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Abstract: The Hayabusa2 spacecraft arrived at the near-Earth carbonaceous asteroid 162173

Ryugu in 2018. We present Hayabusa2 observations of Ryugu’s  shape, mass, and20 

geomorphology. Ryugu has an oblate ‘spinning top’ shape with a prominent circular equatorial

ridge. Its bulk density, 1.19 ± 0.03 g cm-3, indicates a high porosity (>50%) interior. Large

surface boulders suggest a rubble-pile structure. Surface slope analysis shows Ryugu’s shape

may have been produced if it once spun at twice the current rate. Coupled with the observed

global material homogeneity, this suggests that Ryugu was reshaped by centrifugally induced25 

deformation during a period of rapid rotation.

One Sentence Summary: A proximity survey of Ryugu reveals a rubble-pile carbonaceous

asteroid reshaped and homogenized by a past rapid spin.

Main Text:

Carbonaceous (or C-complex) asteroids are leftover debris from planet formation in the solar30 

nebula. Studying their formation, evolution, and volatile content provides information on

formation processes around the snow line—the boundary between the inner and outer Solar

System (SS).Carbonaceous asteroids may have delivered water and organic materials to the early

Earth. The Hayabusa2 mission goal is to rendezvous with an asteroid and probe these issues via a

combination of remote-sensing observations from the spacecraft, in-situ surface measurements35 

by deployed rovers and a lander, execution of an artificial impact experiment, and analyses of

samples returned to Earth (1, 2). The spacecraft was developed by the Japan Aerospace

Exploration Agency (JAXA) as a successor to Hayabusa (3) and was launched by an H-IIA
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rocket on 3 December 2014. Its target is the near-Earth carbonaceous asteroid 162173 Ryugu 

(provisional designation 1999 JU3). Hayabusa2 reached its target in June 2018; NASA’s 

OSIRIS-REx spacecraft(4) reached another carbonaceous asteroid 101955 Bennu in December 

2018.  

After a 3.5-year cruise, a satellite search during approach to the asteroid detected no 5 

natural satellites >0.1 m within 100 km [see supplementary text 1 (SM1)]. Hayabusa2 arrived at 

the Home Position (HP) ~20 km above Ryugu on 27 June 2018. The spacecraft did not enter into 

circum-asteroid orbit but hovered at HP during the initial mapping phase. The remote-sensing 

instrument suite onboard Hayabusa2 includes the Optical Navigation Camera - Telescopic 

(ONC-T) with a wideband and seven narrowband filters (5), the Thermal Infrared Imager (TIR) 10 

(6), a Near-Infrared Spectrometer (NIRS3) (7), and a laser Light Detection and Ranging 

(LIDAR) system (8). Coordinated observations among these instruments (Fig. S1, SM1) enabled 

an initial assessment of Ryugu’s general physical characteristics. The spectral data obtained by 

ONC-T and NIRS3, indicated Ryugu is a Cb-type carbonaceous asteroid with a very low albedo 

(5, 7).  15 

ONC-T images reveal geomorphological features including the presence of numerous 

boulders on the surface (Fig. 1). From these images, we constructed global shape models with 

two independent methods; stereophotoclinometry (SPC) (9) and the Structure-from-Motion 

(SfM) technique (10). These methods yielded shape models with polygon mesh resolutions of ~1 

m. The two model topographies are in good agreement with each other except for around some20 

boulders and in the polar regions (Fig. S2; SM2). We mainly used the SfM-based shape model

(Fig. 2) for further analysis of Ryugu’s global shape.

Ryugu’s derived orbital and physical parameters are summarized in Table S1 (SM3). The 

SPC-based shape model provided an estimate of the asteroid spin parameters: an axis with a right 

ascension of 96.40° ± 0.03°, a declination of −66.40° ± 0.03° at epoch J2000.0 and a period of 25 

7.63262 ± 0.00002 hours. Our derived rotation period is consistent with ground-based 

observations, while our pole direction fits the second most probable solution compiled from 

ground- and space-based observations (11). The obliquity—the angle between Ryugu’s orbital 

and rotational poles—is 171.64° ± 0.03°, close to perfectly retrograde rotation (which would be 

at 180°). No wobble or change of the rotation rate have been detected (12).  30 

Ryugu has an oblate body with an equatorial radius of 502 ± 2 m and polar to equatorial 

axes ratio of 0.872 ± 0.007. The total volume obtained from the SPC-based shape model is 0.377 

km3 with an uncertainty of 1.3%. We conducted a gravity measurement (SM3) during a 

spacecraft ballistic descent down to 0.85 km from the asteroid surface and a subsequent ballistic 

ascent. The estimated mass is 4.50 × 1011 kg with an uncertainty of 1.3%, mainly due to 35 

uncertainties in the solar radiation pressure on the spacecraft. The bulk density is therefore 1.19 

± 0.03 g cm-3, less than the bulk densities (1.6 to 2.4 g cm-3) measured for hydrated carbonaceous 

asteroids (Ch- and Cgh-type) (13). However, it falls within the 0.8–1.5 g cm-3 range measured for 

BCG-types [B-, C-, Cb-, and Cg-type; Ryugu is Cb-type (5)], which might be related to unheated 

icy asteroids (13).  40 

NIRS3 observations indicate that OH-bearing minerals are ubiquitous on the surface of 

Ryugu (7). The presence of water ice could explain the low bulk densities of main-belt 

carbonaceous asteroids, but is unlikely at Ryugu because the radiative equilibrium temperature 

(~250 K) is higher than the ice sublimation temperature (~230 K) even at its calculated central 
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pressure of ~8 Pa, and the estimated thermal diffusion time (<105 yr) is much shorter than the 

typical dynamical lifetime of near-Earth asteroids (~107 yr) (SM4).  

The total porosity is derived to be >50% if the constituent grain density is similar to those 

of carbonaceous chondrites, of which the lowest known is the 2.42 ± 0.06 g cm-3 Orgueil CI 

meteorite (14). The estimated total porosity is slightly higher than the rubble-pile asteroid 5 

Itokawa (44 ± 4%) (SM5), suggesting that Ryugu is also a rubble pile, i.e., an aggregate of 

numerous rocky blocks bound primarily by self-gravity, with low cohesive strength and high 

bulk porosity. This is consistent the hypothesis that all SS bodies with diameter of ~1 km are 

rubble piles (15). These asteroids might have originally formed from re-accumulation of 

fragments generated by catastrophic disruption events of ~100-km sized parent bodies (16). 10 

Ryugu’s high porosity could be ascribed to loss of volatile components during or after the 

formation of the rubble pile, if its parent body was an icy asteroid.  

Further evidence for a rubble-pile structure is the abundance of large boulders on the 

surface. The largest, Otohime, is located near the south pole and ~160 m in its longest axis (Fig. 

1). The spatial density of boulders on Ryugu with longest axes >20 m is more than twice that on 15 

Itokawa (5). Gravitational capture of ejecta after impact cratering on this body cannot  be 

responsible for these large boulders, because their sizes are larger than the ejecta expected from 

even the largest crater Urashima (~290 m in diameter) (5, 17). These boulders are most likely 

fragments that accreted during the formation of Ryugu, after disruption of its parent body (16).  

Little was known about Ryugu’s shape prior to Hayabusa2’s arrival, due to a lack of 20 

radar imaging data and limited constraints from lightcurve observations (11). Hayabusa2 images 

reveal that Ryugu is a spinning-top-shaped asteroid; there is an elevated ridge around the 

equator, from which near conical surfaces extend to the mid-latitudes, with an average surface 

tilt angle of 34 ± 4° relative to its spin axis (Figs. 2 and S3, Table S2; SM6). Ryugu’s shape is 

similar to that of Bennu (4, 18). Other spinning-top-shaped near-Earth asteroids have been 25 

observed via ground-based radar (Table S3). However, Ryugu’s shape was unexpected because 

its rotation rate is slower than most of the currently known spinning-top-shaped asteroids (20). 

The aspect ratio of Ryugu’s equatorial cross-section is 0.98 and the circularity—the ratio 

of the circumference of an equal area circle to the perimeter—is 0.93 (Table S3; SM7). This 

suggests rotation-induced deformation of Ryugu, due to a short spin period (16, 21, 22). 30 

However, the current spin rate is too slow to explain the shape, so Ryugu must have spun faster 

in the past and later slowed down to its current rate. This deformation hypothesis would also 

explain surface tilt angles that are symmetric and independent of longitude in the low latitudes  

(5) (SM6). Exceptions are several crater-affected portions, which must have formed after the 

equatorial ridge.  35 

To constrain the past spin rate that formed the spinning-top shape, we analyzed the 

distribution of surface slopes—the angle between the normal vector to the surface and that to the 

surface of equipotential gravitational field—at different spin rates (18). Assuming a uniform 

density distribution, we used the derived bulk density and shape to calculate the surface slope 

distributions (Fig. 3A) and maps (Fig. 3B). At the current rotation period, the majority of the 40 

surface has slopes <35°, but Ryugu exhibits a latitudinal variation; the mid-latitudes have lower 

slopes while both sides of the equatorial ridge have higher slopes. This results from the surface 

geopotential that has local maxima in the equatorial and polar regions and becomes lowest at the 

mid-latitudes (Fig. S4). At a rotation period aP  of 4.0 hours, the local minimum moves to the 
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equator, while the slopes still have a latitudinal variation (Fig. S5). At a 3.5 hoursP = , which is 

almost equal to the critical spin period at which the centrifugal force exceeds gravity at some 

surface points near the equator, the surface slope distribution is centered at 31° 14

11

+ 

− 
 (Fig. 3A).

This distribution is consistent with a typical friction angle of granular materials (~35°) [e.g., 

(23)], suggesting topographic relaxation that homogenized the slope distribution (5). During this 5 

process, the variation in surface slopes minimizes at low- and mid-latitudes (Figs. 3A and B, S5) 

as a result of a deformation process that produced the equatorial ridge (15, 18).  

Geological features of the equatorial ridge (5) are: (i) large unperturbed craters overlying 

the ridge, suggesting the ridge formed before the craters, (ii) imbricated boulders indicating 

surface mass wasting from the equator to the mid-latitudes, (iii) no evidence of grain-size 10 

segregation, unlike Itokawa (3), suggesting a lower degree of global surface activity. Candidate 

structural lineaments have been found around the equatorial region, but we regard them as 

unconfirmed due to limited lighting conditions in available high resolution images.  

To determine the material properties of the equatorial ridge, we analyzed observation 

data acquired for the purpose of evaluating candidate sample collection sites: four (L sites) on 15 

the equatorial ridge and three (M sites) at higher latitudes (15° to 30°) (Fig. S6, Table S4; SM8). 

Each candidate region has a size of 14° by 14° (about 110 by 110 m2), which were targeted for 

detailed investigation. The variation between these regions in the visible and NIR reflectance 

data is less than 15%, suggesting efficient mixing processes in the surface layer (5, 7). Within 

this limited spectral variation, a difference was found in ONC-T data on the spectral slope   20 

between the b- and x-bands (0.48 to 0.86 μm) (5) (SM9). High-resolution maps of   at candidate 

sampling sites reveal that bluish and reddish materials are mixed in different degrees (Fig. 4A). 

The slope   was found to correlate with the v-band reflectance factor rv (5). The sites along the 

equatorial ridge (L-sites) have brighter bluish spectra, whereas those in higher latitudes (M-

sites), especially M01, exhibit darker reddish spectra (Fig. 4B). The trend of rv with   may be 25 

ascribed to the effect of space exposure on fresh bright-blue materials leading to reddening and 

darkening (5). Thus, mass wasting after spin down of Ryugu probably exposed fresh subsurface 

materials on the equatorial ridge.  

Our current observations are insufficient to identify when and how the spinning-top shape 

formed. Possible timings are either an early re-accumulation stage after catastrophic disruption 30 

of Ryugu’s parent body (16) and/or a later stage due to quasi-static rotational acceleration (21, 

22). Early stage formation may explain the presence of large craters on the equatorial ridge. 

However, the conditions for producing a spinning-top shape are unclear, because Ryugu would 

need to gain a high enough angular momentum during re-accumulation to produce its 

axisymmetric shape and circular ridge, but avoid a non-axisymmetric instability that makes the 35 

shape elongated.  

In the later stage the Yarkovsky-O’Keefe-Radzievskii-Paddack (YORP) effect, a 

radiation recoil torque affecting the rotation state of a small asteroid, is responsible for the quasi-

static acceleration of asteroids [e.g., (15)]. When a spheroidal asteroid spins rapidly, strong 

centrifugal forces may induce deformation processes either on the surface (21, 24) or in the 40 

interior (25, 26), depending on the internal structure (26, 27). The large porosity of Ryugu, the 

dominance of large grains (>1 cm) across its surface (5), and the lack of observed benches in its 



Submitted Manuscript: Confidential 

6 

largest craters (5) suggest that the internal cohesive strength of the asteroid may be uniform and 

low.  

Given the bulk density, shape, and uniform structure, we calculated the failure mode of 

Ryugu by using a plastic finite element model (FEM) technique (20) (SM10). This FEM method 

models continuum media to describe irreversible deformation of the regolith in asteroids. If 5 

Ryugu rotates at a 3.75P  hours, tension plays a dominant role in deformation in the interior 

(Fig. S7). At a 3.5P = hours, the first structural failure occurs in the central region (Fig. 3C) if the 

cohesive strength (28) is uniformly ~4 Pa, which is similar to the predicted cohesive strength of 

small bodies (22, 25). While the van der Waals force may contribute to cohesion (22), density 

inhomogeneity or particle interlocking may also produce equivalent mechanical strength. The 10 

failed region spreads over the interior, driving outward, radial deformation parallel to the 

equatorial plane and inward, vertical deformation around the spin axis (Fig. 3C). This model may 

support a lower degree of global surface activity on Ryugu (5). However, we do not rule out 

contributions from surface landslides to spinning-top-shape formation (26), which can be driven 

by local heterogeneities (12) or a gradual increase in strength of the asteroid with depth. These 15 

scenarios predict differing freshness of the subsurface material beneath the equatorial ridge due 

to the time available for space weathering. .   
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Fig. 1. ONC-T images of Ryugu. Taken from 20 km altitude on 10 July 2018. White arrows 

represent the spin axis. The prime meridian is defined in (5). (Top) Hemisphere centered at (5°S, 

11°E). (Bottom) Hemisphere centered at (5°S, 189°E).  5 
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Fig. 2. SfM-based shape model of Ryugu. Generating a polygon model with 3,145,728 facets 

based on total 214 ONC-T images taken from the 5.1- and 6.5-km altitudes.  

5 
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Fig. 3. Slope distribution and failure mode analysis. Reduced versions of SfM- (A, B: 49,152 

facets) and SPC-based (C: 3,072 facets) shape models were used. The density is assumed to be 5 

constant at 1.2 g cm-3. (A) Area-weighted slope distribution at spin periods of 7.63, 4.0, and 3.5 

hours. (B) Slope maps projected on the shape model at different spin periods. (C) Failed region 

(yellow) and deformation vectors on the meridional cross-section viewed from a longitude of 

30°E at a spin period of 3.5 hours. The minimum cohesive strength to keep the original shape is 

~4 Pa.  10 
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Fig. 4. Visible spectral properties of candidate sampling sites. In accordance with a safety 

index (SM8) the Hayabusa2 engineering team chose seven candidate sampling sites, L05, L07, 

L08, L12, M01, M03, and M04, where L and M indicate low-latitude and “mid”-latitude (15° to 5 

30°) regions, respectively. (A) ONC-T v-band images of two representative candidate sites, L08 

(top) and M01 (bottom), from altitude of ~5 km, overlaid by color maps of b-x (0.48 to 0.86 µm) 

spectral slope. (B) Spectral slope and reflectance factor at v-band of 7 candidate landing sites. 

Symbols (L: +, M: ×) and lines are showing the median values and 1-σ variations inside those 

sites, respectively (SM9).  10 
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