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Abstract
Objective. Recent studies suggest that the use of noninvasive closed-loop neuromodulation
combining electroencephalography (EEG) and transcranial alternating current stimulation (tACS)
may be a promising avenue for the treatment of neurological disorders. However, the attenuation
of tACS artifacts in EEG data is particularly challenging, and computationally efficient methods are
needed to enable closed-loop neuromodulation experiments. Here we introduce an original
method to address this methodological issue. Approach. Our alternating current regression
(AC-REG) method is an adaptive (time-varying) spatial filtering method. It relies on a data buffer
of preset size, on which principal component analysis (PCA) is applied. The resulting components
are used to build a spatial filter capable of regressing periodic signals in phase with the stimulation.
PCA is performed each time that a new sample enters the buffer, such that the spatial filter can be
continuously updated and applied to the EEG data.Main results. The AC-REG accuracy in terms of
tACS artifact attenuation was assessed using simulated and real EEG data. Alternative offline
processing techniques, such as the superimposition of moving averages (SMA) and the Helfrich
method (HeM), were used as benchmark. Using simulations, we found that AC-REG can yield a
more reliable reconstruction of the stimulation signal for any frequency between 1 and 80 Hz.
Analysis of real EEG data of 18 healthy volunteers showed that AC-REG was able to better recover
hidden neural activity as compared to SMA and HeM. Also, significantly higher correlations
between power spectrum densities in tACS on and off conditions, respectively, were obtained using
AC-REG (r= 0.90) than using SMA (r= 0.80) and HeM (r= 0.86). Significance. Thanks to its low
computational complexity, the AC-REG method can be employed in noninvasive closed-loop
neuromodulation experiments, with potential applications both in healthy individuals and in
neurological patients.

1. Introduction

During closed-loop neuromodulation experiments,
neural activity is continuously recorded, relevant
signal signatures are extracted, and the applied
magnetic/electrical stimulation is dynamically adap-
ted based on those features (Rebesco et al 2010,

Guggenmos et al 2013). Notably, closed-loop neur-
omodulation has been shown to facilitate and/or
enhance neural plasticity processes as compared to
open-loop neuromodulation, for which a fixed set
of stimulation parameters is chosen a-priori by the
experimenter (Sun and Morrell 2014). The adaptive
nature of closed-loop neuromodulation intrinsically
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leads to a lower intra- and inter-subject variability
(Iturrate et al 2018), opening the way to its use for
the treatment of neurological and psychiatric dis-
orders (Sun and Morrell 2014). Probably, one of the
most promising applications of closed-loop neur-
omodulation is based on deep brain stimulation
(DBS) of the basal ganglia for the treatment of move-
ment disorders, including Parkinson’s disease, essen-
tial tremor and dystonia (Perlmutter andMink 2006).
DBS is however invasive, and not suitable for a wide
range of other conditions involving malfunctioning
of large-scale brain networks rather than very specific
brain regions.

Transcranial alternating current stimulation
(tACS) is a non-invasive neuromodulation approach
that can be suitable for use in a wider number of
neurological and psychiatric conditions (Woods et al
2016).With tACS, small amounts of current are injec-
ted into the scalp via rubber electrodes enclosed in
saline soaked sponges (Morales-Quezada et al 2014).
The spatial specificity of the stimulated area is limited,
but the use of multi-channel montages (Alekseichuk
et al 2019) and frequency-based interference tech-
niques (Grossman et al 2017) canmitigate this poten-
tial problem. The number of studies employing tACS
for addressing basic and clinical neuroscience ques-
tions is nowadays very large (Alexander et al 2019,
Dowsett et al 2019). There is considerable experi-
mental (Marshall et al 2011, Herrmann et al 2013)
and computational (Ali et al 2013, Merlet et al 2013)
evidence that tACS can effectively entrain brain oscil-
lations. It has been successfully used to modulate
vision (Vossen et al 2015), movement (Feurra et al
2011) and audition (Riecke et al 2015). Moreover,
functional magnetic resonance imaging showed that
tACS can induce short-term neuroplastic effects over
relatively specific cortical regions (Cabral-Calderin
et al 2016, Bächinger et al 2017).

When using tACS for closed-loop neuromodu-
lation, neural signals usually need to be acquired in
a noninvasive manner, for instance using electro-
encephalography (EEG). EEG electrodes, which are
placed over the scalp of the participant, measure the
potentials induced by electrical activity of pyram-
idal neurons in the cortex (Beres 2017). EEG systems
are typically portable and not particularly expens-
ive, especially when the number of recording chan-
nels is low. It should be noted, however, that the dir-
ect estimate of neural activity in the cortex requires
the use of high-density EEG montages, with more
than 100 electrodes (Tucker 1993). The combination
of EEGand tACS is technically challenging, because of
the massive artifact that is mixed in the EEG data, in
the form of a quasi-sinusoidal signal with main har-
monic at the stimulation frequency. For this reason,
most EEG-tACS studies have been so far conducted

using an interleaved stimulation protocol, and in par-
ticular analyzing the EEG data collected in the off-
stimulation period (Vossen et al 2015, Mansouri et al
2017, Pahor and Jaušovec 2018).

To the best of our knowledge, few solutions exist
to attenuate the tACS artifact from EEG recordings.
A first approach that has been proposed is the sub-
traction of a constant sine wave fitted to the EEG
signal. Due to variations in the EEG signal primar-
ily induced by slow changes in electrode conduct-
ance and by movements of the participant’s head,
this solution often yields unsatisfactory results (Hel-
frich et al 2014). Other tACS methods require the
whole EEG recording to be available, and are therefore
unsuitable for closed-loop neuromodulation studies
(Helfrich et al 2014, Kohli and Casson 2020). For
instance, the one proposed byHelfrich and colleagues
follows a two-step procedure: an artifact template
is first subtracted from the data, and the remain-
ing artifacts are then attenuated using principal com-
ponent analysis (PCA) (Helfrich et al 2014). Only
one method, the superimposition of moving aver-
ages (SMA) (Kohli and Casson 2015), has been used
for real-time removal of tACS artifacts. However, in
its current implementation, SMA can simultaneously
process only few EEG signals. Furthermore, it tends to
strongly suppress the harmonics associated with the
tACS artifact, possibly inducing large distortions in
the frequency characteristics of neural signals (Kohli
and Casson 2019).

Recent studies suggest that the use of closed-
loop neuromodulation based on tACS and EEG may
be a promising avenue for the treatment of neur-
ological disorders (Semprini et al 2018). Therefore,
there is a compelling need of a technological solution
with low computational complexity for tACS arti-
fact removal, which could be effectively used with
low-density as well as high-density EEG recordings.
In this paper we introduce a novel solution to this
problem. Our alternating current regression (AC-
REG) method can be conceptualized as an adaptive
(time-varying) spatial filter method. Specifically, we
use a data buffer of preset size, on which we apply
PCA; the resulting principal components (PCs) are
used to build a spatial filter for the regression of
periodic signals in phase with the stimulation. PCA
is performed each time that a new sample enters
the buffer, such that the spatial filter can be con-
tinuously updated and applied to the EEG data. In
this study we assess the performance of AC-REG
using both simulated and real EEG signals. Simu-
lated data are used to define the main parameters
of the method and to assess its performance under
controlled conditions. A comparison in terms of
accuracy with alternative methods is conducted,
using both real and simulated data.
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Figure 1. Example of simulated EEG data with tACS artifact. (A) 2-second segment of reconstructed artifact-free EEG signals for
four representative channels; (B) power spectral density of the reconstructed artifact-free EEG signals (C) 2-second segment of
simulated EEG signals, obtained adding the tACS artifact to the artifact-free EEG signals. (D) power spectral density of the
simulated EEG signals with tACS artifact.

2. Methods

2.1. Description of the method
The AC-REG method relies on the use of EEG sig-
nals that are continuously read and stored in a buffer
of n samples. A spatial filter is dynamically updated
and applied to themost recent data samples to attenu-
ate the contribution of the tACS artifact mixed in the
EEG data. For each given time epoch, PCA is calcu-
lated on the data buffer to retrieve the PCs, i.e. under-
lying signals that are statistically uncorrelated with
each other and linearly mixed in the data (Turnip and
Junaidi 2014). Notably, the number of samples n in
the data buffer will inherently have an impact on PCA
performance, in terms of accuracy and computation
time (Guarnieri et al 2018). The PCA model can be
mathematically described as

X(τ) = A ·Y(τ) (1)

where X(τ) is a [k · n]-dimensional matrix of k
recordings and Y(τ) is a [k · n]-dimensional mat-
rix of PC time-courses. Furthermore, A is a [k · k]-
dimensional matrix that contains the PCweights over

the recordings. ThematricesA andY(τ) can be estim-
ated using a singular value decomposition (SVD),
which imposes a constraint of orthogonality among
the PCs (Golub and Kahan 1965, Turnip and Junaidi
2014). After PCA decomposition, the PCs with quasi-
sinusoidal time-courses in phase with the stimula-
tion signal are selected, by imposing a stringent cri-
terion in terms of temporal correlation (r> 0.5). This
classification of PCs is used to build the spatial filter
capable of attenuating tACS artifacts. To this end, a
[n · n] diagonal matrix Z is created, setting each ele-
ment zii equal to 0 if the i-th PC is classified as related
to tACS artifact, or equal to 1 otherwise. The spatial
filterW(t) at any given time τ of the EEG recording,
is then obtained as follows:

W(t) = A ·Z ·A−1. (2)

The vector of EEG data corresponding to the last
sample in the buffer, indicated as X(t), is combined
with the spatial filter W(t) calculated using the buf-
fer data to obtain the vector of artifact-free EEG
dataXc (t):

Xc (t) =W(t) ·X(t) . (3)

3
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Figure 2. Example of real EEG signals in tACS-on and tACS-off conditions. (A)-(B) topoplots (spatial maps) showing the
intensity of EEG data collected with tACS on and off, respectively; (C) 5-second segment of EEG data collected with tACS on (one
representative channel); (D) 5-second segment of EEG data collected with tACS off (four representative channels); (E)-(F) PSDs of
EEG data collected with tACS on and off, respectively. The thick black line indicates the grand average of the PSD across channels.

In this manner, the artifacts are subtracted from the
EEG recordings with appropriate weights for each
channel, and the reconstruction of artifact-free EEG
signals is accomplished in a continuous manner.

2.2. Validation of the method
2.2.1. Performance analysis using simulated EEG data
Simulated data used in this study were derived from
resting-state EEG recordings collected for 5 min in
12 right-handed healthy participants (four males and

eight females, with ages ranging from 21 to 43 years).
These recordings were already used in some of our
previous studies (Liu et al 2017, Guarnieri et al 2018,
Samogin et al 2019). Before undergoing the examin-
ation, the participants gave written informed consent
to the experimental procedures, which were approved
by the Institutional Ethics Committee of ETHZurich.
EEG data were recorded at 1000 Hz using a 256-
channel system from Electrical Geodesics (Eugene,
US). The electrode at vertex (labeled asCz in the 10/20
international system) was used as physical reference.
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Figure 3. Dependence of AC-REG reconstruction accuracy
on channel count, sampling frequency and buffer size. We
examined how the accuracy in the reconstruction of the
tACS artifact, quantified by the correlation index, is
influenced by (A) the number of EEG channels given as
input to AC-REG and (B) the number of samples in the
data buffer used. The accuracy for different sampling
frequencies is shown using lines with different colors.

EEG data preprocessing was carried out using
EEGLAB (https://sccn.ucsd.edu/eeglab/index.php)
and built-in MATLAB functions. The preprocessing
steps included: bad-channel detection and inter-
polation, digital filtering in the band 1–80 Hz,
resampling to 200 Hz and average re-referencing.
In addition, removal of biological artifacts was
performed by means of independent component
analysis (ICA), as described in Liu et al (2017).
The resulting artifact-cleaned EEG data were
then mixed with simulated tACS artifact, gen-
erated using the open source toolbox ARtACS
(https://github.com/agricolab/ARtACS). Temporal
changes in artifact amplitude over time were mod-
elled using an Ornstein–Uhlenbeck process. The
intensity of the tACS was set as being 100 times
larger than background EEG activity, as observed
in real data. Simulated tACS artifacts were gener-
ated at varying frequencies ranging between 1 and
70 Hz. More detailed analyses were conducted with
simulated tACS artifacts at 10, 20 and 70 Hz, as

Figure 4. Dependence of AC-REG computation time on
channel count, sampling frequency and buffer size. We
examined how the computation time is influenced by (A)
the number of EEG channels given as input to AC-REG and
(B) the number of samples in the data buffer used. The
computation time for different sampling frequencies is
shown using lines with different colors.

these are frequencies commonly used in tACS stud-
ies (Cappon et al 2016, Clayton et al 2018, Sugata
et al 2018).

Using the simulated EEG data (see figure 1), we
first performed an optimization of AC-REG settings.
Pseudo-online tests were conducted using a moving
window approach, to generate a ‘virtual’ buffer of
data to be given as input to AC-REG. Specifically, we
analyzed how accuracy and computational time vary
with different channel numbers, sampling frequen-
cies and data buffer sizes. The number of EEG chan-
nels was equal to 16, 32, 64, 128 and 256, respect-
ively, and the sampling frequency was set to 200, 500
and 1000Hz, respectively; different lengths of the buf-
fer size were tested, in the range between 100 and
2000ms. Accuracy was quantified by using the correl-
ation between the reconstructed EEG data and those
without tACS artifact. Computation time was meas-
ured using MATLAB (release 2016b) running under
MacOS (with 2.5 GHz Intel Core i7 processor and 16
GB RAM).
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Figure 5. Performance of AC-REG, SMA and HeM for
different noise levels and stimulation frequencies. Accuracy
in the reconstruction of artifact-free EEG signals, as
quantified by the correlation index, was examined (A) for
noise levels varying between 0% and 20% of the signal
intensity and (B) for stimulation frequency ranging
between 1 and 70 Hz.

Subsequently, we focused on EEG simulations
with 64 channels and with sampling frequency at
500 Hz. The size of the data buffer for AC-REG was
set to 500 ms. Hence, we compared the accuracy of
AC-REG in tACS artifact attenuation with respect
to two alternative approaches: SMA (Kohli and Cas-
son 2015) and the Helfrich method (HeM) (Hel-
frich et al 2014). As for SMA, we used the imple-
mentation included in the ARtACS toolbox. Accord-
ingly, the parameter M was set equal to 10, and
the parameter N was equal to the number of stim-
ulation cycles. HeM was implemented in MATLAB,
based on the information included in the original
study. First, we assessed the sensitivity of AC-REG,
SMA and HeM with respect to the noise level, which
was varied between 0% and 20% of the average
standard deviation of the clean EEG signal. Fur-
thermore, after selecting a noise level of 5% (Bai
and He 2006), we compared the accuracy of the
three methods as a function of the stimulation fre-
quency.

Figure 6. Example of a real EEG signal processed using
AC-REG, SMA and HeM. (A) Raw EEG signal from the
channel Cz; (B-C-D) The same EEG signal after processing
with AC-REG, SMA and HeM, respectively, and digital
filtering in the band 19–21 Hz (i.e. around the stimulation
frequency of 20 Hz). The same EEG dataset shown in
figure2 has been used for the analysis.

2.2.2. Performance analysis using real EEG data
We used recordings collected in 18 healthy right-
handed volunteers (nine males and nine females, age
ranging between 20 and 36). Participants gave their
written consent before taking part in the experiment.
The whole procedure was carried out in accordance
with the principles of the Declaration ofHelsinki, and
the protocol was approved by the Local Ethical Com-
mittee of Chieti University.

tACS was delivered by a battery-driven, cur-
rent stimulator (DC-Stimulator, NeuroConn GmbH,
Germany) through a pair of conductive rubber
electrodes (3 cm × 3 cm, 9 cm2). An electro-
conductive gel was applied under the rubber elec-
trodes to reduce contact impedance. We used a stim-
ulation of 90 s duration and fade-in/fade-out times
of 5 s. A bilateral montage was used, with patch elec-
trodes placed at the C3 and C4 sites of the 10–20 EEG
system. During the tACS stimulation, an alternating

6
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Figure 7. Quantification of tACS artifact residual in real EEG data.We estimated the correlation between EEG signals processed
using AC-REG, SMA and HeM, filtered in the band 19–21 Hz, and the same signal before artifact correction. Correlations were
averaged across channels to obtain a single value for each participant, and for each method. These values were displayed in the
form of interquartile box plots. Statistical comparisons at the group level were performed using a Wilcoxon signed-rank test.
Significance is indicated as follows: ∗ = p < 0.05, ∗∗ = p < 0.01, ∗∗∗ = p < 0.001.

Figure 8. Topographies of ocular artifact and occipital alpha components in real EEG data with tACS off and on, respectively.
Spatial distribution of (A) the ocular component, and (B) the occipital alpha component in a representative subject, for the
tACS-off condition and the tACS-on condition after tACS artifact removal using AC-REG, SMA and HeM, respectively. The same
EEG dataset shown in figure2 has been used for the analysis.

current was transmitted with a sinusoidal waveform,
the frequency was set at 20 Hz and the relative phase
at 0◦. Alternating current was applied at 1000 µA res-
ulting in a mean current density 0.011 mA cm−2.

EEG activity was recorded with a Be-plus system
manufactured by Eb-Neuro (Florence, Italy) before,
during and after tACS, using 57 scalp electrodes posi-
tioned according to a standard 10–10 montage. The
electrode labeled as AFz was used as physical ref-
erence. Impedance of all electrodes was kept lower
than 5 kΩ. Signals were sampled at 512 Hz and

stored on a computer for offline analysis. The EEG
recording started 3 min before the stimulation and
ended 3 min after it. The stimulation period las-
ted 90 s. During the experiment, the participant was
seated in a comfortable position and was asked to
stay at rest,maintaining a relaxed position, with open
eyes and without moving or engaging in any cog-
nitive task. The EEG data were preprocessed offline,
using the same analysis workflow used for the gen-
eration of the simulated data (see previous section).
Specifically, bad-channel detection and interpolation,
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Figure 9. Quantification of ocular artifact and occipital alpha reconstruction in real EEG data. We estimated the impact of
AC-REG, SMA and HeM processing, respectively, on the reconstruction of (A) the ocular artifact component and (B) the occipital
alpha component. The components obtained from EEG data in the tACS-on condition, were compared with those obtained from
EEG data in the tACS-off condition. Correlations were averaged across channels to obtain a single value for each participant, and
for each method. These values were displayed in the form of interquartile box plots. Statistical comparisons at the group level were
performed using a Wilcoxon signed-rank test. Significance is indicated as follows: ∗ = p < 0.05, ∗∗ = p < 0.01, ∗∗∗ = p < 0.001.

Figure 10. Effect of tACS artifact removal methods on spectral properties of EEG data. (A-C) PSDs from EEG data in the
tACS-on period, processed using AC-REG, SMA and HeM, respectively. The same EEG dataset shown in figure2 has been used for
the analysis. The thick black line indicates the grand average of the PSD across channels.

digital filtering in the band 1–80 Hz and average re-
referencing were applied (see figure 2 for an illustra-
tion of real EEG data).

To assess the effectiveness of AC-REG in attenu-
ation the tACS artifact on real EEG data, we conduc-
ted three analyses. First, we quantified the correlation
between the tACS signal and the artifact-corrected
EEG data, filtered around the stimulation frequency
(19–21Hz). This analysis provided an indication con-
cerning the presence of residual artifacts in the EEG
data. SMA andHeMwere used as benchmark to eval-
uate the performance of AC-REG. Second, we per-
formed ICA of the EEG signals using the FastICA
algorithm (Hyvarinen 1999), to extract specific com-
ponents related to eye blinks and the occipital alpha
rhythm. The topology of the components extracted
from the artifact-free EEG data in the tACS-on period
were compared to those from the EEG data in the
tACS-off period, by means of their spatial correla-
tion. Third, we investigated the correspondence in
the power spectral density (PSD) of the artifact-free
EEG data in tACS-on period as compared to the EEG

data in the tACS-off period. This correspondence was
quantified using the Pearson’s correlation, focusing
on all frequencies in the band 1–80 Hz except the
stimulation frequency and its harmonics (i.e. 20, 40,
60 Hz). A Wilcoxon signed rank test was used to test
whether there were significant differences among the
correlation values obtained with the three methods.
The Bonferroni method was used to correct statist-
ical significance, accounting for multiple comparis-
ons (AC-REG vs. SMA, AC-REG vs. HeM, SMA vs.
HeM). For all the analyses on real EEG data, AC-REG
was used with a buffer size of 500 ms.

3. Results

The performance of AC-REG depends on the amount
of data that can be used for the definition of the
spatial filter. To examine how the number of data
channels, sampling frequencies and data buffer sizes
impact on accuracy and computational time, we per-
formed pseudo-online tests using the simulated EEG
data. Overall, the accuracy in the reconstruction of

8
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Figure 11. Performance of tACS artifact removal methods
on real EEG data.We estimated the effectiveness of
AC-REG, SMA and HeM in reconstructing artifact-free
EEG signals. To this end, we used as reference the EEG data
collected without stimulation. We quantified, channel by
channel, the correlation between PSDs, and then we
averaged the values across channels to obtain a single
correlation value for each of the 18 participants, and for
each method. The resulting correlation values were
displayed in the form of interquartile box plots. Statistical
comparisons at the group level were performed using a
Wilcoxon signed-rank test. Significance is indicated as
follows: ∗ = p < 0.05, ∗∗ = p < 0.01, ∗∗∗ = p < 0.001.

tACS artifact did not strongly depend on the num-
ber of EEG channels and on the sampling frequency,
but better performance was nonetheless obtained
with higher channel counts and higher sampling
frequencies respectively (figure 3(A)). In contrast,
the buffer size used for AC-REG processing was an
important factor in determining the quality in tACS
artifact reconstruction. Specifically, the use of a buf-
fer size of at least 500 ms for AC-REG seemed to
be important to ensure an effective artifact attenu-
ation (figure 3(B)). We also found that the computa-
tion time had a super-linear relationshipwith channel
count (figure 4(A)), whereas it increased with both
sampling frequency and buffer size in a sub-linear
manner (figure 4(B)).

By using simulated EEG data, we could also assess
the performance of AC-REG with respect to altern-
ative approaches, such as SMA and HeM. As expec-
ted, the correlation between simulated and recon-
structed EEG data was only slightly dependent on the
noise level for any method under investigation, pos-
sibly due to the high intensity of the tACS artifact.
Notably, correlations were higher for AC-REG than
SMA and HeM (figure 5(A)). Interestingly, we found
that the performance of AC-REG, SMA and HeM
depended on the tACS frequency in a substantial
manner (figure 5(B)). All methods had a perform-
ance drop below 4 Hz and at around 10 Hz, which
are the frequencies with relatively lower ratio between
artifact and neural signal amplitudes, respectively.
Overall, we observed that SMA had a clear decrease
in reconstruction accuracy with an increase of the
stimulation frequency, whereas the performance of

AC-REG and HeM was largely stable across frequen-
cies.

We finally moved to the assessment of AC-REG
using real EEG data. First, we examined whether the
EEG data processed by AC-REG, SMA and HeM pos-
sibly included residuals of the tACS signal. We found
that the EEG signal at the stimulation frequency was
in phase with the tACS artifact for HeM, whereas this
was not the case for AC-REG and SMA (figure 6).
The correlations between the tACS signal and the
EEG signals at the stimulation frequency were signi-
ficantly lower for AC-REG than SMA and HeM (both
p < 0.001, with Bonferroni correction). Conversely,
the correlation values obtained for SMA and HeM
were not significantly different across participants
(p= 0.557, before Bonferroni correction) (figure 7).

Next, we extracted and analyzed the EEG com-
ponents associated with eye movements and the
occipital alpha rhythm, respectively (figure 8). AC-
REG, SMA and HeM permitted to reconstruct the
ocular component and occipital alpha components.
The EEG data processed with SMA had the highest
correlations between the ocular componentestimated
in the tACS-on and tACS-off periods, respectively
(figure 9(A)). These correlations were significantly
higher than those obtained ed with AC-REG and
HeM (p = 0.002 and p = 0.0013, respectively,
with Bonferroni correction). Also, the values of AC-
REG were significantly higher than those of HeM
(p = 0.018, with Bonferroni correction). For the
occipital alpha component, no significant differ-
ences were found between the correlations obtained
with AC-REG and SMA processing, respectively
(p = 0.5614, before Bonferroni correction). In turn,
the values of AC-REG and SMA were significantly
higher than those obtained with HeM (p= 0.003 and
p= 0.006, respectively, with Bonferroni correction).

The PSD of the EEG signals reconstructed using
AC-REG clearly showed a single prominent peak at
around 10 Hz and revealed two additional narrow
peaks at the main stimulation frequency (20 Hz) and
its first harmonic (40 Hz), respectively (figure 10).
The same two peaks are easily detectable also in the
PSD of the EEG signals reconstructed using HeM.
With this method, however, the peak at around 10 Hz
was much less prominent. In turn, the PSD obtained
using SMA showed a clear peak at around 10 Hz,
whereas frequencies around 20 and 40 Hz were com-
pletely suppressed. In order to perform amore quant-
itative analysis, we used the PSDof the EEGdata in the
tACS-off condition as reference, and we quantified
its correlation with the PSDs produced by AC-REG,
SMA and HeM, respectively (figure 11). A Wilcoxon
signed rank test showed that AC-REG had signific-
antly higher values than SMA and HeM (p < 0.001
and p = 0.0222, respectively, with Bonferroni cor-
rection). Also, the values of SMA and HeM were not
significantly different (p = 0.075, with Bonferroni
correction).
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4. Discussion

The AC-REG method has been developed for atten-
uation of tACS artifacts in EEG signals. Due to its
low-computational complexity, it may be effectively
used in noninvasive closed-loop neuromodulation
experiments. AC-REG uses an adaptive spatial fil-
ter based on PCA to dynamically estimate and sub-
tract the tACS signal from EEG recordings. It out-
performs alternative methods, both on simulated and
real data. The low computation time may permit its
use in online modality not only with low-density
but also high-density EEG recordings. Importantly,
the compatibility with high-density EEG may enable
the use of AC-REG for source-level closed-loop
neuromodulation (Guarnieri et al 2020).

4.1. Primary features of AC-REG
The AC-REG method relies on the use of PCA, a
data decomposition technique ensuring low com-
putation times required for noninvasive closed-loop
experiments. Specifically, the identification of prin-
cipal components temporally coherent with tACS sig-
nals permits to obtain a spatial filter to be used for
artifact removal. By using a data buffer, the spatial
filter is dynamically updated such that artifact-free
EEG data can be obtained in an online manner. A
possible caveat of our approach is that the data buf-
fer should contain enough samples for an effective
PCA decomposition, hence for an accurate definition
of the spatial filter. On the other hand, it should be
considered that computation times need to be kept
as low as possible to enable the use of AC-REG in
closed-loop neuromodulation experiments. Our res-
ults suggest that AC-REG can be used for the sim-
ultaneous processing of up to 256 EEG recordings,
with low computation time. This is essential for the
development of source-level closed-loop neuromod-
ulation systems, inwhichneural activity in the brain is
estimated and used for tuning brain stimulation para-
meters (Guarnieri et al 2020).

4.2. Analysis of method performance
To assess the performance of the AC-REG, we first
relied on a simulated dataset containing a mix of
neural signals and tACS artifacts. In this manner,
we could define the buffer size of AC-REG yield-
ing a reasonable compromise between accuracy and
computation time (figures 3–4). With known ground
truth, we could also examine the effectiveness of
AC-REG in tACS artifact removal with alternative
approaches, such as SMA and HeM, under controlled
conditions. We found that AC-REG outperformed
the other methods for all the noise levels and the
stimulation frequencies that were tested (figure 5).
Notably, AC-REG permitted the simultaneous pro-
cessing of up to 256 channels (figure 4) with relatively
low processing time, theoretically compatible with its

use in quasi real-time applications. It should be con-
sidered that the processing of all EEG channels simul-
taneously can enable source localization in real-time
(Guarnieri et al 2020).

The analysis conducted using AC-REG, SMA
and HeM on real EEG data largely confirmed the
findings from simulated data, and provided further
insights in the capability of the methods for pre-
serving true neural oscillations. The analysis of the
artifact-corrected EEG data suggested that AC-REG
successfully removes the sinusoidal signal that com-
pletely synchronized with the stimulation, possibly
preserving neural signals entrained by the stimula-
tion itself (figures 6–7). Notably, other sources of
EEG activity were also preserved by AC-REG. For
instance, we were able to reconstruct components
associated with eye blinks and the occipital alpha
rhythm (figure 8). In this regard, SMA seemed to
be more accurate than AC-REG in preserving eye
blinks, whereas no significant differences in recon-
struction performance were found between AC-REG
and SMA for the occipital alpha rhythm (figure 9).
To evaluate the performance of AC-REG, SMA and
HeM on real data, we also compared the spectral
properties of EEG signals in tACS-on and tACS-off
conditions. It should be noted that modulations of
neural activity and connectivity during and follow-
ing tACS have been reported (Neuling et al 2013,
Vosskuhl et al 2016, Bächinger et al 2017). Consid-
ering the relatively short duration of the stimulation
and the strength of the injected current, any assess-
ment of stimulation-induced neural changes needs to
be conducted with caution (Vöröslakos et al 2018).
On the other hand in this study, we focused on
gross alterations in power spectrum density intro-
duced by artifact removal methods. Our results sug-
gested that AC-REG could largely preserve EEG sig-
nals for frequencies below the one of the stimulation
itself (figures 10–11). We also found that, unlike AC-
REG and HeM, SMA strongly suppressed all the har-
monics associated with the tACS artifact, inducing
distortions in the frequency content of neural signals.
The differences between AC-REG and HeM were less
marked, although still significant. Notably, the use of
HeM yielded an overall reduction of power at all fre-
quencies compared to AC-REG and SMA, in particu-
lar at around 10 Hz.

4.3. Limitations and future work
In this study, we introduced AC-REG and validated it
using both simulated and real EEG data. Simulated
EEG data were created by adding sinusoidal sig-
nals generated using the ARtACS toolbox to artifact-
cleanedEEG signals. Temporal distortions introduced
by changes in electrode impedance occurring during
data acquisition were modelled using an Ornstein–
Uhlenbeck process. However, the possible impact of
time-sample jitters (Barban et al 2019) and biological
artifacts (Noury and Siegel 2017) was not taken into
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account. The validation on real data was conducted
by testing the correspondence between the PSDs with
tACS on and off, respectively, in resting state condi-
tion. This approach can be justified by the fact that the
stimulation induces entrainment primarily of brain
oscillations at the frequency of the tACS and its har-
monics (Antal and Herrmann 2016, Adaikkan and
Tsai 2020). To ensure the generalizability of our res-
ults, it would be important to extend the validation of
AC-REG on real EEG data collected with other exper-
imental protocols. In particular, event-related proto-
cols may be used to test whether the reconstruction
of neural activity at the single-trial level is unaffected
by residual noise (Giroldini et al 2016, Mantini et al
2007, Helfrich et al 2014). Another important aspect
to consider is that real EEG data were collected dur-
ing tACS at 20 Hz. It is therefore worth investigating
how our findings might generalize to other stimula-
tion frequencies, also considering that non-linear dis-
tortions can be more easily observed at higher stimu-
lation frequencies (Noury et al 2016).

AC-REG was introduced and validated using
methods typically used for offline analyses, such as
SMA and HeM. The comparison may be extended in
future studies to other methods that have been pro-
posed to attenuate high-voltage simulation artifacts
mixed in EEG recordings, as for instance quadrature-
regression independent vector analysis (q-IVA) (Lee
et al 2019). This method has been so far validated
only on EEG data collected during galvanic vestibu-
lar stimulation, but it could be readily used to atten-
uate artifacts generated by tACS. AC-REG may be
particularly valuable for applications in which EEG
recordings need to be processed simultaneously and
in real-time, as for instance in source-based closed
loop experiments (Bergmann et al 2016). It should
be noted, however, that the specific multi-channel
implementation of AC-REGmake themethod poten-
tially sensitive to the presence of bad channels. In
this regard, specific solutions for enabling the effect-
ive use of AC-REG in online modality will need to
be addressed in future studies. It would be import-
ant to test the effectiveness and validity of AC-REG in
a noninvasive closed-loop neuromodulation experi-
ment. As such, EEG data will have to be processed
in real-time for the attenuation of the tACS arti-
fact (Schlegelmilch et al 2013, Kohli et al 2017), as
well as biological signals (Guarnieri et al 2018). The
readout of EEG activity will then be used to adjust
phase and intensity of the stimulation (Bergmann
et al 2016).

5. Conclusions

We have introduced AC-REG, a method for the
attenuation of tACS artifacts removal that is suitable
not only for low-density but also high-density EEG
recordings. The method requires the use of PCA on

short time windows for the dynamic update of a spa-
tial filter. This ensures low computation times, poten-
tially enabling its use in real-time during EEG exper-
iments. Just as importantly, AC-REG outperforms
other methods for tACS artifact removal, which nor-
mally operate in an offline modality. We argue that
AC-REG may enable further development of closed-
loop neuromodulation techniques, with potential
applications both in healthy individuals and in neur-
ological patients.
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