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Abstract. In this paper we investigate the hedging problem of a unit-linked life insurance
contract via the local risk-minimization approach, when the insurer has a restricted information
on the market. In particular, we consider an endowment insurance contract, that is a combination
of a term insurance policy and a pure endowment, whose final value depends on the trend of a

stock market where the premia the policyholder pays are invested. To allow for mutual
dependence between the financial and the insurance markets, we use the progressive enlargement
of filtration approach. We assume that the stock price process dynamics depends on an exogenous

unobservable stochastic factor that also influences the mortality rate of the policyholder. We
characterize the optimal hedging strategy in terms of the integrand in the

Galtchouk-Kunita-Watanabe decomposition of the insurance claim with respect to the minimal
martingale measure and the available information flow. We provide an explicit formula by means

of predictable projection of the corresponding hedging strategy under full information with
respect to the natural filtration of the risky asset price and the minimal martingale measure.

Finally, we discuss applications in a Markovian setting via filtering.
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1. Introduction

Unit-linked life insurance contracts are life insurance policies whose benefits depend on the per-
formance of a certain stock or a portfolio traded in the financial market. For the last years these
contracts have experienced a clamorous success, driven by low interest rates, which have con-
siderably reduced the returns of the classic management, and the new Solvency II rules on the
insurance regulatory capital, which made the unit-linked much more affordable for the companies,
in terms of lower absorption of capital. According to Gantenbein and Mata [29, Chapter 10], the
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unit-linked life insurance policy is “basically a mixed life insurance that combines term coverage
with a saving and an investment component”. Unlike the traditional mixed life insurance, in these
contracts premia are invested by the insurance company in the financial market on behalf of the
policyholder who decides how to invest the capital. Among these products, we may distinguish at
least three different kinds of policies based on the payoff structure:

• pure endowment contract that promises to pay an agreed amount if the policyholder is still
alive on a specified future date;
• term insurance contract that pays the benefit if the policyholder dies before the policy
term;
• endowment insurance contract which is a combination of the above contracts and guarantees
that benefits will be paid by the insurance company, either at the policy term or after the
insured death.

The goal of this paper is to find an optimal hedging strategy for a given endowment insurance
contract in a general intensity-based model where the mortality intensity, as well as the drift in
the risky asset price dynamics affecting the benefits for the policyholder, is not observable by
the insurance company, and mutual dependence between the stock price trend and the insurance
portfolio is allowed. To the best of our knowledge, this is the first time that the problem of
hedging a unit-linked life insurance policy is studied under partial information, without assuming
independence between the financial and the insurance markets.

Precisely, we propose a suitable combined financial-insurance market model, where the financial
market consists of a riskless asset, whose discounted price is equal to 1, and a risky asset, with
discounted price process denoted by S. The price process S is represented by a geometric diffu-
sion, whose drift depends on an exogenous unobservable stochastic factor X, correlated with S.
The insurance company issues an endowment insurance contract with maturity of T years for an
individual whose remaining lifetime is represented by a random time τ .

Modeling the death time of an individual is a fundamental issue to be addressed when dealing with
insurance problems. Here, we propose a modeling framework for life insurance liabilities that is also
well suited to describe defaultable claims, as the time of death can be handled in a similar manner
to the default time of a firm. Then, we take the analogies between mortality and credit risk into
account and follow the intensity-based approach of reduced-form methodology, see e.g. Bielecki
and Rutkowski [7] and references therein. The death time τ is described by a nonnegative random
variable, which is not necessarily a stopping time with respect to the initial filtration F generated
by the underlying Brownian motions driving the dynamics of the pair (S,X). As mentioned above,
we do not assume independence between the random time of death and the financial market, and
characterize our setting via the progressive enlargement of filtration approach, see the seminal
works by Jeulin and Yor [32], Jeulin [31], Jeulin and Yor [33]. This technique is widely applied
to reduced-form models for credit risk, as in Bielecki et al. [8, 9, 11], Elliott et al. [25], Kusuoka
[35]. Moreover, applications to insurance problems can be found in Biagini et al. [6], Barbarin
[2], Choulli et al. [21], Li and Szimayer [37] in a complete information setting.
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Here, we consider an enlargement of the filtration F to make τ a stopping time and we denote it by
G. The available information to the insurance company is represented by a subfiltration G̃ of G,
which contains the natural filtration of S and ensures that τ is still a stopping time. This means
that, at any time t, the insurer may observe the risky asset price and knows if the policyholder is
still alive or not.

The endowment insurance contract can be treated as a contingent claim in the hybrid market
model given by the financial securities and the insurance portfolio, and the objective is to study
the hedging problem for the insurance company. Analogously to Bielecki et al. [10], Biagini and
Cretarola [4], we assume that hedging stops after the earlier between the policyholder death τ and
the maturity T : this allows to work with stopped price processes and guarantees that the stopped
Brownian motions, that drive the financial market, are also Brownian motions with respect to the
enlarged filtration. As a consequence, we do not need to assume themartingale invariance property,
also known as H-hypothesis, see e.g. Bielecki and Rutkowski [7]. Since the underlying market is
incomplete due to the mortality risk and the presence of the unobservable stochastic factor X,
it is necessary to select one of the techniques for pricing and hedging in incomplete markets.
Then, we choose, among the quadratic hedging methods, the local risk-minimization approach (see
e.g. Schweizer [48] for further details). The idea of this technique is to find an optimal hedging
strategy that perfectly replicates the given contingent claim with minimal cost, within a wide
class of admissible strategies that in general might not necessarily be self-financing. Locally risk-
minimizing hedging strategies can be characterized via the Föllmer-Schweizer decomposition of the
random variable representing the payoffs of the given contingent claim, see e.g. Schweizer [47, 48]
for the full information case and Ceci et al. [16, 19] under incomplete information. This quadratic
hedging approach has been successfully applied to the hedging problem of insurance products, see
e.g. Biagini et al. [6, 5], Choulli et al. [21], Dahl and Møller [22], Møller [39, 40], Vandaele and
Vanmaele [51] for the complete information case and Ceci et al. [18] under partial information.

In this paper, we introduce the stopped Föllmer-Schweizer decomposition under partial information
and in Proposition 4.10 we characterize the optimal hedging strategy in terms of the integrand
in this decomposition. In this sense, we extend Biagini and Cretarola [4, Proposition 3.7] to the
partial information framework. We also introduce the corresponding Galtchouk-Kunita-Watanabe
decomposition with respect to the minimal martingale measure. In Theorem 4.16, we provide
equivalence of these decompositions and, using the result stated in Proposition 4.15, the relation
between the optimal hedging strategy under partial information and that under full information
via predictable projections. In the case where the mortality intensity has a Markovian dependence
on the unobservable stochastic factor X, we can compute the optimal hedging strategy in a more
explicit form by means of filtering problems. Pricing and hedging problems for contingent claims
under incomplete information using filtering techniques have been studied in credit risk context,
in Frey and Runggaldier [27], Frey and Schmidt [28], Tardelli [50] and in the insurance framework
in Ceci et al. [18] under the hypothesis of independence between the financial and the insurance
markets.
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The paper is organized as follows. In Section 2 we introduce the combined financial-insurance
market model in a partial information scenario via progressive enlargement of filtrations. The
semimartingale decompositions of the stopped risky asset price process with respect to the enlarged
filtrations G and G̃ respectively, can be found in Section 3. In Section 4 we provide a closed
formula for the locally risk-minimizing hedging strategy under incomplete information for the
given endowment insurance contract by means of predictable projections. Finally, in Section 5
we discuss the problem in a Markovian framework, where the mortality intensity depends on the
unobservable stochastic factor and apply the filtering approach to compute the optimal hedging
strategy. In addition, we address the issue of the hazard process and the martingale hazard
process of τ under restricted information in Appendix A. Some technical results on the optional
and predictable projections under partial information and certain proofs can be found in Appendix
B.

2. The setting

We consider the problem of an insurance company that wishes to hedge a unit-linked life insurance
contract. The value of the policy depends on the performance of the underlying stock or portfolio
traded on the financial market as well as the remaining lifetime of the policyholder. Therefore,
the insurer is exposed to both financial and mortality risks. The nature of the problem suggests
to construct a combined financial-insurance market model and treat the life insurance policy as a
contingent claim. We will define the suitable modeling framework via the progressive enlargement
of filtration approach, which allows for possible dependence between the financial market and the
insurance portfolio. As first step, we introduce the underlying financial market model.

2.1. The financial market model. Let W = {Wt, t ∈ [0, T ]} and B = {Bt, t ∈ [0, T ]},
with W0 = B0 = 0, be two independent one dimensional Brownian motions on the complete
probability space (Ω,F ,P), with T denoting a fixed and finite time horizon. We define the filtration
F = {Ft, t ∈ [0, T ]}, by

F = FW ∨ FB,

where FW and FB denote the natural filtrations of the processesW and B, respectively. In addition,
we assume that F satisfies the usual hypotheses of completeness and right continuity.

We consider a simple financial market which consists of one riskless asset whose price process
is assumed to be equal to 1 at any time, and one risky asset whose (discounted) price process
S = {St, t ∈ [0, T ]} evolves according to the following stochastic differential equation

dSt = St (µ(t, St, Xt)dt+ σ(t, St)dWt) , S0 = s0 ∈ R+, (2.1)

where X = {Xt, t ∈ [0, T ]} is an unobservable exogenous stochastic factor satisfying

dXt = b(t,Xt)dt+ a(t,Xt)
[
ρdWt +

√
1− ρ2dBt

]
, X0 = x0 ∈ R, (2.2)
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with ρ ∈ [0, 1]. Here, µ, b are R-valued measurable functions and σ, a are R+-valued measurable
functions such that the system of equations (2.1) and (2.2) admits a unique strong solution, see
for instance Øksendal [42, Chapter 5]. This also implies that the pair (S,X) is an (F,P)-Markov
process.

We assume that the following conditions are in force throughout the paper:

Assumption 2.1.

(i) E
[∫ T

0

(
|µ(u, Su, Xu)|+ σ2 (u, Su)

)
du

]
<∞;

(ii)
∣∣∣∣µ(t, St, Xt)

σ(t, St)

∣∣∣∣ ≤ c, P-a.s., for every t ∈ [0, T ], with c being a positive constant.

Under Assumption 2.1 the set of all equivalent martingale measures for S is non-empty and contains
more than a single element, since X does not represent the price of any tradeable asset, and
therefore the financial market is incomplete.

Precisely, every equivalent probability measure Q has the following density LQ = {LQ
t , t ∈ [0, T ]},

given by

LQ
t :=

dQ

dP

∣∣∣∣
Ft

= E
(∫ .

0

−µ(u, Su, Xu)

σ(u, Su)
dWu +

∫ .

0

ψQ
u dBu

)
t

, t ∈ [0, T ],

where ψQ = {ψQ
t , t ∈ [0, T ]} is an F-predictable process such that LQ turns out to be an (F,P)-

martingale. Here E(Y ) denotes the Doléans-Dade exponential of an (F,P)-semimartingale Y . The
choice ψQ

t = 0, for every t ∈ [0, T ], corresponds to the so-called minimal martingale measure for S
(see e.g. Föllmer and Schweizer [26]), denoted by P̂, whose density process L = {Lt, t ∈ [0, T ]},
is defined by

Lt :=
dP̂

dP

∣∣∣∣∣
Ft

= E
(∫ .

0

−µ(u, Su, Xu)

σ(u, Su)
dWu

)
t

, t ∈ [0, T ]. (2.3)

Condition (ii) of Assumption 2.1 implies that L is a square integrable (F,P)-martingale. As a
consequence of the Girsanov Theorem, we get that the process Ŵ = {Ŵt, t ∈ [0, T ]}, given by

Ŵt := Wt +

∫ t

0

µ(u, Su, Xu)

σ(u, Su)
du, t ∈ [0, T ], (2.4)

is an (F, P̂)-Brownian motion and S is an (F, P̂)-local martingale, since it is the Doléans-Dade

exponential of the (F, P̂)-local martingale
{∫ t

0

σ(u, Su)dŴu, t ∈ [0, T ]

}
.

Note that, since X is not directly observable, the available information on the financial market for
the insurance company is brought by the natural filtration of the risky asset price process S, that
is, FS = {FSt , t ∈ [0, T ]}, with FSt := σ{Su, 0 ≤ u ≤ t}, for each t ∈ [0, T ].
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2.2. The combined financial-insurance market model. Now, we extend the financial market
model by also including an individual to be insured. Let τ be the remaining lifetime of an individual
with age a. Here, τ is a nonnegative random variable τ : Ω→ [0, T ]∪{+∞} satisfying P(τ = 0) = 0

and P(τ > t) > 0, for every t ∈ [0, T ]. Since, we only consider a single policyholder we omit the
dependence on the age.

Then, we define the associated death indicator process as H = {Ht, t ∈ [0, T ]}, where

Ht = 1{τ≤t}, t ∈ [0, T ], (2.5)

and FH = {FHt , t ∈ [0, T ]} denotes the natural filtration of H. Notice that τ is a stopping time
with respect to the filtration FH , but it is not necessarily a stopping time with respect to the
filtration F.

Let G = {Gt, t ∈ [0, T ]} be the enlarged filtration given by

Gt := Ft ∨ FHt , t ∈ [0, T ].

This is the smallest filtration which contains F, such that τ is a G-stopping time. In this framework
the initial market might be correlated with the time of death τ . The connection between the
financial market and τ is expressed in terms of the conditional distribution of τ given Ft, for every
t ∈ [0, T ], defined as the process F = {Ft, t ∈ [0, T ]} given by

Ft = P(τ ≤ t|Ft) = E [Ht|Ft] , t ∈ [0, T ]. (2.6)

Notice that, 0 ≤ Ft ≤ 1 for every t ∈ [0, T ]. In the sequel, we will assume that Ft < 1 for every
t ∈ [0, T ]; this excludes the case where τ is an F-stopping time, see e.g. Bielecki and Rutkowski
[7] for further details.

In the following we define the so-called hazard process of the random time τ .

Definition 2.2. The F-hazard process of τ under P is the nonnegative process Γ = {Γt, t ∈ [0, T ]}
defined by

Γt = − ln(1− Ft), t ∈ [0, T ]. (2.7)

In this paper we assume that Γ has a density, i.e. Γt =
∫ t

0
γudu, for every t ∈ [0, T ], for some

nonnegative F- predictable process γ = {γt, t ∈ [0, T ]} such that E
[∫ T

0
γudu

]
< ∞. The process

γ is known as the F-mortality intensity or the F-mortality rate and the F-survival process is given
by P(τ > t|Ft) = e−

∫ t
0 γudu, t ∈ [0, T ].

Now, we introduce the (F,G)-martingale hazard process associated with τ .

Definition 2.3. An F-predictable, right-continuous, increasing process Λ = {Λt, t ∈ [0, T ]} is
called an (F,G)-martingale hazard process of the random time τ if and only if the process

Mt = Ht − Λt∧τ , t ∈ [0, T ],

is a (G,P)-martingale.
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Remark 2.4. It is well known that in general, the F-hazard process and the (F,G)-martingale
hazard process do not coincide. Nevertheless, the existence of the F-mortality intensity ensures
that the process F is continuous and increasing. Then, by Bielecki and Rutkowski [7, Proposition
6.2.1] we get that Γ is also an (F,G)-martingale hazard process, and consequently, the process
M = {Mt, t ∈ [0, T ]} defined by

Mt = Ht − Γt∧τ = Ht −
∫ t∧τ

0

γudu = Ht −
∫ t

0

λudu, t ∈ [0, T ], (2.8)

where λt = γt1{τ≥t} = γt(1−Ht−), is a (G,P)-martingale. Furthermore, by Dellacherie and Meyer
[23, Chapter 6.78], τ is a totally inaccessible G-stopping time.

We assume that the insurance company issues a unit-linked life insurance policy. Precisely, we
consider an endowment insurance contract with maturity of T years which can be defined as
follows.

Definition 2.5. An endowment insurance contract is characterized by a a triplet (ξ, Z, τ), where

• the random variable ξ ∈ L2(FST ,P)1 is the amount paid at maturity T , if the policyholder
is still alive at time T ;
• the process Z = {Zt, t ∈ [0, T ]} represents the amount which is immediately paid at death-
time τ before maturity T ; here, Z is assumed to be square integrable and FS-predictable;
• the random variable τ is the time of death.

Remark 2.6. If Z = 0 the endowment insurance contract reduces to the so-called pure endowment
contract, which pays out the amount ξ in case of survival until T , whereas, if ξ = 0 we obtain the
payoff of a term insurance contract, that provides the amount Zτ at the random time τ in case of
death before time T .

We denote by N = {Nt, t ∈ [0, T ]} the process that models the payment stream arising from the
endowment insurance contract, i.e.

Nt = Zτ1{τ≤t} =

∫ t

0

ZsdHs, 0 ≤ t < T, and NT = ξ1{τ>T}, t = T. (2.9)

2.3. The information levels. We consider a scenario where the insurance company does not
have a complete information on the market. Precisely, we assume that it can observe neither the
stochastic factor X affecting the behavior of the risky asset price process S nor the Brownian
motions W and B which drive the dynamics of the pair (S,X). In particular, this implies that the
insurer does not know completely the F-mortality rate γ of τ . For instance, γ may be dependent
on the unobservable stochastic factor X, that is γt = γ(t,Xt), for each t ∈ [0, T ], with γ being a
nonnegative measurable function. This special case will be discussed in Section 5. At any time t,

1For any σ-algebra H, the set L2(H,P) denotes the space of all H-measurable random variables ζ such that
E
[
|ζ|2
]
<∞.
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the insurer may observe the risky asset price and knows if the policyholder died or not. Hence,
the available information is described by the filtration G̃ = {G̃t, t ∈ [0, T ]}, given by

G̃t := FSt ∨ FHt , t ∈ [0, T ].

Since FS ⊆ F, we have
G̃ ⊆ G.

We assume throughout the paper that all filtrations satisfy the usual hypotheses of completeness
and right-continuity. Some results about the hazard process and the martingale hazard process of
τ under partial information can be found in Appendix A.

In the sequel we will address the hedging problem of the endowment insurance contract (ξ, Z, τ) in
a partial information setting characterized by the information flow G̃. Since hedging stops either at
time T or τ , whichever comes first, it makes sense to consider the stopped discounted price process.
This also implies that we can work without assuming the so-called martingale invariance property
between filtrations F and G, which establishes that every F-martingale is also a G-martingale. The
martingale invariance property is frequently assumed when considering enlargement of filtrations.
To the best of our knowledge there are only a few papers in the literature where this hypothesis
is not imposed, see for instance Barbarin [3], Choulli et al. [21] in the insurance framework and
Biagini and Cretarola [4] in the credit risk setting.

3. The semimartingale decompositions of the stopped risky asset price process

In this section we provide the semimartingale decomposition of the stopped price process Sτ =

{St∧τ , t ∈ [0, T ]} with respect to the information flows G and G̃ respectively, and we show that,
under suitable conditions, Sτ satisfies the so-called structure condition with respect to both G and
G̃ on the stochastic interval J0, τ ∧ T K, see e.g. Schweizer [46, Section 1, page 1540] for further
details.

The structure condition of the stopped price process is a relevant tool for the computation of
the minimal martingale measure and the orthogonal decompositions that allow to characterize
the optimal hedging strategy under full and partial information. Moreover, the semimartingale
decomposition of Sτ with respect to the information flow G̃ allows to reduce the hedging problem
under partial information to a full information problem where all involved processes are G̃-adapted.

Remark 3.1. Recall that if the process F given in (2.6) is increasing, for any given F-predictable
(F,P)-martingale, m = {mt, t ∈ [0, T ]}, the stopped process mτ = {mt∧τ , t ∈ [0, T ]} is a (G,P)-
martingale, see Bielecki and Rutkowski [7, Lemma 5.1.6].

Since F is increasing in our setting, both processes W τ = {Wt∧τ , t ∈ [0, T ]} and Bτ = {Bt∧τ , t ∈
[0, T ]} are (G,P)-martingales.

Moreover, by Lévy’s Theorem we also obtain that W τ and Bτ are (G,P)-Brownian mo-

tions on J0, τ ∧ T K and, as a consequence, the integral processes
{∫ t

0

ϕsdW
τ
s , t ∈ [0, T ]

}
and
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0

ϕsdB
τ
s , t ∈ [0, T ]

}
are (G,P)-(local) martingales for any G-predictable process ϕ = {ϕt, t ∈

[0, T ]}.

By Remark 3.1, we get that the stopped price process Sτ is a (G,P)-semimartingale, decomposable
as the sum of a locally square integrable (G,P)-local martingale and a (G,P)-predictable process
of finite variation, both null at zero, i.e.

Sτt = s0 +

∫ t∧τ

0

Sτuµ(u, Sτu, X
τ
u)du+

∫ t∧τ

0

Sτuσ(u, Sτu)dW τ
u , t ∈ [0, T ],

where

Xτ
t = x0 +

∫ t∧τ

0

b(u,Xτ
u)du+

∫ t∧τ

0

a(u,Xτ
u)
[
ρdW τ

u +
√

1− ρ2dBτ
u

]
, t ∈ [0, T ].

Since Sτ is G̃-adapted, then it also admits a semimartingale decomposition with respect to the
information flow G̃, which will be computed below by means of the (stopped) innovation process
Iτ , defined in equation (3.1).

Given any subfiltration H = {Ht, t ∈ [0, T ]} of G, we will use the notation o,HY (respectively p,HY )
to indicate the optional (respectively predictable) projection of a given P-integrable, G-adapted
process Y with respect to H and P, defined as the unique H-optional (respectively H-predictable)
process such that o,HYτ̂ = E [Yτ̂ |Hτ̂ ] P-a.s. (respectively p,HYτ̂ = E [Yτ̂ |Hτ̂− ] P-a.s.) on {τ̂ < ∞}
for every H-optional (respectively H-predictable) stopping time τ̂ .

Moreover, in the sequel we denote by o,G̃µ, p,G̃µ, the optional projection and the predictable
projection respectively of the process {µ(t, Sτt , X

τ
t ), t ∈ [0, T ]} with respect to the information

flow G̃.

Lemma 3.2. Under Assumption 2.1, the process Iτ = {Iτt , t ∈ [0, T ]} defined by

Iτt := W τ
t +

∫ t∧τ

0

µ(u, Sτu, X
τ
u)− p,G̃µu

σ (u, Sτu)
du, t ∈ [0, T ], (3.1)

is a (G̃,P)-Brownian motion on J0, τ ∧ T K.

The proof is postponed to Appendix B.2.

Lemma 3.2 allows to get the following G̃-semimartingale decomposition of Sτ ,

Sτt = s0 +

∫ t∧τ

0

Sτu
p,G̃µudu+

∫ t∧τ

0

Sτu σ(u, Sτu)dIτu , t ∈ [0, T ],

i.e. the sum of a locally square integrable (G̃,P)-local martingale and a (G̃,P)-predictable process
of finite variation both null at zero.
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Moreover, Sτ satisfies the structure condition with respect to both the filtrations G and G̃. Pre-
cisely,

Sτt = s0 +MG
t +

∫ t∧τ

0

αGud〈MG〉u, t ∈ [0, T ],

Sτt = s0 +M G̃
t +

∫ t∧τ

0

αG̃ud〈M G̃〉u, t ∈ [0, T ],

where MG = {MG
t , t ∈ [0, T ]} and M G̃ = {M G̃

t , t ∈ [0, T ]} are the locally square integrable
(G,P)-local martingale and (G̃,P)-local martingale respectively, given by

MG
t :=

∫ t∧τ

0

Sτuσ(u, Sτu)dW τ
u , M G̃

t :=

∫ t∧τ

0

Sτuσ(u, Sτu)dIτu , t ∈ [0, T ], (3.2)

and αG = {αGt , t ∈ [0, T ]} and αG̃ = {αG̃t , t ∈ [0, T ]} are the G-predictable and G̃-predictable
processes, respectively given by

αGt :=
µ(t, Sτt , X

τ
t )

Sτt σ
2(t, Sτt )

, αG̃t :=
p,G̃µt

Sτt σ
2(t, Sτt )

, t ∈ [0, T ].

4. Local risk-minimization for payment streams under partial information

The combined financial-insurance market model outlined in Section 2 is not complete. Indeed,
the number of random sources is larger than the number of tradeable risky assets due to the
presence of a totally inaccessible death time. Moreover, additional randomness is brought here
by the unobservable stochastic factor X. Then, a replicating strategy, which is at the same
time self-financing, may not exist in this framework. In this section we look for a locally risk-
minimizing hedging strategy under restricted information for the payment stream associated with
the endowment insurance contract (ξ, Z, τ), and discuss the relation with the corresponding optimal
hedging strategy under full information.

Remark 4.1. Since Ft < 1 for all t ∈ [0, T ], for every G-predictable (respectively G̃-predictable)
process Y there is an F-predictable (respectively FS-predictable) process Ỹ such that Ỹt1{τ≥t} =

Yt1{τ≥t} P-a.s. for every t ∈ [0, T ] (see e.g. Dellacherie et al. [24, Paragraph 75, part a), page
186] or Blanchet-Scalliet and Jeanblanc [12, page 147]).

Remark 4.1 allows to consider the following classes of admissible hedging strategies under full and
partial information.

Definition 4.2. The space ΘF,τ consists of all R-valued F-predictable processes θ = {θt, t ∈
J0, T ∧ τK} satisfying

E

[∫ T∧τ

0

(θuσ(u, Sτu)Sτu)2 du+

(∫ T∧τ

0

|θu µ(u, Sτu, X
τ
u)Sτu|du

)2
]
<∞.
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Definition 4.3. The space ΘFS ,τ consists of all R-valued FS-predictable processes θ = {θt, t ∈
J0, T ∧ τK} satisfying

E

[∫ T∧τ

0

(θuσ(u, Sτu)Sτu)2 du+

(∫ T∧τ

0

|θu p,G̃µu S
τ
u|du

)2
]
<∞.

Remark 4.4. Notice that for θ ∈ ΘF,τ (respectively θ ∈ ΘFS ,τ), we get

(i)
∫ t∧τ

0

θudSu =

∫ t

0

θudS
τ
u, for every t ∈ [0, T ], see Dellacherie and Meyer [23, Chapter VIII,

equation 3.3];

(ii) the integral process
{∫ t

0

θudS
τ
u, t ∈ [0, T ]

}
is a (G,P)-semimartingale (respectively (G̃,P)-

semimartingale), see Prokhorov and Shiryaev [44, Chapter 3.II].

Definition 4.5. An (F,G)-strategy (respectively (FS, G̃)-strategy) is a bidimensional process ϕ =

(θ, η) where θ ∈ ΘF,τ (respectively θ ∈ ΘFS ,τ) and η is a real-valued G-adapted (respectively G̃-
adapted) process such that the associated value process V (ϕ) := θSτ + η is right-continuous and
square integrable over J0, T ∧ τK.

Note that the first component θ of the (F,G)-strategy (respectively (FS, G̃)-strategy), which rep-
resents the number of risky assets in the portfolio, is F-predictable (respectively FS-predictable),
while the amount η invested in the risk-free asset is G-adapted (respectively G̃-adapted). This re-
flects the natural situation where a trader invests in the risky asset according to her/his knowledge
on the asset prices before the death of the policyholder and rebalances the portfolio also upon the
death information.

Following Schweizer [49], we assign to each admissible strategy a cost process.

Definition 4.6. The cost process C(ϕ) of an (F,G)-strategy (respectively (FS, G̃)-strategy) ϕ =

(θ, η) is given by

Ct(ϕ) := Nt + Vt(ϕ)−
∫ t

0

θudS
τ
u, t ∈ J0, T ∧ τK, (4.1)

where N is defined in (2.9).

An (F,G)-strategy (respectively (FS, G̃)-strategy) ϕ is called mean-self-financing if its cost process
C(ϕ) is a (G,P)-martingale (respectively (G̃,P)-martingale).

It is well known in the literature (see e.g. Møller [40], Schweizer [49], Biagini and Cretarola [4])
that a natural extension of the local risk-minimization approach to payment streams requires to
look for admissible strategies ϕ satisfying the 0-achieving property, that is,

Vτ∧T (ϕ) = 0, P− a.s..

Then, by Schweizer [49, Theorem 1.6], we provide the following equivalent definition of locally
risk-minimizing strategy.
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Definition 4.7. Let N be the payment stream given in (2.9) associated with the endowment insur-
ance contract (ξ, Z, τ). We say that an (F,G)-strategy (respectively (FS, G̃)-strategy) ϕ is (F,G)-
locally risk-minimizing (respectively (FS, G̃)-locally risk-minimizing) for N if

(i) ϕ is 0-achieving and mean-self-financing;
(ii) the cost process C(ϕ), defined in (4.1), is strongly orthogonal to the G-martingale part MG

(respectively G̃-martingale part M G̃) of Sτ , both given in (3.2).

Locally risk-minimizing hedging strategies can be characterized via the Föllmer-Schweizer decom-
position of payment streams associated with life insurance contracts under partial information.

Taking Remark 4.1 into account, we give the following definitions of stopped Föllmer-Schweizer
decompositions of a square integrable random variable with respect to G and G̃.

Definition 4.8 (Stopped Föllmer-Schweizer decomposition with respect to G). Given a random
variable ζ ∈ L2(GT ,P), we say that ζ admits a stopped Föllmer-Schweizer decomposition with
respect to G, if there exist a process θF ∈ ΘF,τ , a square integrable (G,P)-martingale AG =

{AGt , t ∈ J0, T ∧ τK} null at zero, strongly orthogonal to the martingale part of Sτ , MG, given in
(3.2), and ζ0 ∈ R such that

ζ = ζ0 +

∫ T

0

θFu dSτu + AGT∧τ , P− a.s.. (4.2)

Definition 4.9 (Stopped Föllmer-Schweizer decomposition with respect to G̃). Given a random
variable ζ ∈ L2(G̃T ,P), we say that ζ admits a stopped Föllmer-Schweizer decomposition with
respect to G̃, if there exist a process θFS ∈ ΘFS ,τ , a square integrable (G̃,P)-martingale AG̃ =

{AG̃t , t ∈ J0, T ∧ τK} null at zero, strongly orthogonal to the martingale part of Sτ ,M G̃, given in
(3.2), and ζ0 ∈ R such that

ζ = ζ0 +

∫ T

0

θF
S

u dSτu + AG̃T∧τ , P− a.s.. (4.3)

Under Assumption 2.1, the mean variance tradeoff processes K = {Kt, t ∈ [0, T ]} and K̃ =

{K̃t, t ∈ [0, T ]} under G and G̃, respectively defined by

Kt :=

∫ t

0

(αGu)2d〈MG〉u, K̃t :=

∫ t

0

(αG̃u)2d〈MG〉u, t ∈ [0, T ],

are bounded uniformly in t and ω. Boundedness of the mean variance tradeoff processes and
Remark 4.1 guarantee the existence of decompositions (4.2) and (4.3) for every ζ ∈ L2(G̃T ,P) ⊆
L2(GT ,P), see e.g. Schweizer [46, Section 5] and references therein. Other classes of sufficient
conditions for the existence of the Föllmer-Schweizer decompositions can be found e.g. in Schweizer
[47], Monat and Stricker [41], Choulli et al. [20] and Ceci et al. [16].

Let N be the payment stream associated with the endowment insurance contract (ξ, Z, τ) given in
(2.9) and consider the random variable

NT∧τ = ξ1{τ>T} + Zτ1{τ≤T}. (4.4)
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Note that NT∧τ ∈ L2(G̃T ,P) ⊆ L2(GT ,P) since ξ ∈ L2(FST ,P) and Z is a P-square integrable
and FS-predictable process. Then, NT∧τ admits a stopped Föllmer-Schweizer decomposition with
respect to both G and G̃, i.e.

NT∧τ =ζ0 +

∫ T

0

θFu dSτu + AGT∧τ , P− a.s., (4.5)

NT∧τ =ζ0 +

∫ T

0

θF
S

u dSτu + AG̃T∧τ , P− a.s.. (4.6)

The following proposition gives a characterization of the optimal hedging strategy.

Proposition 4.10. Let N be the payment stream associated with the endowment insurance contract
(ξ, Z, τ) and suppose that Assumption 2.1 is in force. Then, N admits an (FS, G̃)-locally risk-
minimizing strategy ϕ∗ = (θ∗, η∗), explicitly given by

θ∗ = θF
S

, η∗ = V (ϕ∗)− θFSSτ , (4.7)

with value process

Vt(ϕ
∗) = ζ0 +

∫ t

0

θF
S

u dSτu + AG̃t −Nt, t ∈ J0, T ∧ τK, (4.8)

and minimal cost

Ct(ϕ
∗) = ζ0 + AG̃t , t ∈ J0, T ∧ τK, (4.9)

where ζ0, θF
S and AG̃ are given in decomposition (4.6).

Proof. Under Assumption 2.1 we have that NT∧τ admits a stopped Föllmer-Schweizer decomposi-
tion with respect to G̃, given by (4.6). Then, the proof follows by that of Biagini and Cretarola
[4, Proposition 3.7], by replacing the filtrations G and F with G̃ and FS, respectively. Precisely,
by (4.6) we get that (4.7) and (4.8) define an (FS, G̃)-strategy with cost (4.9). It is easy to see
that C(ϕ∗) is a (G̃,P)-martingale and that ϕ∗ is 0-achieving, and therefore ϕ∗ is an (FS, G̃)-locally
risk-minimizing strategy. �

4.1. The optimal strategy via the Galtchouk-Kunita-Watanabe decomposition. Accord-
ing to the local risk-minimization approach, see, e.g. Schweizer [48], when the underlying risky
asset price process is continuous and satisfies the structure condition, the Föllmer-Schweizer de-
composition of a given square integrable random variable can be computed by switching to the
minimal martingale measure and considering the corresponding Galtchouk-Kunita-Watanabe de-
composition. In the following, we revisit this methodology in the combined financial-insurance
market model outlined in Section 2.

Definition 4.11. A martingale measure P̂ equivalent to P with square integrable density is called
minimal for Sτ if any square integrable (G,P)-martingale, which is strongly orthogonal to the
martingale part of Sτ , MG given in (3.2), under P is also a (G, P̂)-martingale.
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Define the process Lτ = {Lτt , t ∈ [0, T ]} by setting

Lτt =
dP̂

dP

∣∣∣∣∣
Gτ∧t

:= E
(
−
∫ ·

0

µ(u, Sτu, X
τ
u)

σ(u, Sτu)
dW τ

u

)
t∧τ

, t ∈ [0, T ]. (4.10)

By condition (ii) of Assumption 2.1, we get that Lτt ∈ L2(Gt,P), for every t ∈ [0, T ].

Applying the results in Ansel and Stricker [1], we get that P̂, given in (4.10), corresponds to the
minimal martingale measure. By the Girsanov theorem the process Ŵ τ = {Ŵ τ

t , t ∈ J0, T ∧ τK},
defined by

Ŵ τ
t := W τ

t +

∫ t∧τ

0

µ(u, Sτu, X
τ
u)

σ(u, Sτu)
du, t ∈ J0, T ∧ τK,

is a (G, P̂)-Brownian motion.

Note that Lτ and Ŵ τ coincide with the processes L and Ŵ , given in (2.3) and (2.4) respectively,
on the stochastic interval J0, T ∧ τK.

Remark 4.12. We may also define the minimal martingale measure Q̂ for Sτ with respect to the
information flow G̃, by setting

dQ̂

dP

∣∣∣∣∣
G̃τ∧T

:= E
(
−
∫ ·

0

αG̃udM G̃
u

)
T∧τ

= E

(
−
∫ ·

0

p,G̃µu
σ(u, Sτu)

dIτu

)
T∧τ

.

Since Sτ has continuous trajectories, Q̂ coincides with the restriction of P̂ over G̃τ∧T , see, e.g.
Ceci et al. [19, Lemma 4.3]. Indeed, by (3.1)

Iτt +

∫ t∧τ

0

p,G̃µu
σ(u, Sτu)

du = W τ
t +

∫ t∧τ

0

µ(u, Sτu, X
τ
u)

σ(u, Sτu)
du = Ŵ τ

t , t ∈ J0, T ∧ τK,

which, therefore, implies that the process
{
Iτt +

∫ t∧τ
0

p,G̃µu
σ(u,Sτu)

du, t ∈ J0, T ∧ τK
}

is a (G̃, P̂)-

Brownian motion since it is G̃-adapted.

In the following we show that the Föllmer-Schweizer decomposition of the payment stream N

associated with the endowment insurance contract (ξ, Z, τ) indeed coincides with its Galtchouk-
Kunita-Watanabe decomposition under the minimal martingale measure, which is easier to char-
acterize.

For reader’s convenience, we recall the definition of the Galtchouk-Kunita-Watanabe decomposition
of a square integrable random variable, adapted to this setting.

Definition 4.13 (Galtchouk-Kunita-Watanabe decomposition). Any random variable ζ ∈
L2(GT , P̂) (respectively ζ ∈ L2(G̃T , P̂)) admits a Galtchouk-Kunita-Watanabe decomposition with
respect to Sτ under P̂, that is, it can be uniquely written as

ζ = ζ0 +

∫ T

0

θ̄udS
τ
u + ĀT∧τ , P̂− a.s.,
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where ζ0 ∈ R, θ̄ = {θ̄t, t ∈ J0, T ∧ τK} is a G-predictable (respectively G̃-predictable) process
such that Ê

[∫ T∧τ
0

(
θ̄uσ(u, Sτu)Sτu

)2
du
]
< ∞ and Ā = {Āt, t ∈ J0, T ∧ τK} is a (G, P̂)-martingale

(respectively (Ĝ, P̂)-martingale) null at zero, strongly orthogonal to Sτ .

From now on we work under the following standing assumption.

Assumption 4.14. Given in (2.9) the payment stream N associated with the endowment insurance
contract (ξ, Z, τ), we assume that NT∧τ given in (4.4) is P̂-square integrable and Sτ is P̂-locally
square integrable.

Under Assumption 4.14, NT∧τ admits the Galtchouk-Kunita-Watanabe decomposition with respect
to Sτ under (G̃, P̂) given by

NT∧τ = Ê [NT∧τ ] +

∫ T

0

θ̂G̃udSτu + ÂG̃T∧τ , P̂− a.s., (4.11)

where θ̂G̃ = {θ̂G̃t , t ∈ J0, T ∧ τK} is G̃-predictable and satisfies E
[∫ T

0

(
θ̂G̃t σ(t, Sτt )Sτt

)2

dt

]
< ∞,

ÂG̃ = {ÂG̃t , t ∈ J0, T ∧ τK} is a (G̃, P̂)-martingale null at time zero, strongly orthogonal to Sτ .
By Remark 4.1, it is always possible to replace θ̂G̃ by an FS-predictable process θ̂FS such that
1{τ≥t}θ̂

G̃
t = 1{τ≥t}θ̂

FS
t , for each t ∈ [0, T ]. Then, equation (4.11) can be written as

NT∧τ = Ê [NT∧τ ] +

∫ T

0

θ̂F
S

u dSτu + ÂG̃T∧τ , P̂− a.s.. (4.12)

Notice that, since NT∧τ is also GT -measurable, we can consider the Galtchouk-Kunita-Watanabe
decomposition with respect to (G, P̂), i.e.

NT∧τ = Ê [NT∧τ ] +

∫ T

0

θ̂Fu dSτu + ÂGT∧τ , P̂− a.s., (4.13)

where θ̂F is an F-predictable process such that Ê
[∫ T∧τ

0

(
θ̂Fu σ(u, Sτu)Sτu

)2

du

]
< ∞ and ÂG =

{ÂGt , t ∈ J0, T ∧ τK} is a (G, P̂)-martingale null at zero strongly orthogonal to Sτ .

The following proposition provides a representation of the integrand θ̂FS in the Galtchouk-Kunita-
Watanabe decomposition of NT∧τ under partial information in terms of the corresponding inte-
grand θ̂F in the Galtchouk-Kunita-Watanabe decomposition under full information, and finally
Theorem 4.16 gives the characterization of the locally risk-minimizing strategy for the insurance
claim (ξ, Z, τ) under partial information.

In the sequel, given any subfiltration H of G, the notation p̂,HY refers to the (H, P̂)-predictable
projection of a given P̂-integrable G-adapted process Y .
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Proposition 4.15. Under Assumptions 2.1 and 4.14, the integrand θ̂FS in decomposition (4.12)
is given by

θ̂F
S

t =
p̂,FS(θ̂Ft e

−
∫ t
0 γudu)

p̂,FS(e−
∫ t
0 γudu)

, t ∈ J0, T ∧ τK, (4.14)

where the process θ̂F is the integrand in decomposition (4.13), and the (G̃, P̂)-martingale ÂG̃ =

{ÂG̃t , t ∈ J0, T ∧ τK} is given by

ÂG̃t = Ê
[
ÂGt

∣∣∣G̃t]+ Ê
[∫ t

0

(θ̂Fu − θ̂F
S

u )dSτu

∣∣∣G̃t] , t ∈ J0, T ∧ τK. (4.15)

Proof. In virtue of Corollary B.4, if θ̂FS satisfies (4.14), then

θ̂F
S

t = p̂,G̃θ̂Ft , t ∈ J0, T ∧ τK.

By decomposition (4.13) we can write

NT∧τ = Ê [NT∧τ ] +

∫ T

0

p̂,G̃θ̂Fu dSτu + ÃT∧τ + ÂGT∧τ , P̂− a.s., (4.16)

where Ã = {Ãt, t ∈ J0, T ∧ τK}, given by

Ãt :=

∫ t

0

(θ̂Fu − θ̂F
S

u )dSτu =

∫ t

0

(θ̂Fu − p̂,G̃θ̂Fu )dSτu, t ∈ J0, T ∧ τK,

is a square integrable (G, P̂)-martingale (see, e.g. [48, Lemma 2.1]). This is a consequence of the
fact that Sτ is a (G, P̂)-local martingale and that, by Jensen’s inequality the following holds

Ê
[∫ T∧τ

0

(
θ̂F

S

u σ(u, Sτu)Sτu

)2

du

]
= Ê

[∫ T

0

(
p̂,G̃θ̂Fu σ(u, Sτu)Sτu

)2

1{τ≥u}du

]
≤ Ê

[∫ T

0

p̂,G̃
((

θ̂Fu σ(u, Sτu)Sτu

)2

1{τ≥u}

)
du

]
= Ê

[∫ T∧τ

0

(
θ̂Fu σ(u, Sτu)Sτu

)2

du

]
<∞.

By (4.15), conditioning (4.16) with respect to G̃T∧τ yields

NT∧τ = Ê [NT∧τ ] +

∫ T

0

p̂,G̃θ̂Fu dSτu + Ê
[
ÃT∧τ + ÂGT∧τ |G̃T∧τ

]
= Ê [NT∧τ ] +

∫ T

0

p̂,G̃θ̂Fu dSτu + ÂG̃T∧τ .

This provides the Galtchouk-Kunita-Watanabe decomposition of NT∧τ with respect to (G̃, P̂), once
we verify that the square integrable (G̃, P̂)-martingale ÂG̃ is strongly orthogonal to Sτ . Note that
ÂG̃ satisfies

Ê
[
ÂG̃T∧τ

∫ T∧τ

0

ϕudS
τ
u

]
= 0,
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for all G̃-predictable processes ϕ such that Ê
[∫ T∧τ

0
ϕ2
u d〈Sτ 〉u

]
<∞, i.e. ÂG̃ is G̃-weakly orthogonal

to Sτ , see Definition 2.1 in Ceci et al. [17]. Indeed, since ϕ is G̃-predictable, by the tower rule

Ê
[
ÂG̃T∧τ

∫ T∧τ

0

ϕudS
τ
u

]
= Ê

[
ÂGT∧τ

∫ T∧τ

0

ϕudS
τ
u

]
+ Ê

[
ÃT∧τ

∫ T∧τ

0

ϕudS
τ
u

]
.

Both of the terms on the right-hand side are zero: the first one because ÂG is strongly orthogonal
to Sτ , and the second one follows by the computations below,

Ê
[
ÃT∧τ

∫ T∧τ

0

ϕudS
τ
u

]
= Ê

[∫ T∧τ

0

ϕu(θ̂
F
u − p̂,G̃θ̂Fu )d〈Sτ 〉u

]
= Ê

[∫ T∧τ

0

ϕu(θ̂
F
u − p̂,G̃θ̂Fu )σ2(u, Sτu)(Sτu)2du

]
= 0,

since {σ(t, Sτt )Sτt , t ∈ J0, T ∧ τK} has continuous trajectories.

Finally, the strong orthogonality between ÂG̃ and Sτ is equivalent to G̃-weak orthogonality since
ÂG̃ is G̃-adapted (see Ceci et al. [17, Remark 2.4]). �

Theorem 4.16. Let N be the payment stream given by (2.9), associated with the endowment
insurance contract (ξ, Z, τ) and let Assumptions 2.1 and 4.14 hold. Then, equation (4.12) coincides
with the stopped Föllmer-Schweizer decomposition of NT∧τ with respect to G̃, given in (4.6).

Moreover, the (FS, G̃)-locally risk-minimizing strategy ϕ∗ = (θ∗, η∗) for N is given by

θ∗t = θF
S

t =

p̂,FS
(
θFt e

−
∫ t
0 γudu

)
p̂,FS

(
e−

∫ t
0 γudu

) , t ∈ J0, T ∧ τK, (4.17)

η∗t = Vt(ϕ
∗)− θ∗tSτt , t ∈ J0, T ∧ τK,

and the optimal value process V (ϕ∗) is given by

Vt(ϕ
∗) = Ê [NT∧τ ] +

∫ t

0

θ∗udS
τ
u + AG̃t −Nt, t ∈ J0, T ∧ τK,

with

AG̃t = Ê
[
AGt

∣∣∣G̃t]+ Ê
[∫ t

0

θFu dSτu

∣∣∣G̃t]− ∫ t

0

θ∗udS
τ
u, t ∈ J0, T ∧ τK,

where θF = θ̂F and AG = ÂG are given in decomposition (4.13) and θFS = θ̂F
S and AG̃ = ÂG̃ are

given in (4.12).

Proof. Under Assumption 2.1 the stopped Föllmer-Schweizer decompositions of NT∧τ with respect
to G and G̃, respectively given by equation (4.5) and (4.6), exist. Then, it follows from Biagini
and Cretarola [4, Theorem 3.9] or Schweizer [48, Theorem 3.5], that decomposition (4.13) and
(4.5) coincide. Analogously, by replacing the filtrations G and F with G̃ and FS, we get that
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also decompositions (4.12) and (4.6) coincide. Then, the result follows by Proposition 4.10 and
Proposition 4.15. �

Representation (4.17) requires the knowledge of the process θF , that is, the first component of the
(F,G)-locally risk-minimizing strategy (see Biagini and Cretarola [4, Proposition 3.7]).

To characterize the process θF , define the process V̂ = {V̂t, t ∈ J0, T ∧ τK} by setting

V̂t := Ê [NT∧τ |Gt] , t ∈ J0, T ∧ τK. (4.18)

Then, by (4.13) the process V̂ admits the Galchouk-Kunita-Watanabe decomposition given by

V̂t = Ê [NT∧τ ] +

∫ t

0

θFu dSτu + AGt , t ∈ J0, T ∧ τK,

where AG = ÂG is a square integrable (G, P̂)-martingale null at time zero, strongly orthogonal to
Sτ with respect to P̂. By taking the predictable covariation with respect to Sτ on both sides of
the equality we get that

θFt =
d〈V̂ , Sτ 〉P̂t

d〈Sτ 〉P̂t
, t ∈ J0, T ∧ τK, (4.19)

where 〈·, ·〉P̂ denotes the predictable covariation process under minimal martingale measure P̂.

Now we have to face the task of computing the process 〈V̂ , Sτ 〉P̂.

In the following section we will analyze some examples in a Markovian setting where we are able
to give explicit representations of both the optimal hedging strategies θF and θFS under full and
partial information.

5. An application: the F-mortality rate depending on the unobservable
stochastic factor

To introduce a Markovian setting, we assume that the F-mortality rate γ is of the form γt = γ(t,Xt),
t ∈ [0, T ], for a nonnegative measurable function γ such that E

[∫ T
0
γ(s,Xs)ds

]
< ∞, and the

endowment insurance contract is given by the triplet (ξ, Z, τ), where ξ = G(T, ST ) and Zt =

U(t, St), for some measurable functions G and U such that E[|G(T, ST )|2] <∞ and E[|U(t, St)|2] <

∞, for every t ∈ [0, T ].

On the probability space (Ω,F , P̂) the pair (S,X) satisfies the following system of stochastic
differential equations

dSt = Stσ(t, St)dŴt, S0 = s0 ∈ R+,

dXt =

(
b(t,Xt)− a(t,Xt)ρ

µ(t, St, Xt)

σ(t, St)

)
dt+ a(t,Xt)

(
ρdŴt +

√
1− ρ2dBt

)
, X0 = x0 ∈ R.

(5.1)
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We assume throughout the section that

Ê
[∫ T

0

{
|b(t,Xt)|+ a2(t,Xt) + S2

t σ
2(t, St)

}
dt

]
<∞. (5.2)

Condition (5.2) guarantees, for instance, that S is a square integrable (F, P̂)-martingale. The same
holds for the martingale part of X.

The Markovianity of the pair (S,X) under P̂ is shown in the Lemma below.

Lemma 5.1. Under Assumption 2.1 and condition (5.2), the pair (S,X) is an (F, P̂)-Markov
process with generator L̂S,X given by

L̂S,Xf(t, s, x) =
∂f

∂t
+

[
b(t, x)− ρ µ(t, s, x)a(t, x)

σ(t, s)

]
∂f

∂x
+

1

2
a2(t, x)

∂2f

∂x2
(5.3)

+ ρa(t, x)σ(t, s)s
∂2f

∂x∂s
+

1

2
σ2(t, s) s2∂

2f

∂s2
,

for every function f ∈ C1,2,2
b ([0, T ]×R+×R). Moreover, the following semimartingale decomposition

holds

f(t, St, Xt) = f(0, s0, x0) +

∫ t

0

L̂S,Xf(u, Su, Xu)du+M f
t , t ∈ [0, T ],

where M f = {M f
t , t ∈ [0, T ]} is the (F, P̂)-martingale given by

dM f
t =

∂f

∂x
a(t,Xt)

[
ρdŴt +

√
1− ρ2dBt

]
+
∂f

∂s
σ(t, St)StdŴt.

The proof is postponed to Appendix B.2.

The idea for computing the (FS, G̃)-locally risk minimizing strategy is to derive θF via (4.19) and
apply equation (4.17). Therefore, we need to characterize the process V̂ in (4.18).

First, observe that the process M in (2.8) is a (G, P̂)-martingale null at time zero that can also be
written as

Mt = Ht −
∫ t

0

(1−Hr)γ(r,Xr)dr,

where H is the death indicator process given in (2.5), i.e. Ht = 1{τ≤t}. Then we get that,

V̂t = Ê
[
G(T, SτT )(1−HT ) +

∫ T

0

U(r, Sτr )dHr|Gt
]

= Ê
[
G(T, SτT )(1−HT ) +

∫ T

0

U(r, Sτr )(1−Hr)γ(r,Xτ
r )dr|Gt

]
=

∫ t

0

U(r, Sτr )(1−Hr)γ(r,Xτ
r )dr + Ê

[
G(T, SτT )(1−HT ) +

∫ T

t

U(r, Sτr )(1−Hr)γ(r,Xτ
r )dr|Gt

]
.

In order to compute the last conditional expectation we use the Markovianity of the triplet
(Sτ , Xτ , H) under P̂, which is proved in the lemma below. Denote by Ĉ1,2,2

b ([0, T ]×R+×R×{0, 1})
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the set of measurable and bounded functions f : [0, T ]×R+×R×{0, 1} → R which are continuous
and differentiable with respect to t, continuous and twice differentiable with respect to (s, x) with
bounded derivatives (of all necessary orders).

Lemma 5.2. Under Assumption 2.1 and condition (5.2), the triplet (Sτ , Xτ , H) is a (G, P̂)-Markov
process with generator L̂S,X,H given by

L̂S,X,Hf(t, s, x, z) = L̂S,Xf(t, s, x, z)(1− z) + {f(t, s, x, z + 1)− f(t, s, x, z)}γ(t, x)(1− z) (5.4)

for every function f ∈ Ĉ1,2,2
b ([0, T ]× R+ × R× {0, 1}), where L̂S,X is given in (5.3).

Moreover, the following (G, P̂)-semimartingale decomposition holds

f(t, Sτt , X
τ
t , Ht) = f(0, s0, x0, 0) +

∫ t

0

L̂S,X,Hf(u, Sτu, X
τ
u , Hu)du+M f

t , t ∈ J0, T ∧ τK,

where M f = {M f
t , t ∈ [0, T ]} is the (G, P̂)-martingale given by

dM f
t =

∂f

∂x
(1−Ht)a(t,Xτ

t )
[
ρdŴ τ

t +
√

1− ρ2dBτ
t

]
+
∂f

∂s
(1−Ht)σ(t, Sτt )Sτt dŴ τ

t (5.5)

+ {f(t, Sτt , X
τ
t , Ht− + 1)− f(t, Sτt , X

τ
t , Ht−)}dMt.

The proof is postponed to Appendix B.2.

Then the following result provides a characterization of the locally risk-minimizing strategy for the
insurance claim under full information.

Proposition 5.3 (The full information case). Let Assumption 2.1 and condition (5.2) hold and
assume that NT∧τ is P̂-square integrable. Let g ∈ C1,2,2

b ([0, T ]×R+×R) be a solution of the problem{
L̂S,Xg(t, s, x)− γ(t, x)g(t, s, x) + U(t, s)γ(t, x) = 0, (t, s, x) ∈ [0, T )× R+ × R,
g(T, s, x) = G(T, s), (s, x) ∈ R+ × R.

(5.6)

Then, the (F,G)-locally risk minimizing strategy is given by

θFt =
∂g

∂s
(t, St, Xt) + ρ

a(t,Xt)

Stσ(t, St)

∂g

∂x
(t, St, Xt), t ∈ J0, T ∧ τK. (5.7)

Proof. First, note that if g ∈ C1,2,2
b ([0, T ] × R+ × R) is a solution of the problem (5.6) then the

function ĝ ∈ Ĉ1,2,2
b ([0, T ]×R+×R×{0, 1}), defined as ĝ(t, s, x, 0) := g(t, s, x) and ĝ(t, s, x, 1) := 0

solves the backward Cauchy problem{
L̂S,X,H ĝ(t, s, x, z) + U(t, s)(1− z)γ(t, x) = 0, (t, s, x, z) ∈ [0, T )× R+ × R× {0, 1},
ĝ(T, s, x, z) = (1− z)G(T, s), (s, x, z) ∈ R+ × R× {0, 1}.

By Lemma 5.2 and the Feynman-Kac formula we have that

ĝ(t, Sτt , X
τ
t , Ht) = Ê

[
G(T, SτT )(1−HT ) +

∫ T

t

U(r, Sτr )(1−Hr)γ(r,Xτ
r )dr

∣∣∣Gt]
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and the following (G, P̂)-martingale decomposition of V̂ holds,

dV̂t =
∂ĝ

∂s
dSτt +

∂ĝ

∂x
dX̃τ

t + {ĝ(t, Sτt , X
τ
t , Ht− + 1)− ĝ(t, Sτt , X

τ
t , Ht−)}dMt,

where X̃τ denotes the martingale part of Xτ , that is

X̃τ
t = ρ

∫ t∧τ

0

a(u,Xτ
u)dŴ τ

u +
√

1− ρ2

∫ t∧τ

0

a(u,Xτ
u)dBτ

u, t ∈ [0, T ].

Then, taking the predictable covariation with respect to Sτ one immediately obtains

d〈V̂ , Sτ 〉P̂t =
∂ĝ

∂s
(t, Sτt , X

τ
t , Ht−)d〈Sτ 〉P̂t +

∂ĝ

∂x
(t, Sτt , X

τ
t , Ht−)d〈X̃τ , Sτ 〉P̂t ,

with d〈X̃τ , Sτ 〉P̂t = ρ
a(t,Xτ

t )

Sτt σ(t, Sτt )
d〈Sτ 〉P̂t . The expression of θFt easily follows from (4.19), observing

that ĝ(t, Sτt , X
τ
t , Ht−) = ĝ(t, Sτt , X

τ
t , 0) = g(t, St, Xt) for any t ∈ J0, T ∧ τK. �

Remark 5.4. Note that if ρ = 0 in (5.7), then θF reduces to one single term of a delta hedge
type, as in the classical Black & Scholes model. The additional term is a correction term due to
correlation. Such a representation is similar to that obtained in stochastic volatility models in a
Brownian motion setting, see e.g. [43, Proposition 1] or [36, Equation 7].

Remark 5.5. Existence and uniqueness of classical solutions to (5.6) can be obtained under suitable
assumptions by applying the results in Heath and Schweizer [30].

Remark 5.6. By the Feynmann-Kac formula the process {g(t, St, Xt), t ∈ [0, T ]} has the following
stochastic representation

g(t, St, Xt) = Ê
[
e−

∫ T
t γ(r,Xr)drG(T, ST ) +

∫ T

t

e−
∫ r
t γ(u,Xu)duU(r, Sr)γ(r,Xr)dr

∣∣∣Ft] . (5.8)

5.1. A filtering approach to local risk-minimization under partial information. In
this section we wish to apply some results from filtering theory to compute the locally risk-
minimizing hedging strategy under partial information. Precisely, this requires to compute con-
ditional expectations of processes that depend on the trajectories of X. To apply the classical
methodology, we introduce as an additional state process, the F-survival process of τ given by
P(τ > t|Ft) = 1 − Ft = e−

∫ t
0 γ(u,Xu)du, for each t ∈ [0, T ], and denote it by Yt. The dynamics of

Y = {Yt, t ∈ [0, T ]}, is given by

dYt = −γ(t,Xt)Ytdt, Y0 = 1. (5.9)

Remark 5.7. Following the same lines of the proof of Lemma 5.1 for the triplet (S,X, Y ), it
is easy to verify that the vector process (S,X, Y ) is an (F, P̂)-Markov process. Then, consider-
ing the dynamics of the processes S, X and Y in system (5.1) and equation (5.9), and apply-
ing Itô’s formula, we get that for every function f ∈ C1,2,2,1

b ([0, T ] × R+ × R × R+), the process
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{f(t, St, Xt, Yt), t ∈ [0, T ]} has the following semimartingale decomposition

f(t, St, Xt, Yt) = f(0, s0, x0, 1) +

∫ t

0

L̂S,X,Y f(u, Su, Xu, Yu)du+M f
t , t ∈ [0, T ], (5.10)

where M f = {M f
t , t ∈ [0, T ]} is the (F, P̂)-martingale given by

dM f
t =

∂f

∂x
a(t,Xt)

[
ρdŴt +

√
1− ρ2dBt

]
+
∂f

∂s
σ(t, St)StdŴt,

and L̂S,X,Y given by

L̂S,X,Y f(t, s, x, y) =L̂S,Xf(t, s, x, y)− yγ(t, x)
∂f

∂y
(t, s, x, y)

provides the (F, P̂)-Markov generator of (S,X, Y ).

For every measurable function f such that Ê [|f(t, St, Xt, Yt)|] < ∞, for each t ∈ [0, T ], we define
the filter π(f) = {πt(f), t ∈ [0, T ]} with respect to P̂, by setting

πt(f) := Ê
[
f(t, St, Xt, Yt)|FSt

]
, t ∈ [0, T ].

It is well known that π is a probability measure-valued process with càdlàg trajectories (see,
e.g. Kurtz and Ocone [34]), and provides the P̂-conditional law of the stochastic factor X given
the filtration generated by the risky asset prices process. The filter dynamics is given in Proposition
5.9 below.

Assumption 5.8. The functions b, a, γ, µ, and σ are jointly continuous and satisfy the following
growth and locally Lipschitz conditions:

(G) for some nonnegative constant C, and for every (t, s, x) ∈ [0, T ]× R+ × R,

|b(t, x)|2 + |a(t, x)|2 + |γ(t, x)|2 ≤ C(1 + |x|2),

|µ(t, s, x)|2 ≤ C(1 + |s|2 + |x|2) and |σ(t, s)|2 ≤ C(1 + |s|2);

(LL) for all r > 0 there exists a constant L such that for every t ∈ [0, T ], s, s′, x, x′ ∈ Br(0) :=

{z ∈ R : |z| ≤ r},

|b(t, x)− b(t, x′)|+ |a(t, x)− a(t, x′)|+ |γ(t, x)− γ(t, x′)| ≤ L|x− x′|,
|µ(t, s, x)− µ(t, s′, x′)| ≤ L(|s− s′|+ |x− x′|) and |σ(t, s)− σ(t, s′)| ≤ L|s− s′|.

Proposition 5.9. Under Assumptions 2.1 and 5.8 and condition (5.2), for every function f ∈
C1,2,2,1
b ([0, T ] × R+ × R × R+) and t ∈ [0, T ], the filter π is the unique strong solution of the

following equation

πt(f) = f(0, s0, x0, 1)+

∫ t

0

πu(L̂S,X,Y f)du+

∫ t

0

[
ρπu

(
a
∂f

∂x

)
+ Suσ(t, Su)πu

(
∂f

∂s

)]
dŴu. (5.11)
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The proof is postponed to Appendix B.2.

Now, we can characterize the optimal hedging strategy for the given endowment insurance contract
(ξ, Z, τ) under partial information as follows.

Theorem 5.10. Assume that the hypotheses of Proposition 5.9 hold and that NT∧τ is P̂-square
integrable. Let g be a solution to problem (5.6). Then, the first component θ∗ of the (FS, G̃)-locally
risk-minimizing strategy for the payment stream N associated with the unit-linked life insurance
contract (ξ, Z, τ) is given by

θ∗t =
πt
(
idy

∂g
∂s

)
+ ρ

σ(t,St)St
πt
(
a idy

∂g
∂x

)
πt(idy)

, (5.12)

for every t ∈ J0, T ∧ τK, where idy(t, s, x, y) := y.

Proof. By equation (4.17) in Theorem 4.16 and (5.7) we get

θ∗t =

p̂,FS
(
θFt e

−
∫ t
0 γ(u,Xu)du

)
p̂,FS(e−

∫ t
0 γudu)

=

p̂,FS
(
e−

∫ t
0 γ(u,Xu)du ∂g

∂s
(t, St, Xt)

)
p̂,FS(e−

∫ t
0 γudu)

+

p̂,FS
(
e−

∫ t
0 γ(u,Xu)du ρa(t,Xt)

Stσ(t,St)
∂g
∂x

(t, St, Xt)
)

p̂,FS(e−
∫ t
0 γudu)

,

for every t ∈ J0, T ∧ τK. Finally, (5.12) follows by the definition of the filter. �

5.2. An example with uncorrelated Brownian motions. Throughout this section we choose
ρ = 0, which corresponds to the case where W and B are P-independent, and therefore Ŵ and
B are P̂-independent. In this case, a simpler expression for the first component of the optimal
hedging strategy θ∗ under partial information is provided.

On the probability space (Ω,F , P̂) the dynamics of the vector process (S,X, Y ) is given by
dSt = Stσ(t, St)dŴt, S0 = s0 ∈ R+,

dXt = b(t,Xt)dt+ a(t,Xt)dBt, X0 = x0 ∈ R,
dYt = −Ytγ(t,Xt)dt, Y0 = 1.

Moreover, we choose a recovery function of the form U(t, s) = δs, for every (t, s) ∈ [0, T ] × R+,

where δ is a given positive constant. Then, the payment stream N is given by Nt = δ

∫ t

0

SudHu if

t ∈ [0, T ) and NT = G(T, ST )1{τ>T}.

In the sequel we wish to characterize the optimal hedging strategy under full information, given in
(5.7), and under partial information via (4.17), in this simpler example. This requires to compute
g in equation (5.8).
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The independence between X and S under P̂ (that also holds when conditioning on Ft, for each
t), implies that

Ê
[
G(T, ST )e−

∫ T
t γ(u,Xu)du

∣∣∣Ft] = Ê [G(T, ST )|Ft] Ê
[
e−

∫ T
t γ(u,Xu)du

∣∣∣Ft]
= g̃(t, St)

Ê [YT |Ft]
Yt

= g̃(t, St)Ê [YT |Ft] e
∫ t
0 γ(r,Xr)dr,

for every t ∈ [0, T ], where by the Feynman-Kac theorem the function g̃ can be characterized as
the solution of the problem

∂g̃

∂t
(t, s) +

∂2g̃

∂s2
(t, s)σ2(t, s)s2 = 0, (t, s) ∈ [0, T )× R+,

g̃(T, s) = G(T, s), s ∈ R+.

Then, for the remaining part of the conditional expectation in (5.8), using the P̂-independence
between (X, Y ) and S and the fact that S is an (F, P̂)-martingale, we have

δÊ
[∫ T

t

e−
∫ r
t γ(u,Xu)duSrγ(r,Xr)dr

∣∣∣Ft] = δÊ
[∫ T

t

Yr
Yt
Srγ(r,Xr)dr

∣∣∣Ft]
= − δ

Yt
Ê
[∫ T

t

SrdYr

∣∣∣Ft] = − δ

Yt
Ê
[∫ T

t

d(SrYr)
∣∣∣Ft]+

δ

Yt
Ê
[∫ T

t

YrdSr

∣∣∣Ft]
= − δ

Yt
Ê
[
STYT − StYt

∣∣∣Ft] =
δSt
Yt

(
Yt − Ê [YT |Ft]

)
.

This implies that

g(t,Xt, St) = g̃(t, St)Ê [YT |Ft] e
∫ t
0 γ(r,Xr)dr +

δSt
Yt

(
Yt − Ê [YT |Ft]

)
= (g̃(t, St)− δSt) e

∫ t
0 γ(r,Xr)drÊ [YT |Ft] + δSt.

Remark 5.11. Note that for every t ∈ [0, T ],

Ê [YT |Ft] = e−
∫ t
0 γ(u,Xu)duÊ

[
e−

∫ T
t γ(u,Xu)du

∣∣∣Ft] = e−
∫ t
0 γ(u,Xu)duÊ

[
e−

∫ T
t γ(u,Xu)du

∣∣∣FBt ] ,
where the last equality follows by the independence of X and W under P̂. By the Feynman-Kac
theorem, if there exists a function Φ ∈ C1,2

b ([0, T ]× R) which solves the problem
∂Φ

∂t
(t, x) +

∂Φ

∂x
(t, x)b(t, x) +

1

2

∂2Φ

∂x2
(t, x)a2(t, x)− Φ(t, x)γ(t, x) = 0, (t, x) ∈ [0, T )× R,

Φ(T, x) = 1, x ∈ R,

then, Φ(t,Xt) = Ê
[
e−

∫ T
t γ(u,Xu)du

∣∣∣FBt ] and the process
{
e−

∫ t
0 γ(u,Xu)duΦ(t,Xt), t ∈ [0, T ]

}
is an

(FB, P̂)-martingale.
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Hence, g(t, St, Xt) = g̃(t, St)Φ(t,Xt) + δSt(1 − Φ(t,Xt)) and by using (5.7) the optimal hedging
strategy under full information is given by

θFt =

(
∂g̃

∂s
(t, St)− δ

)
Φ(t,Xt) + δ, t ∈ J0, T ∧ τK.

Finally, by (4.17) we get that the (FS, G̃)-locally risk-minimizing strategy can be written as

θ∗t =

(
∂g̃
∂s

(t, St)− δ
)
πt (idy Φ)

πt (idy)
+ δ, t ∈ J0, T ∧ τK. (5.13)

Note that, by the P̂-independence of (X, Y ) and S, and the fact that the change of probability
measure from P to P̂ does not affect the law of X, we have that the computation of the filter
reduces to ordinary expectations with respect to P

πt(Φ idy) = Ê
[
Φ(t,Xt)e

−
∫ t
0 γ(u,Xu)du

∣∣∣FSt ] = Ê
[
Φ(t,Xt)e

−
∫ t
0 γ(u,Xu)du

]
= Φ(0, x0) = E [YT ] ,

πt(idy) = Ê
[
e−

∫ t
0 γ(u,Xu)du

∣∣∣FSt ] = Ê
[
e−

∫ t
0 γ(u,Xu)du

]
= Ê [Yt] = E [Yt] ,

for every t ∈ [0, T ]. Then, we can write (5.13) as

θ∗t =

(
∂g̃
∂s

(t, St)− δ
)
E [YT ] + δE [Yt]

E [Yt]
, t ∈ J0, T ∧ τK,

where E [Yt] = E
[
e−

∫ t
0 γ(u,Xu)du

]
, t ∈ [0, T ].
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Appendix A. The hazard process and the martingale hazard process of τ under
partial information

We define the conditional distribution of τ with respect to FSt , for every t ∈ [0, T ], as

F S
t = P(τ ≤ t|FSt ), t ∈ [0, T ].

By the tower rule it is easy to check that F S
t = E

[
Ft|FSt

]
, for each t ∈ [0, T ]. Hence, the assumption

Ft < 1, for every t ∈ [0, T ], also implies that F S
t < 1 for every t ∈ [0, T ].

We now introduce the FS-hazard process of τ under P, ΓS = {ΓSt , t ∈ [0, T ]}, by setting

ΓSt = − ln(1− F S
t ), t ∈ [0, T ]. (A.1)
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Remark A.1. Notice that the relation between the F-hazard process Γ, see (2.7), and the FS-hazard
process ΓS, see (A.1), is given by

e−ΓSt = E
[
e−Γt |FSt

]
, t ∈ [0, T ].

If ΓS is continuous and increasing, by Bielecki and Rutkowski [7, Proposition 5.1.3] the process
{Ht − ΓSt∧τ , t ∈ [0, T ]} is a (G̃,P)-martingale. However, without these assumptions, we will prove
in Proposition A.6 the existence of an (FS, G̃)-martingale hazard process.

For the sake of clarity, we recall the definition of martingale hazard process in our setting.

Definition A.2. An FS-predictable, increasing process Λ = {Λt, t ∈ [0, T ]} is called an (FS, G̃)-
martingale hazard process of the random time τ if and only if the process {Ht − Λt∧τ , t ∈ [0, T ]}
follows a (G̃,P)-martingale.

In general, the (FS, G̃)-martingale hazard process does not coincide with the FS-hazard process
ΓS. This property is fulfilled if the martingale invariance property holds, that is, any (FS,P)-
martingale turns out to be a (G̃,P)-martingale. In such a case, the (FS, G̃)-martingale hazard
process uniquely specifies the FS-survival probabilities of τ . Nevertheless, we do not make this
assumption in the paper.

In order to derive the (FS, G̃)-martingale hazard process of τ we need some preliminary results.

Recall that given any subfiltration H = {Ht, t ∈ [0, T ]} of G, o,HY (respectively p,HY ) denotes the
optional (respectively predictable) projection of a given P-integrable, G-adapted process Y with
respect to H and P.

Lemma A.3. Given a P-integrable, G-adapted process Y , we have

1{τ>t}
o,G̃Yt = 1{τ>t}

o,FS
(
Yt1{τ>t}

)
o,FS1{τ>t}

, (A.2)

1{τ≥t}
p,G̃Yt = 1{τ≥t}

p,FS
(
Yt1{τ≥t}

)
p,FS1{τ≥t}

, (A.3)

for each t ∈ [0, T ]. Moreover, if Y is F-predictable then

1{τ≥t}
p,G̃Yt = 1{τ≥t}

p,FS
(
Yte
−

∫ t
0 γudu

)
p,FS(e−

∫ t
0 γudu)

, t ∈ [0, T ]. (A.4)

Proof. How to get formula (A.2) is shown in Bielecki and Rutkowski [7, Lemma 5.1.2].

To prove (A.3), recall that, since Ft < 1 for all t ∈ [0, T ], there exists an FS-predictable process
Ỹ = {Ỹt, t ∈ [0, T ]} such that Ỹt 1{τ≥t} = p,G̃Yt 1{τ≥t}, P-a.s. for each t ∈ [0, T ]. By the predictable
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projection properties, for any FS-predictable process ϕ = {ϕt, t ∈ [0, T ]} and for each t ∈ [0, T ],
we get

E
[∫ t

0

ϕsỸs
p,FS1{τ≥s}ds

]
= E

[∫ t

0

ϕsỸs1{τ≥s}ds

]
= E

[∫ t

0

ϕs1{τ≥s}
p,G̃Ysds

]
= E

[∫ t

0

ϕs1{τ≥s}Ysds

]
= E

[∫ t

0

ϕs
p,FS(1{τ≥s}Ys) ds

]
,

since the process {ϕt1{τ≥t}, t ∈ [0, T ]} is G̃-predictable.

Now consider the case where Y is F-predictable. Since {o,F1{τ>t} = e−
∫ t
0 γudu, t ∈ [0, T ]} is a

continuous process, we get
o,F1{τ>t} = o,F1{τ≥t} = p,F1{τ≥t}, t ∈ [0, T ].

Finally, equation (A.4) is consequence of the following chains of equalities

p,FS1{τ≥t} = p,FS (p,F1{τ≥t}) = p,FS
(
e−

∫ t
0 γudu

)
,

and
p,FS (Yt1{τ≥t}) = p,FS (Yt p,F1{τ≥t}) = p,FS

(
Yte
−

∫ t
0 γudu

)
,

for every t ∈ [0, T ]. �

Remark A.4. Note that the FS-hazard process ΓS = {ΓSt , t ∈ [0, T ]}, can be written as

ΓSt = − ln
(
o,FS

(
e−

∫ t
0 γudu

))
, t ∈ [0, T ].

Remark A.5. Given a (G,P)-martingale m = {mt, t ∈ [0, T ]} and a G-progressively measurable
process ψ = {ψt, t ∈ [0, T ]} such that E

[∫ T
0
|ψu|du

]
< ∞, the processes

{
o,G̃mt, t ∈ [0, T ]

}
and

{
o,G̃ (∫ t

0
ψudu

)
−
∫ t

0
o,G̃ψudu, t ∈ [0, T ]

}
are (G̃,P)-martingales, see for instance Ceci and

Colaneri [13, Remark 2.1].

Finally, we give the (FS, G̃)-martingale hazard process of τ .

Proposition A.6. The death time τ admits an (FS, G̃)-martingale hazard process Λ = {Λt, t ∈
[0, T ]}, where Λt :=

∫ t
0
γSudu, with γS = {γSt , t ∈ [0, T ]} being a nonnegative, FS-predictable

process. Moreover, for every t ∈ [0, T ],

γSt 1{τ≥t} = p,G̃γt1{τ≥t} P− a.s. (A.5)

and

γSt =

p,FS
(
γte
−

∫ t
0 γudu

)
p,FS

(
e−

∫ t
0 γudu

) , t ∈ J0, T ∧ τK.
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Proof. By applying Remark A.5 to the (G,P)-martingale M , see (2.8), we have that{
Ht −

∫ t

0

o,G̃λudu, t ∈ [0, T ]

}
is a (G̃,P)-martingale, which implies, taking Lemma B.1 into account, that also{

Ht −
∫ t

0

p,G̃λudu = Ht −
∫ t∧τ

0

p,G̃γudu, t ∈ [0, T ]

}
is a (G̃,P)-martingale.

Since Ft < 1 for all t ∈ [0, T ], for any G̃-predictable process h = {ht, t ∈ [0, T ]} there exists an
FS-predictable process h̃ = {h̃t, t ∈ [0, T ]} such that h̃t1{τ≥t} = ht1{τ≥t}, P-a.s. for each t ∈ [0, T ].
This implies the existence of an FS-predictable process γS such that (A.5) is satisfied.

Hence, the process {Λt =
∫ t

0
γSudu, t ∈ [0, T ]} is an (FS, G̃)-martingale hazard process of τ since

Ht − Λt∧τ = Ht −
∫ t∧τ

0
γSudu, for each t ∈ [0, T ], is a (G̃,P)-martingale. To complete the proof is

sufficient to apply the relation (A.4) in Lemma A.3. �

Note that Proposition A.6 ensures that τ turns out to be a totally inaccessible G̃-stopping time
thanks to Dellacherie and Meyer [23, Chapter 6.78].

Appendix B. Technical results

B.1. On optional and predictable projections under partial information.

Lemma B.1. Given a G-progressively measurable process ψ = {ψt, t ∈ [0, T ]} such that
E
[∫ T

0
|ψu|du

]
<∞, then∫ t

0

o,G̃ψudu =

∫ t

0

p,G̃ψudu P− a.s. t ∈ [0, T ].

Proof. First, we prove that the process U = {Ut, t ∈ [0, T ]} given by Ut :=
∫ t

0
(o,G̃ψu − p,G̃ψu)du,

t ∈ [0, T ], is a (G̃,P)-martingale.

By the properties of predictable and optional projections, for any G̃-predictable process ϕ =

{ϕt, t ∈ [0, T ]} we get

E
[∫ T

0

ϕu
p,G̃ψudu

]
= E

[∫ T

0

ϕuψudu

]
= E

[∫ T

0

ϕu
o,G̃ψudu

]
.

By choosing ϕu = 1A1(s,t](u), s < t, A ∈ G̃s, we obtain that

E
[
1A

∫ t

s

(p,G̃ψu − o,G̃ψu)du

]
= 0.

Finally, since U is a process of finite variation by Revuz and Yor [45, Chapter IV, Proposition 1.2],
U is necessarily constant and equal to U0 = 0, which concludes the proof. �
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For reader’s convenience, we provide a version of the Kallianpur-Striebel formula holding for pre-
dictable projections.

Lemma B.2. If G = {Gt, t ∈ [0, T ]} is an F-adapted process, such that E [GtLt] < ∞, for any
t ∈ [0, T ], then

p̂,FSGt =
p,FS (GtLt)

p,FSLt
, t ∈ [0, T ],

where L is the density process given in (2.3).

Proof. To prove the result, we need to check that for every FS-predictable process ϕ, the following
equality holds

Ê
[∫ t

0

ϕs
p̂,FSGs

p,FSLsds

]
= Ê

[∫ t

0

ϕs
p,FS (GsLs) ds

]
,

for every t ∈ [0, T ]. By applying Fubini’s theorem twice, and the property of the predictable
projection, for every FS-predictable process ϕ and for every t ∈ [0, T ], we get

Ê
[∫ t

0

ϕs
p̂,FSGs

p,FSLsds

]
= Ê

[∫ t

0

ϕsGs
p,FSLsds

]
=

∫ t

0

Ê
[
ϕsGs

p,FSLs

]
ds

=

∫ t

0

E
[
ϕsGsLs

p,FSLs

]
ds =

∫ t

0

E
[
ϕs

p,FS (GsLs)
p,FSLs

]
ds

=

∫ t

0

E
[
ϕs

p,FS (GsLs)Ls

]
ds = Ê

[∫ t

0

ϕs
p,FS (GsLs) ds

]
,

which concludes the proof. �

If the process G is G-adapted but not necessarily F-adapted, then a similar result is showed in the
following lemma.

Lemma B.3. If G = {Gt, t ∈ [0, T ]} is a G-adapted process, such that E [GtLt] < ∞, for any
t ∈ [0, T ], then

1{τ≥t}
p̂,G̃Gt = 1{τ≥t}

p,G̃ (GtLt)
p,G̃Lt

, t ∈ [0, T ].

Proof. Similarly to the proof of Lemma B.2, for everyG-adapted process G and every G̃-predictable
process ϕ we have

Ê
[∫ t

0

1{τ≥s}ϕs
p̂,G̃Gs

p,G̃Lsds

]
= Ê

[∫ t

0

1{τ≥s}ϕsGs
p,G̃Lsds

]
=

∫ t

0

Ê
[
1{τ≥s}ϕsGs

p,G̃Ls

]
ds

=

∫ t

0

E
[
Lτs1{τ≥s}ϕsGs

p,G̃Ls

]
ds =

∫ t

0

E
[
1{τ≥s}ϕs

p,G̃ (GsLs)
p,G̃Ls

]
ds

=

∫ t

0

E
[
1{τ≥s}ϕs

p,G̃ (GsLs)Ls

]
ds = Ê

[∫ t

0

1{τ≥s}ϕs
p,G̃ (GsLs) ds

]
,
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for every t ∈ [0, T ]. Note that, in the second line, we use the fact that Lτt = Lt for every
t ∈ J0, T ∧ τK, where Lτ is the density process given in (4.10). �

Corollary B.4. Let θ = {θt, t ∈ [0, T ]} be an F-predictable process. Then,

1{τ≥t}
p̂,G̃θt = 1{τ≥t}

p̂,FS(θte
−

∫ t
0 γudu)

p̂,FS(e−
∫ t
0 γudu)

, t ∈ [0, T ].

Proof. By Lemma B.3 we get

1{τ≥t}
p̂,G̃θt = 1{τ≥t}

p,G̃ (θtLt)
p,G̃Lt

= 1{τ≥t}

p,FS
(
θtLte

−
∫ t
0 γudu

)
p,FS

(
e−

∫ t
0 γudu

) ·
p,FS

(
e−

∫ t
0 γudu

)
p,FS

(
e−

∫ t
0 γuduLt

) (B.1)

= 1{τ≥t}
p̂,FS(θte

−
∫ t
0 γudu)

p̂,FS(e−
∫ t
0 γudu)

(B.2)

where in line (B.1) we use Lemma A.3 and in line (B.2) we apply Lemma B.2. �

B.2. Some proofs.

Proof of Lemma 3.2. To prove that the process Iτ is a (G̃,P)-Brownian motion on J0, τ ∧ T K, we
wish to apply the Lévy theorem. First, note that Iτ is a square integrable process with continuous
trajectories, and since the following equality is fulfilled

Iτt =

∫ t

0

1

σ(u, Sτu)Sτu
dSτu −

∫ t

0

p,G̃µu
σ(u, Sτu)

du, t ∈ [0, T ],

it turns out to be G̃-adapted. We now prove that Iτ is a (G̃,P)-martingale. As a consequence of
Lemma B.1 in Appendix B, we can work with the (G̃,P)-optional projection of µ, that is o,G̃µ,
instead of the (G̃,P)-predictable projection p,G̃µ. Hence, for every 0 ≤ s ≤ t ≤ T , we have

E
[
Iτt − Iτs

∣∣∣G̃s] = E

[∫ t∧τ

s∧τ

µ(u, Sτu, X
τ
u)− o,G̃µu

σ(u, Sτu)
du

∣∣∣∣G̃s
]

+ E
[
W τ
t −W τ

s

∣∣∣G̃s] .
By the properties of the conditional expectation we obtain that

E
[
Iτt − Iτs

∣∣∣G̃s] =

∫ t

s

E
[
E
[
µ(u, Sτu, X

τ
u)

σ(u, Sτu)
1{τ>u} −

o,G̃
(
µu
σu

1{τ>u}

) ∣∣∣G̃u] ∣∣∣G̃s] du

+ E
[
E
[
W τ
t −W τ

s

∣∣∣Gs] ∣∣∣G̃s] .
Since E[W τ

t −W τ
s |Gs] = 0, finally we get

E
[
Iτt − Iτs

∣∣∣G̃s] =

∫ t

s

E
[
o,G̃
(
µu
σu

1{τ>u}

)
−

o,G̃
(
µu
σu

1{τ>u}

) ∣∣∣G̃s] du = 0.
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To conclude, we apply the Lévy theorem taking into account that 〈Iτ 〉 = 〈W τ 〉. �

Proof of Lemma 5.1. Recall that the process Ŵ given in (2.4) and B are independent (F, P̂)-
Brownian motions. Since the change of probability measure from P to P̂ is Markovian, the pair
(S,X) is still an (F, P̂)-Markov process, see Ceci and Gerardi [15, Proposition 3.4]. Then, the
Markov generator L̂S,X of the pair (S,X) can be easily computed considering the semimartingale
decompositions of the processes S and X with respect to filtration F and the measure P̂ in system
(5.1) and applying Itô’s formula to any function f ∈ C1,2,2

b ([0, T ]× R+ × R). �

Proof of Lemma 5.2. In order to compute the (G, P̂)-Markov generator of the process (Sτ , Xτ , H)

we recall that the death indicator process H, is given by

Ht =

∫ t

0

(1−Hr)γ(r,Xr)dr +Mt, t ∈ [0, T ],

and that on the stochastic interval J0, T ∧ τK, the dynamics of the stopped processes Sτ and Xτ

are given by

dSτt = (1−Ht−)Sτt σ(t, Sτt )dŴ τ
t ,

dXτ
t = (1−Ht−)

{(
b(t,Xτ

t )− a(t,Xτ
t )ρ

µ(t, Sτt , X
τ
t )

σ(t, Sτt )

)
dt+ a(t,Xτ

t )
(
ρdŴ τ

t +
√

1− ρ2dBτ
t

)}
.

Finally, by applying Itô’s formula to any function f ∈ Ĉ1,2,2
b ([0, T ] × R+ × R × {0, 1}), we have

that, on the stochastic interval J0, T ∧ τK,

df(t, Sτt , X
τ
t , Ht) =L̂S,X,Hf(t, Sτt , X

τ
t , Ht)dt+ dM f

t ,

where L̂S,X,H is the operator given in (5.4) and M f is the (G, P̂)-martingale in (5.5). �

Proof of Proposition 5.9. First, observe that Ŵ is an (FS, P̂)-Brownian motion since the following
equality holds

Ŵt = Ĩt +

∫ t

0

p,FSµu
σ(u, Su)

du, t ∈ [0, T ],

where {Ĩt := Wt +
∫ t

0
µ(u,Su,Xu)−p,FSµu

σ(u,Su)
du, t ∈ [0, T ]} is the so-called innovation process which is

known to be an (FS,P)-Brownian motion (see, for instance Liptser and Shiryaev [38]).

Recalling the semimartingale decomposition of f(t, St, Xt, Yt), given in (5.10), we can proceed as
in the proof of Ceci et al. [19, Proposition A.2] and prove that the filter π solves equation (5.11).

Strong uniqueness for the solution to the filtering equation follows by uniqueness of the filtered
martingale problem for the operator L̂S,X,Y (see, e.g. Kurtz and Ocone [34], Ceci and Colaneri
[13], Ceci and Colaneri [14]). Precisely, by applying Kurtz and Ocone [34, Theorem 3.3] we get
that the filtered martingale problem for the operator L̂S,X,Y has a unique solution, and this implies
uniqueness of equation (5.11). �
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