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Highlights

• A novel homogenization procedure for thick shells is proposed
• Thick shell theory used in both micro and macro scales.
• Objectivity of structural softening response achieved with a 2-scale regularization.
• Out-of-plane loaded unreinforced masonry walls are analyzed with the proposed method.
• The homogenized response accurately represents out-of-plane failure of masonry.

Abstract

This work presents a multiscale method based on computational homogenization for the analysis of general heterogeneous thick
shell structures, with special focus on periodic brick-masonry walls. The proposed method is designed for the analysis of shells
whose micro-structure is heterogeneous in the in-plane directions, but initially homogeneous in the shell-thickness direction, a
structural topology that can be found in single-leaf brick masonry walls. Under this assumption, this work proposes an efficient
homogenization scheme where both the macro-scale and the micro-scale are described by the same shell theory. The proposed
method is then applied to the analysis of out-of-plane loaded brick-masonry walls, and compared to experimental and micro-
modeling results.
c⃝ 2016 Elsevier B.V. All rights reserved.

Keywords: Computational multiscale homogenization; Representative volume element (RVE); Shell; Masonry; Periodic micro-structure; Strain
localization

1. Introduction

Masonry is an ancient building material that have been extensively used throughout the history, and it is still used
nowadays. Being the main building technique adopted in historical constructions, a deep understanding of masonry

∗ Corresponding author at: Department of Engineering, University “G.d’Annunzio” of Chieti and Pescara, Pescara 65127, Italy.
E-mail addresses: mpetracca@cimne.upc.edu (M. Petracca), luca.pela@upc.edu (L. Pelà), rrossi@cimne.upc.edu (R. Rossi),
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mechanical behavior is therefore of primary importance for the preservation of our cultural heritage. However,
the formulation of phenomenological constitutive equations for heterogeneous materials such as masonry is still a
challenge [1–3]. The evolution of the structural response strongly depends on complex micro-structural phenomena
such as damaged-induced anisotropy and localization of deformation in the micro-structure. It is therefore difficult to
account for the influence that this evolving micro-structure has on the overall macroscopic behavior, especially when
strain localization occurs in the micro-structure, leading to complex dissipative mechanisms at the structural scale.
Advanced numerical methods are therefore attractive tools to understand and predict the behavior of masonry up to
its complete failure, allowing to estimate the residual strength and safety of structures.

A popular method commonly used nowadays to study masonry, accounting for its heterogeneous micro-structure,
is micro-/meso-modeling, also known as Direct Numerical Simulation (DNS), [4–11]. In this approach, the complete
micro-structure (or a simplified version of it) is directly modeled, thus the complex interaction between the
masonry constituents is naturally taken into account. However, this approach leads to complex models and high
computational costs. Therefore DNS is suitable to model in detail small structural members, but their usage soon
becomes unaffordable for large scale structures. On the contrary, macro-modeling regards masonry as an equivalent
homogeneous continuum, without making any distinction between units and joints in the discrete model [1,2,12].
This method possesses some intrinsic difficulties related to identification of mechanical properties and definition of
reliable and predictive phenomenological failure criteria. Nevertheless, macro-modeling is still the preferred option
for the analysis of large-scale structures, thanks to its affordable computational cost. An example of masonry macro-
modeling for shells has been proposed in [13].

In-between macro- and micro-modeling techniques, Computational Homogenization Methods (CHM) have
recently emerged as a promising tool joining their advantages [14–38]. The problem is split into two scales: the
structural scale is treated as an equivalent homogeneous medium, while the complex behavior of the heterogeneous
micro-structure is taken into account solving a micro-scale problem on a representative sample of the micro-structure
(RVE). Classical CHM has been extensively adopted to analyze micro-structures exhibiting a stable behavior. However
it was soon recognized to give non-objective results for strain-softening materials, with the homogenized response
not converging to a unique meaningful solution upon mesh refinement and/or upon increasing the size of the RVE.
In fact the RVE, which is assumed to be representative of the micro-structure, looses its representativeness upon
localization of deformation. It should be noted that this issue is not directly related to the CHM itself, but stems
from the use of a first order continuum. In the last years, some enhancements of the classical first order CHM were
proposed, and a review on most recent developments can be found in [39] and in the references therein. Some methods
regularize the response of the RVE adopting higher order continua at the macro-scale, so that a material characteristic
length is naturally accounted for [19,21,22,16,17,36,14]. Others, known as continuous–discontinuous methods, up-
scale the micro-structural response to a discontinuity at the structural scale [23–27,29,40,15]. In [41] an extension
of the fracture-energy-based regularization to the homogenization problem has been proposed, and applied to the
simulation of in-plane loaded masonry shear walls, allowing the use of a standard continuum theory, while ensuring a
proper dissipation at the structural level.

Computational Homogenization for shell-like structures is an emerging branch of Computational Homogenization
Methods. The need for this kind of homogenization stems from the fact that the size of the micro-structure has the same
order of magnitude of the structure thickness, so that a standard 3D continuum homogenization cannot be applied, at
least with respect to the thickness direction. In the last years some works have been done for thin structured shells
in generic structural applications, with elastic or inelastic material behavior, with or without geometric non-linearity
[42–46]. In these approaches, a 3D solid RVE discretizing the whole micro-structure in the thickness direction, is
coupled to the macro-scale shell model. Applications of this concept to the specific case of masonry structures can
be found in [25,26]. In those works, material non-linearity was considered, and the homogenization was based on a
Kirchhoff–Love (thin) shell theory, while the nonlinear transverse shear behavior was obtained by means of a separated
model (i.e. not directly from the RVE calculations).

The present work proposes a new homogenization procedure for shell-like structures, based on Reissner–Mindlin
(thick) shell theory. This approach is tailored to the homogenization of micro-structures that are heterogeneous in
the in-plane directions, but (initially) homogeneous in the thickness direction (i.e. an extrusion of a heterogeneous
surface in the thickness direction). With this assumption, both the macro-scale domain and the RVE domain can be
accurately described according to shell theories. Reissner–Mindlin shell theory is based on the hypothesis that the
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Fig. 1. Work-flow of computational homogenization for shells.

initially straight normals to the mid-plane of the shell remain straight after deformation, even though not necessarily
perpendicular to the mid-plane. If the micro-structure is homogeneous in the thickness direction, it is reasonable to
assume that the previously mentioned hypothesis holds.

This assumption reduces the range of applicability of this method, with respect to those methods using a 3D
RVE, but it greatly simplifies the macro–micro scale transition (both scale share the same theory), and it reduces the
computational cost of the RVE calculations. The proposed methodology is then applied to the analysis of Unreinforced
Masonry Walls (URM) subjected to out-of-plane loading. A deep understanding of the out-of-plane behavior is a
key aspect of the seismic response of URM buildings. The experimental studies conducted in [47] on URM walls,
are numerically reproduced here to assess the capabilities of the proposed method. As highlighted in [47] and in the
references therein, assuming that a wall, subjected to out-of-plane loading, collapses if its bending strength is exceeded
is extremely conservative to assess its seismic response, as the full collapse generally happens when the out-of-plane
displacement due to bending approaches the thickness of the wall. Therefore accurate constitutive models are required
to numerically reproduce the out-of-plane behavior of masonry. The proposed methodology has proven to be rather
accurate in reproducing the key aspects of the out-of-plane behavior of URM emerged from the experimental tests.

2. Computational homogenization framework

This section gives the main concepts and basic equations of the proposed computational homogenization frame-
work, where classical first order homogenization is extended to the case of shell theory. The following derivations
assume small strain theory.

The main work-flow of the proposed CHM for shells can be represented as in Fig. 1.
The proposed method is formally identical to the classical CHM for 2D and 3D continua [41]. The main difference

is that now the continuum strain and stress tensors should be replaced with the generalized strains and generalized
stresses typical of shell kinematics, as described in Section 2.1.

The homogenization process can be seen as a 3-step procedure:

1. Down-scaling or macro–micro transition. The macroscopic generalized strain, at any point of the macroscopic
domain, are sent to the micro-scale, and used to define RVE boundary conditions;

2. Solution of the micro-scale Boundary Value Problem (BVP). The micro-structural problem is solved on the RVE
domain. Any numerical method can be used. FEM is considered in this work;
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3. Up-scaling or micro–macro transition. The macro-scale generalized stresses are obtained via homogenization
procedures.

2.1. Shell kinematics

From now on, any generalized quantity related to the shell theory is identified with a superimposed hat (·)
The generalized unknown vector in the local coordinate system of the shell is defined as:

u =

u0 uz θ

T
=

ux u y uz θx θy

T (1)

where u0 =

ux u y

T are the in-plane displacements, uz is the out-of-plane displacement, and θ =

θx θy

T are
the out-of-plane rotations about the local x and y axes respectively.

According to the first order shear deformation theory of Reissner–Mindlin, the generalized strains of the shell are
defined as:

ε =

ε0 κ γ 0

T
=

ε0,xx ε0,yy 2ε0,xy κxx κyy 2κxy 2ε0,xz 2ε0,yz

T
. (2)

The in-plane strain tensor due to membrane actions is defined as:

ε0 = ∇
su0. (3)

The curvature tensor due to bending actions is defined as:

κ = ∇
s (Pθ) . (4)

The transverse shear strain is defined as:

γ 0 = ∇uz + Pθ . (5)

In the previous relations the transformation matrix P is introduced to account for the sign convention about
rotations:

P =


0 1

−1 0


(6)

Pθ =


θy

−θx


. (7)

Therefore the generalized strains of the shell can be rewritten as:

ε =



ε0,xx
ε0,yy

2ε0,xy
κxx
κyy

2κxy
2ε0,xz
2ε0,yz


=



∂ux

∂x
∂u y

∂y
∂ux

∂y
+

∂u y

∂x
∂θy

∂x

−
∂θx

∂y
∂θy

∂y
−

∂θx

∂x
∂uz

∂x
+ θy

∂uz

∂y
− θx



. (8)
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2.2. Shell constitutive response: through-the-thickness integrated cross section

With the shell generalized strainsε at hand, it is possible to calculate the constitutive response of the shell to obtain
the generalized stresses:

σ =

N M Q

T
=

Nxx Nyy Nxy Mxx Myy Mxy Qxz Q yz

T (9)

where N =

Nxx Nyy Nxy

T is the membrane force vector per unit length, M =

Mxx Myy Mxy

T is the

bending/twisting moment vector per unit length, and Q =

Qxz Q yz

T is the transverse shear force vector per unit
length. A very simple and general way to obtain the shell constitutive response is by means of a through-the-thickness
integration of standard continuum constitutive models.

Defining ζ as the through-the-thickness coordinate, ranging from −H/2 to H/2 (H being the thickness of the
shell), the strain at each coordinate ζ can be defined as:

ε(ζ ) = ε0 + ζκ + γ 0 (10)

or in matrix form:

ε(ζ ) = Hε(ζ )ε (11)


εxx
εyy
2εxy
2εxz
2εyz

 =


1 0 0 ζ 0 0 0 0
0 1 0 0 ζ 0 0 0
0 0 1 0 0 ζ 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1





ε0,xx
ε0,yy

2ε0,xy
κxx
κyy
2κxy

2ε0,xz
2ε0,yz


. (12)

Then the stress tensor and the constitutive tangent operator at any coordinate ζ in the thickness direction can be
calculated from any constitutive model:

σ (ζ ) = f

ε(ζ )


, C(ζ ) =

∂σ (ζ )

∂ε(ζ )

. (13)

The generalized stresses and the tangent constitutive matrix for the shell can be finally integrated through the
thickness:

σ =

 H
2

−
H
2

Hσ(ζ )σ (ζ ) dζ (14)



Nxx
Nyy
Nxy
Mxx
Myy
Mxy
Qxz
Q yz


=

 H
2

−
H
2



1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
ζ 0 0 0 0
0 ζ 0 0 0
0 0 ζ 0 0
0 0 0 k 0
0 0 0 0 k




σxx
σyy
σxy
σxz
σyz

 dζ (15)

C =
∂σ
∂ε =

 H
2

−
H
2

Hσ(ζ )C(ζ )Hε(ζ ) dζ (16)

where k is the transverse shear correction factor [48].
It should be noted that in Eq. (13) the continuum stress tensor σ (ζ ) at a certain ζ coordinate in the thickness

direction, is obtained as a function of the continuum strain tensor ε(ζ ) at the same ζ coordinate. However, the strain
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tensor ε(ζ ), as defined in Eq. (12), is lacking the thickness strain component εzz , since the standard shell kinematics
does not provide it. A simple way to cope with this issue would be to obtain σ P S

(ζ ) , the plane-stress part of σ (ζ ), through

any general (non-linear) plane stress constitutive law f P S (·), while considering σ T S
(ζ ), the transverse shear part of σ (ζ ),

elastic:

σ P S
(ζ ) = f P S


εP S

(ζ )


(17)

σ T S
(ζ ) = GεT S

(ζ ) (18)

σzz(ζ ) = 0. (19)

This simple approach is applicable only if the transverse shear deformation is negligible, so that one can expect
a linear relation between σ T S

(ζ ) and εT S
(ζ ). In most general cases this is not necessary true. In masonry, even if one

considers a thin wall made of only one layer of bricks, the in-plane dimension of the mortar joint (of the order of
10 mm) will always be smaller than the out-of-plane (wall thickness) dimension (of the order of 100 mm). If one
also considers that in many applications mortar joints are by far softer than units (bricks or stones), it is evident
that all shear deformation will concentrate in mortar joints, and it will not be negligible with respect to the in-plane
deformation. Thus a nonlinear response for the transverse shear is also necessary.

In the present work, based on the idea given in [49], this goal is achieved by storing in each integration point of the
shell domain, an extra internal-like variable εzz (representing the strain component in the thickness direction, which
is not provided by shell kinematics). Its evolution is obtained by imposing the following constraint through a nested
iterative procedure:

find εzz such that
 H

2

−
H
2

σzz(ζ )dζ = 0. (20)

In this way, the out-of-plane normal stress is not forced to be zero at every depth in the thickness, but only its
integral (the stress resultant Nzz) is constraint to be zero, as required by the thick shell theory.

This procedure allows to use full 3D constitutive models along the thickness of the shell. The generalized stresses
and the generalized constitutive tensor can then be obtained using Eqs. (14) and (16), respectively. Indeed Eqs. (14)
and (16) are integrals along the thickness direction, therefore a suitable integration scheme should be provided. Note
that this is an approximation of the real 3D behavior. The out-of-plane strain component, εzz , is assumed constant in
the thickness direction, and is calculated locally at each gauss-point of the shell element. The iterative procedure in
Eq. (20) can be avoided in case of other shell formulations whose kinematics can provide the thickness stretch, such
as 3D-shells for example.

2.3. Down-scaling or macro–micro transition and constraint conditions

The macroscopic generalized strain εm , in each point xm of the macro-scale domain and at each instant t , can
be obtained as the surface average of the microscopic generalized strain field εµ defined at each point xµ of the
micro-scale domain and at each instant t :

εm(xm, t) =
1

Aµ


Ωµ

εµ(xµ, t) dA (21)

where Aµ is the surface area of the shell domain at the micro-scale.
To account for the heterogeneity of the micro-structure, the microscopic displacement fielduµ can be additively

split into a coarse scale contribution um (arising from the macroscopic generalized strain field), and a fine scale
contribution ̃uµ (obtained from the solution of the micro-scale problem). Accordingly, the microscopic generalized
strain field is split in the same way:

εµ(xµ, t) =εm(xm, t) + ̃εµ(xµ, t). (22)

Inserting Eq. (22) into Eq. (21) and taking into account that εm is constant over the RVE, the minimal
kinematic constraint required for the microscopic generalized displacement fluctuation field to be kinematically
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admissible is:
Aµ

̃εµ


xµ, t


dA = 0. (23)

In order to write this constraint as a function of the microscopic generalized displacement fluctuation field, it is
useful to split Eq. (23) into membrane ε̃0,µ, bending κ̃µ, and shear γ̃ 0,µ components. For the membrane and bending
components, using the Gauss theorem, the surface integrals can be rewritten as boundary integrals over the RVE
boundary ∂ Aµ:

Aµ

ε̃0,µ dA =


Aµ

∇
s ũ0,µ dA =


∂ Aµ

ũ0,µ ⊗s n dS = 0 (24)
Aµ

κ̃µ dA =


Aµ

∇
s


Pθ̃µ


dA =


∂ Aµ


Pθ̃µ


⊗s n dS = 0. (25)

Eqs. (24) and (25) provide the minimal kinematic constraint to be applied to the micro in-plane displacement
fluctuations ũ0,µ and to the micro out-of-plane rotation fluctuations θ̃µ.

As regarding the shear component, the following minimal constraint has to be satisfied:
Aµ

γ̃ 0,µ dA =


Aµ

∇ũz,µ + Pθ̃µ dA = 0. (26)

This constraint can be either imposed directly as a surface integral, or, if periodic conditions for the out-of-plane
displacement fluctuation ũz are to be used, only the following constraint should be applied as a surface integral over
the RVE domain:

Aµ

θ̃µ dA = 0. (27)

The previously defined minimal conditions can be imposed using different kinds of boundary conditions. In the
present work, taking advantage of the periodic nature of the considered micro-structure, the following set of constraints
have been adopted:

ũ0,µ(x+
µ , t) = ũ0,µ(x−

µ , t) ∀ pair {x+
µ , x−

µ } ∈ ∂ Aµ (28)

θ̃µ(x+
µ , t) = θ̃µ(x−

µ , t) ∀ pair {x+
µ , x−

µ } ∈ ∂ Aµ (29)

ũz,µ

x+
µ , t


= ũz,µ


x−
µ , t


∀ pair


x+
µ , x−

µ


∈ ∂ Aµ (30)

Aµ

θ̃µ


xµ, t


dA = 0. (31)

Eqs. (28)–(30) impose periodicity on the microscopic fluctuation fields. This assumption showed a very good
performance in a previous work by the authors on in-plane multiscale analysis of masonry [41]. Eq. (31) is an extra
constraint arising from the definition of the transverse shear strain.

2.4. Solution of the micro-scale BVP

Neglecting inertia forces, and in absence of body forces and boundary traction, the Principle of Virtual Work for
the 3D continuum case at the micro-scale (RVE) reads:

Ωµ

σµ : δε̃µ dV = 0. (32)

Considering that the shell works with generalized strains and stresses obtained from a through-the-thickness
integration, Eq. (32) can be rewritten in terms of these generalized quantities:

Aµ

 H
2

−
H
2

σµ (ζ ) : δε̃µ (ζ ) dζ


dA = 0 (33)
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Aµ

 H
2

−
H
2

σµ (ζ ) :

δε̃0,µ + ζ δκ̃µ + δγ̃ 0,µ


dζ


dA = 0 (34)


Aµ

 H
2

−
H
2


σµ,xx


δε̃0,µ,xx + ζ δκ̃µ,xx


+ σµ,yy


δε̃0,µ,yy + ζ δκ̃µ,yy


+ σµ,xy


2δε̃0,µ,xy + 2ζ δκ̃µ,xy


+ σµ,xz


2δε̃0,µ,xz


+ σµ,yz


2δε̃0,µ,yz


dζ


dA = 0 (35)

Aµ


Nµ : δε̃0,µ + Mµ : δκ̃µ + Qµ : δγ̃ 0,µ


dA = 0 (36)

Aµ

σµ : δ̃εµ dA = 0. (37)

2.5. Up-scaling or micro–macro transition

Upon RVE equilibrium, the homogenized generalized stress should be computed. As discussed in [20,31], the
definition of the homogenized stress can be directly obtained from the Hill–Mandel Principle [50,51] using the additive
split of the microscopic strain. The Hill–Mandel Principle can be written in terms of generalized stresses and strains
as:

σm : ̇εm =
1

Aµ


Aµ

σµ : ̇εµ dA. (38)

Inserting the split of the microscopic generalized strain given in Eq. (22), into the Hill–Mandel Principle Eq. (38),
the following relation is obtained:

σm : ̇εm =
1

Aµ


Aµ

σµ : ̇εm dA +
1

Aµ


Aµ

σµ :
̃̇
εµ dA (39)

σm : ̇εm =
1

Aµ


Aµ

σµ : ̇εm dA +
1

Aµ


Aµ

σµ : L̃̇uµ dA (40)

where

L̃̇uµ =


∇

s̃̇u0,µ

∇
sP
̃̇
θµ

∇
̃̇uz,µ + P

̃̇
θµ

 . (41)

Eq. (40) is valid for any kinematically admissible ̃̇uµ. Specifically, in the case of ̃̇uµ = 0, the following relation is
obtained:

σm : ̇εm =
1

Aµ


Aµ

σµ : ̇εm dA ∀ε̇m (42)

which is valid for any macroscopic generalized strain rate field, leading to the definition of the homogenized
macroscopic generalized stress as the surface average of the microscopic generalized stress field:

σm =
1

Aµ


Aµ

σµ dA. (43)

From a computational point of view, it is more convenient to obtain the homogenized generalized stresses from the
reactions obtained on the RVE boundaries upon equilibrium [44]:

N =
1

Aµ

n
i=1

fr,i ⊗
s xµ,i (44)
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M =
1

Aµ

P
n

i=1

mr,i ⊗
s xµ,i −

1
Aµ

n
i=1

fr z,i xµ,i ⊗ xµ,i (45)

Q =
1

Aµ

n
i=1

fr z,i xµ,i (46)

where i = 1, 2, . . . , n is the boundary node index, xµ,i =

xµ,i yµ,i

T is the position vector of the boundary node i ,

fr,i =


fr x,i fr y,i
T is the in-plane reaction force vector, mr,i =


mr x,i mr y,i

T is the out-of-plane reaction moment
vector, and fr z,i is the out-of-plane reaction force. The transformation matrix P in Eq. (45), is the same introduced in
Eq. (6). The explicit expression for each homogenized macro generalized stress component is:

σm =



Nxx
Nyy
Nxy
Mxx
Myy
Mxy
Qxz
Q yz


=

1
Aµ

n
i=1



fr x,i xµ,i
fr y,i yµ,i

1
2


fr x,i yµ,i + fr y,i xµ,i


mr y,i xµ,i −

1
2

fr z,i x2
µ,i

−mr x,i yµ,i −
1
2

fr z,i y2
µ,i

1
2


mr y,i yµ,i − mr x,i xµ,i


−

1
2

fr z,i xµ,i yµ,i

fr z,i xµ,i
fr z,i yµ,i


. (47)

2.6. Typical deformation modes obtained from the shell homogenization framework

This section shows the eight natural deformation modes obtained from the proposed homogenization framework
for thick shells in terms of coarse scale displacements/rotations, fine scale displacement/rotation fluctuations, and
total displacements/rotations. In the proposed method, the unknowns at the micro-scale are the fluctuations, so the
total displacements/rotations are just computed and displayed as a post-process for visualization purposes.

The total microscopic displacement/rotation vector is defined as the sum of the coarse scale contribution and the
fine scale contribution (fluctuations):

uµ =um + ̃uµ (48)
u0,µ uz,µ θµ

T
=

u0,m uz,m θm

T
+

ũ0,µ ũz,µ θ̃µ

T
. (49)

The microscopic displacement/rotation fluctuations ̃uµ are obtained by the solution of the microscopic boundary
value problem, while the displacement/rotation vector due to the coarse scale contributionum can be calculated as a
post-process from the macroscopic generalized strainsεm :

u0,m = ε0,mxµ (50)

θm = PT κmxµ (51)

uz,m = −
1
2


κmxµ


· xµ + γ m · xµ. (52)

In Eq. (51), the transformation matrix P is still the one defined in Eq. (6) to take into account the sign convention
of rotations. In Eq. (52), the first term represents the deflection due to the bending deformation, while the second term
represents the deflection due to the shear deformation. Figs. 2–9 show all the eight deformation modes associated
with the eight deformation components of the macroscopic generalized strain vector. In all of them, (a) shows
the displacement/rotation fieldum arising from the associated average macroscopic deformation mode representing
the coarse-scale contribution, (b) shows the microscopic displacement/rotation fluctuation field ̃uµ(unknown of the
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Fig. 2. Deformation mode due to εxx . (a) Coarse scale, (b) fine scale, (c) total.

Fig. 3. Deformation mode due to εyy . (a) Coarse scale, (b) fine scale, (c) total.

Fig. 4. Deformation mode due to εxy . (a) Coarse scale, (b) fine scale, (c) total.

Fig. 5. Deformation mode due to κxx . (a) Coarse scale, (b) fine scale, (c) total.

Fig. 6. Deformation mode due to κyy . (a) Coarse scale, (b) fine scale, (c) total.

microscopic BVP) that represents the fine-scale contribution accounting for the heterogeneity (bricks and mortar), and
(c) represents the total microscopic displacement/rotationuµas the superposition of coarse and fine scale contributions.
Figs. 2–4 show the three membrane deformation modes. Figs. 5–7 show the three bending deformation modes. Figs. 8
and 9 show the two transverse shear deformation modes.
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Fig. 7. Deformation mode due to κxy . (a) Coarse scale, (b) fine scale, (c) total.

Fig. 8. Deformation mode due to γxz . (a) Coarse scale, (b) fine scale, (c) total.

Fig. 9. Deformation mode due to γyz . (a) Coarse scale, (b) fine scale, (c) total.

3. Fracture-energy regularization in 2-scale FE computational homogenization

A generalized geometrical characteristic length, accounting for the size of (i) macro-scale FE, (ii) micro-scale FE
and (iii) RVE, was proposed in a previous work by the authors [41]. This fracture-energy regularization for 2-scale
FE analysis ensures that the energy dissipated at the macro-scale be objective with respect to the discretization size in
both micro and macro scales, and with respect to the size of the RVE. Only a summary is given here, while the reader
can refer to [41] for further details.

Micro-scale local constitutive models are regularized with a modified characteristic lengthlch,µ, which depends on
all the characteristic lengths involved in the homogenization problem (see Fig. 10):

lch,µ = f (lch,µ, lch,m, lch,RV E ) (53)

where lch,µ, lch,m and lch,RV E are respectively the micro-scale FE characteristic length, the macro-scale FE
characteristic length, and the RVE characteristic length. WRV E,D is the energy dissipated in the damaged domain
(VRV E,D ) of the RVE:

WRV E,D =
G flch,µ

VRV E,D =
G flch,µ

lch,µ tµ h RV E (54)

with h RV E being the length of the RVE in the direction of the crack, and tµ being the thickness of the RVE.
“Smearing” this energy over the entire RVE domain (VRV E ), an equivalent specific fracture energyg f is obtained:

g f =
WRV E,D

VRV E
=

WRV E,D

lch,RV E h RV E tµ
=

G flch,µ

lch,µ

lch,RV E
(55)



284 M. Petracca et al. / Comput. Methods Appl. Mech. Engrg. 315 (2017) 273–301

Fig. 10. Fracture energy based regularization in 2-scale FEM [41].

g f can be integrated over the dissipating macro-scale domain to give the total energy Wm dissipated at the macro-
scale. Equating Wm to the actual dissipated energy W

Wm = Wg f lch,m hm tm = G f hm tm (56)

gives a definition for the modified micro-scale FE characteristic length:

lch,µ = lch,µ

lch,m

lch,RV E
. (57)

It should be noticed that this regularization procedure is an extension of the classical crack band theory, adapted to
the 2-scale homogenization problem. As such, it regularizes globally the problem, but still considers local values in
the localization zone.

4. Numerical modeling of out-of-plane loaded masonry walls

The proposed method is applied to the simulation of the out-of-plane behavior of brick-masonry walls.
Experimental tests on Unreinforced Masonry Walls (URM) presented in [47] are considered here for the numerical
assessment of the method. Section 4.1 briefly describes the experimental test. The nonlinear behavior of bricks
and mortar joints is modeled with a constitutive model based on Continuum-Damage Mechanics, described in
Section 4.2, while the adopted RVE and material parameters are described in Section 4.3. A preliminary Direct
Numerical Simulation (DNS) was performed in order to assess the capability of the constitutive model to emulate the
specific local responses of the masonry wall under out-of-plane loadings, and the results are discussed in Section 4.4.
Multiscale simulations are discussed in Section 4.5, and the results are compared with both the experimental test and
the DNS.

The analyses were carried out using Kratos Multiphysics [52,53], a free open-source framework for the
development of multidisciplinary solvers, developed at CIMNE. Pre and post-processing were carried out in GiD [54],
also developed at CIMNE.

4.1. Experimental test

Experimental tests on Unreinforced Masonry Walls (URM) have been presented in [47]. Eight full-scale clay
brick URM walls were subjected to quasi-static displacement-controlled loading to investigate their load–deflection
behavior beyond their point of maximum strength. Of the eight walls analyzed in the experimental campaign, only
one is considered here. The wall measures 4 m×2.5 m, with bricks of 230 mm×76 mm×110 mm, and mortar joints
of 10 mm. After the first stage where a vertical pre-compression of 0.1 N/mm2 is applied, the wall is subjected to a
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Fig. 11. Tested wall geometry and obtained failure pattern [47].

uniform pressure under displacement control. In order to provide a realistic full moment connection along the vertical
edges, 450 mm long return walls were built in as part of the tested wall. Fig. 11 shows the wall geometry and the
obtained failure pattern on the main face of the wall, and on the lateral turning walls.

4.2. Tension/compression continuum damage model

4.2.1. Constitutive model
The bi-dissipative d+/d− damage model, based on the works in [55–57], defines the stress tensor as

σ =

1 − d+


σ̄+

+

1 − d−


σ̄− (58)

with σ̄+ andσ̄−being respectively the positive and negative parts of the effective (elastic) stress tensor σ̄ :

σ̄ = C : ε, σ̄+
=

3
i=1

⟨σ̄i ⟩ pi ⊗ pi , σ̄−
= σ̄ − σ̄+ (59)

d+ and d− are, respectively, the tensile and compressive damage indexes, acting respectively on σ̄+ and σ̄−. The
damage indexes are scalar variables ranging from 0 (intact material) to 1 (completely damaged material).

4.2.2. Failure criteria
In order to identify “loading”, “unloading” or “reloading” conditions of a general state of stress, two scalar

measures are introduced, termed as equivalent stresses τ+ and τ−. Both compressive and tensile failure criteria are
based on the one described in [58], and are computed as:

τ−
= H (−σ̄min)


1

1 − α


α Ī1 +


3 J̄2 + k1β ⟨σ̄max ⟩ + γ ⟨−σ̄max ⟩


(60)

τ+
= H (σ̄max )


1

1 − α


α Ī1 +


3 J̄2 + β ⟨σ̄max ⟩


ft

fcp


(61)

with

α =
kb − 1

2kb − 1
(62)

β =
fcp

ft
(1 − α) − (1 + α) (63)

where Ī1 is the first invariant of the effective stress tensor, J̄2 is the second invariant of the effective deviatoric stress
tensor, σ̄max is the maximum effective principal stress, fcp is the compressive peak stress, kb is the ratio of bi-axial
to uniaxial compressive strengths, and the term ft

fcp
is used to relate τ+ to the tensile strength ft . The constant k1 in
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Fig. 12. Initial damage surfaces (2D plane-stress).
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(a) Tensile surface. (b) Compressive surface.

Fig. 13. Initial damage surfaces (3D). Inactive surfaces in transparency.

Eq. (60) controls shear behavior of the model acting on the shape of the compressive surface. k1 can range from 0
(Drucker–Prager criterion) to 1 (criterion proposed in [58]). Finally the last term in Eq. (60), with a γ > 0, accounts
for increasing strength under stress states of triaxial compression. The two damage surfaces for the 2D plane-stress
case are shown in Fig. 12, while the same surfaces for the 3D case are shown in Fig. 13.

Note that both compressive and tensile surfaces are defined for any stress state, it is therefore necessary to inactivate
them under certain conditions:

1. The compressive surface can evolve if and only if at least one principal stress is negative.

2. The tensile surface can evolve if and only if at least one principal stress is positive.
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Fig. 14. (a) Tensile and (b) compressive uniaxial laws.

These conditions are achieved with the Heaviside function H (x) introduced in Eqs. (60) and (61). The inactive
portions of the two surfaces, i.e. those portions cut out by the Heaviside function, are drawn with dashed-lines in
Fig. 12, and in transparency in Fig. 13.

To represent the irreversible nature of the damage process, other two scalar quantities, termed as damage thresholds
r±, are introduced. They represent the largest values attained by the equivalent stresses τ± during the loading history.
Therefore r± at time t + ∆t can be explicitly evaluated as

r±
= max


r±

0 , max
0≤n≤t

τ±
n


, r+

0 = ft , r−

0 = fc0 (64)

where r+

0 and r−

0 are, respectively, the initial tensile and compressive damage thresholds (i.e. the elastic limits in
uniaxial tension ft and compression fc0), and n denotes the time instant. Accordingly, the following damage criteria
are defined:

Φ

τ±, r±


= τ±

− r±
≤ 0. (65)

4.2.3. Evolution laws for damage variables
The tensile damage d+ is obtained with the following exponential softening law:

d+

r+


= 1 −
r+

0

r+
exp


2Hdis


r+

0 − r+

r+

0


(66)

where Hdis is the discrete softening parameter. In the discrete problem, when using local constitutive models, the
softening law should be adjusted depending on the width of the dissipative zone (ldis) [59–61], so that the following
equality holds:

g f ldis = G f (67)

where the specific dissipated energy g f is

g f =


1 +

1
Hdis


f 2
t

2E
. (68)

Hdis is calculated as

Hdis =
ldis

lmat − ldis
(69)

with lmat = 2EG f / f 2
t . ldis is taken equal to the FE characteristic length (ldis = lch).

The obtained tensile uniaxial law is shown in Fig. 14(a). The evolution of the compressive damage d− is driven by
a hardening/softening law (see Fig. 14(b)) made of three quadratic Bezier curves, as described in a previous work by
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Fig. 15. RVE geometry.

Table 1
Material properties for (a) bricks and (b) mortar joints.

(a)

E ν σt Gt σ0 σp σr Gc εp kb k1 γ

52700.0 0.15 2.0 0.08 9.0 18.0 2.5 40.0 0.003 1.2 0.0 3.0
N

mm2 – N
mm2

N
mm

N
mm2

N
mm2

N
mm2

N
mm – – – –

(b)

1000.0 0.15 0.15 0.003 1.0 2.5 0.5 30.0 0.02 1.2 0.16 1.0
N

mm2 – N
mm2

N
mm

N
mm2

N
mm2

N
mm2

N
mm – – – –

the authors [41]. As for the tensile case, in the discrete problem the compressive curve shown in Fig. 14(b) needs to
be regularized so that the shaded area underneath be Gc/ ldis .

4.3. RVE and material parameters

The geometry of the adopted RVE is shown in Fig. 15. The boundary conditions for the RVE are those listed from
Eqs. (28) to (31).

The constitutive model used for both bricks and mortar joints is based on Continuum Damage Mechanics, and it is
briefly described in Section 4.2.

Material properties for bricks and mortar are summarized in Table 1.

4.4. Micro-modeling or direct numerical simulation

In the DNS the entire micro-structure is discretized in the computational model with shell elements, taking
advantage of the fact that the micro-structure is heterogeneous in the in-plane direction but (initially) homogeneous in
the thickness direction (1-layer of bricks). The geometry of the micro-model is shown in Fig. 16. Due to the symmetry
of both geometry and boundary conditions, only the left-half of the wall has been modeled.

Fig. 17 shows the pressure–deflection curve obtained from the DNS and compared with the experimental results.
The deflection is measured at the center of the wall, where the maximum value is attained. Overall the micro-model
simulation shows a good agreement with the experiment. Fig. 18 shows the deformed shape at the end of the analysis,
with a good agreement in the prediction of the failure mode shown in Fig. 11.

The most important feature shown by the experimental campaign, as reported in [47], is the “apparent” plastic
behavior of the tested walls: after reaching the wall strength at deflections between 2.0 and 5.0 mm, a first loss of
bearing capacity is shown, soon followed by an almost constant strength plateau up to a deflection of 25.0 mm.
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Fig. 16. Micro-model geometry.

Fig. 17. Pressure–deflection curve obtained from the micro-model analysis.

As discussed by the authors of the experimental campaign, this apparent plastic behavior may be attributed to a
redistribution of bending moment along diagonal cracks to horizontal bending along the vertical edges, where the
bending restraint provided by the return walls has additional capacity to accept transfer of load from the diagonal
bending mechanism. Table 2 shows the evolution of tensile and compressive damage during the first stages of the
analysis, where the wall strength is attained, and the damage pattern at the end of the simulation.

As a last note, the importance of adopting a 3D constitutive model instead of a plane-stress one, as already pointed
out in Section 2.2, is clearly shown in Fig. 19, where a detail of the bottom-left corner of the structure is given. The in-
plane strain along local X -direction at the top of the shell εxx(+H/2) = ε0,xx +κxx

H
2

∼= 0.11+0.0026×110/2 = 0.253
is larger but comparable to the transverse shear strain ε0,xz = 0.157. It is evident that the transverse shear deformation
cannot be neglected. The failure mode depicted in Fig. 19 can be considered as an overall bending state of deformation
along the local X -direction, if one thinks about the overall behavior of the “composite” masonry material. However,
due to the arrangement of the micro-structure, and the strong difference in mechanical properties of units and mortar,
a significant amount of transverse shear appears in the (softer) mortar joints, in order to allow units to bend around
the vertical axis of the wall.
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Fig. 18. Final deformed shape, (a) front and (b) back view from the micro-model analysis.

(a) ε0,xx . (b) κxx . (c) εxz .

Fig. 19. Comparison of membrane, bending and shear strains in micro-model analysis.

4.5. Multiscale simulation

In this section the proposed computational homogenization framework for shells is assessed, comparing it with the
results obtained by the DNS presented in Section 4.4. For the multiscale simulations three macro-scale discretizations
have been used, in order to check the regularization properties of the method with respect to the mesh size. It should
be noted that the regularization procedure presented in [41] and briefly reported in Section 3 is only meant to provide
objective results in terms of amount of dissipated energy with respect to the mesh size (i.e. to alleviate the mesh-size
dependency). For problems related to mesh bias dependency [62–64,12,65] (i.e. dependency on the mesh orientation),
the adopted procedure should be accompanied with enhanced FE formulations at the macro-scale. In the present
work, the used Shell FE has an enhancement in the membrane strain field following the EAS method [66], and in the
transverse shear field following the MITC plate formulation [67,68]. The adopted element seems to be sufficiently
accurate with respect to mesh orientation dependency. The adopted meshes are given in Fig. 20, with a discretization
size of 300 mm, 150 mm and 75 mm respectively.

Fig. 21 shows the pressure–deflection curves obtained from the three multiscale analyses, compared to the DNS
and experimental results.

A satisfactory agreement can be seen between the homogenized responses and the micro-model response. Also the
regularization of the response seems satisfactory, converging to a meaningful solution upon mesh refinement. A slight
difference between the homogenized response and the DNS response can be seen for pressure values ranging from
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Table 2
Tensile and Compressive damage evolution at different load stages from micro-model analysis.

Deflection [mm] d+ d−

0.7

2.9

4.0

35.0

3 kPa to the peak load, with the homogenized models showing a softer response, thus leading to a slight overestimation
of the displacement at peak strength, while the peak force is correctly predicted. This is believed to be due to the
response given by connection (corner) between the main wall and the turning wall: in the micro-model, bricks from
the front and lateral walls are physically connected. On the contrary, in the homogenized model this does not happen,
with the RVEs being only weakly connected with one another (i.e. by means of the macroscopic homogenized strain),
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(a) h = 300 mm. (b) h = 150 mm. (c) h = 75 mm.

Fig. 20. Macro-scale meshes used for the multiscale simulations.

Fig. 21. Pressure–deflection curves obtained from the multiscale analyses.

thus offering a slightly softer response. However, this initial small difference did not seem to affect the overall response
of the wall for the subsequent stages of the analysis.

Next, a detailed comparison between the DNS results and the Multiscale results is given. Fig. 22 shows a
comparison between the tensile and compressive damage patterns obtained from the three meshes used for the
multiscale analyses, and those obtained from the DNS. The failure modes are in very good agreement with the
predictions of the DNS, both in terms of crack-direction and in terms of initial spread of non-linearity (i.e. before
localization into a well defined rotational hinge). Note that the damage index displayed in the homogenized results is
defined as the volume average of the damage indexes in the RVE, thus can never reach the unity, unless all the elements
in RVE are completely damaged. However this definition of damage has no physical meaning, and it has been used
just for post-process purposes. Real damage values can be retrieved only from the RVE. The vertical hinge formed in
the turning wall near the intersection with the front wall, developed with a narrow damaged zone, while the diagonal
hinges on the front wall involved a significantly larger damaged zone. This behavior is mainly due to the redistribution
of compressive stresses, initially uniform over the entire wall, and progressively increasing towards the center of the
front wall, as shown in Fig. 23. In fact, as shown in Fig. 24, the moment–curvature response monitored along the
diagonal hinge (compared to the response monitored on the vertical hinge) showed a more ductile behavior with a
considerable initial hardening, since the shell cross section was there subjected to significant compressive stresses.
Fig. 25 shows a comparison in terms of rotations and out-of-plane deflection. A remarkable agreement can be seen for
rotations, both qualitatively and quantitatively, properly capturing the position and orientation of the vertical (along
the corner) and diagonal (on the front face) rotational hinges, as predicted by the micro-model analysis. Fig. 26
shows a comparison in terms of shell moments. In this case a satisfactory agreement is found in the overall bending
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Fig. 22. Comparison of tensile and compressive damage. Multiscale (first three rows) vs. DNS (last row).

moments distribution, while, obviously, from a quantitative point of view the peak values showed by the micro-model
are smoothed-out in the multiscale model, since they are average values obtained from the homogenized response of
the RVE.

Finally, Fig. 27 shows a last comparison in terms of tensile damage obtained from the micro-model, the homoge-
nized model, and the actual damage distribution in some relevant RVEs. It can be noticed how all the relevant failure
modes highlighted by the micro-model are correctly captured by the homogenized one. RVE 1 shows a bending fail-
ure mechanism about the head joints direction. RVE 2, in the bottom-left corner of the wall, shows a transition from
uniaxial bending about the head joints direction to diagonal bending. RVE 3 and RVE 4 show the damage pattern
obtained from diagonal bending, with RVE 4 being on the localization band defined by the diagonal rotational hinge.
RVE 5, in the center of the wall, shows a bending failure mechanism about the bed joints direction.
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Fig. 23. Comparison of minimum principal shell forces [N/mm], after the initial pre-compression (row 1) and at the end of the analysis (row 2).
DNS (column 1) vs. Multiscale (column 2).

Fig. 24. Homogenized moment–curvature response: (a) at the center of the vertical hinge on the turning wall; (b) at the center of the bottom
diagonal hinge on the front wall.

4.6. Computational cost of micro-scale and multi-scale simulations

Even though computational performance is not the main topic of this work, a brief comparison between micro-
and multi-scale analyses is given here in terms of computational costs. For both micro- and multi-scale analyses, the
solution strategy consist of a first stage (from time t = 0 to t = 0.02), for the application of the vertical load, conducted
under load control, and a second stage (from time t = 0.02 to t = 1.0), for the horizontal pressure, conducted under
displacement control. An average time step ∆t = 0.005 is used. Equilibrium is attained within an average of three
iterations per time step. In both stages, a full Newton–Raphson iterative procedure is used, thus updating the tangent
matrix at each iteration. The analyses were carried out on a single machine with an Intel Core i7-2670QM-2.20 GHz
CPU and 8.00 GB RAM. The code is parallelized with OpenMP.
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Fig. 25. Comparison of rotations [rad] (rows 1, 2, 3) and deflection [mm] (row 4). DNS (column 1) vs. Multiscale (column 2).

For the micro-model analysis, the average elapsed time per iteration is 00:00:43 [hh:mm:ss], and the total elapsed
time is 07:12:27 [hh:mm:ss]. For the multiscale analysis with the coarsest discretization (h = 300 mm), the average
elapsed time per iteration is 00:00:29 [hh:mm:ss], and the total elapsed time is 04:54:30 [hh:mm:ss].

Overall, a slight speed-up from micro- to multi-scale modeling is obtained. Such a limited speed-up is probably due
to the size of the masonry micro-structure, that is comparable with the FE size at the macro-scale. One could expect
more benefits with smaller micro-structures or with larger structural models. However, the computational cost for a
full non-linear multiscale analysis is still too expensive for using this method with large scale simulations. It should
be noted that in the present implementation, every integration point of the macro-scale has its own RVE (due to the
non-linearity of the problem), and the multiscale simulation is carried out from the very beginning at every integration
point. A substantial speed-up could be achieved using an adaptive triggering of RVE simulations only where and when
needed, on the line of what has been recently proposed in [69].



296 M. Petracca et al. / Comput. Methods Appl. Mech. Engrg. 315 (2017) 273–301

Fig. 26. Comparison of shell moments [Nmm/mm]. DNS (column 1) vs. Multiscale (column 2).

5. Comparison between DNS-3D DNS-shell and multiscale models

Section 4 presented an experimental–numerical comparison, used to assess the ability of the proposed framework
to represent the behavior of masonry walls when loaded in the out-of-plane direction. This section gives a concluding
example, where a 3D-based DNS, a shell-based DNS and a shell-based multiscale model are compared. This example
is useful to assess the assumptions made in the shell model and in the shell-homogenization framework, and the
capability of the proposed method to simulate the response of a full 3D model.

The example consists in a simply supported slab, vertically loaded in the center. Due to symmetry, only one half
of the model is analyzed. The geometry is shown in Fig. 28. The same model is analyzed with two DNS, 3D-based
and shell-based, respectively (to assess the ability of the shell to simulate the 3D behavior), and with two shell-based
multiscale simulations, using two discretization sizes of 250 mm and 125 mm respectively (to assess the regularization
with respect to the macro-scale FE size).
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Fig. 27. Distribution of tensile damage in some significant RVEs.

Fig. 28. Geometry of the masonry slab. Only one half modeled due to symmetry.

Fig. 29 shows the comparison of the load–deflection curves of the four analyses, while Fig. 30 shows the damage
pattern for the four analyses. A satisfactory agreement can be found between shell-based DNS and multiscale
simulations, and the full 3D simulation.

6. Conclusions

Classical computational homogenization is now an established tool for the analysis of complex heterogeneous
structures. However, when dealing with thin shell-like structures, the characteristic size of the micro-structure may
approach the thickness of the structural member, as it happens in one-leaf brick masonry walls, subject of the present
study. In those cases, classical homogenization towards a three dimensional continuum is not applicable.

This paper has proposed a computational homogenization method based on thick shell theory, able to provide an
equivalent homogeneous response in terms of generalized strains and generalized stresses, directly from the nested
solution of a RVE. The method is designed to deal with micro-structures that can be considered as an extrusion of a
heterogeneous surface (as in the case of one-leaf masonry walls), thus being heterogeneous in the in-plane directions,
but (initially) homogeneous in the thickness direction. Under this hypothesis, both the macro-scale and the micro-scale
RVE can be described by shell theories, greatly simplifying the problem of coupling micro and macro scales.
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Fig. 29. Load–deflection curves for the DNS and the multiscale models.

Fig. 30. Tensile damage pattern for (a) 3D DNS, (b) Shell DNS, (c) Shell multiscale (coarse h = 250 mm), and (d) Shell multiscale (fine
h = 125 mm).
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The proposed method has been applied to the analysis of unreinforced masonry walls undergoing out-of-plane
loading. Experimental studies have been numerically reproduced to assess the capabilities of the method. The
proposed methodology has proven to be rather accurate in reproducing the key aspects of the out-of-plane experimental
behavior of URM walls, properly describing all the failure mechanisms beyond the point of maximum bending
strength of the wall.
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[1] L. Pelà, M. Cervera, P. Roca, Continuum damage model for orthotropic materials: Application to masonry, Comput. Methods Appl. Mech.
Engrg. (ISSN: 0045-7825) 200 (9–12) (2011) 917–930. URL http://www.sciencedirect.com/science/article/pii/S0045782510003257.

[2] L. Pelà, M. Cervera, P. Roca, An orthotropic damage model for the analysis of masonry structures, Constr. Build. Mater. (ISSN: 0950-0618)
41 (2013) 957–967. URL http://www.sciencedirect.com/science/article/pii/S0950061812004837.
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[52] P. Dadvand, R. Rossi, E. Oñate, An object-oriented environment for developing finite element codes for multi-disciplinary applications, Arch.

Comput. Methods Eng. 17 (3) (2010) 253–297.
[53] P. Dadvand, R. Rossi, M. Gil, X. Martorell, J. Cotela, E. Juanpere, S.R. Idelsohn, E. Oñate, Migration of a generic multi-physics framework
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[64] M. Cervera, L. Pelà, R. Clemente, P. Roca, A crack-tracking technique for localized damage in quasi-brittle materials, Eng. Fract. Mech. 77

(13) (2010) 2431–2450.
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