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Abstract

The amygdala–medial prefrontal cortex (mPFC) circuit plays a key role in emotional processing. 

GABA-ergic inhibition within the mPFC has been suggested to play a role in the shaping of 

amygdala activity. However, the functional and neurochemical interactions within the amygdala–

mPFC circuits and their relevance to emotional processing remain unclear. To investigate this 

circuit, we obtained resting-state functional magnetic resonance imaging (rs-fMRI) and proton 

MR spectroscopy in 21 healthy subjects to assess the potential relationship between GABA levels 

within mPFC and the amygdala–mPFC functional connectivity. Trait anxiety was assessed using 

the State-Trait Anxiety Inventory (STAI-Y2). Partial correlations were used to measure the 

relationships among the functional connectivity outcomes, mPFC GABA levels and STAI-Y2 

scores. Age, educational level and amount of the gray and white matters within 1H-MRS volume 

of interest were included as nuisance variables. The rs-fMRI signals of the amygdala and the 

vmPFC were significantly anti-correlated. This negative functional coupling between the two 

regions was inversely correlated with the GABA+/tCr level within the mPFC and the STAI-Y2 
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scores. We suggest a close relationship between mPFC GABA levels and functional interactions 

within the amygdala-vmPFC circuit, providing new insights in the physiology of emotion.
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Introduction

The amygdala is a key structure within a complex circuit devoted to emotional 

interpretation, evaluation and response (Stein et al. 2002; Phan et al. 2006). Specifically, the 

basolateral nuclei of the amygdala (BLA) receive incoming information on potentially 

negative emotional stimuli from the sensory associative cortex and the thalamus (Nuss 

2015). On the basis of this information, the BLA drives the autonomic and sensorimotor 

response by activating: (i) glutamatergic neurons projecting from the amygdala to the bed 

nucleus of the stria terminalis (BNST) and hypothalamus; and (ii) GABA-ergic neurons 

projecting from the centromedial nuclei of the amygdala (CeA) to the brainstem (Calhoon 

and Tye 2015). However, BLA activity is not exclusively shaped by sensory input but it is 

mainly modulated by reciprocal projections with the mPFC (Calhoon and Tye 2015; Nuss 

2015). Specifically, the amygdala-mPFC circuit includes both bottom–up and top–down 

glutamatergic pathways. Through this circuit, the BLA sends excitatory inputs to the apical 

dendrites of the descending pyramidal neurons and to the dendrites of the fast-spiking 

GABA interneurons within the mPFC. Dendrites of the fast-spiking GABA-ergic 

interneurons modulate the descending pyramidal neurons which, in turn, regulate the 

amygdala output via the GABAergic intercalated (ITC) cells (Bishop 2007; Quirk and 

Gehlert 2003) or via the GABAergic neurons within the BLA (Akirav and Maroun 2007; 

Bishop 2007; Constantinidis et al. 2002; Chefer et al. 2011; Courtin et al. 2014). In this 

context, GABA-ergic transmission within the mPFC could be relevant to top–down control 

of the amygdala (Rosenkranz et al. 2003; Quirk and Beer 2006). In particular, it has been 

observed that GABA enhancement in the mPFC promotes amygdala hyperactivity (Akirav 

and Maroun 2007; Courtin et al. 2014; Chefer et al. 2011; Nuss 2015) and anxiety (Delli 

Pizzi et al. 2016). However, to date, understanding of the in vivo functional and 

neurochemical interactions within the amygdala–mPFC circuit is still shallow. Particularly, 

most knowledge on the fronto-limbic network is derived from animal studies, employing 

invasive methods to assess brain connections (e.g., lesion and tracing studies). Resting state-

functional magnetic resonance imaging (rs-fMRI) and proton MR Spectroscopy (1H-MRS) 

are powerful and non-invasive tools that allow to study in vivo the functional connections 

among brain areas (Gillebert and Mantini 2013) and the neurochemical profile in a region of 

interest (Puts and Edden 2012), respectively. In the present study, we aimed to assess the 

functional and neurochemical interactions within the amygdala–mPFC circuit in healthy 

subjects. Considering the centrality of the amygdala in the control of the emotional network 

(Calhoon and Tye 2015; Bickart et al. 2014), we chose this region as a “seed” for the rs-

fMRI analysis. Furthermore, based on the known contribution of mPFC to descending 

control of the amygdala (Calhoon and Tye 2015; Delli Pizzi et al. 2016), we investigated the 

GABA content in the mPFC by using edited 1H-MRS (Puts and Edden 2012; Mescher et al. 
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1998; Mullins et al. 2014). Considering the opposite action of the bottom–up and top–down 

pathways that are, respectively, modulated by the amygdala and the mPFC, our first 

hypothesis was that the activities of the amygdala and the mPFC would be negatively 

correlated at rest. Second, on the basis of the key role of GABA-ergic neurotransmission 

within the mPFC in balancing amygdala activity (Constantinidis et al. 2002), we expected a 

relationship between the functional coupling within the vmPFC–amygdala network and 

GABA content in the mPFC. Finally, considering our recent findings showing an association 

between GABA content within the mPFC and trait anxiety (Delli Pizzi et al. 2016), we 

expected that the functional and neurochemical interactions within the mPFC–amygdala 

loop would be associated to emotional processing and trait anxiety.

Materials and methods

Study sample

This study was approved by the Local Institutional Ethics Committee and was performed 

according to the Declaration of Helsinki (1997) and subsequent revisions. Informed consent 

was obtained from all individual participants included in the study.

Twenty-one healthy subjects aged between 41 and 88 years (10 males and 11 females) 

underwent MR imaging protocol and neuropsychological evaluation. Exclusion criteria 

were: prior history of major medical or psychiatric disorders; head injury or neurological 

problems; current pregnancy or breastfeeding; history of substance abuse; any 

pharmacological treatment; tobacco addiction; any contraindication to MRI scanning, 

including metal implants and claustrophobia. Alcohol and caffeine consumption were 

prohibited for 12 h prior to the MR measurement (Gao et al. 2013). Considering possible 

effects of menstrual cycle phase on GABA (De Bondt et al. 2015), pre-menopausal female 

subjects were selected in the follicular or luteal phase.

Neuropsychiatric and neuropsychological evaluation

Mental health status was clinically evaluated according to the fifth edition of Diagnostic and 

Statistical Manual of Mental Disorders (American Psychiatric Association guidelines 2013). 

The State-Trait Anxiety Inventory (STAI-Y2) was administered to test trait anxiety 

(Spielberger 1983). All subjects were assessed to ascertain normal brain functioning. The 

Mini Mental State Examination (MMSE) was performed for global cognitive assessment 

(Magni et al. 1996). The Frontal Assessment Battery (FAB) was carried out to exclude 

patients affected by frontal dysfunction (Appollonio et al. 2005). Lexical production and 

phonemic verbal fluency, as well as attention, were assessed by means of the verbal fluency 

test (FAS) (Oppenheimer 2008). Attention skills, sustained attention, divided attention, task 

coordination and set-shifting were investigated using the Trail Making Test (TMT) A and B 

(Giovagnoli et al. 1996). Attentional matrices were employed to investigate speed and 

attention (Abbate et al. 2007; Spinnler 1987). Short-term and long-term verbal memories 

(BSRT) (Babcock Story Recall Test) were assessed as well as auditory working memory 

(Baddeley and Wilson 2002). Visuo-spatial memory and ability were also investigated 

(Caffarra et al. 2002). Finally, the forward and backward Digit Span test was used to 

evaluate auditory working memory (Wechsler 1939).
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MR protocol

All MR data were acquired by a Philips Achieva 3 Tesla scanner (Philips Medical Systems, 

Best, The Netherlands) using a whole-body radiofrequency coil for signal excitation and an 

8-channel phased-array head coil for signal reception. T1-weighted images were acquired 

using a 3D Turbo Field-Echo sequence (TFE, TR/TE = 11/5 ms, slice thickness of 0.8 mm). 

T2-weighted fluid attenuation inversion recovery (FLAIR, TR/TE = 12,000/120 ms, slice 

thickness of 4 mm, FOV = 230 mm × 140 mm × 190 mm) images were also acquired to 

exclude participants with concomitant vascular pathology or with white matter (WM) 

abnormalities. 1H-MRS spectrum was acquired from a volume of interest (VOI) of 2.0 

(anterior– posterior) × 3.0 (left–right) × 3.0 (cranio-caudal) cm3 placed on the mPFC (Fig. 

1a). A MEshcher-GArwood Point RESolved Spectroscopy (MEGA-PRESS) sequence 

(TR/TE = 2000/68 ms, 320 averages) was used to acquire 1024 points with a spectral width 

of 2000 Hz. MEGA-PRESS generates two sub-spectra, with the editing pulse ON in one and 

OFF in the other. Specifically, an editing pulse is applied to GABA spins at 1.9 ppm to 

selectively refocus the evolution of J-coupling to the GABA spins at 3.02 ppm (ON spectra). 

In the other, the inversion pulse is applied elsewhere so that the J-coupling evolves freely 

throughout the TE (OFF spectra). Subtracting OFF spectra from ON spectra it removes 

overlying total creatine (tCr) signals from the edited spectrum, revealing the GABA signal in 

the difference spectrum (Mullins et al. 2014) (Fig. 1b). Resting-state Blood Oxygen Level 

Dependent (BOLD) fMRI data were acquired using a gradient-echo T2*-weighted echo-

planar (EPI) sequence with the following parameters: matrix size 64 × 64, FOV 230 mm, in-

plane voxel size 3.6 mm × 3.6 mm, Sensitivity Encoding (SENSE) factor 1.8 anterior–

posterior, slice thickness 5 mm, TE 30 ms. For each subject, a run of 300 functional volumes 

consisting of 21 transaxial slices was acquired with a TR of 1100 ms. Subjects were 

instructed to lie still and keep their eyes closed during acquisition.

Data analysis
1H-MRS—tCr was used as an internal standard reference based on its stable levels reported 

in normal conditions (Bogner et al. 2010) and its independence from trait anxiety (Delli 

Pizzi et al. 2016). Of note, this method has been shown to have performance equal to, or 

better than, water referencing (Bogner et al. 2010). Because the GABA signal detected at 

3.02 ppm is also expected to include contributions from homocarnosine and macromolecules 

(Henry et al. 2001), in the rest of the manuscript this signal is labeled as GABA+ to denote 

these other compounds (Gao et al. 2013; Rothman et al. 1997). GANNET, a MATLAB-

based tool (Edden et al. 2014), was used to quantify GABA+/tCr in each spectrum using 

default parameters, including frequency and phase correction of time-resolved data using 

spectral registration (Near et al. 2015). The GANNET-processed signal for GABA is shown 

in Fig. 1c. A GANNET extension was used to obtain the mask of the 1H-MRS VOI (Harris 

et al. 2015).

Structural MRI—The FLIRT tool (FSL; Smith et al. 2004) was used to co-register the 

structural images, Free-surfer’s outputs and 1H-MRS VOI mask in a common (native) space. 

FSL commands (fslmaths and fslstats) were used to define the gray matter (GM) and white 

matter (WM) which were contained within the 1H-MRS VOI and to measure the tissue 
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volumes. All images were viewed in FSLView to validate the location of the 1H-MRS VOI 

and confidence in tissue segmentation.

Rs-fMRI—The “recon-all-all” command line was used to process the T1-weighted image of 

each subject in order to perform an automated reconstruction and labeling of the cortical and 

subcortical regions. Specifically, the preprocessing steps included magnetic field 

inhomogeneity correction, affine-registration to Talairach-atlas, intensity normalization and 

skull-strip. Further processing included segmentation of the subcortical white matter and 

deep GM volumetric structures, tessellation of the GM and WM matter boundary, automated 

topology correction, surface deformation following intensity gradients to optimally place the 

GM and WM and GM/cerebrospinal fluid borders at the location where the greatest shift in 

intensity defines the transition to the other tissue class. Seed regions (the whole structure of 

the right and left amygdalae) were defined from the aparc + aseg.mgz file. The functional 

connectivity analysis was performed using FreeSurfer Functional Analysis Stream (FS-

FAST; http://surfer.nmrmgh.harvard.edu/fswiki/

FsFastFunctionalConnectivityWalkthrough.). This tool assesses functional connectivity 

among brain areas by using the structure of interest, as a “seed region”, automatically 

reconstructed from the structural images. Thus, the seed region definition is driven by 

individual anatomy and independent from the operator. Moreover, with this method the seed 

region covers the whole structure of interest, whereas in the classical approach (based on 

spherical regions of interest) only a partial area is included and the anatomical boundaries 

are ignored. Additionally, this method does not rely on coordinates from the literature to 

centre the seed mask, avoiding misunderstandings linked to discrepancy among studies. The 

fMRI data pre-processing (including motion and slice timing corrections, masking, 

registration to the anatomical image, sampling to the surface, and surface smoothing by 8 

mm as well as sampling to the MNI305 with volume smoothing) was performed by the 

“preprocsess” command. Surface sampling of time-series data was performed onto the 

surface of the left and right hemispheres of the “fsaverage” template of FreeSurfer. Nuisance 

regressors were obtained for each individual extracting the EPI average time courses within 

the ventricle mask and the white matter mask (considering the top 5 principal components). 

These regressors, the motion correction parameters and a fifth order polynomial were 

removed from the EPI time series. Temporal band-pass filtering, to the frequency band 

considered of interest for rs-fMRI, was performed (0.01<f < 0.1 Hz). The first four fMRI 

time points were discarded to allow for T1-weighted equilibration of the MRI signal. For 

each subject, the mean Frame-wise Displacement (FD) was calculated as a summary statistic 

of motion during the fMRI run (Power et al. 2012). The mean signal time course within each 

seed region was used as a “regressor” for the functional connectivity analysis. For each 

subject, the first level analysis was performed using the “selxavg3-sess” command, 

calculating the Pearson correlation coefficient (r value) between the seed time series and the 

time series at each voxel. The correlation maps derived were then converted to Z score maps 

before entering the second level analysis. For group analysis, the “isxconcat-sess” command 

was used, to create a “stack” of maps from each subject. General linear modeling was 

performed to obtain a group statistical functional connectivity map between each seed (right/

left amygdalae) and the cortex. Age was used as covariate. These statistical maps were 

thresholded at p <0.05 and corrected for multiple comparisons using False Discovery Rate 
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(FDR). The significant clusters obtained from this connectivity analysis were mapped onto 

the cortical surface of each hemisphere. Individual connectivity values between the seed 

region and the cortical region of interest were derived by averaging the Z scores of 

significant clusters in the target area. Note that since the 1H-MRS VOI contained a bilateral 

portion of vmPFC, the Z scores of left and right clusters were pooled, in order to obtain a 

single value describing the connectivity between each seed and the vmPFC.

Individual maps showing the connectivity of the amygdalae to cortex were translated from 

common space (“fsavarage”) into subject space, using the “mri_surf2-surf” command and, in 

turn, they were converted from the inflated surface to the volume, using “mri_label2cor” 

command. Then, to define the portion of the vmPFC-cluster which overlaps with GM within 

the 1H-MRS VOI, the vmPFC-cluster mask was crossed with the GM mask within the 1H-

MRS VOI using “fslmaths” and “fslstat” utilities. For each subject, we calculated the 

percentage of the vmPFC-cluster which is contained within the 1H-MRS VOI, dividing the 

volume of the vmPFC-cluster which is included within the 1H-MRS VOI by the volume of 

the whole vmPFC-cluster.

Statistical analyses

Demographic, psychometric and imaging outcomes are presented as mean ± standard 

deviation. Partial correlations were used to measure relationships between the amygdala–

vmPFC functional connectivity, mPFC GABA+/tCr and STAI-Y2 scores. Of note, in this 

analysis we adjusted for the known effect of age on GABA (Gao et al. 2013), possible 

effects of the GM and WM amounts within 1H-MRS VOI and possible effects of movement 

(mean FD). The significance threshold was adjusted for multiple comparisons by using 

Bonferroni’s correction.

Results

Demographic and clinical data

Table 1 summarizes demographic, psychometric, structural MRI and 1H-MRS outcomes for 

the whole sample. Suppl. Table shows the mean ± standard deviation and cut-off values for 

each test.

Functional connectivity

Figure 2 shows the results of functional connectivity between the amygdala and the cortex. 

Specifically, both the right and left amygdala signals were anti-correlated with the 

timecourse of the bilateral vmPFC including the BA12 and the pregenual and subgenual 

portions of BA32. Positive correlations were found between the amygdalae and other 

cortical regions of the two hemispheres, as reported in Tables 2 and 3. Cortical clusters 

expressing a positive coupling with the amygdalae were found bilaterally in the dorsomedial 

prefrontal cortex (dmPFC) including the dorsal ACC and supplementary motor area (SMA).

The Suppl. Figure 1 shows the overlap between the vmPFC-cluster and the 1H-MRS VOI in 

a representative subject. 73 ± 8 % (mean value across subjects ± standard deviation) of the 

vmPFC-cluster was contained within the H-MRS VOI.
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Correlation analysis

A significant positive correlation was observed between the right amygdala-vmPFC 

connectivity and GABA+/tCr within the mPFC (Fig. 3a; r = 0.64, p = 0.004) and with STAI-

Y2 (Fig. 3b; r = 0.60, p = 0.009). Importantly, this positive correlation between the 

amygdala-vmPFC functional connectivity and the GABA+/tCr within the mPFC was also 

confirmed considering only the mean Z scores from the right vmPFC-cluster which was 

included within the 1H-MRS VOI (r = 0.67, p = 0.005). GABA+/tCr within the mPFC was 

significantly correlated with STAI-Y2 (Fig. 3c; r = 0.79, p <0.001). Bonferroni’s 

uncorrected correlation was found between the left amygdala-vmPFC connectivity and the 

GABA+/tCr content within the mPFC (Fig. 3d; r = 0.52, p = 0.025). No significant 

correlation was found between the left amygdala-vmPFC connectivity and the STAI-Y2 

(Fig. 3e; r = 0.40, p = 0.10). The right amygdala-dmPFC connectivity and STAI-Y2 were 

also correlated (r= 0.57, p = 0.028).

Discussion

This is the first study reporting a close relationship between the amygdala-vmPFC functional 

coupling, GABA content within mPFC and trait anxiety (Fig. 4a). Importantly, our findings 

are not driven by age and gross structural factors. Specifically, we observed that the 

amygdala and the vmPFC activities are anti-correlated in healthy subjects. 

Electrophysiological data in animal models have shown that the BLA stimulation evokes a 

transient inhibition in 70–90 % of vmPFC neurons, whereas the remaining cells show 

enhanced firing (5–8 %) or are unresponsive to BLA stimulation (Floresco and Tse 2007; 

Ishikawa and Nakamura 2003; Pérez-Jaranay and Vives 1991). Studies assessing the limbic/

prefrontal circuit, observed an inverse relationship between the activities of the ventral 

anterior cingulate cortex (vACC)/vmPFC and amygdala (Johnstone et al. 2007; Somerville 

et al. 2013). Task-related fMRI studies on healthy subjects have shown that the amygdale 

and the vmPFC responses were negatively correlated (Kim et al. 2003). Furthermore, an 

increased activity in the vmPFC and a concomitant decreased activity in the amygdala have 

been described during successful emotion regulation (Hariri et al. 2003; Lieberman et al. 

2007; Urry et al. 2006). Other studies have reported that the intensity of negative affect was 

positively related with the amygdala activation and negatively associated with the vmPFC 

activity (Kim et al. 2003; Phan et al. 2005). Recent rs-fMRI studies showed a negative 

correlation between the amygdala and the vmPFC activities, suggesting that the vmPFC– 

amygdala network represents a negative feedback loop, resulting from the opposite 

contributions of bottom–up and top–down pathways (Gee et al. 2013; Sladky et al. 2015). 

Thus, we hypothesized that the negative functional coupling between the amygdala and the 

vmPFC could reflect the correct functioning of the top–down system.

In agreement with recent evidence that GABA levels predict negative BOLD responses in 

the same region (Duncan et al. 2014; Northoff et al. 2007; Stagg et al. 2014), we observed 

that the negative functional coupling between the vmPFC and the amygdala is negatively 

correlated with the mPFC GABA level. Animal studies demonstrated that higher GABA 

within the vmPFC reduces GABA-ergic inhibition within the amygdala, promoting its 

hyperactivity (Akirav and Maroun 2007; Courtin et al. 2014; Chefer et al. 2011; Nuss 2015). 
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Furthermore, it has also been suggested that the GABA content within the vmPFC is crucial 

in the modulation of the descending pyramidal glutamatergic neurons (Dilgen et al. 2013). 

The GABA interneurons of the vmPFC exert powerful inhibitory control over the 

glutamatergic output of pyramidal neurons, regulating the flow of information in the vmPFC 

(Constantinidis et al. 2002). In this context, we hypothesized that the low GABA level 

within the mPFC could promote the correct functioning of the top–down modulation of the 

amygdala and of the GABA-mediated inhibition on the BLA and the CeA (Fig. 4b). 

Conversely, high GABA levels within the mPFC could reduce the top–down modulation of 

the amygdala by down-regulating the GABA-mediated inhibition on the BLA and the CeA 

(Fig. 4c).

In a recent 1H-MRS study, we observed a close relationship between GABA content within 

mPFC and trait anxiety (Delli Pizzi et al. 2016). In the current study, we extended these 

findings by showing a close correlation between the negative functional coupling within the 

amygdala–vmPFC and the trait anxiety. The down-regulation of the top–down control on 

amygdala activity has been strongly linked to anxiety (Calhoon and Tye 2015; Kim et al. 

2011a; Nuss 2015). Moreover, it has been also observed that the coupling strength between 

the amygdala and the vmPFC predicts success of emotion regulation (Banks et al. 2007), 

individual differences in cognitive performance (Kelly et al. 2008) and beneficial outcomes 

in terms of reported anxiety (Kim et al. 2011a, b). Recent fMRI studies have highlighted the 

relevance of the amyg-dala–vmPFC connectivity in the pathophysiology of social anxiety 

disorder (SAD) (Kim et al. 2011b). Specifically, previous studies have described an 

increased amygdala reactivity, which positively correlates with symptom severity and/or trait 

anxiety (Goldin et al. 2009; Stein et al. 2002; Yoon et al. 2007). Furthermore, an inverse 

correlation was found between state anxiety in SAD patients and functional connectivity 

strength between the amygdala and the vmPFC (Hahn et al. 2011). Interestingly, Sladky et 

al. (2015) have recently observed abnormal connectivity between the ventral PFC and the 

amygdala in patients with SAD. Similarly, reduced functional connectivity between the 

vmPFC/vACC and the amygdala was described in patients with post-traumatic stress 

disorder (PTSD), supporting the relevance of an imbalance of the top–down control over the 

fear response (Koch et al. 2016). Further evidence has been provided by studies assessing 

the effect of mindfulness meditation on anxiety. Mindfulness meditation regulates emotions 

by regulating cognitive and affective evaluations to sensory events by cognitive reappraisal 

processes (Shapiro et al. 2006; Goldin and Gross 2010). In this context, the mPFC is 

relevant to down-regulate negative emotions by enhancing cognitive control and by 

modifying appraisals of sensory events (Urry et al. 2006; Hermann et al. 2009; McRae et al. 

2010). While mPFC/ACC activation mediates the cognitive control of ruminative thought 

processes, reduction of mPFC/ACC activity was related with inability to manage ruminative 

cognitive processes and with higher levels of anxiety. Particularly, increased vmPFC activity 

during meditation was associated with higher levels of dispositional mind-fulness as well as 

down-regulation of amygdala activity with greater reductions in anxiety (Creswell et al. 

2007). Hence, in anxious subjects, we suggest that the primary activations of the BLA and 

the CeA, which are caused by incoming information on potentially negative emotional 

stimuli, could be inadequately compensated by the top– down control pathway as expressed 

by high GABA content in the mPFC and the absence of negative functional coupling 
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between the vmPFC and the amygdala. Thus, the amygdala nuclei could be over-activated 

leading to somatic manifestation of anxiety (Fig. 4a–c). In this context, restoring 

GABAergic balance within the mPFC could be an important pharmacological target in the 

anxiety disorders. Post-mortem human studies suggest that benzodiazepine receptors are 

particularly dense in the vmPFC/vACC regions, especially within the subgenual areas 

(Palomero-Gallagher et al. 2008). Although no evidence is available on humans, animal 

studies demonstrated that the administration of GABAA receptor antagonist directly into the 

vmPFC sub-region, was able to promote extinction (McGaugh et al. 1990; Chang and Maren 

2011; Fitzgerald et al. 2014). Particularly, GABA-receptor blockade within the infralimbic 

region could stimulate the glutamatergic pyramidal neurons and in turn inhibit amygdala 

activity by activating the ITCs cells (Berretta et al. 2005). It was reported that high 

dopamine storage capacity in the amygdala is related to greater amygdala activity and 

anxiety (Kienast et al. 2008) and that alcohol potentiates GABA-mediated inhibition of 

amygdala activity (Roberto et al. 2004). Conversely, it was reported that ethanol inhibits 

persistent activity in PFC neurons and that this action was potentiated by D1-dopamine 

receptor antagonist (Tu et al. 2007). This evidence opens interesting questions on possible 

synergic and regulatory effect of the GABA and dopamine systems in the fronto-limbic 

network and emotional processing.

In the present study, we observed a lateralization of our findings to the right hemisphere. The 

relevance of the right hemisphere in emotion processing has been widely reported (Schwartz 

et al. 1975). Recent hypotheses suggest that the right hemisphere could control the 

perception and expression of emotions, whereas the left hemisphere could regulate 

emotional valence. Furthermore, it has been suggested that the right and left hemispheres 

could be involved in negative and positive emotions, respectively (Wallez and Vauclair 

2011). Importantly, the dominance of the right hemisphere for anxiety and anxiety-related 

processes has been also widely reported in literature (Kühn et al. 2011).

Aside from the main goal of the present study to assess the mPFC–amygdala loop, the 

positive functional coupling between the amygdala and cortical regions, including insula, 

superior temporal gyrus, entorhinal cortex, dorso-lateral orbitofrontal gyrus, precuneus and 

fusiform gyrus, merits discussion. The existence of reciprocal interaction between the 

amygdala and these cortical areas is widely supported by data on animal models and humans 

(Bickart et al. 2014; Stein et al. 2007). Of particular interest for emotional processing is the 

positive coupling between the amygdala and the insula. Specifically, the amygdala–insula 

connection is thought to identify the emotional significance of a stimulus, to generate an 

emotional response and to regulate affective state (Adolphs 2003). In this context, an 

increase of amygdala and insula activation during emotion processing (Stein et al. 2007) and 

a correlation between the insula–amygdala and state/trait anxiety have been prominently 

described in anxiety-prone subjects (Baur et al. 2012).

While we underline GABA detection using the MEGA-PRESS sequence as a strength of this 

study, we emphasize that the technique has limited spatial resolution, requiring a 1H-MRS 

VOI size equal to or larger than 3 × 3 × 2 cm3 in order to give a good signal-to-noise ratio 

(Edden and Barker 2007; Mullins et al. 2014; Puts and Edden 2012). Thus, due to these 

dimensional constraints and to avoid signal-loss artifact arising from inferior orbitofrontal 
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regions, the 1H-MRS VOI was extended over the genu of the corpus callosum, which 

roughly divides the ventral and dorsal regions of the mPFC (Kim et al. 2011a). Studies of 

animal models have shown that the prelimbic and infralimbic cortices are characterized by 

different connections to the amygdala (Vertes 2004) as well as by different functions in 

emotional processing (Adhikari et al. 2015). The infralimbic cortex is mainly involved in 

extinction learning and anxiety regulation and corresponds to human vmPFC/vACC (Phelps 

et al. 2004). Conversely, the prelimbic cortex was involved in behavioral manifestation of 

anxiety and fear expression (Burgos-Robles et al. 2009; Sierra-Mercado et al. 2011) and its 

functional homologue on humans is the dmPFC encompassing the BA9 and the dorsal 

regions of the BA 32 (Robinson et al. 2012). Consistent with the literature (Fullana et al. 

2015; Gee et al. 2013; Northoff et al. 2007; Robinson et al. 2012; Vytal et al. 2014), we 

found that bilateral clusters expressing the anticorrelation between the amygdalae and the 

vmPFC were located in BA12 and in the pregenual and subgenual portions of BA32 

(Palomero-Gallagher et al. 2008, 2013), whereas bilateral clusters showing positive 

correlation between the amygdalae and dmPFC were located in the dACC/SMA, i.e., well 

outside our 1H-MRS VOI. In agreement with Kienast et al. (2008), the amygdala– dmPFC 

connection was also correlated with trait anxiety. Importantly, we would remark that only 

the functional clusters within vmPFC were included in the 1H-MRS VOI.

In conclusion, our findings suggest a close relationship between GABA content within 

mPFC and the negative functional coupling between the amygdala and the vmPFC, 

providing new insights into the physiology of the vmPFC– amygdala circuit and emotional 

processing. Particularly, we hypothesize that GABA within the mPFC could regulate the 

efficiency of the top–down excitatory modulation (glutamatergic) on GABA-ergic 

interneurons within the amygdala, modulating amygdala activity and thus the emotional 

response. This hypothesis is strongly supported by the close relationship between the 

functional coupling, the GABA content within the mPFC activity and the trait anxiety. 

However, further investigations are required to disentangle the functional contributes of the 

bottom–up and top–down pathways, in order to better clarify how the GABA content within 

the mPFC influences each one of these two systems.
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Fig. 1. 
Proton magnetic resonance spectroscopy (1H-MRS). a A voxel of 2.0 (anterior-posterior) × 

3.0 (left-right) 9 3.0 (cranio-caudal) cm3 was centered on the medial prefrontal cortex 

(mPFC) by using T1-weighted image as anatomical reference; b representative GANNET-

edited MR spectra showing the GABA peak (3.02 ppm, in red); c representative GANNET-

edited spectra (in blue) with estimated GABA model and residual indicated in red and in 

black, respectively
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Fig. 2. 
Maps show the functional coupling between the seed region (right and left amygdalae) and 

the cortex. The significant functional coupling (p < 0.05, FDR-corrected) is displayed by 

voxels rating from red to yellow for the positive correlations and from dark blue to blue for 

the negative correlations
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Fig. 3. 
Scatterplots displaying the correlations among the GABA+/tCr within mPFC, amygdala–

vmPFC functional connectivity and trait anxiety. The strength of the functional connectivity 

and trait anxiety were expressed by Z scores and STAI-Y2, respectively
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Fig. 4. 
GABA-mediated circuit between the medial prefrontal cortex (mPFC) and the amygdala. a 
The amygdala receives incoming information on potentially threating stimulus from the 

thalamus and the sensory association cortex and it promotes a physiological and behavioral 

response by modulating the brainstem nuclei. In this context, the mPFC top–down regulation 

is key in order to regulate the amygdala activity. Particularly, the GABA content in the 

mPFC is associated to functional coupling between the amygdala and the mPFC and to trait 

anxiety. b The low GABA levels within the mPFC promote the correct functioning of the 

top–down modulation of the amygdala and of the GABA-mediated inhibition on the 

basolateral nuclei of the amygdala (BLA) and the centromedial nuclei of the amygdala 

(CeA). c The high GABA levels within the mPFC are linked to missing negative functional 

coupling within the mPFC– amygdala loop, which could be the consequence of a down-

regulation of the top–down control of the amygdala. Thus, the resulting over-activation of 

the GABAergic neurons projecting from the CeA to the hypothalamus and brainstem and of 

the glutamatergic projections from the BLA to the bed nucleus of the stria terminalis 

(BNST) could lead to somatic manifestation of anxiety
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Table 1

Mean ± standard deviation for demographic, psychometric, structural MRI and 1H-MRS outcomes

Outcome Mean ± SD

Age (years) 62.5 ± 10.7

Educational level (years) 10.8 ± 4.2

STAI-Y2 34.8 ± 6.4

GM (mm3) 10,025 ± 1116

WM (mm3) 8947 ± 961

GABA+/tCr 0.0640 ± 0.0086

GABA γ-aminobutyric acid, GM gray matter, STAI-Y2 State-Trait Anxiety Inventory scale—subscale 2, tCr total creatine, WM white matter
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