion Software

n.12 ver.29.1 Semeion.

TABLE VIII. Linear correlation among the input of one of the spirals and

the parity input of points belonging to it.

Parity input Ax Ay Bx By

In1 �0.04 �0.24 0.06 0.27

In2 �0.68 0.45 �0.64 0.49

In3 �0.88 0.19 �0.92 0.22

In4 �0.31 �0.02 0.42 0.01

In5 �0.89 0.06 �0.94 0.08

In6 �0.81 0.21 �0.84 0.28

In7 �0.51 �0.01 �0.24 �0.18

In8 �0.83 0.24 �0.87 0.28

FIG. 11. Spirals dataset graphic

representation.
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Zoo: A dataset composed of 99 species of animals with

16 attributes and belonging to 7 different types that will be

considered as targets. The variables are: hair, feathers, eggs,

milk, airborne, aquatic, predator, toothed, backbone,

breathes, venomous, fins, legs, tail, domestic, catsize. The

targets are: Mammal, Bird, Reptile, Fish, Amphibian, Bug,

Invertebrate.19 A little sample of the dataset is shown in

Table XV.

B. Step 2: The training phase

We train independently the two or more datasets using

two or more auto-encoders having the same number of

FIG. 13. Comparison between the less correlated input

of Parity and the y coordinate of spiral B. (a) Plot of In3

vs spiral By. (b) Plot of In5 vs spiral By. (c) Plot of In8

vs spiral By.
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hidden units (one hidden layer is enough). In this case, two

MLP having 25 hidden units have been used. The first MLP,

ANN1, was trained on the Food dataset and had a 9� 25� 9

structure, with 9 inputs, 25 hidden and 9 outputs. The second

one, ANN2, was trained on the Zoo dataset and therefore the

relative architecture was 16� 25� 16.

C. Step 3: The weights and the other features
extraction

After the training phase, the weights matrices of the two

or more auto-encoders and the values of the hidden units are

saved, according to the recall strategies seen in Sec. II.

D. Step 4: The point of view of each dataset on the
others

As shown by Eqs. (16) and (17), the values of the activa-

tions of the hidden layer of a dataset are used as input for the

hidden layer of another. The output is then generated using

the second weights matrix (decoding matrix) of the latter. In

this way, the first dataset is rewritten through the variables of

the other one. Then, the second dataset is decoded using the

second matrix of the auto-encoder trained on the first. If

there are more than two datasets to be merged, this procedure

must be repeated for each pair (see Sec. II A 2).

In our example, we first coded the Food dataset by going

from 9 to 25 variables, then we used the second weights

matrix of ANN2 to decode the 25 variables into the 16 of the

Zoo dataset. Similarly, we have first coded the Zoo dataset,

going from 16 to 25 variables, then, using the decoding

matrix of ANN1 we have translated Zoo into the 9 variables

of the Food dataset. Figure 15 shows how the European

countries would look like if they were animals, whereas

TABLE X. Gang dataset.

Name Gang Age Education Status Occupation

ART Jets 40 Junior school Single Pusher

AL Jets 30 Junior school Married Burglar

SAM Jets 20 College Single Bookie

CLYDE Jets 40 Junior school Single Bookie

MIKE Jets 30 Junior school Single Bookie

JIM Jets 20 Junior school Divorced Burglar

GREG Jets 20 High school Married Pusher

JOHN Jets 20 Junior school Married Burglar

DOUG Jets 30 High school Single Bookie

LANCE Jets 20 Junior school Married Burglar

GEORGE Jets 20 Junior school Divorced Burglar

PETE Jets 20 High school Single Bookie

FRED Jets 20 High school Single Pusher

GENE Jets 20 College Single Pusher

RALPH Jets 30 Junior school Single Pusher

PHIL Sharks 30 College Married Pusher

IKE Sharks 30 Junior school Single Bookie

NICK Sharks 30 High school Single Pusher

DON Sharks 30 College Married Burglar

NED Sharks 30 College Married Bookie

KARL Sharks 40 High school Married Bookie

KEN Sharks 20 High school Single Burglar

EARL Sharks 40 High school Married Burglar

RICK Sharks 30 High school Divorced Burglar

OL Sharks 30 College Married Pusher

NEAL Sharks 30 High school Single Bookie

DAVE Sharks 30 High school Divorced Pusher

TABLE XI. Food dataset.

Cereals Rice Potatoes Sugar Vegetables Meat Milk Butter Eggs

Belgium 72.20 4.20 98.80 40.40 103.20 102.00 80.00 7.70 14.20

Denmark 70.50 2.20 57.00 39.50 50.00 105.80 145.20 4.10 14.30

Germany 71.30 2.30 74.10 37.10 83.10 97.20 90.70 6.90 14.80

Greece 109.80 5.40 90.00 30.00 229.50 77.10 63.10 0.90 11.30

Spain 71.40 5.80 107.80 26.80 191.70 102.10 98.40 0.60 15.30

France 73.00 4.30 78.20 34.10 95.00 110.50 98.90 8.90 15.00

Ireland 93.40 3.20 151.50 34.80 55.00 105.00 185.90 3.40 11.40

Italy 110.20 4.80 38.60 27.90 181.90 88.00 65.00 2.40 11.10

Netherland 54.60 5.00 86.70 39.70 99.00 89.40 136.20 5.40 10.70

Portugal 86.00 5.70 106.60 29.40 100.00 75.50 96.00 1.50 7.70

Gr. Britain 74.30 4.50 94.10 39.80 60.00 74.40 129.30 3.20 10.80

Austria 68.70 4.20 62.60 37.10 81.90 93.40 121.30 4.30 13.40

Finland 70.10 5.40 61.60 35.70 52.60 65.00 208.40 5.80 10.90

Island 79.70 1.90 50.20 54.90 50.00 71.70 205.60 4.60 11.30

Norway 76.90 3.50 73.20 37.30 48.30 54.90 176.50 2.10 11.30

Sweden 69.30 4.30 70.00 37.50 49.50 60.50 154.10 5.70 12.90

TABLE IX. Linear correlation among the input of one of the spirals and the

parity input of points belonging to the other.

Parity input Ax Ay Bx By

In1 �0.06 �0.27 0.04 0.24

In2 0.65 �0.49 0.68 �0.45

In3 0.92 �0.22 0.88 �0.19

In4 �0.42 �0.01 0.31 0.02

In5 0.94 �0.08 0.89 �0.06

In6 0.84 �0.28 0.81 �0.21

In7 0.24 0.18 0.51 0.01

In8 0.87 �0.28 0.83 �0.24
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Fig. 16 shows a little sample of the Zoo dataset as explained

by the 9 variables of Food.

Obviously, once the variables of another dataset are

enhanced by the previously shown procedure, it is possible

to classify the new records, i.e., to determine the unknown

relevant targets. For example, it will be possible to associate

each country with its target: what animal would each country

be? Many algorithms can be chosen for this task. In this

case, two different approaches have been used: a well known

machine learning algorithm, the k Nearest Neighbour (kNN),

and a powerful artificial neural network, SineNet.15 Tables

XVI and XVII show the results of classification. The two

Machine Learning Systems (MLS) basically seem to be in

agreement, although the different nature of their functioning

leads to different outputs. kNN produces a hard-edged result,

while the one of SineNet is fuzzy and easier to interpret. So,

FIG. 14. Similarity graph based on Auto CM NN.

TABLE XII. Food from the point of view of gang.

20’s 30’s 40’s JH College HS Single Married Divorced Pusher Bookie Burglar

Belgium 0.81 0.06 0.00 0.03 0.46 0.08 0.04 0.98 00.00 0.33 0.00 0.52

Denmark 0.67 0.01 0.03 0.24 0.00 0.41 0.98 0.01 0.01 0.3 0.1 0.08

Germany 0.94 0.01 0.00 0.02 0.27 0.20 0.62 0.47 0.00 0.05 0.20 0.14

Greece 0.17 0.87 0.00 0.00 0.00 0.99 0.00 0.82 0.70 0.59 0.05 0.08

Spain 0.91 0.28 0.00 0.36 0.00 0.76 0.00 0.55 0.90 0.05 0.00 1.00

France 0.92 0.03 0.00 0.01 0.26 0.35 0.05 0.98 0.00 0.09 0.00 0.81

Ireland 0.19 0.01 0.62 0.89 0.00 0.64 0.48 0.75 0.00 0.5 0.00 0.27

Italy 0.07 0.9 0.01 0.00 0.00 1.00 0.08 0.29 0.16 0.83 0.12 0.01

Netherland 0.03 0.85 0.01 0.62 0.16 0.01 0.01 0.97 0.02 0.20 0.00 0.94

Portugal 0.00 1.00 0.04 0.17 0.00 0.61 0.00 0.98 0.04 0.56 0.00 0.27

Gr. Britain 0.01 0.79 0.13 0.31 0.02 0.19 0.05 0.88 0.01 0.08 0.12 0.21

Austria 0.16 0.40 0.01 0.08 0.03 0.32 0.14 0.53 0.02 0.13 0.02 0.50

Finland 0.00 0.92 0.55 0.09 0.00 0.75 0.03 0.92 0.00 0.00 0.29 0.79

Island 0.00 0.07 0.98 0.30 0.01 0.32 0.99 0.05 0.00 0.03 0.97 0.01

Nanay 0.00 0.84 0.57 0.37 0.00 0.60 0.24 0.35 0.01 0.00 0.96 0.10

Sweden 0.01 0.70 0.11 0.05 0.07 0.31 0.02 0.95 0.00 0.00 0.82 0.54
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although for both MLS no one is a bird, SineNet suggests

who is that, in a fuzzy way, approaches it the most. It seems

therefore that, if Ireland were an animal, it would be a mam-

mal, whereas Finland would be an amphibian. It should be

stressed that this type of transformation does not have a

semantic value, we just can say, that relations are main-

tained. To prove this last statement, we use a multidimen-

sional scaling technique (MDS). The goal is to qualitatively

evaluate the differences in the results of the same MDS

algorithm applied to the source dataset and the dataset

rewritten with the attributes of the other(s). It is surprisingly

noted that even with respect to the new variables, records are

clustered in the same way. Thus, whatever the transfer from

one world to another, the geometry of the original dataset is

preserved in the new world. We show this feature in a case

where clustering is natural and the number of records is

acceptable: the Food dataset. Figure 17(a) shows how the

original dataset records (9 dimensions) projected into a space

TABLE XIII. Gang from the point of view of food.

Cereals Rice Potatoes Sugar Vegetables Meat Milk Butter Eggs

ART 61.92 1.98 119.15 53.85 48.65 106.95 197.43 2.25 8.99

AL 55.00 5.68 126.37 29.38 62.78 87.07 151.97 3.02 11.48

SAM 58.14 1.92 41.42 47.93 63.83 89.40 67.27 7.83 15.25

CLVDE 57.94 1.92 77.62 53.44 48.32 75.35 206.60 3.28 13.25

MIKE 54.77 2.14 54.42 41.32 48.46 58.27 143.09 1.04 11.82

JIM 54.95 4.21 93.15 27.31 186.34 102.86 116.81 0.74 15.28

GREG 109.64 3.89 117.29 32.86 197.53 107.65 66.95 6.17 12.98

JOHN 57.29 4.59 148.72 33.84 64.46 107.75 190.12 6.46 15.02

DOUG 83.03 2.88 40.54 27.76 52.73 65.47 90.69 0.94 13.28

LANCE 57.29 4.55 148.72 33.84 64.46 107.75 190.12 6.46 15.02

GEORGE 54.95 4.21 93.15 27.31 186.34 102.86 116.81 0.74 15.28

PETE 102.89 1.94 55.48 30.77 53.40 100.25 115.82 5.00 15.27

FRED 106.90 2.15 75.25 31.42 83.60 110.08 81.47 3.39 14.35

GENE 61.54 2.00 49.47 46.99 184.14 108.78 63.61 5.98 14.83

RALPH 55.05 2.82 60.29 38.25 57.80 92.46 72.15 0.75 8.79

PHIL 83.45 4.94 81.93 50.89 205.12 73.64 64.08 6.19 8.18

IKE 54.77 2.14 54.42 41.32 48.46 58.27 143.09 1.04 11.82

NICK 101.42 3.80 41.24 30.17 96.52 105.66 67.80 2.24 9.13

DON 55.88 5.68 55.52 38.57 129.35 62.27 98.52 8.18 12.54

NED 59.47 4.40 52.19 44.21 107.02 55.17 65.45 4.19 10.62

KARL 109.76 3.18 99.34 44.49 53.96 64.36 166.47 7.88 12.06

KEN 76.71 2.39 46.26 28.85 49.66 109.67 205.31 7.83 15.28

EARL 101.07 5.27 74.47 41.38 50.61 94.71 207.42 8.53 12.27

RICK 86.83 5.72 40.23 26.92 135.07 85.33 181.07 0.85 13.81

OL 84.45 4.94 81.93 50.89 205.12 73.64 64.05 6.19 8.18

NEAI. 83.03 2.88 40.54 27.76 52.73 65.47 90.69 0.94 13.28

DAVE 107.93 5.58 43.86 27.08 211.61 84.68 68.21 0.63 8.81

TABLE XIV. Dataset food with targets.

Cereals Rice Potatoes Sugar Vegetables Meat Milk Butter Eggs Center North South

Belgium 72.2 4.2 98.8 40.4 103.2 102 80 7.7 14.2 1 0 0

Denmark 70.5 2.2 57 39.5 50 105.8 145.2 4.1 14.3 0 1 0

Germany 71.3 2.3 74.1 37.1 83.1 97.2 90.7 6.9 14.8 1 0 0

Greece 109.8 5.4 90 30 229.5 77.1 63.1 0.9 11.3 0 0 1

Spain 71.4 5.8 107.8 26.8 191.7 102.1 98.4 0.6 15.3 0 0 1

France 73 4.3 78.2 34.1 95 110.5 98.9 8.9 15 1 0 0

Ireland 93.4 3.2 151.5 34.8 55 105 185.9 3.4 11.4 1 0 0

Italy 110.2 4.8 38.6 27.9 181.9 88 65 2.4 11.1 0 0 1

Netherland 54.6 5 86.7 39.7 99 89.4 136.2 5.4 10.7 1 0 0

Portugal 86 5.7 106.6 29.4 100 75.5 96 1.5 7.7 0 0 1

Gr. Britain 74.3 4.5 94.1 39.8 60 74.4 129.3 3.2 10.8 1 0 0

Austria 68.7 4.2 62.6 37.1 81.9 93.4 121.3 4.3 13.4 1 0 0

Finland 70.1 5.4 61.6 35.7 52.6 65 208.4 5.8 10.9 0 1 0

Island 79.7 1.9 50.2 54.9 50 71.7 205.6 4.6 11.3 0 1 0

Norway 76.9 3.5 73.2 37.3 48.3 54.9 176.5 2.1 11.3 0 1 0

Sweden 69.3 4.3 70 37.5 49.5 60.5 154.1 5.7 12.9 0 1 0
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of just two dimensions look like. Figure 17(b) shows the pro-

jection on a two-dimensional space of the Food dataset, seen

from the Zoo dataset point of view, that is through 16 dimen-

sions. Looking at Fig. 17(a), which is based on real data, it is

noted that Denmark, although belonging to the North group,

is located close to the Central nations. In the case of the

transferred data, however, Denmark is well placed and all

clusters are well identified.

TIW does not preserve the distances between hyper-

points in the passage from a world to another, but maintains

the relationships between them. For this reason, it could be

defined as a “meta-isometry”. As a quantitative measure of

what has been said, it is possible to calculate the correlation

matrix between the matrix of the distances of records, com-

puted before and after the transfer. Let us denote as S the

source dataset, and as T the same dataset after the transfer.

Let NS and NT be the numbers of variables of the source and

transferred worlds, and M the number of their records

(hyper-points). Then, D½S� ¼ d
½S�
ij

n o
ij

is the M�M squared

matrix of distances among the source world records and

D½T � ¼ d
½T �
ij

n o
ij

is the analogous M�M matrix calculated

from the transferred world data. The matrix q ¼ RðD½S�;
D½T �Þ represents the extent to which the distance between the

i-th record of S and all the others is correlated to the distance

between the j-th record of T and all the others. The main

diagonal of that matrix, i.e., qii ¼ RðD½S�;D½T �Þii, provides a

measure of the relationship between the distances between

the original points and the transferred ones.

In the case where S ¼ Food and T ¼ Zoo, q is 16� 16

as shown in Table XVIII. It is easy to see that the diagonal

has extremely high correlation values. The experiments that

have been carried out seem to suggest the following

conjecture:

Conjecture 1.

max
j
R D S½ �;D T½ �
� �

ij
¼ max

j
R d S

½ �
ij ; d

T½ �
ij

� �
¼; (24)

¼ R d S
½ �
ii ; d

T½ �
ii

� �
¼; (25)

¼ qii: (26)

E. Step 5: The records fusion

We concatenate the hidden units of each dataset in one

new dataset. This is possible, since all the datasets included

into the experimentation were trained with the same number

of Hidden units, as explained in Sec. II A 2. Thus, we may

use a further auto-encoder, the Principal Component

Analysis or an analogous algorithm to calculate the distance

and/or the strength of association among the records of all

the datasets, using the hidden units of each one as coordi-

nates in a H-dimensional space (H¼Number of Hidden units

used during the previous training phase). At the end of this

procedure, we have a square matrix of the similarity/distance

between each pair of records, whether they are records from

the same dataset or not.T
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In our experiment, we have a dataset made up of

16þ 99¼ 115 records and 25 virtual variables.

F. Step 6: The graph fusion

We can apply a graph filter (e.g., Minimum Spanning

Tree,18 Maximally Regular Graph (MRG),11,12 or similar) to

the new square matrix of similarities to generate a weighted

tree or graph among all the records simultaneously, as shown

in Sec. III B. Again, the matrix of similarities was generated

using the AutoCM NN.15 Figure 18 shows the MRG related

to the fusion of the Zoo and Food datasets.

1. The forced graph fusion

Since, obviously, records belonging to the same dataset

tend to be more clustered, an additional graphic filter has

been elaborated to be applied to the similarity/distance

matrix. To force each element of a dataset to connect to an

element of the other, the matrix of similarity/distances has

been modified by setting at 0 orþ1, respectively, the value

of similarity/distance of records belonging to the same data-

set as shown in Fig. 19. The forced similarity graph of the

FD (see Definition 8) pertaining to the Zoo and Food datasets

is shown in Figs. 20 and 21.

G. Step 7: The quantitative validation of the trans
world data transferring

In the case of datasets including target columns, a fur-

ther quantitative validation of the transfer from one world to

another can be carried out (see Sec. II B). We can measure

the effectiveness of the trans world operation with a K-Fold

Cross Validation protocol comparing the accuracy obtained

in the three cases: source dataset (default measure), slight

FIG. 15. How Zoo sees Food. The values higher than 0.5 have been highlighted.

FIG. 16. How Food sees Zoo (just a

little sample is shown). The values

higher than the mean for each variable

have been highlighted.

055914-19 Buscema et al. Chaos 28, 055914 (2018)



dataset (Definition 6) and combined dataset (Definition 7).

Several Machine Learning Systems (MLS) were used to per-

form this type of verification, to show that the results are not

dependent on the choice of method. Tables XIX and XX

show the results. As already highlighted in Sec. III A 1, the

prediction carried out by considering only the slight dataset

provides an improvement in some cases only, whereas the

classification built upon the combined dataset never yields a

worse performance.

V. CONCLUSION

In this paper, an innovative theory for the fusion of dif-

ferent datasets is proposed. Our theory focuses upon the pos-

sibility to consider how very different datasets may be put in

relation to one another in order to improve our overall

knowledge about both.

The experimentations reported in Secs. III A 1 and

III A 2 show that, in some cases, TIW-based predictions can

improve upon those based upon original data and that, in any

case, the fused data from SþTIW are conducive to perfor-

mance gains in classification tasks.

The experimentation in Sec. III A 3 shows that consider-

ing the fused dataset can be useful in terms of ease of con-

vergence. This aspect is highlighted in Sec. III A 4, where a

quicker convergence occurred when SþTIW was taken into

account. This experimentation also shows the composite

learning strategy of a fused dataset. Specifically, we see how

part of the input specializes in coding the affirmative “it is”

property, whereas another in coding the negative “it is not”

one.

The experimentation III B paves the way to a possible

use of TIW for unsupervised tasks, as the knowledge con-

tained in the source data seems to be preserved after the

fusion.

TABLE XVI. Which animal represents each country according to the well-

known k Nearest Neighbour (kNN) algorithm.

kNN Mammal Bird Rept. Fish Amphibian Bug Inverteb.

Belgium 1 0 0 0 0 0 0

Denmark 0 0 0 0 1 0 0

Germany 0 0 1 0 0 0 0

Greece 1 0 0 0 0 0 0

Spain 1 0 0 0 0 0 0

France 1 0 0 0 0 0 0

Ireland 1 0 0 0 0 0 0

Italy 0 0 0 0 0 1 0

Netherland 1 0 0 0 0 0 0

Portugal 0 0 0 0 0 0 1

Gr. Britain 0 0 0 0 0 0 1

Austria 0 0 1 0 0 0 0

Finland 0 0 0 0 0 1 0

Island 0 0 0 0 1 0 0

Norway 0 0 1 0 0 0 0

Sweden 0 0 1 0 0 0 0

TABLE XVII. Which animal represents each country according to SineNet.

Sine net Mammal Bird Rept. Fish Amphibian Bug Inverteb.

Belgium 0.97 0.01 0.01 0.02 0.02 0.01 0.01

Denmark 0.08 0.03 0.08 0.06 0.82 0.05 0.01

Germany 0.49 0.01 0.13 0.13 0.10 0.03 0.01

Greece 0.74 0.02 0.16 0.01 0.01 0.14 0.03

Spain 0.96 0.01 0.02 0.04 0.01 0.01 0.00

France 0.93 0.00 0.02 0.08 0.04 0.02 0.01

Ireland 0.84 0.01 0.02 0.05 0.06 0.02 0.01

Italy 0.28 0.04 0.12 0.01 0.03 0.79 0.21

Netherland 0.84 0.00 0.09 0.01 0.02 0.08 0.07

Portugal 0.52 0.01 0.11 0.05 0.07 0.19 0.09

Gr. Britain 0.52 0.01 0.48 0.01 0.09 0.17 0.25

Austria 0.50 0.01 0.30 0.03 0.20 0.14 0.02

Finland 0.06 0.01 0.11 0.01 0.13 0.40 0.84

Island 0.03 0.07 0.31 0.14 0.51 0.15 0.06

Norway 0.07 0.04 0.46 0.06 0.63 0.13 0.06

Sweden 0.10 0.02 0.38 0.03 0.32 0.18 0.40

FIG. 17. Multi Dimensional Scaling technique performed on real and trans-

formed data. (a) MDS applied to Food source dataset. (b) MDS applied to

how Zoo sees Food.
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TABLE XVIII. The correlation matrix in the case where S ¼ Food and T ¼ Zoo.

Belgium Denmark Germany Greece Spain France Ireland Italy Netherland Portugal Gr. Britain Austria Finland Island Norway Sweden

Zoo (Belgium) 0.89 0.31 0.57 �0.06 0.41 0.81 �0.02 �0.04 0.34 �0.18 0.02 0.51 �0.15 �0.29 �0.28 0.05

Zoo (Denmark) 0.43 0.88 0.64 �0.43 �0.04 0.49 0 �0.24 0.27 �0.42 0.21 0.69 0.19 0.29 0.3 0.42

Zoo (Germany) 0.64 0.64 0.9 �0.25 0.1 0.66 �0.03 �0.12 0.15 �0.43 �0.04 0.54 �0.11 0.01 �0.09 0.16

Zoo (Greece) �0.23 �0.57 �0.43 0.96 0.55 �0.25 �0.34 0.74 �0.28 0.44 �0.26 �0.33 �0.46 �0.72 �0.41 �0.52

Zoo (Spain) 0.18 �0.18 �0.06 0.41 0.95 0.15 �0.06 0.19 �0.02 0.13 �0.19 0.02 �0.42 �0.66 �0.41 �0.38

Zoo (France) 0.81 0.45 0.61 �0.27 0.18 0.91 �0.03 �0.14 0.46 �0.21 0.16 0.64 0.11 �0.11 �0.07 0.29

Zoo (Ireland) 0.08 0.05 0 �0.19 0.08 0.05 0.94 �0.34 �0.08 �0.07 �0.02 �0.11 �0.21 �0.14 �0.1 �0.19

Zoo (Italy) �0.19 �0.31 �0.26 0.66 0.2 �0.13 �0.51 0.94 �0.13 0.34 �0.11 �0.06 �0.16 �0.44 �0.17 �0.2

Zoo (Netherland) 0.24 �0.06 �0.02 0.1 0.25 0.2 �0.15 0.1 0.78 0.48 0.53 0.4 0.44 �0.2 0.19 0.35

Zoo (Portugal) �0.2 �0.46 �0.44 0.42 0.2 �0.24 �0.11 0.32 0.31 0.92 0.43 �0.07 0.25 �0.37 0.16 0.07

Zoo (Gr. Britain) 0.05 0 �0.09 0.03 0.04 0 0 0.03 0.61 0.57 0.86 0.37 0.63 0.03 0.61 0.58

Zoo (Austria) 0.55 0.57 0.52 �0.12 0.22 0.58 �0.16 0.08 0.54 �0.06 0.37 0.88 0.27 0.02 0.21 0.43

Zoo (Finland) �0.05 0.08 �0.07 �0.25 �0.26 �0.03 �0.15 �0.15 0.58 0.27 0.67 0.34 0.94 0.28 0.68 0.77

Zoo (Island) �0.23 0.23 �0.04 �0.57 �0.66 �0.23 �0.2 �0.47 �0.03 �0.44 0.1 �0.01 0.26 0.91 0.41 0.3

Zoo (Norway) �0.05 0.34 0.07 �0.3 �0.24 �0.05 �0.05 �0.22 0.36 0.06 0.64 0.4 0.66 0.43 0.9 0.71

Zoo (Sweden) 0.15 0.34 0.2 �0.38 �0.31 0.18 �0.14 �0.23 0.56 0.04 0.67 0.52 0.84 0.41 0.74 0.93

FIG. 18. The MRG related to the fused dataset of the Zoo and Food datasets, obtained through the AutoCM auto-encoder.

FIG. 19. Transformation of a similarity

matrix into a forced similarity matrix.

Two toy datasets has been used to

show the forcing procedure. A which

has 4 records and B which has 3

records. In this case, dataset A is forced

to connect to dataset B.
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FIG. 20. Graph where countries have been forced towards animals.

FIG. 21. Graph where animals have been forced towards countries.
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Finally, the step-by-step example detailed in Sec. IV

presents a thorough application of the method, to facilitate

understanding and replication.
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