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Abstract
The Maximum Weight Independent Set Problem (WIS) is a well-known NP-hard

problem. A popular way to studyWIS is to detect graph classes for which WIS can be

solved in polynomial time, with particular reference to hereditary graph classes, i.e.,

defined by a hereditary graph property or equivalently by forbidding one or more

induced subgraphs. Given two graphsG andH,Gþ H denotes the disjoint union ofG
andH. This manuscript shows that (i) WIS can be solved for (P4 þ P4, Triangle)-free

graphs in polynomial time, where a P4 is an induced path of four vertices and a

Triangle is a cycle of three vertices, and that in particular it turns out that (ii) for every

(P4 þ P4, Triangle)-free graph G there is a family S of subsets of V(G) inducing
(complete) bipartite subgraphs ofG, which contains polynomiallymanymembers and

can be computed in polynomial time, such that every maximal independent set ofG is

contained in some member of S. These results seem to be harmonic with respect to

other polynomial results for WIS on [subclasses of] certain Si;j;k-free graphs and to

other structure results on [subclasses of] Triangle-free graphs.

Keywords Maximum independent set problem � Polynomial algorithms � Si;j;k-free
graphs � Triangle-free graphs

1 Introduction

For any missing notation or reference let us refer to [6].

For any graph G, let V(G) and E(G) denote respectively the vertex-set and the

edge-set of G. Let G be a graph. For any subset U � VðGÞ, let G[U] denote the

subgraph of G induced by U. For any vertex-set U � VðGÞ, let NðUÞ ¼ fv 2
VðGÞ n U : v is adjacent to some u 2 Ug be the neighborhood of U in G. In

particular: if U ¼ fu1; . . .; ukg, then let us simply write Nðu1; . . .; ukÞ instead of

Nðfu1; . . .; ukgÞ; for any vertex-set W � VðGÞ, with U \W ¼ ;, let us write
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NWðUÞ ¼ NðUÞ \W . For any vertex-set U � VðGÞ, let us say that AðUÞ ¼
VðGÞ n ðU [ NðUÞÞ is the anti-neighborhood of U in G. For any vertex v 2 VðGÞ
and for any subset U � VðGÞ (with v 62 U), let us say that: v contacts U if v is

adjacent to some vertex of U; v is partial to U if v contacts U but is non-adjacent to

some vertex of U; v is universal to U if v is adjacent to all vertices of U.
A component of G is a maximal connected subgraph of G. A component of G is

trivial if it is a singleton, and nontrivial otherwise. A component-set of G is the

vertex set of a component of G. A component-set of G is trivial if it is a singleton,

and nontrivial otherwise. A clique of G is a set of pairwise adjacent vertices of

G. An independent set (or a stable set) of G is a subset of pairwise nonadjacent

vertices of G. An independent set of G is maximal if it is not properly contained in

another independent set of G.
A graph G is H-free, for a given graph H, if G contains no induced subgraph

isomorphic to H; in particular H is called a forbidden induced subgraph of G. A
graph class is hereditary if it is defined by a hereditary graph property or

equivalently by forbidding a family of induced subgraphs. Given two graphs G and

F, Gþ F denotes the disjoint union of G and F; in particular lG ¼ Gþ Gþ � � � þ G
denotes the disjoint union of l copies of G.

A graph G is bipartite if V(G) admits a partition fA;Bg such that A and B are

independent sets of G, i.e., such that EðGÞ � A� B; in particular G is complete
bipartite if EðGÞ ¼ A� B.

The following specific graphs are mentioned later. A Pk has vertices v1; v2; . . .; vk
and edges vjvjþ1 for 1� j\k. A Ck has vertices v1; v2; . . .; vk and edges vjvjþ1 for

1� j\k and vkv1. A Kn is a complete graph of n vertices. A Claw has vertices

a, b, c, d, and edges ab, ac, ad. A Fork has vertices a, b, c, d, e, and edges

ab, ac, ad, de (then a Fork contains a Claw as an induced subgraph). A Si;j;k is the

graph obtained from a Claw by subdividing respectively its edges into i, j, k edges

(e.g., S0;1;2 is P4, S1;1;1 is Claw).

The Maximum Weight Independent Set Problem (WIS) is the following: Given a

graph G and a weight function w on V(G), determine an independent set of G of

maximumweight, where the weight of an independent set I is given by the sum ofw(v)
for v 2 I. Let awðGÞ denote themaximumweight of any independent set ofG. TheWIS

problem reduces to the IS problem if all vertices v have the same weight wðvÞ ¼ 1.

The WIS problem is NP-hard [19]. It remains NP-hard under various restrictions,

such as e.g. Triangle-free graphs [37] and more generally graphs with no induced

cycle of given length [31, 37], cubic graphs [18] and more generally k-regular
graphs [16], planar graphs [17]. It can be solved in polynomial time for various

graph classes, such as e.g. P4-free graphs [10], bipartite graphs [1, 12, 21] and more

generally perfect graphs [20], Claw-free graphs [13, 30, 32, 33, 40] and more

generally Fork-free graphs [4, 26], 2K2-free graphs [14] and more generally lK2-free

graphs for any constant l (by combining an algorithm generating all maximal

independent sets of a graph [41] and a polynomial upper bound on the number of

maximal independent sets in lK2-free graphs [3, 15, 38]), K2þClaw-free graphs

[27], 2P3-free graphs [28], and more generally lP3-free graphs for any constant l,
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and lClaw-free graphs for any constant l [8]; then recently, after many attempts, for

P5-free graphs [24] and more generally for P6-free graphs [22].

Let us report the following result due to Alekseev [2, 5].

Theorem 1 [2] Let X be a class of graphs defined by a finite set M of forbidden
induced subgraphs. If M contains no graph every component of which is Si;j;k for
some indices i, j, k, then the (W)IS problem is NP-hard in the class X .

Theorem 1 implies that (unless P = NP) for any graph F, if WIS can be solved for

F-free graphs in polynomial time, then each component of F is Si;j;k for some indices

i, j, k. Then Lozin [25] conjectured that WIS can be solved in polynomial time for

Si;j;k-graphs for any fixed indices i, j, k. The above allows one to focus on possible

open problems, i.e., on possible graph classes for which WIS may be solved in

polynomial time.

This manuscript shows that (i) WIS can be solved for (P4 þ P4, Triangle)-free

graphs in polynomial time, and that in particular it turns out that (ii) for every

(P4 þ P4, Triangle)-free graph G there is a family S of subsets of V(G) inducing
(complete) bipartite subgraphs of G, which contains polynomially many members

and can be computed in polynomial time, such that every maximal independent set

of G is contained in some member of S.
The class of P4 þ P4-free graphs has been considered since, according to the

above mentioned polynomial results and to possibly forthcoming similar polyno-

mial results, it may be one of the next boundary graph classes for which the

complexity of WIS is an open problem.

The class of Triangle-free graphs, which seems to be a more studied graph class

(see e.g. [23]), has been considered in the context of similar previous manuscripts

on other subclasses of Triangle-free graphs; namely on (P7,Triangle)-free graphs

[7], more generally on (P7,Bull)-free and (S1;2;3,Bull)-free graphs [29], and on

(S1;2;4,Triangle)-free graphs [9].

However let us observe that Lozin’s conjecture is open also for those Si;j;k-graphs
for any fixed indices i, j, k which in addition are Triangle-free—recalling that WIS

remains NP-hard for Triangle-free graphs—that is for restricted and more studied

graph classes. Let us mention just a recent strong result due to Pilipczuk et al. [36]

stating that graphs containing no Theta [a Theta is a graph made of three internally

vertex-disjoint chordless paths P1 ¼ a:::b, P2 ¼ a:::b, P3 ¼ a:::b of length at least 2
and such that no edges exist between the paths except the three edges incident to a
and the three edges incident to b], no Triangle, and no Si;j;k as induced subgraphs for

any fixed indices i, j, k have bounded treewidth, which implies that a large number

of NP-hard problems can be solved in polynomial time for such graphs, in particular

the WIS problem.

2 Independent Sets in (P4 + P4, Triangle)-Free Graphs

In this section let us show that WIS can be solved for (P4 þ P4, Triangle)-free

graphs in polynomial time.
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First let us introduce two general observations: they are easy to prove and are the

basis of the approach—in other contexts called anti-neighborhood approach—
which will be used later.

Observation 1 For any graph G, awðGÞ ¼ maxfawðG½VðGÞ n NðvÞ�Þ : v 2 VðGÞg;
then for any v 2 VðGÞ, awðGÞ ¼ maxfawðG½VðGÞ n NðvÞ�Þ; awðG½VðGÞ n fvg�Þg h

Observation 2 For any graph G and for any order v1; v2; . . .; vn of the vertices of G,
awðGÞ ¼ maxfawðG½VðGÞ n Nðv1Þ�Þ; awðG½ðVðGÞ n fv1gÞ n Nðv2Þ�Þ; . . .; awðG½ðVðGÞ
nfv1; . . .; vn�1gÞ n NðvnÞ�Þg. h

For any induced P4 of any (P4 þ P4, Triangle)-free G, say P, of vertex set

VðPÞ ¼ fa; b; c; dg and edge set EðPÞ ¼ fab; bc; cdg, one has that N(V(P)) admits

the partition

fSa; Sb; Sc; Sd; Sa;c; Sa;d; Sb;dg

where SX ¼ fv 2 VðGÞ n X : NðvÞ \ VðPÞ ¼ Xg for any X � VðPÞ.
It is well known [and easy to check] that every non-trivial component of a (P4,

Triangle)-free graph is complete bipartite.

Then the following observation can be shown with no difficult.

Observation 3 Let G be a (P4 þ P4, Triangle)-free graph. Then for any subset
T � VðGÞ such that G[T] is P4-free one has that:

(i) every non-trivial component of G[T] is complete bipartite;
(ii) each vertex of VðGÞ n T does not contact both sides of any non-trivial

component of G[T].

Note that, for any induced P4 say P of G, G[A(P)] is P4-free. h

Then let us recall that WIS can be solved for bipartite graphs in polynomial time

[1, 12, 21]. In particular let us formalize as lemma the following fact which can be

(independently) shown with no difficult.

Lemma 1 The WIS problem can be solved for complete bipartite graphs in
polynomial time, i.e., in linear time. h

The case of a and c (or b and d, symmetrically) being in the sought independent

set turns out to be the most challenging and interesting. We isolate the behaviour of

the algorithm in this case as Lemma 2 below, whose proof is postponed in Sect. 2.1.

In this section we show the main result assuming Lemma 2.

Lemma 2 Let G be a ( P4 þ P4, Triangle)-free graph containing an induced P4, say
P, of vertex set VðPÞ ¼ fa; b; c; dg and edge set EðPÞ ¼ fab; bc; cdg. Then a
maximum weight independent set of G containing fa; cg (containing fb; dg,
respectively, by symmetry) can be computed in polynomial time.

Proof The proof is introduced in Sect. 2.1. h

Then let us consider the following algorithm.

Algorithm Last
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Input: a (P4 þ P4, Triangle)-free graph G.
Output: a maximum weight independent set of G.
Step 1.
For each induced P4 of G, say P, of vertex set VðPÞ ¼ fa; b; c; dg and edge set

EðPÞ ¼ fab; bc; cdg do:

(1:1) compute [by Lemma 2] a maximum weight independent set of G containing

fa; cg: denote it as Q1;

(1:2) compute [by Lemma 2] a maximum weight independent set of G containing

fb; dg: denote it as Q2;

(1:3) compute [by Lemma 1] a maximum weight independent set of G½fa; dg [
L [ AðVðPÞÞ� where L is the set of those vertices in Sb [ Sc which are

isolated in G½Sb [ Sc [ AðVðPÞÞ�: denote it as Q3;

(1:4) select a best weight independent set of G over fQ1;Q2;Q3g: denote it as

Q(P).

Step 2.
Select a best weight independent set of G over fQðPÞ : P is an induced P4 of Gg:

denote it as Qblack.

Step 3.

(3:1) Remove from G all the vertices of G which belong to an induced P4 of G: let
G0 be the graph obtained in this way.

(3:2) Compute [by Lemma 1] a maximum weight independent set of G0: denote it
as Qwhite.

Step 4.
Select a best weight independent set of G over fQblack;Qwhiteg and output it.

Theorem 2 The WIS problem can be solved for ðP4 þ P4; TriangleÞ-free graphs in
polynomial time via Algorithm Last.

Proof First let us show that Algorithm Last can be executed in polynomial time.

As a preliminary let us observe that any (input) graph G contains Oðn4Þ induced
P4’s. Concerning Step 1: steps (1.1)–(1.2) can be executed in polynomial time by

Lemma 2; step (1.3) can be executed in polynomial time since every component of

G½fa; dg [ L [ AðVðPÞÞ� is complete bipartite: that follows since by construction

fa; dg [ L is an isolated independent set of G½fa; dg [ L [ AðVðPÞÞ� and since by

Observation 3 each non-trivial component of G[A(V(P))] is complete bipartite; step

(1.4) can be executed in constant time; then, by the preliminary observation, Step 1

can be executed in polynomial time. Concerning Step 2: it can be executed in

polynomial time by the preliminary observation and since Step 1 can be executed in

polynomial time. Concerning Step 3: it can be executed in polynomial time, by the

preliminary observation, and since every component of G0 is complete bipartite by

Observation 3. Concerning Step 4: it can be executed in constant time.

Then let us show that Algorithm Last is correct.

Let U be any maximum (weight) independent set U of G: then let us show that
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Algorithm Last computes U or an equivalent optimal solution.

Case 1 U \ VðPÞ 6¼ ; for some induced P4 say P of G.
Let VðPÞ ¼ fa; b; c; dg and EðPÞ ¼ fab; bc; cdg. Then one has

1� jU \ VðPÞj � 2.

Then let us consider the following exhaustive subcases.

Case 1.1 U \ VðPÞ ¼ fa; cg.
Then a maximum weight independent set of G is computed in steps (1.1)-(1.2)

with respect to P.
Case 1.2 U \ VðPÞ ¼ fb; dg.
This case can be treated similarly to Case 1.1 by symmetry.

Case 1.3 U \ VðPÞ ¼ fa; dg.
Then a maximum weight independent set of G is a maximum weight independent

set of G½fa; dg [ Sb [ Sc [ AðVðPÞÞ�. Note that, since G is Triangle-free, Sb and Sc
are independent sets. Then Sb [ Sc admits a partition, say fL; L0g, where L is the set

of those vertices of Sb [ Sc which are isolated in G½Sb [ Sc [ AðVðPÞÞ� [as defined
above] and L0 ¼ ðSb [ ScÞ n L. Now: (i) either U \ L0 ¼ ;, in which case a

maximum weight independent set of G is contained in fa; dg [ L [ AðVðPÞÞ, so that

it is computed in step (1.3) with respect to P; (ii) or U \ L0 \ Sb 6¼ ;, namely there is

a vertex say b0 2 U \ L0 \ Sb with a neighbor say b00 2 Sc [ AðVðPÞÞ, so that

vertices a; b; b0b00 induce a P4 say P(b) of G, and then a maximum weight

independent set of G is computed in step (1.3) with respect to P(b); (iii) or

U \ L0 \ Sc 6¼ ;, namely there is a vertex say c0 2 U \ L0 \ Sc with a neighbor say

c00 2 Sb [ AðVðPÞÞ, so that vertices d; c; c0c00 induce a P4 say P(c) of G, and then a

maximum weight independent set of G is computed in step (1.3) with respect to

P(c).
Case 1.4 U \ VðPÞ ¼ fag.
Note that every maximum weight (thus maximal) independent set of G½VðGÞ n

NðaÞ� not containing vertices of fb; c; dg has to contain some vertex of Sc, namely

there is a vertex say c0 2 U \ Sc, so that vertices a; b; c; c0 induce a P4 say P0 of G,
and then a maximum weight independent set of G is computed in step (1.3) with

respect to P0.
Case 1.5 U \ VðPÞ ¼ fbg.
Note that every maximum weight (thus maximal) independent set of G½VðGÞ n

NðbÞ� not containing vertices of fa; c; dg has to contain some vertex of Sd [ Sa;d,
namely there is a vertex say d0 2 U \ ðSd [ Sa;dÞ, so that vertices b; c; d; d0 induce a
P4 say P0 of G, and then a maximum weight independent set of G is computed in

step (1.3) with respect to P0.
Case 1.6 U \ VðPÞ ¼ fcg.
This case can be treated similarly to Case 1.5 by symmetry.

Case 1.7 U \ VðPÞ ¼ fdg.
This case can be treated similarly to Case 1.4 by symmetry.

Case 2 U \ VðPÞ ¼ ; for any induced P4 say P of G.
Then a maximum weight independent set of G is computed in Step 3.

This completes the proof of the theorem. h
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2.1 Proof of Lemma 2

In this subsection let us introduce the proof of Lemma 2.

Let G be a (P4 þ P4, Triangle)-free graph, with vertex weight function w,
containing an induced P4 say P of vertex set VðPÞ ¼ fa; b; c; dg and edge set

EðPÞ ¼ fab; bc; cdg.
Let us show that a maximum weight independent set of G containing fa; cg

(containing fb; dg, respectively, by symmetry) can be computed in polynomial time.

A maximum weight independent set of G containing fa; cg can be computed by

solving WIS for G½fa; cg [ Sb [ Sd [ Sb;d [ AðVðPÞÞ�. Then, since vertices of fa; cg
are isolated in such a graph, the problem can be reduced to graph

G½Sb [ Sd [ Sb;d [ AðVðPÞÞ�.
Then let us show that WIS can be solved for G½Sb [ Sd [ Sb;d [ AðVðPÞÞ� in

polynomial time.

The proof consists of solving a sequence of cases which are more and more

difficult/general, each of which is solved by a reduction to the previous solved case,

where the basic case is that of complete bipartite graphs; in this sense the proof is

not a massive case distinction; in particular for the sake of completeness let us

mention that is inspired to a teaching, by Professor Renato Caccioppoli, reported in

the book [11].

In what follows two main macro-cases are solved, namely, Case A as the

facilitated case and Case B as the general case.

2.1.1 Case A: The Facilitated Case

Case A is the following: graph G is such that V(G) admits a partition fS; Tg, where S
is an independent set and G[T] is P4-free, so that by Observation 3 every non-trivial

component of G[T] is complete bipartite.

Then let us show that WIS can be solved for G in polynomial time.

For any v 2 S and for any non-trivial component-set H of G[T] let us say that: v is
bi-partial to H if v is partial to one of the sides of G[H]; v is bi-universal to H if v is
universal to one of the two sides of G[H]; then by Observation 3, if v contacts H,
then v is either bi-partial to H or bi-universal to H.

Let H denote the family of non-trivial component-sets of G[T]: then, as recalled
above, every member of H induces a complete bipartite graph. For any v 2 S, let
H½v� be the family of members of H contacted by v.

Case A.1 No vertex of S is bi-partial to any member of H.

Then, according to the above, to our aim each member H of H, say of sides H0

and H00, can be assumed to be [contracted into] one edge say h0h00 by defining the

weight of h0 and of h00 as follows: wðh0Þ ¼
P

h2H0 wðhÞ and wðh00Þ ¼
P

h2H00 wðhÞ.
Case A.1.1 Each vertex of S contacts at most one member of H.

Then since G is P4 þ P4-free, there exists at most one member of H, i.e., one

edge say h0h00 of G[T], such that both h0 and h00 have neighbors in S: if such an edge

h0h00 of G[T] does not exist, then every component of G is complete bipartite, and

then WIS can be solved for G in polynomial time; if such an edge h0h00 of G[T] does
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exist, then every component of both G½VðGÞ n Nðh0Þ� and G½VðGÞ n fh0g� is

complete bipartite, and then WIS can be solved for G in polynomial time.

Case A.1.2 Some vertex of S contacts more than one member of H.

Let v0 2 S be such that jH½v0�j 	 jH½v�j for all v 2 S. LetHone denote the family of

non-trivial component-sets of G½T n Nðv0Þ�. Note that each vertex of S contacts at

most one member of Hone: in fact, if a vertex v 2 S should contact two members of

Hone, then by construction and by Observation 3 vertex v would contact two

members of H, and then by definition of v0 there would exist two members of H
which are contacted by v0 and non-contacted by v, and then by Observation 3 an

induced P4 þ P4 would arise. Then WIS can be solved for G in polynomial time as

follows: for G½VðGÞ n Nðv0Þ� one can refer to CASE A.1.1; for G½VðGÞ n fv0g� one
can iterate the above argument until the graph is reduced to G[T]; for G[T] one can
solve WIS in polynomial time since every component of G[T] is complete bipartite.

Case A.2 Some vertex of S is bi-partial to some member of H.

Case A.2.1 Each vertex of S is bi-partial to at most one member of H.

Let v0 2 S be bi-partial to one member of H and be such that jH½v0�j 	 jH½v�j for
all v 2 S which are bi-partial to one member of H: in particular let H0 be the

member of H such that v0 is bi-partial to H0.
Then let Z be the family of non-trivial component-sets Z of G½ðT n H0Þ n Nðv0Þ�

such that there is a vertex of S bi-partial to Z.

Claim 1 Z has at most one member.

Proof By contradiction assume that Z has two members, say Z1 and Z2. By

definition of Z, let v1; v2 2 S be respectively bi-partial to Z1; Z2 (actually v1 may

coincide to v2; however both v1; v2 are different to v0).
Let us observe that: if v1 coincides to v2, then such a vertex contacts both Z1 and

Z2; if v1 does not coincide to v2, then to avoid a P4 þ P4, either v1 contacts Z2 or v2
contacts Z1. Then, without loss of generality by symmetry, let us assume that v1
contacts [both Z1 and] Z2.

Then by construction and by Observation 3, there exist two members of H, say

H1;H2, such that Z1 � H1 and Z2 � H2. By definition of v0, one has that v0 does not
contact H1;H2: in fact, if v0 should contact either H1 or H2, then by construction v0

would be bi-partial to it (a contradiction to the assumption of Case A.2.1, since v0 is
bi-partial to H0). Then, by definition of v0, one has that v0 contacts at least two

members of H which are not contacted by v1: then, from one hand the subgraph

induced by v0 and by such two members contains an induced P4, and from the other

hand the subgraph induced by v1 and by Z1 contains an induced P4, i.e., an induced

P4 þ P4 arises (contradiction). h

Claim 2 WIS can be solved for G½VðGÞ n Nðv0Þ� in polynomial time.

Proof By Claim 1, Z has at most one member. Let us consider only the case in

which such a member does exist, say Z ¼ fZg, since the other case can be treated

similarly. Then let H be the member of H such that Z � H. Note that H n Nðv0Þ and
H0 n Nðv0Þ are the only (two) non-trivial component-sets of G½T n Nðv0Þ� to which

any vertex of S may be bi-partial. Furthermore by Observation 3, for any h 2 H (for
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any h0 2 H0, respectively), h is universal to one side of H (h0 is universal to one side

of H0, respectively).
For any maximum (weight) independent set U of G one of the following cases

occurs: (i) U \ H ¼ ; and U \ H0 ¼ ;, (ii) U \ H ¼ ; and U \ H0 6¼ ;, (iii)

U \ H 6¼ ; and U \ H0 ¼ ;, (iv) U \ H 6¼ ; and U \ H0 6¼ ;.
Then WIS can be solved for G½VðGÞ n Nðv0Þ� as follows.

In case (i): by solving WIS for G½ðVðGÞ n Nðv0ÞÞ n ðH [ H0Þ�, which enjoys

Case A.1 by the above. In case (ii): by solving WIS for

G½ðVðGÞ n Nðv0ÞÞ n Nðh0Þ�, for all h0 2 H0, which enjoys Case A.1 by the above.

In case (iii): by solving WIS for G½ðVðGÞ n Nðv0ÞÞ n NðhÞ�, for all h 2 H, which

enjoys Case A.1 by the above. In case (iv): by solving WIS for

G½ðVðGÞ n Nðv0ÞÞ n Nðh; h0Þ�, for all ðh; h0Þ 2 H � H0, which enjoys Case A.1

by the above.

Then WIS can be solved for G½VðGÞ n Nðv0Þ� in polynomial time by referring

to Case A.1. h

Then WIS can be solved for G in polynomial time as follows: for G½VðGÞ n
Nðv0Þ� one can refer to Claim 2, that is, finally to Case A.1; for G½VðGÞ n fv0g� one
can iterate the above argument until the graph is reduced to G[T]; for G[T] one can
solve WIS in polynomial time since every component of G[T] is complete bipartite.

Case A.2.2 Some vertex of S is bi-partial to more than one member of H.

Let us define a binary relation 0\0 on S: let us say that, for any u; v 2 S, u\v if v
is bi-partial to two non-trivial component-sets of G½T n NðuÞ�.

Then let us define a directed graph D ¼ ðS;EðDÞÞ such that for any u; v 2 S one

has ðu; vÞ 2 EðDÞ if and only if u\v.

Claim 3 The directed graph D ¼ ðS;EðDÞÞ is acyclic. In particular: (i) there exists
a vertex v
 2 S such that no vertex of S is bi-partial to two non-trivial component-
sets of G½T n Nðv
Þ�, and (ii) WIS can be solved for G½VðGÞ n Nðv
Þ� in polynomial
time.

Proof As a preliminary let us introduce the following observation. Let u; v 2 S and

assume u\v, that is, v be bi-partial to two non-trivial component-sets, say Z1; Z2, of
G½T n NðuÞ�: then by construction and by Observation 3 there exist two members of

H, say H1;H2, such that Z1 � H1 and Z2 � H2.

Then let us prove the following facts.

Fact 1 Let u; v 2 S and assume u\v, that is, let v be bi-partial to two non-trivial

component-sets, say Z1; Z2, of G½T n NðuÞ�; then let H1;H2 be the two members of

H such that Z1 � H1 and Z2 � H2. Then: if u contacts H1 (contacts H2,

respectively), then NH1
ðuÞ � NH1

ðvÞ (then NH2
ðuÞ � NH2

ðvÞ, respectively).

Proof of Fact 1 By contradiction assume that u contacts H1 and that NH1
ðuÞ 6�

NH1
ðvÞ (i.e., u is adjacent to a vertex of H1 n Z1 non-adjacent to v). Then, by

Observation 3 and since v is bi-partial to Z1, one has that (considering that u may

contact H1 either in the same side as v or in the other side): from one hand the

subgraph induced by u and H1 contains an induced P4 not contacted by v, and from

the other hand the subgraph induced by v and by Z2 contains an induced P4, i.e., an
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induced P4 þ P4 arises (contradiction). The same holds for H2 instead of H1 by

symmetry. h

Fact 2 Let u; v 2 S and assume u\v. Then v 6 \u.

Proof of Fact 2 By assumption let v be bi-partial to two non-trivial component-sets,

say Z1; Z2, of G½T n NðuÞ�. Then let H1;H2 be the two members of H such that

Z1 � H1 and Z2 � H2. By contradiction assume that v\u. Then let u be bi-partial to
two non-trivial component-sets, say Z3; Z4, of G½T n NðvÞ�. Then let H3;H4 be the

two members of K such that Z3 � H3 and Z4 � H4.

Then by Fact 1 one has that H3 6¼ H1;H2 and that H4 6¼ H1;H2. Then, from one

hand the subgraph induced by v and Z1 contains an induced P4, and from the other

hand the subgraph induced by u and Z3 contains an induced P4, i.e., an induced

P4 þ P4 arises (contradiction). h

Now let v1; v2; . . .; vp 2 S, for some natural p	 3, and assume v1\v2\ � � �\vp.
Then vj is bi-partial to two non-trivial component-sets, say Z1ðjÞ; Z2ðjÞ, of G½T n
Nðvj�1Þ� for j 2 f2; . . .; pg. Then let H1ðjÞ;H2ðjÞ be the two members of H such that

Z1ðjÞ � H1ðjÞ and Z2ðjÞ � H2ðjÞ for j 2 f2; . . .; pg.

Fact 3 vp contacts Z1ð2Þ; Z2ð2Þ.

Proof of Fact 3 First let us show that vp contacts Z1ðp� 1Þ; Z2ðp� 1Þ. Let us show
that vp contacts Z1ðp� 1Þ. If either H1ðp� 1Þ ¼ H1ðpÞ or H1ðp� 1Þ ¼ H2ðpÞ, say
H1ðp� 1Þ ¼ H1ðpÞ (without loss of generality by symmetry), then by construction

NH1ðpÞðvp�1Þ � H1ðpÞ n Z1ðpÞ, that is Z1ðp� 1Þ � Z1ðpÞ, that is vp contacts

Z1ðp� 1Þ. If H1ðp� 1Þ 6¼ H1ðpÞ;H2ðpÞ, then vp contacts Z1ðp� 1Þ, since otherwise
a P4 þ P4 arises (one P4 is contained in the subgraph induced by vp�1 and

Z1ðp� 1Þ, one P4 is contained in the subgraph induced by vp, Z1ðpÞ, Z2ðpÞ). Then vp
contacts Z1ðp� 1Þ. The same holds for Z2ðp� 1Þ by symmetry.

Then let us show that for 3� j� p� 1, if vp contacts Z1ðjÞ; Z2ðjÞ, then vp contacts

Z1ðj� 1Þ; Z2ðj� 1Þ. Let us show that if vp contacts Z1ðjÞ; Z2ðjÞ, then vp contacts

Z1ðj� 1Þ. If either H1ðj� 1Þ ¼ H1ðjÞ or H1ðj� 1Þ ¼ H2ðjÞ, say H1ðj� 1Þ ¼ H1ðjÞ
(without loss of generality by symmetry), then by construction

NH1ðjÞðvj�1Þ � H1ðjÞ n Z1ðjÞ, that is Z1ðj� 1Þ � Z1ðjÞ, that is vp contacts Z1ðj� 1Þ.
If H1ðj� 1Þ 6¼ H1ðjÞ;H2ðjÞ, then vp contacts Z1ðj� 1Þ, since otherwise a P4 þ P4

arises (one P4 is contained in the subgraph induced by vj�1 and Z1ðj� 1Þ, one P4 is

contained in the subgraph induced by vp, Z1ðjÞ, Z2ðjÞ). Then vp contacts Z1ðj� 1Þ.
The same holds for Z2ðj� 1Þ by symmetry.

Then Fact 3 is proved. h

Fact 4 vp 6 \v1.

Proof of Fact 4 By contradiction assume vp\v1. Then v1 is bi-partial to two non-

trivial component-sets, say Z1; Z2, of G½T n NðvpÞ�. Then let H1;H2 be the two

members of H such that Z1 � H1 and Z2 � H2. Let us recall that vp contacts

Z1ð2Þ; Z2ð2Þ by Fact 3. If either H1 ¼ H1ð2Þ or H1 ¼ H2ð2Þ, say H1 ¼ H1ð2Þ
(without loss of generality by symmetry), then by construction
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NH1ð2Þðv1Þ � H1ð2Þ n Z1ð2Þ, that is Z1 � Z1ð2Þ, that is vp contacts Z1 (contradiction).
If H1 6¼ H1ð2Þ;H2ð2Þ, then vp contacts Z1 (contradiction), since otherwise a P4 þ P4

arises (one P4 is contained in the subgraph induced by v1 and Z1, one P4 is contained

in the subgraph induced by vp, Z1ð2Þ, Z2ð2Þ). h

Let us conclude the proof of Claim 3. By Facts 2 and 4, there are no vertices

u1; u2; . . .; uk 2 S (for k	 2) such that u1\u2\ � � �\uk\u1, i.e., the directed graph
D ¼ ðS;EðDÞÞ is acyclic.

In particular: (i) it is well-known [and not difficult to check] that any acyclic

directed graph—and thus the directed graph D ¼ ðS;EðDÞÞ—contains at least one

vertex with zero out-degree, that is, there exists a vertex v
 2 S such that no vertex

of S is bi-partial to two non-trivial component-sets of G½T n Nðv
Þ�; (ii) WIS can be

solved for G½VðGÞ n Nðv
Þ� in polynomial time, since G½VðGÞ n Nðv
Þ� enjoys Case
A.2.1. h

Then WIS can be solved for G in polynomial time as follows: construct the

directed graph D ¼ ðS;EðDÞÞ as above and solve WIS for G½VðGÞ n Nðv
Þ�
according to Claim 3, that is, by finally referring to Case A.2.1; iterate this

procedure for G½VðGÞ n fv
g� until the graph is reduced to G[T]; solve WIS for

G[T] in polynomial time since every component of G[T] is complete bipartite.

This completes the solution for Case A.

2.2 Case B: The General Case

Let us show that WIS can be solved for G½Sb [ Sd [ Sb;d [ AðVðPÞÞ� in polynomial

time. Let us recall that Sb [ Sb;d and Sd [ Sb;d are independent sets and that every

non-trivial component of G[A(V(P))] is complete bipartite.

For brevity, let us write T ¼ AðVðPÞÞ.
For any v 2 Sb [ Sd [ Sb;d and for any H be a non-trivial component-set of

G[T] let us say that: v is bi-partial to H if v is partial to one of the sides of G[H]; v is
bi-universal to H if v is universal to one of the two sides of G[H]; then by

Observation 3, if v contacts H, then v is either bi-partial to H or bi-universal to H.
For any maximum (weight) independent set U of G½Sb [ Sd [ Sb;d [ T � one of the

following cases occurs: (i) U \ Sb ¼ ; and U \ Sd ¼ ;, (ii) U \ Sb ¼ ; and

U \ Sd 6¼ ;, (iii) U \ Sb 6¼ ; and U \ Sd ¼ ;, (iv) or U \ Sb 6¼ ; and U \ Sd 6¼ ;.
Then WIS can be solved for G½Sb [ Sd [ Sb;d [ T� as follows.
In case (i): by solving WIS for G½Sb;d [ T �, in polynomial time, since it enjoys

CASE A. In case (ii): by solving WIS for G½Sd [ Sb;d [ T �, in polynomial time, since

it enjoys Case A. In case (iii): by solving WIS for G½Sb [ Sb;d [ T �, in polynomial

time, since it enjoys Case A. In case (iv): by solving WIS for G½ðSb [ Sd [ Sb;d [
TÞ n Nðsb; sdÞ� for all non-adjacent pair of vertices ðsb; sdÞ 2 Sb � Sd .

Then—to show that WIS can be solved for G½Sb [ Sd [ Sb;d [ T� in polynomial

time—it remains to show that WIS can be solved for G½ðSb [ Sd [ Sb;d [ TÞ n
Nðsb; sdÞ� in polynomial time for all non-adjacent pair of vertices ðsb; sdÞ 2 Sb � Sd.

Then let us write G0 ¼ G½ðSb [ Sd [ Sb;d [ TÞ n Nðsb; sdÞ� for any fixed

ðsb; sdÞ 2 Sb � Sd.
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Then let us write S0X ¼ SX n Nðsb; sdÞ for X ¼ ffbg; fdg; fb; dgg, and

T 0 ¼ T n Nðsb; sdÞ: then G0 ¼ G½fsb; sdg [ S0b [ S0d [ S0b;d [ T 0�.
Let H0 denote the family of non-trivial component-sets of G½T 0�.
Let H0

all denote the family of [all, i.e., trivial or non-trivial] component-sets of

G½T 0�. For any v 2 S0b [ S0d, letH0
all½v� be the family of members of H0

all contacted by

v.

Let v0 2 S0b [ S0d such that: (j) jH0
all½v0�j 	 jH0

all½v�j for all v 2 S0b [ S0d, and (jj)

NT 0 ðv0Þ 6� NT 0 ðvÞ for all v 2 ðS0b [ S0dÞ n fv0g.
Let us assume that v0 2 S0b without loss of generality by symmetry.

Let us show that WIS can be solved for G0½VðG0Þ n Nðv0Þ� in polynomial time.

Let us write G00 ¼ G0½VðG0Þ n Nðv0Þ�.
Then let us write S00X ¼ S0X n Nðsb; sdÞ for X ¼ ffbg; fdg; fb; dgg, and

T 00 ¼ T 0 n Nðv0Þ: then G00 ¼ G½fsb; sd; v0g [ S00b [ S00d [ S00b;d [ T 00�.
Case B.1 No vertex of S00d is bi-partial to any member of H0.
Then let us prove the following facts.

Fact 1 Each vertex of S00d contacts no component-set of G½T 0� not contacted by v0.

Proof of Fact 1 By contradiction assume that a vertex v 2 S00d contacts a component-

set say H of G½T 0� not contacted by v0, i.e., v is adjacent to a vertex h 2 H with H not

contacted by v0. Then by definition of v0, there is a vertex h0 2 T 0 n H which is

adjacent to v0 and non-adjacent to v. Then sb; b; v
0; h0 and sd; d; v; h induce a P4 þ P4

(contradiction). h

Fact 2 Each vertex of S00d has neighbors, which are non-neighbors of v0, in at most

one component-set of G½T 0�.

Proof of Fact 2 By contradiction assume that a vertex v 2 S00d has neighbors say

h1; h2, which are non-neighbors of v
0, in respectively two component-sets say H1;H2

of G½T 0�. Then by definition of v0, there is a vertex h0 2 T 0 such that h0 is nonadjacent
to v, in particular h0 does not belong to at least one component-set over H1 and H2

by construction: without loss of generality by symmetry let us say that h0 does not
belong to H2. Then sb; b; v

0; h01 and sd; d; v; h2 induce a P4 þ P4 (contradiction). h

Fact 3 G½S00d [ T 00� is P4-free.

Proof of Fact 3 By contradiction assume that G½S00d [ T 00� contains an induced P4,

say P
, of vertex-set VðP
Þ. Then: from one hand jVðP
Þ \ S00dj 	 1, since G½T 00� is
P4-free; from the other hand jVðP
Þ \ S00dj � 2, since S00d is an independent set.

The occurrence jVðP
Þ \ S00dj ¼ 1 is not possible by Observation 3 and by Fact 2

with respect to the vertex of VðP
Þ \ S00d .
The occurrence jVðP
Þ \ S00dj ¼ 2 is not possible as shown in the following sub-

occurrences.

Assume that VðP
Þ ¼ fu; x; v; yg, with u; v 2 S00d and x; y 2 T 00, with edges

ux, xv, vy. Then, since v is adjacent to both x and y, by Fact 2 vertices x, y belong to

the same component-set of G½T 0�. But this contradicts the assumption of Case B.1

with respect to u.
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Assume that VðP
Þ ¼ fu; x; y; vg, with u; v 2 S00d and x; y 2 T 00, with edges

ux, xy, vy. Then, since vertices x, y are adjacent, vertices x, y belong to the same

component-set of G½T 00� (= G½T 0 n Nðv0Þ�), say Z, and to different sides of Z
respectively. Then let H be the component-set of G½T 0� such that Z � H. By Fact 1,

vertex v0 contacts H n Z, i.e., vertex v0 contacts one side of G½H n Z�: without loss of
generality by symmetry say v0 contacts the side of G½H n Z� corresponding to the

side of Z contacted by u. Then for any neighbors of v0 in H n Z, say h, one has that u
is adjacent to h, since otherwise sb; b; v

0; h and sd; d; u; x induce a P4 þ P4. That is

one has NHðv0Þ � NHðuÞ. Then, since NT 0 ðv0Þ 6� NT 0 ðuÞ (by definition of v0), there is
a vertex h0 2 T 0 n H such that h0 is adjacent to v0 and non-adjacent to u. Then
sb; b; v

0; h0 and sd; d; u; x induce a P4 þ P4, a contradiction. h

Then WIS can be solved for G00 in polynomial time, since fsb; sd; v0g [ S00b [ S00b;d
is an independent set and since G½S00d [ T 00� is P4-free by Fact 3, that is since G00

enjoys Case A.

Case B.2 Some vertex of S00d is bi-partial to some member of H0.

Case B.2.1 Each vertex of S00d is bi-partial to at most one member of H0.
This case can be treated similarly to Case A.2.1, in order to conclude that WIS

can be solved for G00 in polynomial time by referring to Case B.1, by the following

outline.

Let v00 2 S00d be bi-partial to one member of H0 and be such that jH0½v00�j 	 jH0½v�j
for all v 2 S00d which are bi-partial to one member of H0: in particular let H00 be the

member of H0 such that v00 is bi-partial to H00.
Then let Z0 be the family of non-trivial component-sets Z 0 of G½ðT 0 n H00Þ n

Nðv00Þ� such that there is a vertex of S00d bi-partial to Z 0.

Claim 4 Z0 has at most one member.

Proof The proof is the same as that of Claim 1 of Case A.2.1, with v00 instead of v0,
with Z0 instead of Z, with H0 instead of H, and with Case B.2.1 instead of Case

A.2.1. h

Claim 5 WIS can be solved for G00½VðG00Þ n Nðv00Þ� in polynomial time.

Proof The proof is the same as that of Claim 2 of CASE A.2.1, with G00½VðG00Þ n
Nðv00Þ� instead of G½VðGÞ n Nðv0Þ�, with Claim 4 instead of Claim 1, with v00 istead
of v0, with Z0 instead of Z, with H0 instead of H, with H00 instead of H0, and with

Case B.1 instead of Case A.1. h

Then WIS can be solved for G00 in polynomial time as follows: for G00½VðG00Þ n
Nðv00Þ� one can refer to Claim 2’, that is, finally to Case B.1; for G00½VðG00Þ n fv00g�
one can iterate the above argument until the graph is reduced to G½T 0�; for G½T 0� one
can solve WIS in polynomial time since every component of G½T 0� is complete

bipartite.

Case B.2.2 Some vertex of S00d is bi-partial to more than one member of H0.
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This case can be treated similarly to Case A.2.2, in order to conclude that WIS

can be solved for G00 in polynomial time by referring to Case B.2.1, by the following

outline.

Let us define a binary relation 0\0 on S00d: let us say that, for any u; v 2 S00d , u\v if
v is bi-partial to two non-trivial component-sets of G½T 0 n NðuÞ�.

Then let us define a directed graph D ¼ ðS;EðDÞÞ such that for any u; v 2 S00d one
has ðu; vÞ 2 EðDÞ if and only if u\v.

Claim 6 The directed graph D ¼ ðS;EðDÞÞ is acyclic. In particular: (i) there exists
a vertex v
 2 S00d such that no vertex of S00d is bi-partial to two non-trivial component-
sets of G½T 0 n Nðv
Þ�, and (ii) WIS can be solved for G00½VðG00Þ n Nðv
Þ� in
polynomial time.

Proof The proof is the same as that of Claim 3 of Case A.2.2, with G00½VðG00Þ n
Nðv
Þ� instead of G½VðGÞ n Nðv
Þ�, with T 0 instead of T, with H0 instead of H, and

with Case B.2.1 instead of Case A.2.1. h

Then WIS can be solved for G00 in polynomial time as follows: construct the

directed graph D ¼ ðS;EðDÞÞ as above and solve WIS for G00½VðG00Þ n Nðv
Þ�
according to Claim 6, that is, by finally referring to Case B.2.1; iterate this

procedure for G00½VðG00Þ n fv
g� until the graph is reduced to G½T 0�; solve WIS for

G½T 0� in polynomial time since every component of G½T 0� is complete bipartite.

Summarizing Cases B.1 and B.2 one has that: WIS can be solved for G00 in
polynomial time.

Then WIS can be solved for G0 ð¼ G½fsb; sdg [ S0b [ S0d [ S0b;d [ T 0�Þ in polyno-

mial time as follows: for G0½VðG0Þ n Nðv0Þ� (¼ G00) one can proceed as above; for

G0½VðG0Þ n fv0g� one can iterate the above argument until the graph is reduced to

G0½fsb; sdg [ S0bd [ T 0�; for G0½fsb; sdg [ S0b;d [ T 0� one can refer to Case A. Then, as

remarked above, this implies that WIS can be solved for G in polynomial time.

This completes the solution for Case B.

3 Concluding Remarks

Let us list some possible concluding remarks.

1. In [34], it is shown that every connected Paw-free graph is either Triangle-free

or complete multipartite [a Paw has vertices a, b, c, d, and edges ab, a-
c, ad, bc]. This result and Theorem 2 directly imply that the WIS problem can

be solved for (P4 þ P4, Paw)-free graphs in polynomial time. Furthermore in

[35], it is shown that if a prime graph contains a Triangle then it contains a

House, or a Bull, or a Double-Gem [a House has vertices a, b, c, d, e, and edges
ab, ac, bc, be, cd, de; a Bull has vertices a, b, c, d, e, and edges ab, ac, bc, -
be, cd; a Double-Gem has vertices a, b, c, d, e, f, and edges ac, ad, ae, bd, -
be, bf, cd, de, ef]. This result and Theorem 2, by well known results on prime

graphs (see e.g. [26]), imply that the WIS problem can be solved for (P4 þ P4,

House, Bull, Double-Gem)-free graphs in polynomial time.
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2. The proof of Theorem 2 is based on the anti-neighborhood approach by finally

reducing the problem to instances of complete bipartite graphs for which the

problem can be solved in linear time. Then the time bound of Theorem 2, i.e., of

Algorithm Last, may be estimated as Oðn15Þ time.

Then one can derive the following result, which is similar to the corresponding

results obtained for (P7,Triangle)-free graphs [7] and for (S1;2;4,Triangle)-free
graphs [9], and which seems to be harmonic [together with such results] with respect

to the result of Prömel et al. [39] showing that with ‘‘high probability’’ removing a

single vertex in a Triangle-free graph leads to a bipartite graph.

Theorem 3 For every ( P4 þ P4,Triangle)-free graph G there is a family S of
subsets of V(G) inducing (complete) bipartite subgraphs of G, which contains
polynomially many members and can be computed in polynomial time, such that
every maximal independent set of G is contained in some member of S. h

An outline of the proof: concerning Lemma 2 the above result can be derived

with no difficult (for every maximal independent sets of G containing vertices a, c)
by the proof scheme; concerning Theorem 2, in particular concerning Algorithm

Last, the above result can be derived by considering the following alternative step

(1.3) of Algorithm Last [in fact Algorithm Last is given in a version which directly

aims to solve the WIS problem] according to Case 1.3 of the proof of Theorem 2:

(1.3) compute [by Lemma 1] a maximum weight independent set of G½fa; dg [
L [ AðVðPÞÞ� where L is the set of those vertices in Sb [ Sc which are isolated in

G½Sb [ Sc [ AðVðPÞÞ�: denote it as Q0
3; compute [by Lemma 2] a maximum weight

independent set of G containing fa; b0g [which are vertices of an induced P4] and

containing fdg, for every b0 2 L0 \ Sb, where L
0 ¼ ðSb [ ScÞ n L: denote it as denote

it as Q00
3; compute [by Lemma 2] a maximum weight independent set of G

containing fd; c0g [which are vertices of an induced P4] and containing fag, for
every c0 2 L0 \ Sc, where L0 ¼ ðSb [ ScÞ n L: denote it as denote it as Q000

3 ; finally

select a best maximum weight independent set over fQ0
3;Q

00
3 ;Q

000
3 g: denote it as Q3.

3. Finally let us point out the following possible open problem.

Open Problem. What is the complexity of (W)IS for P4 þ P4-free graphs?
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