Finding Dominating Induced Matchings in P_{8}-Free Graphs in Polynomial Time

Andreas Brandstädt* Raffaele Mosca ${ }^{\dagger}$

May 28, 2022

Abstract

Let $G=(V, E)$ be a finite undirected graph. An edge set $E^{\prime} \subseteq E$ is a dominating induced matching (d.i.m.) in G if every edge in E is intersected by exactly one edge of E^{\prime}. The Dominating Induced Matching (DIM) problem asks for the existence of a d.i.m. in G; this problem is also known as the Efficient Edge Domination problem.

The DIM problem is related to parallel resource allocation problems, encoding theory and network routing. It is $\mathbb{N P}$-complete even for very restricted graph classes such as planar bipartite graphs with maximum degree three and is solvable in linear time for P_{7}-free graphs. However, its complexity was open for P_{k}-free graphs for any $k \geq 8 ; P_{k}$ denotes the chordless path with k vertices and $k-1$ edges. We show in this paper that the weighted DIM problem is solvable in polynomial time for P_{8}-free graphs.

Keywords: dominating induced matching; efficient edge domination; P_{8}-free graphs; polynomial time algorithm;

1 Introduction

Let $G=(V, E)$ be a finite undirected graph. A vertex $v \in V$ dominates itself and its neighbors. A vertex subset $D \subseteq V$ is an efficient dominating set (e.d.s. for short) of G if every vertex of G is dominated by exactly one vertex in D. The notion of efficient domination was introduced by Biggs [1] under the name perfect code. The Efficient Domination (ED) problem asks for the existence of an e.d.s. in a given graph G (note that not every graph has an e.d.s.)
If a vertex weight function $\omega: V \rightarrow \mathbb{N}$ is given, the Weighted Efficient Domination (WED) problem asks for a minimum weight e.d.s. in G, if there is one, or for determining that G has no e.d.s.
A set M of edges in a graph G is an efficient edge dominating set (e.e.d.s. for short) of G if and only if it is an e.d.s. in its line graph $L(G)$. The Efficient Edge Domination (EED) problem asks for the existence of an e.e.d.s. in a given graph G. Thus, the EED problem for a graph G corresponds to the ED problem for its line graph $L(G)$. Again, note that

[^0]not every graph has an e.e.d.s. An efficient edge dominating set is also called dominating induced matching (d.i.m. for short) and the EED problem is called the Dominating Induced Matching (DIM) problem in some papers (see e.g. [2, 4, 6]); subsequently, we will use this notation in the manuscript. The edge-weighted version of DIM for graph G corresponds to the vertex-weighted version of ED for $L(G)$.
In [8], it was shown that the DIM problem is $\mathbb{N P}$-complete; see also $[2,6,12,14]$. However, for various graph classes, DIM is solvable in polynomial time. For mentioning some examples, we need the following notions:
Let P_{k} denote the chordless path P with k vertices, say a_{1}, \ldots, a_{k} and $k-1$ edges $a_{i} a_{i+1}$, $1 \leq i \leq k-1$; we also denote it as $P=\left(a_{1}, \ldots, a_{k}\right)$.
For indices $i, j, k \geq 0$, let $S_{i, j, k}$ denote the graph with vertices $u, x_{1}, \ldots, x_{i}, y_{1}, \ldots, y_{j}$, z_{1}, \ldots, z_{k} such that the subgraph induced by u, x_{1}, \ldots, x_{i} forms a $P_{i+1}\left(u, x_{1}, \ldots, x_{i}\right)$, the subgraph induced by u, y_{1}, \ldots, y_{j} forms a $P_{j+1}\left(u, y_{1}, \ldots, y_{j}\right)$, and the subgraph induced by u, z_{1}, \ldots, z_{k} forms a $P_{k+1}\left(u, z_{1}, \ldots, z_{k}\right)$, and there are no other edges in $S_{i, j, k}$. Thus, claw is $S_{1,1,1}$, and P_{k} is isomorphic to e.g. $S_{0,0, k-1}$.
DIM is solvable in polynomial time for $S_{1,1,1}$-free graphs [6], for $S_{1,2,3}$-free graphs [10], and for $S_{2,2,2}$-free graphs [9]. In [9], it is conjectured that for every fixed i, j, k, DIM is solvable in polynomial time for $S_{i, j, k}$-free graphs (actually, an even stronger conjecture is mentioned in [9]); this also includes P_{k}-free graphs for $k \geq 8$.
In [4], DIM is solved in linear time for P_{7}-free graphs; recall that P_{7} is isomorphic to $S_{0,0,6}$, and $S_{1,2,3}$ contains P_{6} as an induced subgraph.

In this paper we show that edge-weighted DIM can be solved in polynomial time for P_{8}-free graphs.

2 Definitions and Basic Properties

2.1 Basic notions

Let G be a finite undirected graph without loops and multiple edges. Let V denote its vertex set and E its edge set; let $|V|=n$ and $|E|=m$. For $v \in V$, let $N(v):=\{u \in V \mid$ $u v \in E\}$ denote the open neighborhood of v, and let $N[v]:=N(v) \cup\{v\}$ denote the closed neighborhood of v. If $x y \in E$, we also say that x and y see each other, and if $x y \notin E$, we say that x and y miss each other. A vertex set S is independent (or stable) in G if for every pair of vertices $x, y \in S, x y \notin E$. A vertex set Q is a clique in G if for every pair of vertices $x, y \in Q, x \neq y, x y \in E$. For $u v \in E$ let $N(u v):=N(u) \cup N(v) \backslash\{u, v\}$ and $N[u v]:=N[u] \cup N[v]$.
For $U \subseteq V$, let $G[U]$ denote the subgraph of G induced by vertex set U. Clearly $x y \in E$ is an edge in $G[U]$ exactly when $x \in U$ and $y \in U$; thus, $G[U]$ will be often denoted simply by U when that is clear in the context.
Let A and B be disjoint sets of vertices of G. If a vertex from A sees a vertex from B, we say that A and B see each other. If every vertex from A sees every vertex from B then we denote this by $A(1) B$. In particular, if a vertex $u \notin B$ sees all vertices of B then we denote this by $u(1) B$ (in this case, u is called universal for B). If every vertex from A misses every vertex from B, we say that A and B miss each other and denote this by $A(0) B$. If for $A^{\prime} \subseteq A, A^{\prime}(0)\left(A \backslash A^{\prime}\right)$ holds, we say that A^{\prime} is isolated in A.

As already mentioned, a chordless path P_{k} has k vertices, say v_{1}, \ldots, v_{k}, and edges $v_{i} v_{i+1}$, $1 \leq i \leq k-1$. The length of P_{k} is $k-1$. A chordless cycle C_{k} has k vertices, say v_{1}, \ldots, v_{k}, and edges $v_{i} v_{i+1}, 1 \leq i \leq k-1$, and $v_{k} v_{1}$. The length of C_{k} is k.
Let K_{i} denote the clique with i vertices. Let $K_{4}-e$ or diamond be the graph with four vertices and five edges, say vertices a, b, c, d and edges $a b, a c, b c, b d, c d$; its mid-edge is the edge $b c$. A gem has five vertices, say, a, b, c, d, e, such that (a, b, c, d) forms a P_{4} and e is universal for $\{a, b, c, d\}$. A butterfly has five vertices and six edges, say, a, b, c, d, e and edges $a b, a c, b c, c d, c e, d e$. The peripheral edges of the butterfly are $a b$ and de. A star is a graph formed by an independent set plus one vertex (the center of the star) which is universal for such an independent set; in particular let us say that a star is trivial if it is an edge, and is non-trivial otherwise.
We often consider an edge $e=u v$ to be a set of two vertices; then it makes sense to say, for example, $u \in e$ and $e \cap e^{\prime} \neq \emptyset$ for an edge e^{\prime}. For two vertices $x, y \in V$, let $\operatorname{dist}_{G}(x, y)$ denote the distance between x and y in G, i.e., the length of a shortest path between x and y in G. The distance between two edges e, $e^{\prime} \in E$ is the length of a shortest path between e and e^{\prime}, i.e., $\operatorname{dist}_{G}\left(e, e^{\prime}\right)=\min \left\{\operatorname{dist}_{G}(u, v) \mid u \in e, v \in e^{\prime}\right\}$. In particular, this means that $\operatorname{dist}_{G}\left(e, e^{\prime}\right)=0$ if and only if $e \cap e^{\prime} \neq \emptyset$.
An edge set $M \subseteq E$ is an induced matching if its members have pairwise distance at least 2 . Obviously, if M is a d.i.m. then M is an induced matching.
For an edge $x y$, let $N_{i}(x y)$ denote the distance levels of $x y$:

$$
N_{i}(x y):=\left\{z \in V \mid \operatorname{dist}_{G}(z, x y)=i\right\} .
$$

For a set \mathcal{F} of graphs, a graph G is called \mathcal{F}-free if G contains no induced subgraph from \mathcal{F}. A graph is hole-free if it is C_{k}-free for all $k \geq 5$. A graph is weakly chordal if it is C_{k}-free and $\overline{C_{k}}$-free for all $k \geq 5$, i.e., the graph and its complement are hole-free.
If M is a d.i.m. then an edge is matched by M if it is either in M or shares a vertex with some edge in M. Note that M is a d.i.m. in G if and only if it corresponds to a dominating set (of vertices) in the line graph $L(G)$ and an independent set of vertices in the square $L(G)^{2}$. The Maximum Weight Independent Set (MWIS) problem asks for a maximum weight independent set in a given graph with vertex-weight function. The DIM problem for G can be reduced to the MWIS problem for $L(G)^{2}$ (see [3]). For instance, in [5], it is shown that for weakly chordal graphs $G, L(G)^{2}$ is weakly chordal, and since MWIS can be solved in polynomial time for weakly chordal graphs [15], DIM can be solved in polynomial time for weakly chordal graphs as well. Actually, DIM can be solved in polynomial time even for hole-free graphs [2].
P_{8}-free graphs having a d.i.m. are C_{k}-free for $k \geq 9$ and $\overline{C_{k}}$-free for $k \geq 6$ (see Corollary 1 below) but we do not yet have a proof that, using the reduction to $L\left(G^{2}\right)$, DIM can be solved in polynomial time for P_{8}-free graphs; our approach in this paper is a direct one following the approach for P_{7}-free graphs given in [4].

2.2 Forbidden subgraphs and forced edges

The subsequent observations are helpful (some of them are mentioned e.g. in [2, 4]); since we deal with the larger class of P_{8}-free graphs instead of P_{7}-free graphs and in order to make this manuscript self-contained, we give all proofs where forbidding P_{8} plays a role.

Observation 1 ([2, 4]). Let M be a d.i.m. in G.
(i) M contains at least one edge of every odd cycle $C_{2 k+1}$ in $G, k \geq 1$, and exactly one edge of every odd cycle C_{3}, C_{5}, C_{7} of G.
(ii) No edge of any C_{4} can be in M.
(iii) For each C_{6} either exactly two or none of its edges are in M.

Proof. See Observation 2 in [4].
Since every triangle contains exactly one M-edge and no M-edge is in any C_{4}, and the pairwise distance of edges in any d.i.m. is at least 2, we obtain:

Corollary 1. If a graph G has a d.i.m. then G is K_{4}-free, gem-free and $\overline{C_{k}}$-free for any $k \geq 6$.

As a consequence of Observation $1(i i)$, we give all edges in any C_{4} of G weight ∞. Note that a d.i.m. of finite weight cannot contain any edge of a C_{4}.
If an edge $e \in E$ is contained in every d.i.m. of G, we call it a forced edge of G.
Observation 2. The mid-edge of any diamond in G and the two peripheral edges of any induced butterfly are forced edges of G.

Note that in a graph with d.i.m., the set of forced edges is an induced matching. So our algorithm solving the DIM problem on P_{8}-free graphs has to check whether the set of forced edges is an induced matching (and finally might be extended to a d.i.m. of G). If M is an induced matching of already collected forced edges and edge $v w$ is a new forced edge, we can reduce the graph as follows:

Reduction-Step-($v w, M)$.

If $M \cup\{v w\}$ is not an induced matching then STOP - G has no d.i.m., otherwise add $v w$ to M, i.e., $M:=M \cup\{v w\}$, delete v and w and all edges incident to v and w in G, and give all edges that were at distance 1 from $v w$ in G weight ∞.

Obviously, the graph resulting from the reduction step is an induced subgraph of G. In particular, edges with weight ∞ are not in any d.i.m. of finite weight in G.

Observation 3 ([4]). Let M^{\prime} be an induced matching which is a set of forced edges in G. Then G has a d.i.m. M if and only if after applying the reduction step to all edges in M^{\prime}, the resulting graph has a d.i.m. $M \backslash M^{\prime}$.

Subsequently, this approach will often be used. Note that after applying the Reduction Step to all mid-edges of diamonds and all peripheral edges of butterflies in G, the resulting graph is (diamond, butterfy)-free. By Corollary 1, a graph G having a d.i.m. is K_{4}-free. Thus, from now on, we can assume that G is (P_{8}, K_{4}, diamond, butterfly)-free.

3 The Structure of P_{8}-Free Graphs With a Dominating Induced Matching

Throughout this section, let $G=(V, E)$ be a connected (P_{8}, K_{4}, diamond, butterfly)-free graph having a d.i.m. M. Note that if G has a d.i.m. M and $V(M)$ denotes the vertex set of M then $V \backslash V(M)$ is an independent set I, i.e.,
V has the partition $V=I \cup V(M)$.

3.1 The distance levels of an M-edge $x y$ in a P_{3}

We first describe some general structure properties for the distance levels of an edge in a d.i.m. Since G is (K_{4}, diamond, butterfly)-free, we have:

Observation 4. For every vertex v of $G, N(v)$ is the disjoint union of isolated vertices and at most one edge. Moreover, for every edge $x y \in E$, there is at most one common neighbor of x and y.

Since it is trivial to check whether G has a d.i.m. with exactly one edge, from now on we can assume that $|M| \geq 2$. Since G is connected and butterfly-free, we have:

Observation 5. If $|M| \geq 2$ then there is an edge in M which is contained in a P_{3} of G.
Let $x y \in M$ be an M-edge for which there is a vertex r such that $\{r, x, y\}$ induce a P_{3} with edge $r x \in E$. We consider a partition into the distance levels $N_{i}=N_{i}(x y), i \geq 1$, with respect to the edge $x y$. By (1) and since we assume that $x y \in M$, clearly, $N_{1} \subseteq I$ and thus:

$$
\begin{equation*}
N_{1} \text { is an independent set. } \tag{2}
\end{equation*}
$$

Since G is P_{8}-free and $x y$ is contained in a $P_{3}\{r, x, y\}$ of G, we obtain:

$$
\begin{equation*}
N_{k}=\emptyset \text { for } k \geq 6 \tag{3}
\end{equation*}
$$

Proof of (3): If $N_{6} \neq \emptyset$ then there are vertices $v_{i} \in N_{i}, 2 \leq i \leq 6$, such that $\left\{v_{6}, v_{5}, v_{4}, v_{3}, v_{2}\right\}$ induce a chordless path with $v_{i} v_{i+1} \in E$ for $2 \leq i \leq 5$. If $v_{2} r \in E$ then $\left\{v_{6}, v_{5}, v_{4}, v_{3}, v_{2}, r, x, y\right\}$ would induce a P_{8} in G. Thus, $v_{2} r \notin E$; let $v_{1} \in N_{1}$ be a neighbor of v_{2}. By (2), $v_{1} r \notin E$. Now, if $v_{1} x \in E$ then $\left\{v_{6}, v_{5}, v_{4}, v_{3}, v_{2}, v_{1}, x, r\right\}$ induce a P_{8} in G, and if $v_{1} x \notin E$ then $v_{1} y \in E$ and thus, $\left\{v_{6}, v_{5}, v_{4}, v_{3}, v_{2}, v_{1}, y, x\right\}$ induce a P_{8} in G which is a contradiction.
Subsequently, the principle of the proof of (3) will be applied in various cases whenever a P_{8} has to be excluded.

Since $x y \in M$, no edge between N_{1} and N_{2} is in M. Since $N_{1} \subseteq I$ and all neighbors of vertices in I are in $V(M)$, we have:

$$
\begin{equation*}
N_{2} \text { is the disjoint union of edges and isolated vertices. } \tag{4}
\end{equation*}
$$

Let M_{2} denote the set of edges with both ends in N_{2} and let $S_{2}=\left\{u_{1}, \ldots, u_{k}\right\}$ denote the set of isolated vertices in $N_{2} ; N_{2}=V\left(M_{2}\right) \cup S_{2}$ is a partition of N_{2}. Obviously:

$$
\begin{equation*}
M_{2} \subseteq M \text { and } S_{2} \subseteq V(M) . \tag{5}
\end{equation*}
$$

If for $x y \in M$, an edge $e \in E$ is contained in every dominating induced matching M of G with $x y \in M$, we say that e is an $x y$-forced M-edge. The Reduction Step for forced edges can also be applied for $x y$-forced M-edges (then, in the unsuccessful case, G has no d.i.m. containing $x y$). We do this whenever an $x y$-forced M-edge is found. The first example is the following one; obviously, by (5), we have:

Every edge in M_{2} is an $x y$-forced M-edge.
Thus, from now on, we can assume that $M_{2}=\emptyset$, i.e., $N_{2}=S_{2}=\left\{u_{1}, \ldots, u_{k}\right\}$. For every $i \in\{1, \ldots, k\}$, let $u_{i}^{\prime} \in N_{3}$ denote the M-mate of u_{i} (i.e., $\left.u_{i} u_{i}^{\prime} \in M\right)$. Let $M_{3}=\left\{u_{i} u_{i}^{\prime}: i \in\right.$ $\{1, \ldots, k\}\}$ denote the set of M-edges with one endpoint in S_{2} (and the other endpoint in N_{3}). Obviously, by (5) and the distance condition for a d.i.m. M, the following holds:

No edge with both ends in N_{3} and no edge between N_{3} and N_{4} is in M.
As a consequence of (7) and the fact that every triangle contains exactly one M-edge (see Observation 1 (i)), we have:

For every triangle $a b c$ with $a \in N_{3}$, and $b, c \in N_{4}, b c \in M$ is an $x y$-forced M-edge. (8)
This means that for the edge $b c$, the Reduction Step can be applied, and from now on, we can assume that there is no such triangle $a b c$ with $a \in N_{3}$ and $b, c \in N_{4}$, i.e., for every edge $u v \in E$ in N_{4} :

$$
\begin{equation*}
\left(N(u) \cap N_{3}\right) \cap\left(N(v) \cap N_{3}\right)=\emptyset . \tag{9}
\end{equation*}
$$

According to (5) and the assumption that $M_{2}=\emptyset\left(\right.$ recall $\left.N_{2}=\left\{u_{1}, \ldots, u_{k}\right\}\right)$, let:

$$
\begin{aligned}
& T_{\text {one }}:=\left\{t \in N_{3}:\left|N(t) \cap N_{2}\right|=1\right\} ; \\
& T_{i}:=T_{\text {one }} \cap N\left(u_{i}\right), i \in\{1, \ldots, k\} ; \\
& S_{3}:=N_{3} \backslash T_{\text {one }} .
\end{aligned}
$$

By definition, T_{i} is the set of private neighbors of u_{i} in N_{3} (note that $u_{i}^{\prime} \in T_{i}$), and $T_{1} \cup \ldots \cup T_{k}$ is a partition of $T_{o n e}$, and $T_{o n e} \cup S_{3}$ is a partition of N_{3}.

Lemma 1. The following statements hold:
(i) For all $i \in\{1, \ldots, k\}, T_{i} \cap V(M)=\left\{u_{i}^{\prime}\right\}$.
(ii) For all $i \in\{1, \ldots, k\}, T_{i}$ is the disjoint union of vertices and at most one edge.
(iii) $G\left[N_{3}\right]$ is bipartite.
(iv) $S_{3} \subseteq I$, i.e., S_{3} is an independent vertex set.
(v) If a vertex $t_{i} \in T_{i}$ sees two vertices in $T_{j}, i \neq j, i, j \in\{1, \ldots, k\}$, then $u_{i} t_{i} \in M$ is an xy-forced M-edge.

Proof. (i): Holds by definition of T_{i} and by the distance condition of a d.i.m. M.
(ii): Holds by Observation 4.
(iii): Follows by Observation 1 (i) since every odd cycle in G must contain at least one M-edge, and by (7).
(iv): If $v \in S_{3}:=N_{3} \backslash T_{\text {one }}$, i.e., v sees at least two M-vertices then clearly, $v \in I$, and thus, $S_{3} \subseteq I$ is an independent vertex set (recall that I is an independent vertex set).
$(v):$ Suppose that $t_{1} \in T_{1}$ sees a and b in T_{2}. Then, if $a b \in E, u_{2}, a, b, t_{1}$ induce a diamond in G. Thus, $a b \notin E$ and now, u_{2}, a, b, t_{1} induce a C_{4} in G; the only possible M-edge for dominating $t_{1} a, t_{1} b$ is $u_{1} t_{1}$, i.e., $t_{1}=u_{1}^{\prime}$.
Thus, by (v), from now on, we can assume that for every $i, j \in\{1, \ldots, k\}, i \neq j$, any vertex $t_{i} \in T_{i}$ sees at most one vertex in T_{j}.
Then let us split the problem of checking if a d.i.m. M with $x y$ exists into two cases: The case $N_{4}=\emptyset$ and the case $N_{4} \neq \emptyset$.

4 The case $N_{4}=\emptyset$

Throughout this section, we assume that $N_{4}=\emptyset$.
Lemma 2. The following statements hold:
(i) For every edge $v w \in E, v, w \in N_{3}$, with $v u_{i} \in E$ and $w u_{j} \in E,\left|\{v, w\} \cap\left\{u_{i}^{\prime}, u_{j}^{\prime}\right\}\right|=1$.
(ii) For every edge st $\in E$ with $s \in S_{3}$ and $t \in T_{i}, t=u_{i}^{\prime}$ holds, and thus $u_{i} t$ is an $x y$-forced M-edge.

Proof. (i): Since $N_{4}=\emptyset$ and $v w \notin M$ (by (7), N_{3} does not contain any M-edge), $v w$ has to be dominated by exactly one of the M-edges $u_{i} u_{i}^{\prime}, u_{j} u_{j}^{\prime}$.
(ii): By Lemma $1, S_{3} \subseteq I$ and thus, by (i), for the edge st with $s \in S_{3}, t=u_{i}^{\prime}$ holds.

From now on, we can assume that S_{3} is isolated in N_{3}. This means that every edge between N_{2} and N_{3} containing a vertex of S_{3} is dominated; thus, we can assume that $S_{3}=\emptyset$. This means that for every $t \in N_{3}$, there is exactly one $i \in\{1, \ldots, k\}$ such that $u_{i} t \in E$. Recall that $N_{2}=S_{2}=\left\{u_{1}, \ldots, u_{k}\right\}$.
Let us observe that to check if a vertex set $W \subseteq T_{\text {one }}$ may be such that $W \subset V(M)$ (i.e., formed by the M-mates of some vertices of S_{2}) and to check the implications of this choice can be done by repeatedly applying forcing rules; the details are given in the following procedure which is correct by the above and which can be executed in polynomial time.

Procedure Extend[W-in- M]
Given: A vertex set $W \subseteq T_{\text {one }}$ and the vertex set $W^{\prime} \subseteq S_{2} \cup T_{\text {one }}$ formed by the vertices of those connected components of $G\left[S_{2} \cup T_{\text {one }}\right]$ containing W.
Task: Return a proof that G has no d.i.m. M with $W \subset V(M)$, or return a partition of $T_{\text {one }} \cap W^{\prime}$, into the set $T_{\text {one,Col }}$ of colored vertices (by black or white) and the set $T_{\text {one,Uncol }}$ of uncolored vertices, such that:
(i) $T_{\text {one,Col }}(0) T_{\text {one,Uncol }}$
(ii) the set of black vertices of $T_{\text {one,Col }}$ and the set of their respective neighbors in S_{2}, say the set $S_{2, \text { Col }}$ (with $S_{2, \text { Col }} \subseteq S_{2}$), induce a d.i.m. of $G\left[S_{2, \text { Col }} \cup T_{\text {one,Col }}\right]$, and
(iii) the set of white vertices of $T_{\text {one,Col }}$ is that of vertices of $G\left[S_{2, C o l} \cup T_{o n e, C o l}\right]$ which are not in such a d.i.m.

Comment: Once assumed that $W \subset V(M)$, the procedure colors vertices of $T_{\text {one }} \cap W^{\prime}$ which should be in $V(M)$ black, and vertices of $T_{\text {one }} \cap W^{\prime}$ which should be in I white.

Step 1. Color all vertices of W black.
Step 2. Color some vertices of $T_{\text {one }} \cap W^{\prime}$ either black or white by repeatedly applying the following forcing rules:
(a) set $X:=\emptyset$;
(b) Repeat
(b.1) take a colored vertex of $\left(T_{\text {one }} \cap W^{\prime}\right) \backslash X$, say $v \in T_{i} \cap W^{\prime}$, and set $X:=X \cup\{v\}$;
(b.2) if v is black, then color all neighbors of v in $T_{\text {one }} \cap W^{\prime}$ white, and color all vertices of $T_{i} \backslash\{v\}$ white;
(b.3) if v is white, then color all neighbors of v in $T_{\text {one }} \cap W^{\prime}$ black.
until there is no colored vertex in $\left(T_{\text {one }} \cap W^{\prime}\right) \backslash X$.
Step 3. If referring to Step 2, a vertex of $T_{\text {one }} \cap W^{\prime}$ should change its color, i.e., it is colored white (black, respectively) while being black (white, respectively), then return a proof that G has no d.i.m. M with $t_{1} \in V(M)$. Otherwise, return a partition of $T_{\text {one }} \cap W^{\prime}$ according to the Task.
For convenience, let us say that Procedure Extend $[W$-in- $M]$ is complete if it either returns a proof that G has no d.i.m. M with $W \subset V(M)$, or returns $T_{\text {one }, U n c o l}=\emptyset$, and is incomplete otherwise. Note that Procedure Extend $[W$-in- M] may be incomplete. Furthermore note that a white vertex of $T_{\text {one,Col }}$ may have a neighbor in $S_{2} \backslash S_{2, \mathrm{Col}}$.

Then let us focus on $G\left[S_{2} \cup T_{\text {one }}\right]$. Only two cases are possible according to the following subsections 4.1 and 4.2:

$$
4.1 T_{i}(0) T_{j}
$$

4.2 T_{i} sees T_{j} for some $1 \leq i<j \leq k$

4.1 There is no edge between T_{i} and T_{j} for $1 \leq i<j \leq k$

In this case the problem of checking if M exists can be solved in polynomial time as follows: For each vertex $t_{i} \in T_{i}$, for $i=1, \ldots, k$, run Procedure Extend $[W$-in- $M]$ with $W=\left\{t_{i}\right\}$ and choose a minimum finite weight solution (if such a solution exists) over $t \in T_{i}$. Note that Procedure Extend $[W$-in- $M]$ with $W=\left\{t_{i}\right\}$ is complete (that can be easily checked since the connected component of $G\left[S_{2} \cup T_{\text {one }}\right]$ containing t_{i} is $\left.G\left[\left\{u_{i}\right\} \cup T_{i}\right]\right)$. Finally either return that G has no d.i.m. M or return M.

4.2 There is an edge between T_{i} and T_{j} for some $1 \leq i<j \leq k$

Assume that there is an edge $t_{i} t_{j} \in E$ between $t_{i} \in T_{i}$ and $t_{j} \in T_{j}$, for some $i, j \in$ $\{1, \ldots, k\}, i \neq j$; without loss of generality, let $i=1$ and $j=2$ and $t_{1} t_{2} \in E$. Let G^{\prime} be the subgraph of G induced by the non-neighborhood of t_{1}, t_{2}.

Lemma 3. The following statements hold for every $i \in\{3, \ldots, k\}$ in G^{\prime} :
(i) Each edge e_{i} in T_{i} misses each vertex in $\left\{T_{3}, \ldots, T_{k}\right\} \backslash\left\{T_{i}\right\}$.
(ii) Each vertex $t_{i} \in T_{i}$ sees at most one vertex in $\left\{T_{3}, \ldots, T_{k}\right\} \backslash\left\{T_{i}\right\}$.

Proof. (i): Without loss of generality, suppose to the contrary that for an edge $t_{i} t_{i}^{\prime} \in E$ with $t_{i}, t_{i}^{\prime} \in T_{i}$, there is a vertex $t_{j} \in T_{j}$ with $t_{i} t_{j} \in E$. Then by Lemma 1 (iii), $t_{i}^{\prime} t_{j} \notin E$ but now, the subgraph of G induced by $t_{2}, t_{1}, u_{1}, N_{1}, x, y, u_{j}, t_{j}, t_{i}, t_{i}^{\prime}$ contains a P_{8}. (ii): By Lemma $1(v)$, we can assume that no vertex in T_{i} sees two vertices in T_{j}. Without loss of generality, suppose to the contrary that there is a vertex $t_{i} \in T_{i}$ which sees $t_{j} \in T_{j}$ and $t_{q} \in T_{q}, j \neq q$. Then again by Lemma 1 (iii), $t_{j} t_{q} \notin E$ but now, the subgraph of G induced by $t_{2}, t_{1}, u_{1}, N_{1}, x, y, u_{q}, t_{q}, t_{i}, t_{j}$ contains a P_{8}.

Let Z be the graph with nodes $\left\{z_{3}, \ldots, z_{k}\right\}$, where z_{i} corresponds to T_{i} for $i \in\{3, \ldots, k\}$, such that for $i \neq j, z_{i} z_{j}$ is an edge in Z if and only if T_{i} sees T_{j} in G. Let us say that:
(i) T_{i} forms a singleton-type in $G[H]$ if the node of Z corresponding to T_{i} is an isolated node of Z.
(ii) T_{i} and T_{j} form an edge-type in $G[H]$ if $z_{i} z_{j}$ is an isolated edge of Z.
(iii) $T_{i}, T_{j_{1}}, \ldots, T_{j_{h}}$ form a star-type in $G[H]$ if the nodes of Z corresponding to $T_{i}, T_{j_{1}}, \ldots, T_{j_{h}}$ form an isolated non-trivial star of Z with center T_{i}, for $i, j_{1}, \ldots, j_{h} \in\{3, \ldots, k\}$. Let

$$
\begin{aligned}
& T_{i}^{\prime}:=\left\{t_{i} \in T_{i}: t_{i} \text { sees an element of }\left\{T_{j_{1}}, \ldots, T_{j_{h}}\right\}\right\} \text { and } \\
& T_{i, j}^{\prime}:=\left\{t_{i} \in T_{i}: t_{i} \text { sees an element of } T_{j}\right\} \text { for } j \in\left\{j_{1}, \ldots, j_{h}\right\} .
\end{aligned}
$$

Lemma 4. Each component of Z in G^{\prime} is either a singleton or an edge or a non-trivial star.

Proof. If for all $i \in\{3, \ldots, k\}, T_{i}$ sees at most one element of $\left\{T_{3}, \ldots, T_{k}\right\} \backslash\left\{T_{i}\right\}$, then the components of Z are either singletons or edges, and Lemma 4 follows. Thus assume that there is an $i \in\{3, \ldots, k\}$ such that T_{i} sees more than one element of $\left\{T_{3}, \ldots, T_{k}\right\} \backslash\left\{T_{i}\right\}$, say T_{i} sees $T_{j_{1}}, \ldots, T_{j_{h}}$, for some $\left\{j_{1}, \ldots, j_{h}\right\} \subseteq\{3, \ldots, k\} \backslash\{i\}$ with $h \geq 2$. Let us prove that the nodes of Z corresponding to $T_{i}, T_{j_{1}}, \ldots, T_{j_{h}}$ induce in Z an isolated non-trivial star with center T_{i}; that will imply Lemma 4 .
Let T_{i}^{\prime} and $T_{i, j}^{\prime}$ be as defined in (iii) above. Then $T_{i}^{\prime}=T_{i, j_{1}}^{\prime} \cup \ldots \cup T_{i, j_{h}}^{\prime}$ is a partition of T_{i}^{\prime} by Lemma $3(i i)$. Moreover T_{i}^{\prime} misses $T_{i} \backslash T_{i}^{\prime}$ by Lemma $3(i)$.
Notation: For a clear reading let us write $j_{1}=\xi$ and $j_{2}=\eta$.
Claim 1. $T_{i}^{\prime} \subset I$.

Proof. By contradiction assume that a vertex from T_{i}^{\prime} is in $V(M)$, say a vertex $t_{i, \xi} \in T_{i, \xi}^{\prime}$ without loss of generality, i.e., $t_{i, \xi}$ is the M-mate of u_{i}. Then $T_{i, j}^{\prime} \subset I$ for all $j \in\left\{j_{2}, \ldots, j_{h}\right\}$ by Lemma $1(i)$. By definition of $T_{i, \xi}^{\prime}, t_{i, \xi}$ sees a vertex $t_{\xi}^{\prime} \in T_{\xi}$. Then, since $t_{i, \xi} \in V(M)$, we have $t_{\xi}^{\prime} \in I$. Then by Lemma $1(i)$ there is a vertex $t_{\xi} \in T_{\xi}$ such that $t_{\xi} \in V(M)$, namely the M-mate u_{ξ}^{\prime} of u_{ξ} : In particular by Lemma $3(i)$ we derive that t_{ξ}^{\prime} misses t_{ξ}. On the other hand by definition of $T_{i, \eta}^{\prime}$, a vertex $t_{i, \eta} \in T_{i, \eta}^{\prime}$ sees a vertex $t_{\eta}^{\prime} \in T_{\eta}$. Then since $t_{i, \eta} \in I$, one has $t_{\eta}^{\prime} \in V(M)$, i.e., t_{η}^{\prime} is the M-mate u_{η}^{\prime} of u_{η} : In particular by Lemma $3(i)$ we derive that $t_{i, \eta}$ misses $t_{i, \xi}$ but then, by Lemma $3(i i)$ and by the above, $u_{\eta}, t_{\eta}^{\prime}, t_{i, \eta}, u_{i}, t_{i, \xi}, t_{\xi}^{\prime}, u_{\xi}, t_{\xi}$ induce a P_{8}. This shows Claim 1.
Claim 1 implies: $T_{i} \backslash T_{i}^{\prime} \neq \emptyset$ and contains the M-mate of u_{i} by Lemma $1(i)$; each vertex of $T_{i, j}^{\prime}$, for $j \in\left\{j_{1}, \ldots, j_{h}\right\}$, sees exactly one vertex of T_{j}, namely the M-mate u_{j}^{\prime} of u_{j} (in particular all vertices of $T_{i, j}^{\prime}$ have the same neighborhood in T_{j}).
Claim 2. The elements of $\left\{T_{j_{1}}, \ldots, T_{j_{h}}\right\}$ miss each other.
Proof. Without loss of generality, by symmetry let us only show that T_{ξ}^{\prime} misses T_{η}^{\prime}. By contradiction assume that there is an edge $t_{\xi}^{\prime} t_{\eta}^{\prime}$ between T_{ξ}^{\prime} and T_{η}^{\prime}. Let $t_{i, \eta} \in T_{i, \eta}^{\prime}$ and let $t_{\eta} \in T_{\eta}^{\prime}$ be the M-mate of u_{η}. Then $t_{i, \eta}$ sees t_{η} (by the above) and consequently: $t_{\eta} \neq t_{\eta}^{\prime}$ by Lemma 3 (ii), any $t_{i, \xi} \in T_{i, \xi}^{\prime}$ misses t_{η}^{\prime} since they are both in I, t_{η} misses t_{η}^{\prime} by Lemma $3(i)$, and finally $t_{i, \xi}$ and t_{η} miss t_{ξ}^{\prime} by Lemma $3(i i)$. Then $u_{\xi}, t_{\xi}^{\prime}, t_{\eta}^{\prime}, u_{\eta}, t_{\eta}, t_{i, \eta}, u_{i}$ and any vertex of $T_{i} \backslash T_{i}^{\prime}$ induce a P_{8}. This completes the proof of Claim 2.

Claim 3. No element of $\left\{T_{i}, T_{j_{1}}, \ldots, T_{j_{h}}\right\}$ sees any element of $\left\{T_{3}, \ldots, T_{k}\right\} \backslash\left\{T_{i}, T_{j_{1}}, \ldots, T_{j_{h}}\right\}$.
Proof. The fact holds true for T_{i} by construction. Without loss of generality by symmetry we only need to show that T_{η} misses T_{ζ}, where $\zeta \in\{3, \ldots, k\} \backslash\left\{i, j_{1}, \ldots, j_{h}\right\}$. Suppose to the contrary that there is an edge $t_{\eta}^{\prime} t_{\zeta}^{\prime}$ between T_{η} and T_{ζ}. Let $t_{i, \eta} \in T_{i, \eta}$ and let $t_{\eta} \in T_{\eta}$ be the M-mate of u_{η}. Then $t_{i, \eta}$ sees t_{η} (by the above) and consequently: $t_{\eta} \neq t_{\eta}^{\prime}$ by Lemma 3 (ii), $t_{i, \eta}$ misses t_{η}^{\prime} since they are both in I, t_{η} misses t_{η}^{\prime} by Lemma 3 (i), and finally $t_{i, \eta}$ and t_{η} miss t_{ζ}^{\prime} by Lemma $3(i i)$. Then $u_{\zeta}, t_{\zeta}^{\prime}, t_{\eta}^{\prime}, u_{\eta}, t_{\eta}, t_{i, \eta}, u_{i}$ and any vertex of $T_{i} \backslash T_{i}^{\prime}$ induce a P_{8}. This completes the proof of Claim 3.

Now Claims 1, 2, and 3 imply that the nodes of Z corresponding to $T_{i}, T_{j_{1}}, \ldots, T_{j_{h}}$ induce an isolated non-trivial star in Z. Thus Lemma 4 follows.

According to Lemma 4, let us focus on a connected component of $G\left[\left\{u_{3}, \ldots, u_{k}\right\} \cup T_{3} \cup\right.$ $\left.\ldots \cup T_{k}\right]$, say $Q=G\left[\left\{u_{i}, u_{j_{1}}, \ldots, u_{j_{h}}\right\} \cup T_{i} \cup T_{j_{1}} \cup \ldots \cup T_{j_{h}}\right]$, with $T_{i}, T_{j_{1}}, \ldots, T_{j_{h}}$ inducing a (trivial or non-trivial) star in Z with center T_{i} i.e., let us consider the general case in which the cardinality of the family $\left\{T_{j_{1}}, \ldots, T_{j_{h}}\right\}$ may be even equal to 0 or to 1 .
Then let us observe that, to compute a minimum weight d.i.m. of Q (if it exists), say M^{\prime}, with $\left\{u_{i}, u_{j_{1}}, \ldots, u_{j_{h}}\right\} \in V\left(M^{\prime}\right)$, and with a fixed vertex $t_{i} \in T_{i}$ being in $V\left(M^{\prime}\right)$ (i.e., being the M-mate of u_{i}), can be done by the following procedure which is correct by the above and which can be executed in polynomial time.
Step 1. Run Procedure Extend $[W$-in- $M]$ with $W=\left\{t_{i}\right\}$.
Step 2. If it returns $T_{\text {one }, \text { Uncol }}=\emptyset$ (i.e., if it is complete), then we are done.
Step 3. If it is incomplete and returns a partition of $T_{\text {one }} \cap W^{\prime}$, namely $\left\{T_{\text {one }, \text { Col }}, T_{\text {one,Uncol }}\right\}$, with $T_{\text {one,Uncol }} \neq \emptyset$ then we can easily color the vertices of $T_{\text {one,Uncol }}$ such that black vertices are finally the M-mates of $\left\{u_{i}, u_{j_{1}}, \ldots, u_{j_{h}}\right\}$: in fact by construction and by the
above, we have $T_{\text {one,Uncol }} \subseteq T_{j_{1}} \cup \ldots \cup T_{j_{h}}$, and in particular, for each $j \in\left\{j_{1}, \ldots, j_{h}\right\}$, $T_{\text {one,Uncol }} \cap T_{j}$ has a co-join to $T_{\text {one,Col }} \cup\left(T_{\text {one,Uncol }} \backslash T_{j}\right)$ and induces a graph with at most one isolated edge $e_{j}=a b$ (say with $w\left(a u_{j}\right) \leq w\left(b u_{j}\right)$) and isolated vertices; then: if $a b$ exists, then we color vertex a black; if $a b$ does not exist, then we color exactly one vertex $t_{j} \in T_{\text {one,Uncol }} \cap T_{j}$ black such that $w\left(t_{j} u_{j}\right) \leq w\left(t u_{j}\right)$ for $t \in T_{\text {one,Uncol }} \cap T_{j}$.
Then let us summarize the above: In this case the problem of checking if a d.i.m. M exists can be solved in polynomial time by Lemma 4 as follows:
(a) For each vertex $t_{1} \in T_{1}$ such that t_{1} has a neighbor in T_{2}, and for each vertex $t_{2}^{\prime} \in T_{2}$ such that t_{2}^{\prime} is a non-neighbor of t_{1} in T_{2} (such a non-neighbor may not exist), do as follows:
(a.1) Run Procedure Extend $[W$-in- $M]$ with $W=\left\{t_{1}, t_{2}^{\prime}\right\}$. If it returns a partition of $T_{\text {one }} \cap W^{\prime}$, namely $\left\{T_{\text {one }, \text { Col }}, T_{\text {one,Uncol }}\right\}$, then go to Step (a.2). Note that $T_{\text {one,Uncol }} \subseteq T_{3} \cup \ldots \cup T_{k}$, and that more generally $G\left[\left(S_{2} \backslash S_{2, C o l}\right) \cup T_{\text {one,Uncol }}\right]$ is a subgraph of $G\left[\left\{u_{3}, \ldots, u_{k}\right\} \cup T_{3} \cup \ldots \cup T_{k}\right]$.
(a.2) For each connected component Q of $G\left[\left(S_{2} \backslash S_{2, C o l}\right) \cup T_{\text {one,Uncol }}\right]$ do as follows: for each $q \in Q$, compute a minimum finite weight d.i.m. of Q (if it exists), say M^{\prime}, with $\left\{u_{i}, u_{j_{1}}, \ldots, u_{j_{h}}\right\} \in V(M)$, and with q being in $V\left(M^{\prime}\right)$, as shown above, and choose a minimum weight solution (if a solution exists) over $q \in Q$.
(a.3) Obtain a minimum finite weight d.i.m. containing t_{1} and t_{2}^{\prime} by collecting those solutions found in steps (a.1)-(a.2) (if those solutions exist).
(b) Analogously, for each vertex $t_{2} \in T_{2}$ such that t_{2} has a neighbor in T_{1}, and for each $t_{1}^{\prime} \in T_{1}$ such that t_{1}^{\prime} is a non-neighbor of t_{2} in T_{1} (such a non-neighbor may not exist), proceed as in steps (a.1), (a.2), (a.3), by symmetry.
(c) Choose a minimum finite weight solution (if such a solution exists) among those found in steps (a)-(b) respectively for $\left(t_{1}, t_{2}^{\prime}\right) \in T_{1} \times T_{2}$ and for $\left(t_{1}^{\prime}, t_{2}\right) \in T_{1} \times T_{2}$ as defined above and return M, or return that G has no d.i.m. M with $x y$.

5 The case $N_{4} \neq \emptyset$

The aim of this section is to reduce the graph step by step so that finally $N_{4}=\emptyset$.

5.1 Components of N_{4}

The aim of this subsection is to reduce the graph so that N_{4} becomes an independent set. For showing this, we need several lemmas:

Lemma 5. N_{4} is P_{3}-free.
Proof. Suppose to the contrary that there is a P_{3} in G with vertices $a, b, c \in N_{4}$ and edges $a b$ and $b c$. Let a^{\prime} be a neighbor of a in N_{3}. This proof follows the principle of the proof of (3). Let us recall that $\{r, x, y\}$ induces a P_{3} with edge $r x$. Then, to avoid a P_{8} in the subgraph induced by $c, b, a, a^{\prime}, N_{2} \cup N_{1}, x, y$ (in detail, denoted as $a^{\prime \prime}$ a neighbor of $a^{\prime} \in N_{2}$, and denoted as $r^{\prime \prime}$ a neighbor of $a^{\prime \prime}$ in N_{1}, the P_{8} would be induced by $c, b, a, a^{\prime}, a^{\prime \prime}$, and:
either $r^{\prime \prime}, x, y$ if $r^{\prime \prime}=r$, or $r^{\prime \prime}, x, r$ if $\left.r^{\prime \prime} \neq r\right), a^{\prime}$ sees either b or c but not both since G is diamond-free.

Case 1. a^{\prime} sees c (and misses b).
Then a^{\prime}, a, b, c induce a C_{4} in G, and thus, by Observation 1 (ii), either $a^{\prime}, b \in V(M)$ (and $a, c \in I$), or $a, c \in V(M)$ (and $\left.a^{\prime}, b \in I\right)$.
Assume first that $a^{\prime}, b \in V(M)$ (and $\left.a, c \in I\right)$. Let b^{*} be the M-mate of b. Since by (7), no edge between N_{3} and N_{4} is in M, it follows that $b^{*} \in N_{4} \cup N_{5}$ but then to avoid a P_{8} (in the subgraph induced by $b^{*}, b, a, a^{\prime}, N_{2} \cup N_{1}, x, y$), a sees b^{*}, and to avoid a P_{8} (in the subgraph induced by $\left.b^{*}, b, c, a^{\prime}, N_{2} \cup N_{1}, x, y\right), c$ sees b^{*} but now a, b, b^{*}, c induce a diamond which is a contradiction.
Thus, assume that $a, c \in V(M)$ (and $a^{\prime}, b \in I$). Let a^{*}, c^{*} respectively be the M-mates of a and c. Since by (7), no edge between N_{3} and N_{4} is in M, it follows that $a^{*}, c^{*} \in N_{4} \cup N_{5}$. Let b^{\prime} be a neighbor of b in N_{3}; clearly, $b^{\prime} \neq a^{\prime}$. Then $b^{\prime} \in V(M)($ since $b \in I)$. Then b^{\prime} misses c, c^{*}, and thus a P_{8} arises (in the subgraph induced by $c^{*}, c, b, b^{\prime}, N_{2} \cup N_{1}, x, y$ if $b c^{*} \notin E$ or in the subgraph induced by $a^{*}, a, b, b^{\prime}, N_{2} \cup N_{1}, x, y$ if $b c^{*} \in E$; in that case, $b a^{*} \notin E$ since G is butterfly-free). Thus, Case 1 is impossible.

Case 2. a^{\prime} sees b (and misses c).
Let c^{\prime} be a neighbor of c in N_{3}. By symmetry with respect to Case $1, c^{\prime}$ sees b (and misses $a)$. Then the subgraph induced by $a^{\prime}, a, b, c, c^{\prime}$ contains a butterfly or a diamond. Thus, also Case 2 is impossible which completes the proof of Lemma 5 .
Recall that a graph is P_{3}-free if and only if it is the disjoint union of complete graphs. Since we can assume that G is K_{4}-free, we have:

Corollary 2. The components of N_{4} are triangles, edges or isolated vertices.

5.1.1 Triangles in N_{4}

Lemma 6. Let H be a triangle component of N_{4} with vertices a, b, c, edges $a b, a c, b c$, and let $A:=N(a) \cap N_{3}, B:=N(b) \cap N_{3}$, and $C:=N(c) \cap N_{3}$. Then the following statements hold:
(i) A, B, C are pairwise disjoint independent sets.
(ii) $H(0) N_{5}$.
(iii) $(A \cup B \cup C) \cap S_{3}=\emptyset$.
(iv) There exists $j, 1 \leq j \leq k$, such that $A \cup B \cup C \subseteq T_{j}$.

Proof. (i): Holds by Observation 4 since G is (K_{4}, diamond, butterfly)-free.
(ii): Without loss of generality, suppose to the contrary that there is a neighbor of c in N_{5}, say z. Then z misses b, otherwise a diamond or a K_{4} arises. Let b^{\prime} be a neighbor of b in N_{3}. Then by $(i), b^{\prime}$ misses c but now, a P_{8} arises (with $z, c, b, b^{\prime}, N_{2} \cup N_{1}$ and a P_{3} containing x, y).
(iii): Without loss of generality, suppose to the contrary that there is a vertex $a^{\prime} \in A \cap S_{3}$, say $a^{\prime} u_{1} \in E$ and $a^{\prime} u_{2} \in E$. Let $b^{\prime} \in B$ and $c^{\prime} \in C$. If $b^{\prime} \in S_{3}$ and $c^{\prime} \in S_{3}$ as well, then
$a, b, c \in V(M)$ (recall that by Lemma $\left.1(i v), S_{3} \subseteq I\right)$. Thus, assume that $b^{\prime} \notin S_{3}$, i.e., b^{\prime} has only one neighbor in u_{1}, \ldots, u_{k} and thus, b^{\prime} misses u_{1} or u_{2}, say $b^{\prime} u_{1} \notin E$. Then if $a^{\prime} b^{\prime} \notin E$, the subgraph induced by $b^{\prime}, b, a, a^{\prime}, u_{1}, N_{1}, x, y$ contains a P_{8}, and if $a^{\prime} b^{\prime} \in E$, the subgraph induced by $c, b, b^{\prime}, a^{\prime}, u_{1}, N_{1}, x, y$ contains a P_{8} which is a contradiction.
(iv): The proof is similar to that of (iii); without loss of generality, let $a^{\prime} \in A$ see u_{1} and suppose to the contrary that there is a vertex $b^{\prime} \in B$ missing u_{1}. Then if $a^{\prime} b^{\prime} \notin E$, the subgraph induced by $b^{\prime}, b, a, a^{\prime}, u_{1}, N_{1}, x, y$ contains a P_{8}, and if $a^{\prime} b^{\prime} \in E$, the subgraph induced by $c, b, b^{\prime}, a^{\prime}, u_{1}, N_{1}, x, y$ contains a P_{8} which is a contradiction.
As in Lemma 6 , for a triangle $a_{i} b_{i} c_{i}$ in N_{4} let $A_{i}\left(B_{i}, C_{i}\right.$, respectively) denote the neighborhood of a_{i} (of b_{i}, c_{i}, respectively) in N_{3}.

Corollary 3. There exists $j, 1 \leq j \leq k$, such that for all triangles $a_{i} b_{i} c_{i}$ in $N_{4}, A_{i} \cup B_{i} \cup$ $C_{i} \subseteq T_{j}$.

Proof. Let $a_{1} b_{1} c_{1}$ and $a_{2} b_{2} c_{2}$ be two triangles in N_{4} such that, without loss of generality, $A_{1} \cup B_{1} \cup C_{1} \subseteq T_{1}$. If there is a vertex in $A_{2} \cup B_{2} \cup C_{2} \backslash T_{1}$, say $a_{2}^{\prime} \in A_{2}$ with $a_{2}^{\prime} u_{1} \notin E$ then by Lemma 6, a P_{8} arises. Thus, $A_{2} \cup B_{2} \cup C_{2} \subseteq T_{1}$ holds as well.

From now on, without loss of generality, suppose that for every triangle $a_{i} b_{i} c_{i}$ in N_{4}, $A_{i} \cup B_{i} \cup C_{i} \subseteq T_{1}$. Assume that for the triangle $a_{1} b_{1} c_{1}$, the M-edge is $b_{1} c_{1} \in M$. Then $A_{1}=\left\{u_{1}^{\prime}\right\}$ since otherwise, if there is $a^{\prime} \in A_{1}$ with $a^{\prime} \neq u_{1}^{\prime}$ then the edge $a a^{\prime} \in E$ is not dominated by M. Since every triangle contains exactly one M-edge, this implies that one of the sets A_{2}, B_{2}, C_{2} is equal to $\left\{u_{1}^{\prime}\right\}$, say $A_{2}=\left\{u_{1}^{\prime}\right\}$ which forces the M-edge $b_{2} c_{2} \in M$ and similarly for every triangle $a_{i} b_{i} c_{i}$ in N_{4}.

Thus, if there is a triangle in N_{4}, we have to consider three possible cases according to the M-edges in the triangles (which in each of the cases can be considered as $x y$-forced).

5.1.2 Edges in triangle-free N_{4}

From now on, we can assume that N_{4} is triangle-free. If component H in N_{4} is not a triangle then by Lemma $5, H$ is either a vertex or an edge.

Lemma 7. Let H be a component of N_{4} and assume that $H(0) N_{5}$. Then we have:
(i) If $H=\{h\}$ then $h \in I$.
(ii) If $H=\{a, b\}$ with $a b \in E$ then $a b \in M$ and thus, $a b$ is an $x y$-forced M-edge.

Proof. The lemma follows by (7) - none of the edges in N_{3} and between N_{3} and N_{4} is in M.

From now on, we can assume that N_{4} is triangle-free and every edge in N_{4} has a neighbor in N_{5}. If $u v$ is an edge in N_{4} then by (9), we can assume that u and v do not have a common neighbor in N_{3}; let $u^{\prime} \in N_{3}\left(v^{\prime} \in N_{3}\right.$, respectively) be a neighbor of u (of v, respectively).

Lemma 8. Let edge $a b \in E$ be a component H in N_{4} (i.e., $\left.\{a, b\}(0)\left(N_{4} \backslash\{a, b\}\right)\right)$ and let $c \in N_{5}$ be a neighbor of ab. Let $A:=N(a) \cap N_{3}$ and $B:=N(b) \cap N_{3}$. Then the following statements hold:
(i) Any neighbor $c \in N_{5}$ of ab must see both of a and b.
(ii) $A \cap B=\emptyset$ and A, B are independent sets.
(iii) For all $a^{\prime} \in A$ and $b^{\prime} \in B, N\left(a^{\prime}\right) \cap N_{2}=N\left(b^{\prime}\right) \cap N_{2}$.
(iv) If there is $a^{\prime} \in A$ with $\left|N\left(a^{\prime}\right) \cap N_{2}\right| \geq 2$ (there is $b^{\prime} \in B$ with $\left|N\left(b^{\prime}\right) \cap N_{2}\right| \geq 2$, respectively), then $A(0) B$ and $a b$ is an $x y$-forced M-edge.
(v) Otherwise, if for all $a^{\prime} \in A,\left|N\left(a^{\prime}\right) \cap N_{2}\right|=1$ and for all $b^{\prime} \in B,\left|N\left(b^{\prime}\right) \cap N_{2}\right|=1$ then there is an index $i, 1 \leq i \leq k$ such that $A \cup B \subseteq T_{i}$.

Proof. (i): If a neighbor $c \in N_{5}$ of $a b$ sees only one of a and b, say $b c \in E$ and $a c \notin E$, then there is a P_{8} in the subgraph induced by $c, b, a, a^{\prime}, N_{2} \cup N_{1}$ and a P_{3} containing x, y. Thus, we can assume that each edge component in N_{4} is contained in such a triangle with a common neighbor in N_{5}.
(ii): By (9), we can assume that a and b do not have a common neighbor in N_{3}. Moreover, since a and b have the common neighbor $c \in N_{5}$, a common neighbor of a and b in N_{3} would lead to a diamond. Thus, $A \cap B=\emptyset$. Moreover, A and B are independent sets since otherwise, there is a butterfly in G.
(iii): Without loss of generality, suppose to the contrary that $a^{\prime} \in A$ sees u_{1} and $b^{\prime} \in B$ misses u_{1}. Then if $a^{\prime} b^{\prime} \in E$, a P_{8} arises in the subgraph induced by $c, b, b^{\prime}, a^{\prime}, u_{1}, N_{1}, x, y$, and if $a^{\prime} b^{\prime} \notin E$, a P_{8} arises in the subgraph induced by $b^{\prime}, b, a, a^{\prime}, u_{1}, N_{1}, x, y$.
(iv): Without loss of generality, assume that $a^{\prime} \in A$ sees u_{1} and u_{2}. Then by (iii) each vertex of $A \cup B$ sees u_{1} and u_{2}. Then $A(0) B$, since otherwise a diamond arises. Moreover, since $\left\{u_{1}, a^{\prime}, u_{2}, b^{\prime}\right\}$ induce a $C_{4}, a^{\prime} \neq u_{1}^{\prime}$ and $a^{\prime} \neq u_{2}^{\prime}$, and thus, for the C_{5} induced by $\left\{u_{1}, a^{\prime}, b^{\prime}, a, b\right\}$ (with $b^{\prime} \in B$), exactly one edge is in M (recall Observation 1 (i) for C_{5}). Then, since $a^{\prime}, b^{\prime} \in I$ (as they are in S_{3}), the only possible way is that $a b \in M$.
(v) : It follows by statement (iii).
According to Lemma $8(i v)-(v)$, in what follows let us assume that, for any triangle $a b c$ with an edge $a b$ in N_{4} and $c \in N_{5}, A \cup B \subseteq T_{j}$ for some index $j, 1 \leq j \leq k$.

Lemma 9. Let $a_{1} b_{1}$ and $a_{2} b_{2}$ be distinct edge components in N_{4} such that $a_{1} b_{1} c_{1}$ and $a_{2} b_{2} c_{2}$ are triangles with $c_{1}, c_{2} \in N_{5}$, and denote by $A_{i}\left(B_{i}\right.$, respectively) the neighborhood of $a_{i}\left(b_{i}\right.$, respectively), $i=1,2$, in N_{3}. Then there is an index $j, 1 \leq j \leq k$ such that $A_{1} \cup B_{1} \cup A_{2} \cup B_{2} \subseteq T_{j}$.

Proof. Clearly, $c_{1} \neq c_{2}$ since otherwise there is a butterfly in G. Now, if there are two such triangles, say $a_{1} b_{1} c_{1}$ and $a_{2} b_{2} c_{2}$ such that without loss of generality, there are $a_{1}^{\prime} \in A_{1}$ with $u_{1} a_{1}^{\prime} \in E$ and $a_{2}^{\prime} \in A_{2}$ with $u_{2} a_{2}^{\prime} \in E$ then a P_{8} arises.
Let $\left\{a_{1} b_{1} c_{1}, \ldots, a_{\ell} b_{\ell} c_{\ell}\right\}, \ell \leq m$, be the set of all triangles with an edge $a_{i} b_{i}$ in N_{4} and $c_{i} \in N_{5}$. As above, denote by A_{i} (B_{i}, respectively) the neighborhood of a_{i} (b_{i}, respectively), in N_{3}.
Without loss of generality, assume that u_{1} is a common N_{2}-neighbor of A_{i} and $B_{i}, i \in$ $\{1, \ldots, \ell\}$. Now there are at most n (where $n=|V|$) possible cases for $u_{1} u_{1}^{\prime} \in M$ and the M-edges in the triangles according to the property whether the M-mate u_{1}^{\prime} of u_{1} is in $A_{1} \cup B_{1} \cup \ldots \cup A_{\ell} \cup B_{\ell}$ or not (which implies the other M-edges in the triangles):

Corollary 4.

(i) If for $i \in\{1, \ldots, \ell\}$ and for $a_{i}^{\prime} \in A_{i}, u_{1} a_{i}^{\prime} \in M$, then:

- for all j such that $a_{i}^{\prime} \notin A_{j}$ and $a_{i}^{\prime} \notin B_{j}$, it follows that $a_{j} b_{j} \in M$;
- for all j such that $a_{i}^{\prime} \in A_{j}$ and $a_{i}^{\prime} \notin B_{j}$, it follows that $b_{j} c_{j} \in M$;
- for all j such that $a_{i}^{\prime} \notin A_{j}$ and $a_{i}^{\prime} \in B_{j}$, it follows that $a_{j} c_{j} \in M$.

Likewise, by symmetry, if for $i \in\{1, \ldots, \ell\}$ and for $b_{i}^{\prime} \in B_{i}, u_{1} b_{i}^{\prime} \in M$, the corresponding implications follow.
(ii) If for all $i \in\{1, \ldots, \ell\}$ and for all $\left(a_{i}^{\prime}, b_{i}^{\prime}\right) \in A_{i} \times B_{i}$, neither $u_{1} a_{i}^{\prime} \in M$ nor $u_{1} b_{i}^{\prime} \in M$ then for all $i \in\{1, \ldots, \ell\}, a_{i} b_{i} \in M$.

Subsequently, we can assume that N_{4} is an independent set.

5.2 Components of N_{5}

Throughout this subsection, let H be a component in N_{5}. Recall that we can assume that N_{4} is an independent set.

Lemma 10. The following statements hold:
(i) For every neighbor $u \in N_{4}$ of any vertex of $H, u(1) H$ holds.
(ii) H is either a single vertex or an edge.

Proof. (i): It follows since otherwise a P_{8} arises (with a P_{3} containing x, y).
(ii): It follows by statement (i) and since G is (diamond, K_{4})-free.

Now we have two cases which will be examined in the following subsections.

5.2.1 H is an edge, say $h_{1} h_{2}$

Lemma 11. Let $h_{1} h_{2} \in E$ be an edge in N_{5}, let $c \in N_{4}$ be a common neighbor of h_{1}, h_{2} and let $N(c) \cap N_{5}$ contain another vertex $h \notin\left\{h_{1}, h_{2}\right\}$. Then:
(i) $N(c) \cap N_{5}$ is formed by the disjoint union of vertices and edge $h_{1} h_{2} \in E$, and is isolated in N_{5}.
(ii) If without loss of generality, $w\left(h_{1} c\right) \leq w\left(h_{2} c\right)$ then $h_{1} c \in M$ is an $x y$-forced M-edge.

Proof. (i): By Observation $4, N(c) \cap N_{5}$ is formed by the disjoint union of vertices and at most one edge, namely $h_{1} h_{2} \in E$.
For showing that $N(c) \cap N_{5}$ is isolated in N_{5}, suppose to the contrary that there is an edge between $N(c) \cap N_{5}$ and $N(d) \cap N_{5}$ for some $d \in N_{4}, d \neq c$. Then there are $h \in N(c) \cap N_{5}$ and $h^{\prime} \in(N(d) \backslash N(c)) \cap N_{5}$ such that $h h^{\prime} \in E$. Then, by Lemma $10(i), c h^{\prime} \in E$ which is a contradiction.
(ii): By Observation $1(i)$, any triangle contains exactly one M-edge. We claim that the M-edge in the triangle $h_{1} h_{2} c$ must be either $h_{1} c$ or $h_{2} c$: Suppose to the contrary that $h_{1} h_{2} \in M$. Then in order to dominate the edge $h c$, we need another neighbor $c^{\prime} \in N_{4}$ of
h such that $c^{\prime} h \in M$ (clearly, $c c^{\prime} \notin E$). Now for any neighbor $d \in N_{3}$ of c, d sees c^{\prime}, since otherwise a P_{8} arises (with $c^{\prime}, h, c, d, N_{2} \cup N_{1}$ and a P_{3} containing x, y) but then d, c, h, c^{\prime} induce a C_{4} with $h c^{\prime} \in M$ which is a contradiction to Observation 1 (ii). Thus, either $h_{1} c \in M$ or $h_{2} c \in M$ and by the weight condition we can assume that $h_{1} c \in M$ is an $x y$-forced M-edge.
From now on, we can assume that for every $v \in N_{4}, N(v) \cap N_{5}$ is either an edge or an independent set. Subsequently, we first consider the case when $N(v) \cap N_{5}$ is an edge.

Lemma 12. The following statements hold:
(i) $\left|N(H) \cap N_{4}\right|=1$, say $N(H) \cap N_{4}=\{c\}$.
(ii) $N(c) \cap N_{3}$ is an independent set.

Proof. (i): By Lemma $10(i), N\left(h_{1}\right) \cap N_{4}=N\left(h_{2}\right) \cap N_{4}$. Let $c \in N\left(h_{1}\right) \cap N_{4}$. If h_{1} has another neighbor $c^{\prime} \neq c$ in N_{4} then by Lemma 10 (i) (and by the assumption that N_{4} is an independent set), $c^{\prime} h_{2} \in E$, and thus $h_{1}, h_{2}, c, c^{\prime}$ induce a diamond which is a contradiction.
(ii): It follows by Observation 4 since otherwise, there is a butterfly in G.

Without loss of generality assume that $w\left(h_{1} c\right) \leq w\left(h_{2} c\right)$. Then let:
$D:=N(c) \cap N_{3}$ (then by Lemma $12(i i), D$ is an independent set);
$D_{i}:=T_{i} \cap D$, for $i \in\{1, \ldots, k\}$.
Lemma 13. If $D \cap S_{3} \neq \emptyset$ or $\left|D_{i}\right| \geq 2$ for some $i \in\{1, \ldots, k\}$, then $h_{1} c \in M$ is an xy-forced M-edge.

Proof. First assume that $D \cap S_{3} \neq \emptyset$: Since $S_{3} \subseteq I$ by Lemma 1 (iv), it follows that $c \in V(M)$, and then since $h_{1} h_{2} c$ is a triangle the assertion follows.
If $\left|D_{i}\right| \geq 2$ for some $i \in\{1, \ldots, k\}$ then for every $d \in D_{i}$, the edges $u_{i} d$ belong to a C_{4}; then, since $u_{i} \in V(M)$, by Observation 1 (ii) it follows that $D_{i} \subseteq I$, and then $c \in V(M)$, and since $h_{1} h_{2} c$ is a triangle, Lemma 13 has been shown.
According to Lemma 13, in what follows let us assume that $D \cap S_{3}=\emptyset$ (i.e., $D \subseteq T_{\text {one }}$), and that $\left|D_{i}\right| \leq 1$ for all $i \in\{1, \ldots, k\}$.
Let $\left\{a_{1} b_{1} c_{1}, \ldots, a_{\ell} b_{\ell} c_{\ell}\right\}$, be the set of all triangles with $a_{i} \in N_{4}$ and $b_{i}, c_{i} \in N_{5}$. Without loss of generality, let $w\left(a_{i} b_{i}\right) \leq w\left(a_{i} c_{i}\right)$. Clearly, $a_{i} \neq a_{j}$ for $i \neq j$ since otherwise there is a butterfly in G, and $a_{i} a_{j} \notin E$ since we can assume that N_{4} is an independent set.
Similarly as for triangles in N_{4} and for triangles with an edge in N_{4}, we are going to show that there are only polynomially many possible cases for M-edges in these triangles. Clearly, either $a_{i} b_{i} \in M$ or $b_{i} c_{i} \in M$ since $a_{i} b_{i} c_{i}$ is a triangle, $b_{i} c_{i}$ is a component in N_{5} having exactly one neighbor in N_{4}, namely a_{i}, and $w\left(a_{i} b_{i}\right) \leq w\left(a_{i} c_{i}\right)$.
Let d_{i} denote a neighbor of a_{i} in N_{3}. By Lemma 13, we can assume that every d_{i} sees only one of u_{1}, \ldots, u_{k}.

Lemma 14. Let $a_{1} b_{1} c_{1}$ and $a_{2} b_{2} c_{2}$ be triangles as above with $b_{1}, b_{2}, c_{1}, c_{2} \in N_{5}$, and denote by d_{i} a neighbor of $a_{i}, i=1,2$, in N_{3}. If $d_{1} \in T_{1}$ and $d_{2} \in T_{2}$ then $d_{1}, d_{2}, a_{1}, a_{2}$ induce a C_{4} in G.

Proof. First let us show that $d_{1} d_{2} \notin E$. Assume to the contrary that $d_{1} d_{2} \in E$. Then d_{2} misses a_{1}, since otherwise a butterfly arises. Let us recall that $\{r, x, y\}$ induces a P_{3} with edge $r x$. Then there is a P_{8} with $b_{1}, a_{1}, d_{1}, d_{2}, u_{2}, N_{1}$ and x, y which is a contradiction. Thus $d_{1} d_{2} \notin E$.
Since there is no P_{8} in the subgraph induced by $b_{1}, a_{1}, d_{1}, u_{1}, N_{1}, u_{2}, d_{2}, a_{2}, b_{2}$, it follows that either $d_{1} a_{2} \in E$ or $d_{2} a_{1} \in E$. We claim that $d_{1} a_{2} \in E$ if and only if $d_{2} a_{1} \in E$: In fact, if $d_{1} a_{2} \in E$ and $d_{2} a_{1} \notin E$, then a P_{8} is induced by $b_{1}, a_{1}, d_{1}, a_{2}, d_{2}, u_{2}$, a vertex of N_{1}, and x or y; the other implication can be shown similarly by symmetry. Then a C_{4} is induced by $d_{1}, d_{2}, a_{1}, a_{2}$.

Now the C_{4} leads to the fact that $a_{1} b_{1} \in M$ if and only if $a_{2} b_{2} \in M$. We say that two triangles $a_{1} b_{1} c_{1}$ and $a_{2} b_{2} c_{2}$ are C_{4}-connected if there are d_{1}, d_{2} as above such that $d_{1}, d_{2}, a_{1}, a_{2}$ induce a C_{4} in G, and we say that a set of such triangles is a C_{4}-connected component if there is a sequence of such C_{4}-connected pairs reaching all of them. Obviously, for such a component, there are only two possibilities for M-edges.

Then let us focus on triangles which are not in such a C_{4}-connected component. Similarly as for Lemma 9, we claim:

Lemma 15. Let $a_{1} b_{1} c_{1}$ and $a_{2} b_{2} c_{2}$ be triangles as above with $b_{1}, b_{2}, c_{1}, c_{2} \in N_{5}$, and denote by d_{i} a neighbor of $a_{i}, i=1,2$, in N_{3}. Assume that $a_{1} b_{1} c_{1}$ and $a_{2} b_{2} c_{2}$ are not C_{4}-connected. Then there is an index $j, 1 \leq j \leq k$ such that $d_{1}, d_{2} \in T_{j}$.

Proof. If there are two such triangles $a_{1} b_{1} c_{1}$ and $a_{2} b_{2} c_{2}$ such that d_{1}, d_{2} do not have a common neighbor in N_{2}, say without loss of generality, $u_{1} d_{1} \in E$ and $u_{2} d_{2} \in E$ but $u_{1} d_{2} \notin E$ and $u_{2} d_{1} \notin E$ then a P_{8} arises.
Let $\left\{a_{1} b_{1} c_{1}, \ldots, a_{\ell} b_{\ell} c_{\ell}\right\}$, be the set of all triangles, which are not in a C_{4}-connected component, with an edge $b_{i} c_{i}$ in N_{5}, and let A_{i} be the neighborhood of a_{i} in N_{3}. Assume without loss of generality that $w\left(a_{i} b_{i}\right) \leq w\left(a_{i} c_{i}\right)$. Without loss of generality, assume that u_{1} is the only N_{2}-neighbor of $A_{i}, i \in\{1, \ldots, \ell\}$. Now there are at most n (where $n=|V|$) possible cases for $u_{1} u_{1}^{\prime} \in M$ and the M-edges in the triangles:

Corollary 5.

(i) If for $i \in\{1, \ldots, l\}$ and for $d_{i} \in A_{i}, u_{1} d_{i} \in M$ then for all j such that $d_{i} \in A_{j}$ it follows that $b_{j} c_{j} \in M$, and for all j such that $d_{j} \notin A_{j}$ it follows that $a_{j} b_{j} \in M$.
(ii) If for all $i \in\{1, \ldots, \ell\}$ and for all $d_{i} \in A_{i}, u_{1} d_{i} \notin M$ then for all $i \in\{1, \ldots, \ell\}$, $a_{j} b_{j} \in M$.

Subsequently, we can assume that N_{5} is an independent set.

5.2.2 H is a single vertex, say h

Lemma 16. If $\left|N(h) \cap N_{4}\right| \geq 2$ then $h \in I$.
Proof. Let us recall that $N(h) \cap N_{4}$ is an independent set. Let $a, b \in N(h) \cap N_{4}, a \neq b$, and let $c \in N_{3}$ be a neighbor of a. Then $b c \in E$ since otherwise a P_{8} with $b, h, a, c, N_{2} \cup N_{1}$ and x, y arises. This holds for every pair of neighbors $a, b \in N(h) \cap N_{4}$ of h. Thus every edge incident to h is in a C_{4}, i.e., $h \in I$.

Lemma 17. Assume that $\left|N(h) \cap N_{4}\right|=1$, say $N(h) \cap N_{4}=\left\{v_{4}\right\}$. Then $v_{4} v_{5} \in M$ is an xy-forced M-edge for some $v_{5} \in N\left(v_{4}\right) \cap N_{5}$ having exactly one neighbor in N_{4}, depending on the best alternative.

Proof. Since we can assume now that N_{5} is an independent set, since by (7) no edge between N_{3} and N_{4} is in M, since by Lemma 16, $v_{4} u \notin M$ for every $u \in N_{5}$ having more than one neighbor in N_{4}, and since v_{4} is the only neighbor of h in N_{4}, it follows that $v_{4} v_{5} \in M$ for some $v_{5} \in N\left(v_{4}\right) \cap N_{5}$ having exactly one neighbor in N_{4} (depending on the best alternative; possibly $h=v_{5}$) since otherwise, the edge $v_{4} h$ is not dominated.

Thus, from now on, we can assume that every vertex of N_{5} has more than one neighbor in N_{4}, i.e., $N_{5} \subset I$ by Lemma 16.

Lemma 18. No vertex of N_{5} has more than one neighbor in N_{4}, i.e., $N_{5}=\emptyset$.
Proof. Suppose to the contrary that $\left|N(h) \cap N_{4}\right| \geq 2$ for $h \in N_{5}$. As shown in the proof of Lemma 16, there is a vertex $c \in N_{3}$ such that c sees every vertex of $N(h) \cap N_{4}$. Thus every edge incident onto h is in a C_{4} (and thus not in M). Then, since $N_{5} \subset I$ and since by (7) no edge between N_{3} and N_{4} is in M, the edges of such C_{4} 's are not dominated which is a contradiction.

Thus, from now on, we can assume that $N_{5}=\emptyset$ and N_{4} is an independent set.
Lemma 19. If $w \in N_{4}$ and $w^{\prime} \in N_{3}$ is a neighbor of w then w^{\prime} is an M-mate u_{i}^{\prime} of some u_{i}, and thus, every $w \in N_{4}$ leads to xy-forced M-edges.

Proof. Since we can assume that $N_{5}=\emptyset, N_{4}$ is an independent set and there is no M-edge in N_{3}, edges between N_{3} and N_{4} must be dominated by M-edges $u_{i} u_{i}^{\prime}$. The only possible way is that every neighbor $w^{\prime} \in N_{3}$ of $w \in N_{4}$ is an M-mate u_{i}^{\prime} of some u_{i}.
From now on, we can assume that $N_{4}=\emptyset$.

6 A polynomial-time algorithm for DIM on P_{8}-free graphs

In this section let us describe a polynomial-time algorithm to solve DIM on P_{8}-free graphs. The main part of the algorithm is simple: For every edge $x y$ in a P_{3} of G apply the subsequent procedure DIM-with- $x y$, which either returns a proof that G has no d.i.m. with $x y$ or returns a minimum (finite) weight d.i.m. of G with $x y$ (by the results introduced above). Note that every possible d.i.m. M has to be checked whether it is really a d.i.m.; this can be done in linear time for each candidate M (see [4]).

Procedure DIM-with- $x y$

Given: A connected (P_{8}, K_{4}, diamond, butterfly)-free $G=(V, E)$ with edge weights, and an edge $x y \in E$ of finite weight which is part of a P_{3} in G.
Task: Return a proof that G has no d.i.m. M with $x y \in M$ (STOP with failure), or return a d.i.m. M with $x y \in M$ of finite minimum weight (STOP with success).

1. Set $M:=\{\{x, y\}\}$. Determine the distance levels $N_{i}=N_{i}(x y), 1 \leq i \leq 5$, with respect to $x y$.
2. Check if N_{1} is an independent set (see condition (2)) and N_{2} is the disjoint union of edges and isolated vertices (see condition (4)). If not, then STOP with failure.
3. For the set M_{2} of edges in N_{2}, apply the Reduction Step for every edge in M_{2} correspondingly. Moreover, apply the Reduction Step for each edge $b c$ according to condition (8) and then for each edge $u_{i} t_{i}$ according to Lemma $1(v)$.
4. If $N_{4} \neq \emptyset$ then, using the results of Subsections 5.1 and 5.2 according to the $x y$ forced M-edges and the polynomially many cases described in Corollaries 3, 4, and 5 , split the problem into polynomially many such cases. Then, since each such case allows us to finally reduce the problem to the case in which $N_{4}=\emptyset$, solve each such case according to the next step and choose a minimum finite weight solution (if such a solution exists).
5. $\left\{\right.$ Now $\left.N_{4}=\emptyset.\right\}$ Apply the approach described in Section 4. Then either return that G has no d.i.m. M with $x y \in M$ or return M as a d.i.m. of smallest finite weight with $x y \in M$.

Theorem 1. Procedure DIM-with-xy is correct and runs in polynomial time.
Proof. The correctness of the procedure follows from the structural analysis of P_{8}-free graphs with a d.i.m.
The polynomial time bound follows from the fact that Steps 1,2 can clearly be done in polynomial time, Step 3 can be done in polynomial time since the Reduction Step can be done in polynomial time, Step 4 can be done in polynomial time by the results in Section 5, and Step 5 can be done in polynomial time as shown in Section 4.

Since a graph G with a d.i.m. is K_{4}-free, we can assume that the input graph is K_{4}-free.

Algorithm DIM- P_{8}

Given: A connected $\left(P_{8}, K_{4}\right)$-free graph $G=(V, E)$ with edge weights.
Task: Determine a d.i.m. of G of finite minimum weight if one exists or find out that G has no d.i.m. of finite weight.
(a) Determine the set F_{1} of all mid-edges of diamonds in G, and the set F_{2} of all peripheral edges of butterflies in G. Let $M:=F_{1} \cup F_{2}$. Check whether M is an induced matching in G. If not then STOP - G has no d.i.m. Otherwise, check whether M is a dominating edge set of G. If yes, we are done. Otherwise apply the Reduction Step for every edge in $F_{1} \cup F_{2}$; without loss of generality, assume that the resulting graph $G^{\prime}=\left(V^{\prime}, E^{\prime}\right)$ is connected (if not, do the next steps for each connected component of $\left.G^{\prime}\right)$. Let $G:=G^{\prime}$.
\{From now on, G is (P_{8}, K_{4}, diamond, butterfly)-free.\}
(b) Check whether G has a single edge $u v \in E$ of finite weight which is a d.i.m. of G. If yes then select such an edge with smallest weight as output and STOP - this is a d.i.m. of G of finite minimum weight.
\{Otherwise, every d.i.m. of G would have at least two edges.\}
(c) For each edge $x y \in E$ of finite weight in a P_{3} of G carry out procedure DIM-with$x y$. If DIM-with- $x y$ stops with failure for all edges $x y$ in a P_{3} of G, then STOP G has no d.i.m. Otherwise, select the best result from all successful applications of the procedure DIM-with- $x y$. If the result does not have finite weight then STOP - G has no d.i.m. of finite weight. Otherwise, STOP and return the best result as solution.

Theorem 2. Algorithm DIM- P_{8} is correct and runs in polynomial time.
Proof. The correctness of the procedure follows from the structural analysis of P_{8}-free graphs with a d.i.m. In particular: concerning Step (b), one can easily verify that if G has a d.i.m. of one edge, then G has no d.i.m. with more than one edge; concerning Step (c), one can refer to Observation 5. The time bound follows from the fact that Step (a) can be done in polynomial time (in particular the Reduction Step can be done in polynomial time), Step (b) can be done in polynomial time, and Step (c) can be done in polynomial time by Theorem 1.
Acknowledgments. The authors gratefully thank three anonymous referees for their helpful comments. The second author would like to witness that he just tries to pray a lot and is not able to do anything without that.

References

[1] N. Biggs, Perfect codes in graphs, Journal of Combinatorial Theory, Series B 15 (1973) 289-296.
[2] A. Brandstädt, C. Hundt, R. Nevries, Efficient Edge Domination on Hole-Free graphs in Polynomial Time, Conference Proceedings LATIN 2010, Lecture Notes in Computer Science 6034 (2010) 650-661.
[3] A. Brandstädt, A. Leitert, D. Rautenbach, Efficient dominating and edge dominating sets for graphs and hypergraphs, extended abstract in: Conference Proceedings ISAAC 2012, Taiwan, Lecture Notes in Computer Science 7676 (2012) 267-277. full version: arXiv:1207.0953v2[cs.DM], 2012.
[4] A. Brandstädt, R. Mosca, Dominating Induced Matchings for P_{7}-Free Graphs in Linear Time, Algorithmica 68 (2014) 998-1018.
[5] K. Cameron, R. Sritharan, Y. Tang, Finding a Maximum Induced Matching in Weakly Chordal Graphs, Discrete Math. 266, 133-142 (2003).
[6] D.M. Cardoso, N. Korpelainen, V.V. Lozin, On the complexity of the dominating induced matching problem in hereditary classes of graphs, Discrete Applied Math. 159 (2011) 521-531.
[7] D.M. Cardoso, V.V. Lozin, Dominating induced matchings, "Graph Theory, Computational Intelligence and Thought", A conference celebrating Marty Golumbic's 60th birthday, Jerusalem, Tiberias, Haifa 2008. Lecture Notes in Computer Science Vol. 5420 (2009) 77-86.
[8] D.L. Grinstead, P.L. Slater, N.A. Sherwani, N.D. Holmes, Efficient edge domination problems in graphs, Information Processing Letters 48 (1993) 221-228.
[9] A. Hertz, V.V. Lozin, B. Ries, V. Zamaraev, D. de Werra, Dominating induced matchings in graphs containing no long claw, arXiv:1505.02558, 2015
[10] N. Korpelainen, V.V. Lozin, C. Purcell, Dominating induced matchings in graphs without a skew star, J. Discrete Algorithms 26 (2014) 45-55
[11] M. Livingston, Q. Stout, Distributing resources in hypercube computers, in: Proceedings 3rd Conf. on Hypercube Concurrent Computers and Applications (1988) 222-231.
[12] C.L. Lu, M.-T. Ko, C.Y. Tang, Perfect edge domination and efficient edge domination in graphs, Discrete Applied Math. Vol. 119 (3) (2002) 227-250.
[13] C. L. Lu, C. Y. Tang, Efficient domination in bipartite graphs, manuscript 1997.
[14] C.L. Lu, C.Y. Tang, Solving the weighted efficient edge domination problem on bipartite permutation graphs, Discrete Applied Math. 87 (1998) 203-211.
[15] J.P. Spinrad, R. Sritharan, Algorithms for Weakly Triangulated Graphs, Discrete Applied Math. 59 (1995) 181-191.

[^0]: *Fachbereich Informatik, Universität Rostock, A.-Einstein-Str. 21, D-18051 Rostock, Germany, ab@informatik.uni-rostock.de
 ${ }^{\dagger}$ Dipartimento di Economia, Universitá degli Studi "G. D'Annunzio" Pescara 65121, Italy. r.mosca@unich.it

