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Abstract

For a finite, simple and undirected graph G with vertex weight function, the
Maximum Weight Independent Set (MWIS) problem asks for an independent
vertex set of G with maximum weight. MWIS is a well-known NP-hard problem
of fundamental importance. For many classes of graphs, MWIS can be solved
in polynomial time; famous examples are bipartite graphs, perfect graphs and
claw-free graphs. In 1980, the first two polynomial-time algorithms for claw-
free graphs were independently found by Minty for MWIS and by Sbihi for the
unweighted case.

In this paper, using a dynamic programming approach (inspired by Farber’s
result about 2K2-free graphs), we show that for any fixed `, MWIS can be solved
in polynomial time for `claw-free graphs. This solves the open case for MWIS
on (P3+claw)-free graphs and (2P2+claw)-free graphs extends known results for
claw-free graphs, `K2-free graphs, (K2+claw)-free graphs, and `P3-free graphs.

Keywords: Maximum Weight Independent Set problem; `claw-free graphs; polyno-
mial time

1 Introduction

For a finite, undirected and simple graph G = (V,E) with |V | = n, the Maximum
Independent Set (MIS) problem asks for an independent vertex set of maximum car-
dinality in G. MIS is well known to be NP-hard (problem [GT20] in [17]) and hard
to approximate. If additionally, the input graph has a vertex weight function w, the
Maximum Weight Independent Set (MWIS) problem asks for an independent vertex set
of maximum weight in G. MWIS is one of the most investigated and most important
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algorithmic problem on graphs because of its many applications in various fields of
research such as computer science and operations research.

More precisely, for a given graph G = (V,E) with a vertex weight function w and
for U ⊆ V , w(U) := Σv∈Uw(v) is the weight of U . An independent set (also called
stable set) of a graph G is a subset of V of pairwise nonadjacent vertices in G. An
independent set of G is maximal if it is not properly contained in any other independent
set of G. Let

αw(G) := max{w(I) : I is an independent set in G}.

If all vertices v have the same weight w(v) = 1 (the unweighted case) then αw(G) =
α(G) and we deal with the MIS problem.

It is well known that MWIS is solvable in polynomial time for many special cases;
famous examples are bipartite graphs, perfect graphs [18] and claw-free graphs [25],
and in many other cases, the complexity of MWIS is still an open question. Before
discussing this in detail, we need some more notions (for any missing notation or
reference let us refer to [6]).

1.1 Basic Notions and Results

For U ⊆ V let G[U ] denote the subgraph of G induced by U . For a given graph H, a
graph G is H-free if none of its induced subgraphs is isomorphic to H; in particular,
H is called a forbidden induced subgraph of G.

For two graphs G and F , G+F denotes the disjoint union of G and F ; in particular,
2G = G+G and in general, for ` ≥ 2, `G denotes the disjoint union of ` copies of G.

For a subset U ⊆ V , the open neighborhood of U in G is NG(U) = {v ∈ V \U : v is
adjacent to some u ∈ U} and the closed neighborhood of U in G is NG[U ] = U ∪NG(U).
The anti-neighborhood of U in G is AG(U) = V \ NG[U ], also denoted as NG[U ].
For an induced subgraph H of G with vertex set V (H), let AG(H) := AG(V (H)).
If U = {u1, . . . , uk}, then let us simply write NG(u1, . . . , uk) instead of NG(U), and
AG(u1, . . . , uk) instead of AG(U).

For a vertex v ∈ V and for a subset U ⊂ V with v 6∈ U , let us say that v contacts
U if v is adjacent to some vertex of U . A component of G is a maximal connected
subgraph of G.

A chordless path Pk, k ≥ 1, has vertices v1, v2, . . . , vk and exactly the edges vjvj+1

for 1 ≤ j < k. A chordless cycle Ck, k ≥ 4, has vertices v1, v2, . . . , vk and exactly the
edges vjvj+1 for 1 ≤ j < k and vkv1. Kn is a complete graph of n vertices. K1,i has
i+ 1 vertices such that one of them (called the center of K1,i) is adjacent to all others,
and the remaining i vertices (called the leaves of K1,i) form an independent set. K1,3

is also called claw.

An apple is formed by a Ck, k ≥ 4, plus one vertex adjacent to exactly one vertex
of the Ck.
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For indices i, j, k ≥ 0, let Si,j,k denote the graph with vertices u, x1, . . . , xi, y1, . . . , yj,
z1, . . . , zk such that the subgraph induced by u, x1, . . . , xi forms a Pi+1 (u, x1, . . . , xi),
the subgraph induced by u, y1, . . . , yj forms a Pj+1 (u, y1, . . . , yj), and the subgraph
induced by u, z1, . . . , zk forms a Pk+1 (u, z1, . . . , zk), and there are no other edges in
Si,j,k. Thus, S1,1,1 is isomorphic to claw, S1,1,2 is called fork, and Pk is isomorphic to
e.g. S0,0,k−1.

As already mentioned, MWIS is NP-hard and remains NP-hard under various re-
strictions, such as for triangle-free graphs [30] and more generally for graphs without
chordless cycle of given length [26], for K1,4-free graphs [25], for cubic graphs [16] and
more generally for k-regular graphs [14], and for planar graphs [15].

MWIS for claw-free graphs was first solved in polynomial time by Minty [25] in
1980 (and independently for MIS by Sbihi), then revisited by Nakamura and Tamura
[27], and recently improved by Faenza, Oriolo, and Stauffer [10, 11], and by Nobili and
Sassano [28, 29] with the best known time bound in [29].

Theorem 1 [29] For claw-free graphs, the MWIS problem can be solved in time
O(n2 log n).

Other polynomial-time results are obtained for the more general cases of fork-free
(i.e., S1,1,2-free) graphs (in [3] for MIS, and in [22] for MWIS) and for apple-free graphs
[7, 8]. Furthermore MWIS can be solved in polynomial time for P5-free graphs [20] and
even for P6-free graphs as recently proved in [19].

A dynamic programming approach leads to polynomial time for MWIS if there are
polynomially many subgraphs containing any maximal independent set such that the
corresponding maximal independent set in the subgraph can be found in polynomial
time.

Examples are 2K2-free graphs [12] having O(n2) maximal independent sets, and
more generally `K2-free graphs for any fixed ` (by combining an algorithm generating
all maximal independent sets of a graph [33] and a polynomial upper bound on the
number of maximal independent sets in `K2-free graphs [2, 5, 13, 31]), (K2+claw)-free
graphs [23], 2P3-free graphs [24] and more generally, `P3-free graphs [21].

Obviously, for every graph G the following holds:

αw(G) = max{w(v) + αw(G[A(v)]) : v ∈ V }

Thus, for any graph G, MWIS can be reduced to the same problem for the anti-
neighborhoods of all vertices of G. Then we have:

Proposition 1 For any graph F , if M(W)IS can be solved for F -free graphs in poly-
nomial time then M(W)IS can be solved for (K1 + F )-free graphs in polynomial time.

The following result of Alekseev [1] (mentioned e.g. in [4]) shows the fundamental
importance of Si,j,k for the complexity of MWIS. Let us say that a graph is of type T
if it is a graph Si,j,k for some indices i, j, k.
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Theorem 2 [1] Let M be a finite set of forbidden induced subgraphs. If M does not
contain a graph every connected component of which is of type T , then the M(W)IS
problem is NP-hard for the class of M-free graphs.

A basic example is the class of K1,4-free graphs as mentioned above. Unless P = NP,
Alekseev’s result implies that for any graph F , if M(W)IS is polynomial time solvable
for F -free graphs, then each connected component of F is of type T . By Proposition
1, for any graph F , if M(W)IS can be solved in polynomial time for F -free graphs then
for any fixed `, M(W)IS can be solved in polynomial time for (`K1 + F )-free graphs.

As already mentioned above, for any fixed `, M(W)IS can be solved in polynomial
time for `K2-free graphs, for fork-free graphs, for (K2+claw)-free graphs, for `P3-free
graphs, and for P5-free graphs. On the other hand the F -free graph classes defined by
minimal forbidden graphs F of type T for which the complexity of M(W)IS seems to
be open are the following:

P7-free graphs, S1,1,3-free graphs, S1,2,2-free graphs, (K2 + P4)-free graphs,
(P3+claw)-free graphs, (2P2+claw)-free graphs.

In this paper, using the dynamic programming approach, we show that for any
fixed `, MWIS can be solved for `claw-free graphs in polynomial time. This solves
the open case for MWIS on (P3+claw)-free graphs and (2P2+claw)-free graphs, and
extends known results for MWIS on claw-free graphs, `K2-free graphs for any fixed `,
(K2+claw)-free graphs, (2P2+claw)-free graphs, 2P3-free graphs and more generally,
for `P3-free graphs.

1.2 Maximal Independent Sets in 2K2-Free Graphs

Our approach for MWIS on `claw-free graphs is based on the following Algorithm Alpha
(called Algorithm A in [23]) which formulates Farber’s argument [12] for showing that
2K2-free graphs have O(n2) maximal independent sets.

For a graph G, with vertex set {v1, v2, . . . , vn}, let us write Gi := G[{v1, v2, . . . , vi}].
At each iteration i, 1 ≤ i ≤ n, Algorithm Alpha provides a family Si of subsets of
{v1, v2, . . . , vi} such that each maximal independent set of Gi is contained in some
member of Si.
Algorithm Alpha
Input: A 2K2-free graph G with vertex set {v1, v2, . . . , vn}.
Output: A family S of independent sets of G that contains all maximal independent
sets of G and is such that |S| = O(n2).

S := {∅};
For i =: 1 to n do
begin
1. [Extension of some members of S]
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For each H ∈ S do
If H ∪ {vi} is an independent set then H := H ∪ {vi}.

2. [Addition of new members to S]
For each K2 of Gi containing vi, i.e., for each edge uvi of Gi do
S := S ∪ {{vi} ∪ AGi

(u, vi)}.
end.

It is clear from the description of Algorithm Alpha that, since G is 2K2-free, every
member of the family S produced by the algorithm is an independent set of G. More-
over, according to Farber’s argumentation, S contains all maximal independent sets of
G, which can be proven by induction on i. Then one obtains the following result:

Theorem 3 [12] For 2K2-free graphs, the MWIS problem can be solved in time O(n4).

2 A Basic Lemma

Now we provide a basic result which leads to a polynomial number of subcases to obtain
all maximal independent sets. For each k ∈ {1, . . . , 14}, let Lk be the graph drawn in
Figure 1. Note that each Lk contains an induced claw. For each k ∈ {1, . . . , 14}, let
V (Lk) denotes the vertex set of Lk, let W (Lk) denotes the set of white vertices of Lk,
let B(Lk) denotes the set of black vertices of Lk, and let top(Lk) denotes the (white)
vertex at the top of Lk.

Lemma 1 For a graph G = (V,E), assume that the vertex v ∈ V is contained in an
induced claw of G and G[V \ {v}] is claw-free. Then for each maximal independent set
I of G with v ∈ I, there is a k ∈ {1, . . . , 14} such that I ⊆ W (Lk) ∪ AG(Lk) for an
induced subgraph Lk of G with v = top(Lk).

Proof. Let K be a claw in G containing v, say, with vertex set {v, a, b, c}. Let I
be a maximal independent set of G containing v, and let I ′ := I \ {v}. Then for
U := V \ {v}, I ′ is a maximal independent set of G[U \ N(v)]. Let us distinguish
between the following cases.

Case 1 v is the center of K.

Since G[U ] is claw-free, each of a, b, c has at most two neighbors in I ′.

Case 1.1 If a vertex of a, b, c, say a, has two neighbors in I ′, say s1, s2 then I ⊆
W (L1) ∪ AG(L1) with V (L1) = {v, a, s1, s2}, W (L1) = {v, s1, s2}, and v = top(L1).

Case 1.2 If none of a, b, c has a neighbor in I ′ then I ⊆ W (L2)∪AG(L2) with V (L2) =
{v, a, b, c} and v = top(L2).

Case 1.3 Now assume that Cases 1.1 and 1.2 are excluded. This means that one of
a, b, c, say without loss of generality a, has exactly one neighbor in I ′ and b and c have
at most one neighbor in I ′. Let as1 ∈ E for s1 ∈ I ′. Note that at most one of b and
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c is adjacent to s1 since G[U ] is claw-free, and no vertex of I ′ is adjacent to all of a, b
and c.

If N(b) ∩ I ′ = N(c) ∩ I ′ = ∅ then we have I ⊆ W (L3) ∪ AG(L3) with V (L3) =
{v, a, b, c, s1} and v = top(L3).

If b has exactly one neighbor in I ′, say s2, and N(c) ∩ I ′ = ∅ then if s1 6= s2, we
have I ⊆ W (L4) ∪ AG(L4) with V (L4) = {v, a, b, c, s1, s2} and v = top(L4), and if
s1 = s2, we have I ⊆ W (L6) ∪ AG(L6) with V (L6) = {v, a, b, c, s1} and v = top(L6),
and similarly for the case when c has exactly one neighbor in I ′, and N(b) ∩ I ′ = ∅.

Finally, assume that each of b and c has a neighbor in I ′, i.e., there are s2, s3 ∈ I ′
with bs2 ∈ E and cs3 ∈ E.

If s1, s2, s3 are pairwise distinct then we have I ⊆ W (L5) ∪ AG(L5) with V (L5) =
{v, a, b, c, s1, s2, s3} and v = top(L5).

Now assume that |{s1, s2, s3}| = 2 (recall that |{s1, s2, s3}| = 1 is impossible).
Without loss of generality, let s1 = s2. Then we have I ⊆ W (L7) ∪ AG(L7) with
V (L7) = {v, a, b, c, s1, s3} and v = top(L7).

Case 2 v is a leaf of K.

Without loss of generality, let b be the center of K. Since G[U ] is claw-free, b has
at most two neighbors in I ′, and if a /∈ I ′ (c /∈ I ′, respectively), the same holds for a
(c, respectively). The following subcases are exhaustive by symmetry.

Case 2.1 If a, c ∈ I ′ then I ⊆ W (L1) ∪ AG(L1) with V (L1) = {v, a, b, c} and v =
top(L1).

Case 2.2 If exactly one of a, c is in I ′, say without loss of generality, a ∈ I ′ and c 6∈ I ′
(and more generally, only one of the neighbors of b is in I ′ - otherwise we have Case 2.1)
then c has a neighbor in I ′, say s, since I ′ is a maximal independent set of G[U \N(v)].
Then clearly, s is nonadjacent to a, and a is the unique neighbor of b in I ′ (otherwise
b would have two neighbors in I ′), and hence (since G[U ] is claw-free) s is the unique
neighbor of c in I ′. Then I ⊆ W (L8) ∪ AG(L8) with V (L8) = {v, a, b, c, s} and v =
top(L8).

Case 2.3 Now assume that Cases 2.1 and 2.2 are excluded. Thus, a, c 6∈ I ′. Then
each of a and c must have a neighbor in I ′ since I ′ is a maximal independent set of
G[U \N(v)].

First assume that no neighbor of a or c in I ′ is adjacent to b. Then each of a and c
has exactly one neighbor in I ′ and b has no neighbor in I ′, else a claw in G[U ] would
arise involving b. Let s1, s2 ∈ I ′ with as1 ∈ E, cs2 ∈ E.

If s1 6= s2 then I ⊆ W (L9) ∪ AG(L9) with V (L9) = {v, a, b, c, s1, s2} and v =
top(L9).

If s1 = s2 then I ⊆ W (L10) ∪ AG(L10) with V (L10) = {v, a, b, c, s1} and v =
top(L10).

Now assume that, without loss of generality, a neighbor s ∈ I ′ of a is adjacent to b.
We claim:
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(i) s is adjacent to c, since otherwise Case 2.2 holds with s instead of a;

(ii) s is the unique neighbor of b in I ′ (since otherwise Case 2.1 holds);

(iii) a and c each have at most one more neighbor in I ′ (since G[U ] is claw-free).

If neither a nor c have another neighbor in I ′ then I ⊆ W (L11)∪AG(L11) with V (L11) =
{v, a, b, c, s} and v = top(L11).

If there is s1 ∈ I ′ with s1 6= s, as1 ∈ E and the only neighbor of c in I ′ is s then
I ⊆ W (L12) ∪AG(L12) with V (L12) = {v, a, b, c, s, s1} and v = top(L12), and similarly
if c has two neighbors s, s1 ∈ I ′ and a has only neighbor s ∈ I ′.

Finally, if a and c both have another neighbor in I ′, say s1, s2 ∈ I ′, s 6= s1, s 6= s2
with as1 ∈ E and cs2 ∈ E then we have:

If s1 6= s2 then I ⊆ W (L13) ∪ AG(L13) with V (L13) = {v, a, b, c, s, s1, s2} and v =
top(L13), and if s1 = s2 then I ⊆ W (L14) ∪ AG(L14) with V (L14) = {v, a, b, c, s, s1}
and v = top(L14). 2

3 MWIS for (Claw+Claw)-Free Graphs

Now we show that for (claw+claw)-free graphs, MWIS can be solved in time O(n10).
For this, we need the following notion:

Definition 1 Let G = (V,E) be a graph and let S be a family of subsets of V . Then
S is a good claw-free family of G if the following holds:

(i) Each member of S induces a claw-free subgraph in G.

(ii) Each maximal independent set of G is contained in some member of S.

The following Algorithm Gamma(2) computes a good claw-free family S of any
input (claw+claw)-free graph G. Recall that Gi := G[{v1, v2, . . . , vi}] for a graph G
with vertex set {v1, v2, . . . , vn}.
Algorithm Gamma(2)
Input: A (claw+claw)-free graph G with vertex set {v1, v2, . . . , vn}.
Output: A good claw-free family S of G such that |S| = O(n7).

S := {∅};
For i =: 1 to n do
begin
1. [Extension of some members of S]

For each U ∈ S do
If G[U ∪ {vi}] is claw-free then U := U ∪ {vi}.

2. [Addition of new members to S]

7



For each induced Lk of Gi, k ∈ {1, . . . , 14}, with vi = top(Lk) do
S := S ∪ {W (Lk) ∪ AGi

(Lk)}.
end.

Theorem 4 Algorithm Gamma(2) correctly produces the desired output, and can be
implemented to run in O(n10) time.

Proof. First let us observe that for every i ∈ {1, . . . , n} and k ∈ {1, . . . , 14},
G[AGi

(Lk)] is claw-free since G[Lk] contains an induced claw and G is (claw+claw)-free.

Then let us prove the following claims.

Claim 1 The following statements hold:

(i) Each member of S induces a claw-free subgraph of G.

(ii) Each maximal independent set of G is contained in some member of S.

Proof. (i): Each member of S is created either in the initialization step as the empty
set, or in Step 1 or in Step 2 of some iteration. Each member of S created in Step 1 is an
extension of a member of S and induces a claw-free subgraph of G by definition of the
step. Each member of S created in Step 2 is the disjoint union of W (Lk) and AGi

(Lk),
both inducing a claw-free subgraph of G, and then induces a claw-free subgraph of G.
This completes the proof of statement (i).

(ii): By Si, let us denote the family S resulting by the i-th iteration of Algorithm
Gamma(2). Let us show that for all i ∈ {1, . . . , n}, each maximal independent set of
Gi is contained in a member H of Si. The proof is done by induction. For i = 1, the
statement is trivial. Then let us assume that the statement holds for i − 1 and prove
that it holds for i.

Let I be a maximal independent set of Gi.

If vi 6∈ I, then by the induction assumption, I is contained in some member of Si−1,
and thus of Si, since each member of Si−1 is a (not necessarily proper) subset of a
member of Si.

If vi ∈ I, then let us consider the following argument. By the induction assumption,
let U ∈ Si−1 with I \ {vi} ⊆ U . Note that for all j, 1 ≤ j ≤ n, each member of Sj
induces a claw-free graph, as one can easily verify by an argument similar to the proof
of statement (i). Thus, G[U ] is claw-free.

Then let us consider the following two cases which are exhaustive by definition of
Algorithm Gamma(2).

Case 1 G[U ∪ {vi}] is claw-free.

Then I is contained in the set U∪{vi}, which is a member of Si since it is generated
by Step 1 of the algorithm at iteration i.
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Case 2 G[U ∪ {vi}] is not claw-free.

Then by Lemma 1, since G[U ] is claw-free, there is a k ∈ {1, . . . , 14} such that
I ⊆ W (Lk)∪AG[U∪{vi}](Lk) ⊆ W (Lk)∪AGi

(Lk) for an induced subgraph Lk of Gi with
vi = top(Lk), and W (Lk) ∪ AGi

(Lk) is contained in Si since it is generated by Step 2
of Algorithm Gamma(2) at iteration i. This shows statement (ii) of Claim 1. 2

Claim 2 |S| is of O(n7) and S can be computed in O(n10) time.

Proof. |S| is clearly bounded by the number of induced Lk’s in G, so it is in O(n7).
Then S can be computed in O(n10) time: in fact, referring to Step 1, note that to
check if G[U ∪ {vi}] is claw-free (G[U ] being claw-free) can be done in O(n3) time;
referring to Step 2, note that the algorithm produces the anti-neighborhoods of all
induced Lk’s of Gi just once since at iteration i all such Lk’s have top(Lk) = vi, and
that computing AGi

(Lk) can be done in O(n) time. 2

This completes the proof of Theorem 4. 2

Theorem 5 For (claw+claw)-free graphs, the MWIS problem can be solved in O(n10)
time.

Proof. For every (claw+claw)-free graph G, the MWIS problem can be solved by the
following algorithm:

(1) Execute Algorithm Gamma(2) for G with the resulting good claw-free family S
of G.

(2) For each U ∈ S, compute a maximum weight independent set of G[U ]. Then
choose a best solution, i.e., one of the maximum weight.

Correctness: By Theorem 4, the algorithm is correct.

Time bound: By Theorem 4, |S| = O(n7) and S can be computed in O(n10) time.
Then step (1) can be executed in O(n9) time. Then, by Theorem 1, step (2) can be
executed in O(n9 log(n)) time. Thus, the algorithm can be executed in O(n10) time.
2

4 MWIS for `Claw-Free Graphs

In this section we show that for any fixed ` ≥ 2, MWIS for `claw-free graphs can
be solved in polynomial time. For this, we first describe the subsequent Algorithm
Gamma(`), which for any `claw-free input graph G computes a good claw-free family S
ofG. The approach recursively uses Algorithm Gamma(`−1) for Algorithm Gamma(`),
starting with Algorithm Gamma(2) of section 3.
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Algorithm Gamma(`)
Input: An `claw-free graph G with vertex set {v1, v2, . . . , vn}.
Output: A good claw-free family S of G such that S has polynomially many members.

S := {∅};
For i =: 1 to n do
begin
1. [Extension of some members of S]

For each U ∈ S do
If G[U ∪ {vi}] is claw-free then U := U ∪ {vi}.

2. [Addition of new members to S]
For each induced Lk of Gi, k ∈ {1, . . . , 14}, with vi = top(Lk) do

Execute Algorithm Gamma(`− 1) for G[AGi
(Lk)]

with the resulting good claw-free family, say F , of G[AGi
(Lk)].

For each F ∈ F , set S := S ∪ {W (Lk) ∪ F}.
end.

Remark 1 For ` = 2, Algorithm Gamma(`) is exactly Algorithm Gamma(2) of sec-
tion 3. In fact, for ` = 2, G[AGi

(Lk)] is claw-free, i.e., a good claw-free family of
G[AGi

(Lk)] is trivially formed by one member, namely, AGi
(Lk).

Theorem 6 For any fixed ` ≥ 2, Algorithm Gamma(`) correctly produces the desired
output, and can be implemented to run in polynomial time.

Proof. For ` = 2, Theorem 6 holds, since by Remark 1, it corresponds exactly to
Theorem 4. For ` > 2 we will prove Theorem 6 by induction, that is, we assume that
it is true for `− 1 and we will show that it holds for `.

First let us observe that for all i ∈ {1, . . . , n} and k ∈ {1, . . . , 14}, G[AGi
(Lk)] is

(`− 1)claw-free, since G[Lk] contains an induced claw and G is `claw-free.

Then let us prove the following claims.

Claim 3 The following statements hold:

(i) Each member of S induces a claw-free subgraph of G.

(ii) Each maximal independent set of G is contained in some member of S.

Proof. (i): The proof is similar to that of Claim 1(i) in the proof of Theorem 4, by
definition of good claw-free family and by the induction assumption on `.

(ii): By Si, let us denote the family S resulting by the i-th iteration of Algorithm
Gamma(`). Let us show that for all i ∈ {1, . . . , n}, each maximal independent set of
Gi is contained in a member H of Si. The proof is done by induction. For i = 1, the
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statement is trivial. Then let us assume that the statement holds for i − 1 and prove
that it holds for i.

Let I be a maximal independent set of Gi.

If vi 6∈ I, then by the induction assumption, I is contained in some member of Si−1,
and thus of Si, since each member of Si−1 is a (not necessarily proper) subset of a
member of Si.

If vi ∈ I, then let us consider the following argument. By the induction assumption,
let U ∈ Si−1 with I \ {vi} ⊆ U . Note that for all j, 1 ≤ j ≤ n, each member of Sj
induces a claw-free graph, as one can easily verify by an argument similar to the proof
of statement (i). Thus, G[U ] is claw-free.

Then let us consider the following two cases which are exhaustive by definition of
Algorithm Gamma(`).

Case 1 G[U ∪ {vi}] is claw-free.

Then I is contained in the set U∪{vi}, which is a member of Si since it is generated
by Step 1 of the algorithm at iteration i.

Case 2 G[U ∪ {vi}] is not claw-free.

Then by Lemma 1, since G[U ] is claw-free, there is a k ∈ {1, . . . , 14} such that
I ⊆ W (Lk)∪AG[U∪{vi}](Lk) ⊆ W (Lk)∪AGi

(Lk) for an induced subgraph Lk of Gi with
vi = top(Lk); on the other hand each maximal independent set of G[W (Lk)∪AGi

(Lk)]
is contained in some member of Si by Step 2 of Algorithm Gamma(`) at iteration i,
by definition of good claw-free family and by the induction assumption on `; then I is
contained in some member of Si. This shows statement (ii) of Claim 3. 2

Claim 4 The family S contains polynomially many members and can be computed in
polynomial time.

Proof. The family S contains polynomially many members, since the number of
induced Lk’s in G is of O(n7), and since by the above inductive assumption the
good claw-free family of G[AGi

(Lk)] provided by Algorithm Gamma(` − 1) contains
polynomially many members. Then S can be computed in polynomial time: in
fact, referring to Step 1, note that to check if G[U ∪ {vi}] is claw-free (G[U ] being
claw-free) can be done in O(n3) time; referring to Step 2, note that the algorithm
produces the anti-neighborhoods of all Lk’s of Gi just once since at iteration i all
such Lk’s have top(Lk) = vi, and that to compute AGi

(Lk) can be done in O(n) time. 2

This completes the proof of Theorem 6. 2

Theorem 7 For any fixed `, for `claw-free graphs, the MWIS problem can be solved
in polynomial time.

Proof. For any fixed ` the MWIS problem can be solved for every `claw-free graph G
by the following algorithm:

11



(1) Execute Algorithm Gamma(`) for G with the resulting good claw-free family S
of G.

(2) For each U ∈ S, compute a maximum weight independent set of G[U ]. Then
choose a best solution, i.e., one of the maximum weight.

Correctness: By Theorem 6, the algorithm is correct.

Time bound: By Theorem 6, the family S contains polynomially many members
and can be computed in polynomial time. Then step (1) can be executed in polynomial
time. Then, by Theorem 1, step (2) can be executed in polynomial time. Thus, the
algorithm can be executed in polynomial time. 2

5 Conclusion

The main result of this paper is Theorem 7 showing that for any fixed `, for `claw-free
graphs, the MWIS problem can be solved in polynomial time by a dynamic program-
ming approach. In particular as a corollary of the above one obtains:

Corollary 1 For any fixed ` there is a polynomial-time algorithm which, for every
`claw-free graph G, computes a family S of subsets of V (G) inducing claw-free graphs
(with S containing polynomially many members) such that every maximal independent
set of G is contained in some member of S.

Let us conclude with three comments.

1. Corollary 1 still holds by replacing the claw with any induced subgraph H of the
claw, that is apart from trivial induced subgraphs, with H = K2 (obtaining in this way
a result similar to that for `K2-free graphs [2, 5, 13, 31]) or with H = P3. In particular
Lemma 1 can be reformulated by replacing the claw with H, and by replacing the
family of graphs Lk’s with one graph isomorphic to K2 (for H = K2) or with two
graphs isomorphic to P3 (for H = P3).

2. It would be interesting to apply the dynamic programming approach for more
general cases as well, say for solving more open problems and extending previous poly-
nomial results, but so far we do not see how to apply it e.g. for `fork-free graphs or
`apple-free graphs.

3. Theorem 7 and the known results imply that the new graph classes, defined by
forbidding one induced subgraphs, for which the complexity MWIS problem seems to
be open are: P7-free graphs, S1,1,3-free graphs, S1,2,2-free graphs, K2 + P4-free graphs.
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[8] A. Brandstädt, T. Klembt, V.V. Lozin, and R. Mosca, Independent Sets of Maximum Weight in
Apple-Free Graphs, ISAAC 2008, LNCS 5369 (2008).

[9] D.G. Corneil, Y. Perl, and L.K. Stewart, A linear recognition algorithm for cographs, SIAM J.
Computing 14 (1985) 926-934.

[10] Y. Faenza, G. Oriolo, and G. Stauffer, An algorithmic decomposition of claw-free graphs leading
to an O(n3)-algorithm for the weighted independent set problem, Extended abstract in: Pro-
ceedings SODA 2011, pp. 630-646.

[11] Y. Faenza, G. Oriolo, and G. Stauffer, Solving the Weighted Stable Set Problem in Claw-Free
Graphs via Decomposition. J. ACM 61 (4) Article No. 20, pp. 1-41, 2014.

[12] M. Farber, On diameters and radii of bridged graphs, Discrete Mathematics 73 (1989) 249-260.

[13] M. Farber, M. Hujter, and Zs. Tuza, An upper bound on the number of cliques in a graph,
Networks 23 (1993) 75-83.

[14] G.H. Fricke, S.T. Hedetniemi, and D.P. Jacobs, Independence and irredundance in k-regular
graphs, Ars Combinatoria 49 (1998) 271-279.

[15] M.R. Garey, D.S. Johnson, and L. Stockmeyer, Some simplified NP-complete graph problems,
Theoretical Computer Science 1 (1976) 237-267.

[16] M.R. Garey and D.S. Johnson, The rectilinear Steiner tree problem is NP-complete, SIAM J.
Applied Mathematics 32 (1977) 826-834.

[17] M.R. Garey, D.S. Johnson, Computers and Intractability: A Guide to the Theory of NP-
completness, Freeman, San Francisco, CA (1979).

[18] M. Grötschel, L. Lovász, and A. Schrijver, Polynomial algorithms for perfect graphs, Annals of
Discrete Mathematics 21 (1984) 325-356.
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