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Synopsis: We analyze social dynamics in a continuous population where randomly matched individuals
have to choose between two pure strategies only (‘cooperate’ (C) and ‘not cooperate’ (NC)). Individual
payoffs associated with the possible outcomes of each interaction may differ across groups, depending on
the specific social and cultural context to which each agent belongs. In particular, it is assumed that three
sub-populations are initially present, ‘framing’ the game according to the prisoner’s dilemma (PD),
assurance game (AG) and other regarding (OR) payoff configurations, respectively. In other words, we
assume that common knowledge about the payoffs of the game is ‘culturally-specific’. In this context, we
examine both the adoption process of strategies C and NC within each sub-population and the diffusion
process of ‘types’ (PD, AG and OR) within the overall community. On the basis of an evolutionary game-
theoretic approach, the paper focuses on the problem of coexistence of PD, AG and OR groups as well as
of ‘nice’ (C) and ‘mean’ (NC) strategies. We show that coexistence between C and NC is possible in the
heterogeneous community under examination, even if it is ruled out in homogeneous communities where
only one of the three types is present.
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1. Introduction

Though the prisoner’s dilemma (PD) has been extensively studied under a wide
variety of conditions and perspectives (see, ¢.g. Kandori 1982, Rubinstein 1986,
Binmore & Samuelson 1992, Ellison 1994), coexistence of strategies has rarely been
obtained as a theoretical result. Eshel et al. (1999) consider a large population with a
local interaction structure, where unrelated individuals often meet with their neigh-
bors and are allowed to occasionally change their own strategy by imitating the most
successful agents belonging to the interaction neighborhood. In this framework, they
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define as ‘unbeatable’ a strategy which turns out to be robust against the invasion of
a finite group of identical mutants and find that, whenever agents play either PD or
chicken game (CG), cooperation is the unique unbeatable strategy insofar as the
learning neighborhood is far larger than the interaction neighborhood. Under very
different conditions, Karandikar et al. (1998) obtain a somewhat similar conclusion
in a model where two agents play the PD over time and follow an aspiration-based
adjustment rule: such a process leads to the eventual emergence of the mutual
cooperation outcome (i.e. even in this framework, coexistence is ruled out). However,
Palomino & Vega-Redondo (1999) correctly point out that such a result crucially
depends on the presence of inter-agent ‘feedback effects’ due to the small number
of players involved in the game. In their paper they set up an aspiration-based
dynamic model of bounded rationality where a continuum of agents are randomly
matched and play the PD: under certain conditions, their analysis brings about an
interesting coexistence result, as long-run partial cooperation (never exceeding half of
the population) emerges as the unique limit outcome of social adjustment paths.
Hirshleifer & Martinez Coll (1991) analyze the dynamics related to the adoption
process of four pure strategies (‘cooperate’, ‘tit for tat’, ‘defect’ and ‘bully’) within a
large population of utility-maximizing agents. The subjects have to choose which
strategy to adopt in a series of random pairwise matchings with other individuals
belonging to the same population. The four strategies are played both with payoff
configurations of PD type and of CG type. However, it is assumed that the two
games are played separately: they first consider the adoption process in a population
where all the agents believe they are playing a PD game (whose payoff levels are
known to all) and are all rationally maximizing their own payoff; subsequently, the
same process takes place within a population where agents play a CG and believe this
information to be common knowledge. In such a context, the adoption process of the
above behavioral options leads to the coexistence of ‘nice’ strategies (such as ‘coop-
erate’ and ‘tit for tat’) and ‘mean’ strategies (such as ‘defect’ and ‘bully’). As a
consequence, their predictions are consistent with the following well-known experi-
mental' and empirical result: despite (normally relevant) cultural and economic
differences, in many large social environments, a mixture of ‘nice’ and ‘mean’
behaviors is often observed, as almost everywhere some people are honest, for
example, tend to return valuable lost items, to tip in restaurants and to queue in
the markets, whereas some other people belonging to the same population do not.?
The same holds even for more proactive and morally demanding behaviors such as
volunteering, contributing to charities, donating blood without monetary reward,
voting and saving unknown people at the risk of one’s own life, which are normally
displayed by a positive fraction of the overall community under examination. Fehr &
Gachter (1999), by referring to 16 different experimental studies, show that recipro-
cally and selfishly motivated people turn out to systematically coexist: in par-
ticular, they argue that in all scenarios® both types are present in non-negligible
fractions, though the former seems to prevail. In the light of these observations,
Hirshleifer & Martinez Coll’s (1991) coexistence result as well as Palomino &
Vega-Redondo’s (1999) conclusion are quite interesting, especially if we think of the
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PD environment. In such a large-population framework, if we focused our attention
on the adoption process of the ‘classical’ two pure strategies only (namely ‘cooperate’
and ‘defect’), coexistence between ‘nice’ and ‘mean’ strategies would be ruled out.

However, against the implicit assumption of the above cited authors, it is far from
obvious that individuals always interact with each other on the basis of a clear and
shared perception of the overall social structure they are embedded in.* In other
words, the notion of ‘common knowledge’ turns out to be highly controversial
and context-dependent, as each individual’s ability to frame the social situation she
is embedded seems to be the effect of complex factors, active at both the natural
and cultural level. For these reasons, individuals are likely to differ in the way they
conceptualize the game they are about to play and such differences are likely to be
specific to each sub-population. In this paper, we mainly focus on the cultural
dimension by assuming that common knowledge about the payoff matrix has a
salience (see Schelling 1960, Sahlins 1972) that is crucially dependent on the value-
system characterizing the different types of players composing the overall commu-
nity. In fact, it is reasonable to believe that the idea of salience not only regards focal
points (sometimes described in terms of common knowledge about non-rational
impulses; see, e.g. Sugden 1991)° but, at a deeper level, the perception of the whole
payoff structure of the game, depending on the locally prevailing social norms and
cultural patterns. As Wildavsky (1992, p.12) points out, “To the extent that indivi-
duals in different cultures value the same outcomes differently, there will be a
different set of payoffs and, consequently, a different model of this situation for
each culture. As a very crude first approximation, one might think of culture as being
implicit in a model’s payoffs.’

On the basis of this approach, the relationship between rationality and salience
should be somehow reversed, with respect to traditional game-theoretical frame-
works where salience is a sort of ‘second-best resource’ agents rely upon insofar as
they fail to fruitfully coordinate their (individually rational) actions. On the contrary,
in this paper we claim that agents, in the first place, tend to conceptualize the game
they are about to play in a strongly culturally-dependent manner; then, at a second
stage, rationality comes into the picture, inducing players to choose the best strate-
gies available on the basis of their information set. Clearly, insofar as salience regards
the framing problem, a fortiori it can be claimed to concern the more specific and
conventional problem of focal points emergence. Thus, it is worth investigating the
possibility of coexistence between ‘nice’ and ‘mean’ strategies in a different strategic
context. In particular, we will focus on the following scenario: players have to choose
one out of two strategies only (either ‘cooperate’ or ‘not cooperate’); however, the
possible outcomes of random pairwise matchings are differently evaluated by single
agents, i.e. individuals are heterogeneous in terms of their perception of the payoff
matrix of the game they are involved in. As we pointed out above, agents are
homogeneous only within specific sub-populations characterized by common social-
ization patterns and salient social norms®: as far as the framing problem of the initial
multi-population community is concerned, then, inter-group heterogeneity corres-
ponds to intra-group homogeneity. In other words, we are still assuming common
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knowledge about the structure of the game to be played, but such a common
knowledge is ‘culturally-specific’: each player’s expectations about his opponent’s
behavior are systematically biased by his own reference culture and, therefore,
confirmed only insofar as he happens to be matched with players of the same
‘type’.” Landa’s (1981) interesting fieldwork and theory on Chinese merchants in
Southeast Asia shows that the emergence and economic success of the so called
‘ethnically homogeneous middleman group’ (EHMG) in those countries is closely
related to Chinese merchants’ attitude to selectively interact only with members of
their own dialect group. In turn, such attitude is grounded in Confucian ethics, which
is a complex set of cultural norms promoting mutual trust and aid among kinsmen.

The idea of common knowledge we are referring to recalls Lewis’ (1969) definition
concerned with justification and not with truth: what each person has reason to
believe may be dependent on ‘background information’, which, we claim, is likely to
depend in turn on his/her reference culture and social norms. This implies that
agents’ ‘inductive standards’ will be shared within each sub-population but will differ
across them. Borrowing Furnivall’s (1957, pp. 304-305) terminology, we may refer to
such a community as a ‘plural society’, a ‘medley’ where people ‘mix but do not
combine. Each group holds by its own relation, its own culture and language, its own
ideas and ways. As individuals they meet, but only in the marketplace in buying and
selling.” Several experimental studies focusing on the effects of cultural background
on game-theoretic behavior (see, e¢.g. Smith & Bond 1993) confirm that a variable
such as culture crucially affects the set of reference behaviors individuals have in
mind when playing standard games like PD.

In particular, let us assume that the whole community consists of three sub-
populations (types) of payoff-maximizing individuals: (a) everybody perceives the
game matrix as the classical PD payoff configuration; (b) agents believe that an
assurance game (AQG) is about to be played; and (c) the payoff matrix is given by the
other regarding (OR) game structure. The purpose of our analysis is to consider the
social dynamics taking place within such a complex environment. However, before
introducing the formal model, it is preliminarily important to specify how the
differences in terms of framing among the three sub-populations can be formalized
and interpreted at the game-theoretic level. In order to do this, let us consider the
following PD payoff matrix:

Cooperate Not cooperate
Cooperate o, o Y, 0
Not cooperate 0,y B, p

where 6 > o > f >y >0and (0 — ) < (f — y). Two rational players (A and B) are
involved. We define agent A as ‘altruist’” when her utility is given by a weighted
average of her own and agent B’s payoff: Ux = (1 — w) ITo+w I1g, where IT; (i = A, B)
indicates i’s payoff and w (0 < w < 1) represents A’s (as well as B’s) ‘degree of
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altruism’ toward her opponent. If both players are characterized by such a utility
function, the utility matrix of the (symmetric) game becomes:

Cooperate Not cooperate

Cooperate o, o (1T —=w)yy+wd, (1 —w) o+wy
Not cooperate (1 =w)yo+wy, (I —w)y+w o B, b

when 0 <w < wy = (0 — a)/(d — 7), we fall into the classic PD game, whereas when
wy = (0 —a)(0—7y)<w<wy=(f — )/ — y), the AG structure emerges; finally,
when w > w, = (ff — y)/(6 — 7), we obtain the OR game. In other words, the presence
of three types of agents can be justified in terms of the perceived degree of altruism
within one’s reference sub-population: agents believe they are actually playing a PD,
an AG or an OR game according to the level of w being low (equal to zero in the
limit), intermediate or high (equal to one in the limit), respectively. The idea is that in
a group where pro-social values are traditionally rooted and widespread, it is
reasonable to assume that each agent will both act on the basis of a personal pro-
social attitude and expect her ‘neighbors’ to be driven by the same other-regarding
motivational force: formally, this implies a symmetric game with w > w, will be
played by such altruistically-driven agents. The same kind of consideration holds for
less socially concerned individuals®: as Goldschmidt (1993) remarks, selective inter-
action tends to bring about common evaluations, as repeated social contact induces
people to internalize others’ positions and goals. This view recalls Buchanan’s (2000,
p.1) reference to a characterization of altruism in terms of utility interdependence
which sounds rather familiar to economists: ‘Behavior may be motivated by a
positive internal evaluation of the well being of other individuals who share close
association as co-members of a group. Concentration on the evolutionary process at
the level of genes clearly offers a basis for this sort of altruism on the part of
biological units of a species.” Alternatively, the salience of utility matrices with low,
intermediate or high values of w can be justified not in terms of individual motiva-
tional systems but as a consequence of (properly enforced) social norms: according to
this explanation, players are still assumed to act on the basis of classic selfish
preferences, but, at the same time, to be constrained by a culturally-specific set of
pro-social norms prescribing how to behave in every feasible situation.” In particular,
with reference to the above matrix, when w < wy , it is ‘as if* no pro-social norms
were present or properly enforced in the group (D is the dominant strategy); when w;
< w < w, , then it is as if a norm of reciprocity or conditional cooperation were
enforced and, finally, w > w, would imply a norm of unconditional cooperation (C is
now the dominant strategy).

The reason for focusing on this specific set of alternative payoff configurations
(PD, AG and OR) is three-fold. First, they encompass well-known and socially
relevant scenarios (see Sen 1974). Second, they lend themselves to an analysis of
social interaction taking place between individuals endowed with different degrees of
altruism or, equivalently, between individuals conforming to different social norms
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(as we showed above). Third, neither of them favors coexistence — if taken separately
from the others — between the two strategies under study. At the methodological
level, this means that if coexistence were to emerge in our scenario, such a result
would provide a strong argument in favor of the main thesis defended here: by
allowing for heterogeneity not simply in terms of individual strategies or motiva-
tional structures but in terms of group-specific ‘game framing’, we are able to provide
a plausible explanation about why in many real social environments ‘mean’ and ‘nice’
strategies turn out to coexist in the medium-long run. The plan of the remainder of
the paper is as follows: Section 2 introduces the basic model; Section 3 develops the
social dynamics; Section 4 provides some concluding comments.

2. The model

The general framework is as follows. Let us suppose that a continuum of agents
belonging to a given community have to choose one out of H pure strategies

{1,...,H} every time they interact with other individuals of the same community.
Time is continuous. Individuals are distributed within M sub-populations
{1,...,M?}, on the basis of their personal evaluation of the possible outcomes (in

terms of pure strategies) of the random pairwise interactions. The M payoff config-
urations are assumed as exogenously given; more precisely, types that are initially
present in the community may become extinct, but new types cannot be created. In
this context, the outcome of an encounter between two individuals, let us call them I
and II, is described by the pair ( j, k), where the first and the second entry represent
the pure strategies chosen by I and II respectively.

The adoption process of choices within the overall community is modeled by
means of the so-called ‘replicator equations’ (see Taylor & Jonker 1978). Replicator
dynamics are a widely adopted model of social (as well as natural) selection dynamics
characterized by payoff monotonicity, i.e. the most rewarding strategies survive and
spread over within the community at the expense of the others. This idea is well
clarified in Heckathorn (1996, p.261): ‘Based on the resulting payoffs, the actors with
the most successful strategies proliferate at the expense of the less successful. This
process is then repeated, generation after generation, until the system either
approaches stable equilibrium or cyclical variation. Biologists employ these
approaches to model evolutionary selection. However, the selection process has also
been interpreted as reflecting a proceess of observational learning in which actors
compare their own outcomes to those of their peers, imitating peers who do best
(Brown et al. 1982, Boyd & Richerson 1985). In essence, actors look around to see
who is doing well and take as role models those who appear most successful. When
interpreted in this manner, these models can be termed sideways-looking models
of behavior’. In the recent literature, it is possible to find some rigorous micro-
foundations justification of replicator dynamics, see, e.g. Schlag (1998) and Bjornerstedt
& Weibull (1994). Such a sideways-looking selection mechanism affects both the
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size of each sub-population and the distribution of pure strategies within each sub-
population. More precisely, we assume that social evolution not only operates at the
strategic level, but also at a deeper, meta-behavioral level, by selecting the most
rewarding way to conceptualize social interaction, i.e. to evaluate the outcomes
associated with PD, AG and OR ‘game framing’. In other words, as far as each
agent is concerned, ‘game framing’ is not to be interpreted here as an exogenous
psychological or cultural feature or as an irreversible, one-shot decision (as if, for
some reasons, agents had to stick forever to a given value-system and/or set of social
norms), but as an ongoing, endogenous process, affected by both the sub-population
type he belongs to and the reward he gets by his choice. In this regard, we proceed
along the lines indicated by Boyd & Richerson (1980). According to the authors,
extending conventional sociobiology to include cultural transmission of behavior is
important. In their ‘dual inheritance theory’ of genes and culture, they see culture as
‘the transmission of the determinants of behavior from individual to individual, and
thus from generation to generation, by social learning, imitation or some other
similar process’ (Boyd & Richerson 1980, pp. 101-102). The idea is then to test how
the three different sub-populations (types) initially present within the community are
evolutionarily robust in the sense of being able to attract an increasing number of
adherents at the expense of the alternative ones.'” We further assume that the payoffs
corresponding to each pair (j, k) depend on the population to which individuals
belong. In particular, we will focus on two very different cases:

(a) The payoft of player I (IT) related to the event (j, k) depends on the population
he belongs to and not on the population of the opponent player II (I). In this case, the
payoff of player I, belonging to population i and related to the event (j,k), is
expressed by the symbol a;u, where i = 1,...,M and j,k = 1,...,H. Notice that if,
given two populations i* and i, a;- > a;~j5 holds whatever (j, k) is, then ‘to belong
to type i’ is always more rewarding than ‘to belong to type i**’. In such a case, the
social dynamics turns out to be very simple: type i** becomes extinct. However, we
shall mainly deal with the more general (and interesting) case in which such a strict
payoff dominance does not hold.

(b) In this case, which includes the first as a particular case, we assume that the
payoff of I (IT) related to the result (j, k) also depends on the population to which the
opponent player II (I) belongs''. I’s payoffs are expressed by the symbol a1, Where
the index / = 1,..., M represents the population of the opponent player. The specific
meaning of this assumption will be subsequently clarified.

The dynamics under study can be interpreted as follows: the structure of the
community outlines a preference ordering which is not based on outcomes (J, k),
but on more complex outcomes (i, /, k,/): ‘to be an individual of type i, playing the
pure strategy j on the occasion of an encounter with an individual of type /, playing
the pure strategy k’. In the following sections we will analyze these two cases
separately. A rapidly growing literature considers payoffs as not univocally
determined by the material outcomes of the strategic interaction taking place
between players. Payoffs are more and more considered as the result of the complex
interaction between material components, psychological (see e.g. Geanakoplos
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et al. 1989, Rabin 1993, 2002) and normative (see Fehr & Fischbacher 2002)
considerations,'? closely related to the social and cultural environment in which
individuals act; see also Antoci et al. (2000), which contains a extensive review of
such literature. In particular, this study builds on the work of Sacco & Zamagni
(1996) and has various connections with it. Both contributions analyze hetero-
geneous communities and social dynamics based on the selection of the most
rewarding strategies.

Nevertheless, there are some substantial differences between the two papers. While
Sacco & Zamagni (1996) study the setting that corresponds to the above described
case (a), they do not consider case (b). Moreover, here we assume that each indi-
vidual can only recognize ex post the sub-population type her opponent belongs to
and the pure strategy she is going to play. In contrast, Sacco & Zamagni postulate
that individuals are able to recognize ex ante the opponent’s player type and thus
Nash equilibria are played at each matching. Consequently, social dynamics runs
over the proportions of types only. The rationale behind the ex post type-recognition
assumption is that actual interaction between players (fully) transmits information
about the opponent’s value-system, e.g. by close inspection of her ‘mode of play’
(see, e.g. Eibl-Eibesfeldt 1989, Landa 1999a). Whereas the ex ante recognition
assumption can be thought of as a rational expectations assumption, the ex post
recognition is then a perfect information disclosure assumption. Finally, the Sacco &
Zamagni paper does not highlight phenomena of coexistence among the different
types of players with which they deal.

Let us then consider a community made up of a set of M populations (types) of
individuals, {1,2, ..., M}, where each individual has to choose her pure strategy from
a (common) set of H pure strategies, {1,2,..., H}. We shall indicate with the term
‘action’ the pair (i,j) where i = 1,...,M and j = 1,...,H respectively indicate the
population and the pure strategy chosen by an individual.

2.1. Independence of the opponent’s type

Let us examine, in the first place, the ‘conventional’ case in which each player’s
payoff does not depend on the population of the opponent player but only on the
pure strategy followed by the latter. Let x; be the proportion (w.r.t. the whole
community) of individuals belonging to population i and following pure strategy j;
thus

M
XjE E le'
i=1

represents the proportion of the community playing pure strategy j. The proportions
x;; and x; can be interpreted as the probabilities that the opponent player respectively
follows action (i, /) and pure strategy j. Each individual knows the opponent player’s
type ex post only, i.e. after both players have played their pure strategies. Therefore,
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individuals are not able to play best responses, but each individual, in each instant of
time, is ‘programmed’ to play one action only. The expected payoff Y); of the action

(i,)) is
H
Y}-,- = Z Qjjkc X (1)

where i = 1,...,M and j = 1,... ,H. The mean payoff Y of the community is

H M
Y = Z X/[ Yj,' (2)
j=1 i=1

2.2. Dependence on the opponent’s type

In this context, the payoffs of individuals of population i depend not only on the pure
strategy played by the opponent player, but also on the population to which the
opponent player belongs, i.e. on the action he chooses.!* The rationale of this
methodological choice is as follows: we assume that a given outcome (i.e. pair of
strategies) can bring about different values in terms of overall individual payoft (i.e.
‘utility’) according to how each agent evaluates his opponent’s ‘game framing’, which
in turn, as we previously clarified, crucially depends on the specific social norms and
cultural patterns characterizing each sub-population. In particular, it seems reason-
able to assume that for an AG player cooperating when the opponent defects
determines a lower payoff if the opponent is a PD agent rather than an AG agent
or an OR agent, as the AG player knows that PD players are selfish (or, equivalently,
act as if they were driven by anti-social norms) and, unlike OR agents, tend to exploit
their opponents. In other words, whereas defection of an AG or OR opponent may
be interpreted as a mistake, defection of a PD player is to be interpreted as inten-
tional. Consequently, the cooperative player is more harmed by the latter occurence
than by the former. More precisely, we now consider the payoff of a player of type i
playing pure strategy j when matched with a player of type / playing pure strategy k:
a;r. As above, x;; represents the proportion of individuals belonging to population i
playing pure strategy j, and the expected payoff of playing j by an individual of the
type i is
H

M
SN xuag (3)

k=1 I=1

Y

wherei=1,...,M and j = 1, ... ,H; and the mean payoff of the community is
H

YEZ;XJ‘[Y/,‘ (4>

j=1 i=1
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The analysis of this simple strategic context will allow us to show that:

(1) Even though these specific payoff configurations (if taken separately) do not
generate coexistence-favoring social dynamics, coexistence may take place in the
heterogeneous community under examination;

(2) Even in the simplest strategic context (two pure strategies), social dynamics may
turn out to be quite complex, unlike the case of a homogeneous community
where individuals have to choose between two pure strategies only;

(3) By considering only initial aggregate proportions of agents choosing between
‘cooperate’ (C) and ‘not cooperate’ (NC) (i.e. failing to take into account the
types of individuals initially adopting each strategy), rather misleading predic-
tions may be obtained; that is, the limit outcomes of the social dynamics may be
radically different for very similar initial aggregate proportions.

3. Social dynamics

As we anticipated above, the selection mechanism of actions is modelled by means of
the so-called ‘replicator equations’ (Taylor & Jonker 1978):

X1 =7 - ) )

where i =1,...,M and j = 1,...,H. The recent literature contains several indepen-
dent approaches to a rigorous micro-foundations derivation of the replicator process
(See Antoci & Sacco 1995, Sacco 1994 for a concise survey). Following Weibull
(1995), we can obtain (5) as follows. Assume that the number of individuals in the
community is very large; let p;; (f) > 0 be the number of individuals choosing action
(j,i) and let p(¢) = Z/Iil Zf‘;{] pji(t) be the community size; thus x;(¢) = p;()/p(¢).
Let us suppose that all individuals have a background fitness, measured as the
number of offsprings per time unit >0 and a death rate § > 0 that are independent
of their performance in the game under study. Augmenting this ‘biological’ replicator
process by the corrective factor Yj;, population dynamics can be represented as
follows:

I;ji =pii(f+ Yji — )

It is easy to show (see Weibull 1995, pp. 72, 73) that such dynamics imply dynamics
(5) for population shares. Dynamics (5) are defined on the invariant simplex:

H M
A{XESEEMH, ZZX_/[:L X_/iZO}
=1 =

Notice that the states of the community in which all individuals choose the same
action are fixed points under dynamics (5). The other fixed points are the states of the
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community in which the actions representing a positive proportion of the community
yield the same expected payoffs, i.e. there exists a constant Y* such that

Y=Y

for every action (j,i) such that x; > 0. If payoffs depend on the opponent’s type,
such condition can be explicitly written as follows:

H M
Yi=> > agaxp =Y (6)
=1 =1

By contrast, if payoffs do not depend on the opponent player’s type, the condition
above can be written as

H
Yi=> agxi=1Y" (7)
k=1

where x; is the proportion in the community of players playing pure strategy k.

System (7) is a linear system where unknowns are represented by x,, with k = 1,
2,...,H, where x; is the proportion of players playing pure strategy k. Therefore, we
cannot have more than H unknowns.'* Further, such a system does not generically
admit solution if the number of actions is greater than the number of pure strategies
that are played in the community. This implies that the fixed points we may gener-
ically observe are those with H actions at most, where H is the number of pure
strategies that are initially present in the community. It also follows that the max-
imum number of sub-populations that may coexist at a fixed point is equal to the
number of available pure strategies. This means that the degree of complexity of the
social structure is closely related to the number of pure strategies available. Such a
result does not hold with respect to the linear system defined by condition (6), where
unknowns are represented by x;, where j=1,2,.... Handi=1, 2,....M. As a
consequence, in the latter scenario, we cannot rule out that a fixed point (generically)
exists where all H x M actions coexist.

By means of this analytical framework, we will analyze the process of cultural
evolution taking place within a large community in which there are two pure
strategies only (C and NC), and three sub-populations in total. In population 1
individuals have PD payoffs. Let us recall that if we have two players, I and II, the
four possible outcomes of the PD game (from the point of view of player I) are
ordered as follows:

(NC,C) = (C,C) = (NC,NC) = (C,NC)

where the first entry of each pair represents the strategy chosen by I and > indicates
strict preference. If we assign indices 1 and 2 to strategies NC, and C respectively, PD
payoffs satisfy the following inequalities:

appp > aixn > djg > dpg-
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In population 2, individuals have AG payoffs (see Sen 1967), i.e.:
(C,C) = (NC,C) > (NC,NC) > (C,NC)

and consequently
axn > dz1p > A1 > Al

In this game, players show both positive reciprocity (being kind to those who have
been kind to them) and negative reciprocity (by retaliating if they have been hurt),
that is their propensity to cooperate is conditional on their opponent’s behavior.
Fehr & Gichter (1999) and Fehr & Fischbacher (2002) show that there is strong
experimental and empirical evidence that agents exhibit both types of reciprocation
and that this behavior occurs even in one-shot encounters between strangers and
when retaliation is costly and yields neither present nor future material rewards.'?
For surveys of experimental results documenting the frequency of reciprocity in
Ultimatum Bargaining Games, Gift-Exchange Games and Trust Games, see, €.g.
Giith et al. (1982), Camerer & Thaler (1995), Fehr et al. (1993) and Roth (1995).
Finally, in population 3 individuals have OR payoffs, i.e.:

(C,C) = (C,NC) > (NC,C) > (NC,NC)
and consequently
aszyy > asp) > aszy > Azl

In PD and OR populations, the strategies NC and C respectively (strictly) dominate
the alternative strategy. Therefore, without loss of generality (see, e.g. Weibull 1995),
we can analyze dynamics (5) by assuming that no player in these populations chooses
the dominated strategies. We shall indicate by NCpp and NC4g the actions ‘to be a
PD individual playing strategy NC’ and ‘to be an AG individual playing strategy
NC’, respectively; and by Cor and Cag the actions ‘to be an OR individual playing
strategy C’ and ‘to be an AG individual playing strategy C’, respectively.

3.1. Bistable dynamics

Let us first analyze a numerical example in which payoffs do not depend on the
opponent’s type and coexistence is ruled out. Let us consider the payoff structure
given by the matrix shown in Table 1 (from the point of view of the row player).
Dynamics (5) run over four variables, x;1, X»1, X2, and x3,, representing the propor-
tions of individuals following actions NCpp, NCag, Cor and Cag, respectively, and
can be written as follows:

);11 = X11 [(Ax)l — tX . AX]
X21 = X2 [(4x), — 'x - AX] (8)
):?22 = X722 [(Ax)3 — tX . AX]
);32 = X32 [(Ax)4 — tX . AX]
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Table 1. Independence of the opponent’s type: bistable dynamics.

NCPD NCAG CAG COR
NCpp 4 4 8 8
NCac 5 5 7 7
Cag 3 3 9
Cor 2 2 10 10

where 'X = (X1, X21, X232, X32), A is the payoff matrix

4 4 8§ 8
55 7 7
33 9 9
2 2 10 10

and (A4x), is the rth component of the vector Ax and corresponds to the expected
payoff of the action. Finally, xAx is the mean payoff. In this specific case, the state
space of dynamics (8) is the (three-dimensional) simplex

A= {XG?R“: x >0 and xj; + x21 + x0 + X350 = 1}

By the illustrative device adopted in Hirshleifer & Martinez Coll (1991), we can
represent the edges of A (i.e. the boundary of the simplex in which at least one action
is extinct) in the plane (see Figure 1). Thus the simplex A can be imagined as based on
the triangle NCpp—NCag—Cag, While Cor is the upper vertex, that in which all
actions are extinct except for Cor (by drawing the edges in the three-dimensional
euclidean space, all the Cor vertices in Figure 1 will come together).

In Figure 1, the dynamics on the edges are obtained by means of Bomze’s (1983)
classification technology for two-dimensional replicator equations. Following
Bomze’s symbols, a dotted line represents a line of fixed points (pointwise fixed), a
full dot e represents a fixed point which is locally attractive, whereas saddle points are
indicated by their insets and outsets (stable and unstable manifolds, respectively).
Only some representative trajectories are sketched. From Figure 1, we can see that
social dynamics bring about a ‘bistable dynamics’, i.e. the only attractive fixed points
are the vertices Cor and NCag and their attraction basins are separated by a two-
dimensional (repulsive) pointwise fixed set in the interior of A, whose intersection
with the edges is given by the pointwise fixed lines shown in Figure 1. If large enough
proportions of individuals choosing action Cor (NCag) are initially present, then all
actions except for Cogr (respectively, NCag) become extinct. The social structure that
eventually emerges is very simple: a single population playing only one pure strategy
is present. In the following example, we consider dynamics starting from a payoff
structure which strongly favors coexistence.
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Cor

CO& CAG Con

Figure 1. Bistable dynamics. Coexistence is ruled out here as the only attractive fixed points are the
vertices Cor and NCxg.

Table 2. Independence of the opponent’s type: coexistence.

NCPD NCAG CAG COR
NCpp 1 1 12 12
NCag 5 5 9 9
Cac 3 3 10 10
Cor 6 6 7 7

3.2. Coexistence-favoring payoffs

Let us consider the payoff matrix shown in Table 2, where we still assume that
players’ payoffs do not depend on the opponent’s type. In this example, the highest
payoff level is reached by a PD individual when matched with an individual playing
the pure strategy C. On the other hand, the payoff of a PD individual is very low
when he is matched with an individual playing NC. This rules out the emergence of a
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Cor Cas Cor

Figure 2. Cor—NCug coexistence. Coexistence between Cor and NCag players emerges.

homogeneous community where only the PD sub-population exists. On the contrary,
OR individuals assign a relatively high payoff to the outcome (C, NC), while their
payoff associated to the outcome (C,C) is relatively low. In this case, as in the
previous one, we cannot expect a homogenous OR-type community to emerge, as
such a community would turn out to be extremely vulnerable with respect to a
population of PD players. The other entries of this coexistence-favoring payoff
matrix can be interpreted in a totally analogous way. The phase portrait at the
edges of the simplex A is represented in Figure 2.

It is easy to verify that there are no fixed points in which more than three actions
coexist. Thus, by a well-known result (see Weibull 1995), under dynamics (8)
trajectories always approach the edges represented in Figure 2. In this figure, we
can notice that, starting from ‘almost all’ the initial distributions of actions in the
community, the social dynamics reach a fixed point in which AG and OR-type
sub-populations coexist playing NCag and Copg, respectively. It may be interesting
to note that such a social scenario may be compatible with a group selection
perspective, although such possibility is not explicitly tackled in the present paper.
Think, e.g. of Rubin’s (2000, p. 21) claim that ‘Altruism in contemporary group
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Table 3. Independence of the opponent’s type: bitable dynamics and coexistence.

NCPD NCAG CAG COR
NCrp 4 4 13 13
NCag 6 6 7 7
Cac 5 5 12 12
Cor 3 3 13.5 13.5

selection models is associated with faster growth of altruistic groups. This can occur
if such altruism leads to cooperation in some PD. I call altruism that would lead to
faster growth “efficient altruism”. (...) But such altruism must also be associated
with monitoring the recipient to avoid free riding, for societies that allowed excessive
shirking and free riding would not have grown as fast as others.” Rubin’s considera-
tions provide an interesting interpretation of coexistence occurring between altruistic
cooperators (i.e. Cor players) and players choosing not to cooperate as a form of
punishment of defecting behaviors (i.e. NCag players). In the last example of this
section, we focus on a mixed case where a configuration of bistable dynamics is
merged with a different one where coexistence arises. Let us examine the payoff
matrix shown in Table 3. This payoff structure is characterized by the fact that both
Cor and NCjg individuals perform well with opponent players of the same type.
Therefore, the vertices Cogr and NCug are both locally attractive (see Figure 3).
However, if the proportions of NCpp and Cag individuals are large enough, a two-
population community in which only these two types coexist may emerge. As above,
it is easy to verify that no fixed points exist with more than two actions. Thus, Figure
3 represents the ‘limit’ dynamics of (8). We shall discuss this case further in the last
section, when some features of aggregate dynamics will be analyzed.

Let us now consider the payoff matrix shown in Table 4, in which payoffs depend
not only on the strategic choices of the two players but also on the opponent player’s
type. Notice that we have now introduced two parameters, o« and f, where 0 < o < 1
and f > 0, which index the qualitative modifications of social dynamics. Such a
matrix shows that whereas PD player’s payoffs are completely independent of the
population his opponent belongs to, both AG and OR players’ payoffs crucially
depend on their opponent’s type. In particular, an AG player gets a lower payoff
when cooperating with a defecting PD rather than with a defecting AG, as a con-
sequence of the negative ‘psychological externality’ due to PD agents’ anti-cooperative
attitude. Likewise, AG players can be expected to be ‘happier’ when defecting with a
defecting PD rather than with a defecting AG. Further, AG-type agents get a higher
payoff when cooperating with a cooperating OR rather than with a cooperating AG.
The rationale behind these payoff differences can be explained as follows: OR players
are perceived as more trustworthy agents as they tend to cooperate unconditionally,
that is to never defect regardless of their opponent’s behavior. In other words, we can
plausibly imagine a sort of ‘moral ranking’ among the three types, according to
which — as far as the opponent’s choices are concerned — OR behavior is preferable to
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Cor C"‘? Cor

Figure 3. Bistable dynamics and Cag-NCpp coexistence. This scenario represents a mixed case where a

configuration of bistable dynamics (as it is the case in Figure 1) is merged with a configuration where
coexistence arises (as it is the case in Figure 2).

Table 4. Dependence on the opponent’s type.

NCPD NCAG CAG COR
NCpp 1 1 12 12
NCac 5 4 9 9
Cag 3 340 10 11
Cor 6 7 8 8+

AG behavior which in turn can be considered as ‘morally superior’ to PD behavior.
Therefore, from the above matrix, OR players prefer to cooperate with a defecting
AG agent rather than with a defecting PD-type agent and with a cooperating OR
agent rather than with a cooperating AG-type. As anticipated above, when payoffs
depend on the opponent player’s type, far more complex social structures are likely
to emerge; in particular, fixed points with more than two actions are not ruled out in
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generic cases. In our example, it is easy to verify that a fixed point P, in which all the
actions are present, exists if and only if f < 1/2; further, it is always locally attractive
(see the mathematical appendix) and its coordinates are:

Kok %k 1
(xll’ xZI,sz,X32) = m(6 — 30(,8, 1 — 2,8,5 —+ o — 40('3 — 2,[)),4 — O()

Thus, a social configuration with three sub-populations playing four actions can be
locally attractive under dynamics (8). Notice that, in such a configuration, Cog and
NCag individuals coexist, whereas such a coexistence pattern is ruled out in
a community where only an AG population is initially present. The dynamics driven
by the above payoff matrix is interesting also because, as parameter values vary,
a relatively rich classification of cases can emerge. In the following figures, we only
sketch the ‘representative’ ones. Since fixed points with more than two actions may
exist under such a payoff matrix, their stability cannot be checked by reference to
Bomze’s classification only; it is also necessary to use the standard procedure of local
analysis. We consider the following four cases.

Case (a): Fora = 1/4 and f > 4, the fixed point P does not exist; thus trajectories
always approach the edges of A. The dynamics on the edges is given in Figure 4. We

Con

v
A

Cor Cac Cor

Figure 4. Case (a): « = 1/4 and f > 4. ‘Almost all’ the trajectories approach the vertex Cogr. If the OR
population is extinct (see triangle NCpp—NCag—Cag), we have a fixed point surrounded by closed
trajectories.
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Figure 5. Case (b): « > 1/4 and 3 < < 4. ‘Almost all’ trajectories approach a fixed point in which
Cor and NCpp players coexist. The fixed point in the interior of the triangle NCpp—NCag—Cacg is a
saddle point.

can observe that ‘almost all’ the trajectories approach the vertex Cor. Notice that, in
this case, the action Cor performs better against itself than the action NCpp against
Cor. Notice also that, if the OR population 1is extinct (see triangle
NCpp—NCag—Cag) we have a fixed point surrounded by closed trajectories. How-
ever, it is easy to see that such trajectories become repulsive when the OR population
is introduced into the community (see the mathematical appendix).

Case (b): For a>1/4 and 3 < <4, the fixed point P does not exist and the
dynamics on the edges is shown in Figure 5. In this case, ‘almost all’ trajectories
approach a fixed point in which both Cor and NCpp coexist. In the mathematical
appendix we show that the fixed point in the interior of the triangle
NCpp—NCag—Cag (Which is attractive on the edges) is a saddle point, i.e. it is
unstable.

Case (c¢): For o = 1/4 and 1 < < 3/2, the fixed point P does not exist and the
dynamics on the edges are shown in Figure 6. In this case, the fixed point in which
both Cor and NCpp coexist becomes unstable; the fixed point in the interior of the
triangle NCpp—NCag—Cag remains repulsive, while almost all the trajectories
are attracted by the fixed point in the interior of the triangle NCpp—Cag—Cor.
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Figure 6. Case (c): & = 1/4 and 1 < < 3/2. Almost all the trajectories are attracted by the fixed point in
the interior of the triangle NCpp—Cag—Cor-

All the sub-populations coexist in this fixed point and, as above, social dynamics
reach a fixed point in which both strategies C and NC coexist.

Case (d): For oo = 1/4 and 1/4 <f<1/2, the locally attractive fixed point P exists; at
such a point, no population becomes extinct and AG individuals play both C and
NC. The dynamics on the edges (shown in Figure 7) is analogous to that of Figure 6;
however, in this case, the fixed point in the interior of the triangle NCpp—Cag—Cor
becomes a saddle point (see the mathematical appendix).

The local attractivity of the fixed point P does not imply its global attractivity and,
in the interior of the state space A, other attractors may exist. However, even if in this
case P may be a global attractor, it is certainly possible to construct ad hoc payoff
matrices according to which dynamics (8) have a strange attractor in the interior of
the state space A. In such a case, OR, AG and PD sub-populations in this community
coexist, all playing pure strategies C and NC, although the dynamics never reach a
fixed point. Furthermore, the outcome of the social dynamics can be critically
dependent on initial distributions of actions in the community; in such a case, social
dynamics is unpredictable, at least from a deterministic point of view. To build these
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Cor Cac Cor

Figure 7. Case (d): « = 1/4 and 1/4 < f < 1/2. The dynamics on the edges is analogous to that of
Figure 6; however, in this case, the fixed point in the interior of the triangle NCpp—Cag—Cor becomes a
saddle point.

ad hoc matrices, see Schnabl et al. (1991); in particular, see matrices (7)—(9) of their
paper.

4. Dynamics of aggregate variables and concluding remarks

In order to stress the importance of our results, let us recall that for symmetric two-
player games with two pure strategies (e.g. NC and C) played in a homogeneous
community:

NC C
NC ap an
C ayn axn

we can only have four (generic) dynamic regimes under replicator dynamics (see
Weibull 1995, pp. 74-76):

(1) For aj1>a»;, ajo>ax the pure strategy NC (strictly) dominates C; in this case, the
share of individuals choosing NC approaches the value 1 when time goes to
infinity;
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(i1) For aj1<a»;, aj»<as, the opposite case holds.

(ii1) For ay>ay;, ajp<as» both the pure population states, in which all the individuals
respectively play NC or C, are locally attractive fixed points; their attraction
basins are separated by a repulsive fixed point in which both strategies are played;

(iv) For aji<ay;, a;x>ay, there is a globally attractive fixed point where both
strategies coexist.

In such a context (two pure stategies and a homogeneous community), only payoff
configuration (iv) admits coexistence between NC and C. According to the others, we
expect to see individuals playing only one strategy after transient dynamics. There-
fore, the coexistence of strategies can be explained only through very restrictive
assumptions over individuals’ (homogeneous) payoffs. This prediction is rather
unrealistic in a world where we generally observe coexistence between ‘nice’ and
‘mean’ strategies. Hirshleifer & Martinez Coll (1991) assume homogeneous payoffs
but add to the set of pure strategies related to the games PD and CG two ‘reactive’
strategies, such as ‘tit for tat’ (a nice strategy) and ‘bully’ (a mean strategy). The
games PD and CG are played separately, i.e. they first consider replicator dynamics
in a PD environment and then study dynamics for the CG. They show that, in this
context, dynamics exhibit very interesting features. More specifically, they show that
dynamics can be substantially more complex than the dynamics of regimes
(1)—(iv) and that we can expect, within both payoff environments, coexistence
between nice and mean strategies. The complexity of dynamics studied by Hirshleifer
& Martinez Coll is a direct consequence of the assumption that players are able to
play reactive strategies.

In our paper we have taken a different route by postulating that all individuals in
the community play two (non-reactive) pure strategies only but, at the same time,
they are heterogeneous with respect to their way of framing the game, which is
culturally-specific (i.e. specific to each sub-population). Furthermore, we obtain
coexistence results even when each individual has payoffs that do not favor coex-
istence, i.e. a type (i), a type (ii) or a type (iii) individual payoffs configuration. A
further relevant result is related to dynamics in Figure 3. Let us consider Figure 8 in
which aggregate dynamics associated to the phase portrait of Figure 3 are sketched.
More precisely, in Figure 8 we have on the horizontal axis the aggregate proportion
of individuals playing NC, x; = x;+x,;, while on the vertical one we represent the
aggregate proportion of individuals playing C, x, = x;+x3,. The aggregate
dynamics are represented in the segment in which x; and x, are positive and
Zizll x; = 1. Clearly, through each point of the aggregate phase space in Figure 8
we do not have uniqueness of trajectories, i.e. for every initial pair of (aggregate)
proportions, we may have different dynamic regimes according to the underlying
social structure of the community. In Figure 8, the full dots (e) indicate aggregate
coordinates corresponding to the locally attractive fixed points in Figure 3. Notice
that, in this case, we have three attracting fixed points, one of which is characterized
by coexistence. From Figure 3, we can also observe that these fixed points are not in
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Figure 8. Aggregate dynamics associated to the phase portrait of Figure 3.

general locally attracting for aggregate dynamics (as the arrows in Figure 8 indicate).
In fact, even if the aggregate distribution of pure strategies is near the fixed point with
coexistence in Figure 8, we can choose a social structure playing such an aggregate
distribution which, under dynamics (8), reaches one of the two fixed points without
coexistence (and vice versa). Therefore, if we make predictions taking into account
the initial values of the aggregate distribution of pure strategies only, these are likely
not to be correct.

Appendix

The dynamics under system (8) for payoffs which do not depend on the opponent
player, can be completely analyzed by Bomze’s (1983) results. When payoffs depend
on the opponent player, we obtain fixed points in which more than two actions
coexist. In these cases, to analyze local stability, it is necessary to linearize system (8)
around these fixed points. To this end, we use the well-known correspondence
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between replicator equations and Lotka—Volterra systems (see Hofbauer & Sigmund
1988). In particular, in this case, we have that the transformation

T: (y, z, W) - (X11,X21,X22,X32)

_ 1 y z w
N\l 4 yFz+w 4+ y+z+w l+y+z4+w 14+y+z4+w

maps the trajectories under Lotka—Volterra equations:

¥ =4+ 3y —3z— 3w
Z=z2+ 2 +a)y—2z—w) 9)
W= w[5+ 6y — 4z + (f — 4)w]

onto those of replicator equations (8). The inverse transformation of 7T is:

X1 X2 m)
b b
X111 X11 X11

T (x11, X1, X2, ¥32) — (3,2, W) = (

System (9) has a unique fixed point at which y, z and w are strictly positive if and only
if p <1/2. In this case, the fixed point has coordinates

1
Oz wh) :m@ﬁ— Ldaf+2—oa—50a—4)

Otherwise, it has no fixed points where all the actions are simultaneously present in
the community. In the original coordinates, the above fixed point becomes

(xll’ le,x22,X32) = m(6 — 30(/3, 1 - ZB,S +o— 406ﬂ — 2ﬂ,4 — OC)

The Jacobian matrix J of (9), evaluated at (v, z*, w"), has entries J;;:

Ju=3y", Jn=-3", Jiz=-3"
Jo = (2 + O()Z*, Jn = —22*, Jy = —z*

J3 = 6W*, J3n = —4w", J33 = (ﬁ - 4)W*

By Routh—Hurwitz criterion (see, e.g., Beavis & Dobbs 1989, p. 134), a necessary and
sufficient condition for local asymptotic stability of (y*, z*, w") is that TrJ < 0,
DetJ < 0 and DetJ < 0 where

) Jit +J» I3 =Ji3
J= J3 Ji+J3 Ji
—J31 Jo1 Jn +J33

It is easy to see that this system meets such conditions.
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A fixed point with y = 0 and z, w > 0, i.e. a fixed point in which only x,; = 0, exists

if and only if f < 3/2. In this case, it has the following coordinates:

I 1 3-28
529~ (05555 p)

The Jacobian matrix evaluated at (y,z, w) is:
4-3z-3w 0 0
2+a0)z -2z -z
6w —4w (f—4)w
Notice that the eigenvalue in the direction of the interior of the simplex A:

1-28
2(2-p)

is strictly positive if and only if § > 1/2, i.e. when the interior fixed point exists in the
simplex. We have a fixed point with z = 0 and y, w >0, corresponding to the fixed
point in which only x5, = 0, if and only if # < 1/4. In this case, it has coordinates

(Aéﬁz)—(l_‘w 0 3)
ysa - 3(2+ﬂ)5 72+ﬁ
and the relative Jacobian matrix

3y =3y -3y
0 24Q+a0)py—w 0

6w —4w (p—4)w

4—-3z-3w=

has the following strictly positive eigenvalue in the direction of the interior of the
simplex:

540 —28—4af

2+ Q2+a)yp—w= 3015

We always have a fixed point with w = 0 and y, z > 0 (i.e. with only x3, = 0) and it
has the following coordinates:

R . 2 4o+2
5 (= =2T%9
(7, 2,W) (3a, EP )
with the Jacobian matrix

3y -39 ~3y
2+0): -2z —z

0 0 5+6§—4z
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We can see that it has the following strictly positive eigenvalue in the direction of the
interior of the simplex:

4—0a

S+6y—4z=
3o
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Notes

1. Andreoni & Miller (1993) and Cooper et al. (1996) set up experiments where people play the PD game
sequentially with randomly changing opponents and find that while a minority of players act selfishly,
the majority adopt nonselfish behaviors.

2. Such an observation seems to be valid across countries and social contexts; on the contrary, in the light
of empirical and experimental evidence, what appears to be strongly culturally-specific is the relative
frequency with which the two types of behavior are observed.

3. The experimental settings quoted by Fehr & Géchter (1999) include PD, Investment Game, Public
Goods Game and Trust Game. Fehr & Fischbacher (2002) argue that a large body of experimental
evidence systematically refutes the self-interest hypothesis suggesting that several subjects exhibit
preferences for reciprocal fairness.

4. The notion of ‘subjective game’ has been recently elaborated in order to account for agents’ limited
knowledge about the structure of the ‘objective’ game to be played (see, e.g. Kalai & Lehrer 1995,
Matsushima 1998b, Oechssler & Schipper 2003). In this light, with reference to the two game-
theoretical strands of literature mentioned so far (the one dealing with the coexistence of strategies
issue and the one focused on subjective games) we believe that our paper lies somewhere in-between, as
it aims at accounting for coexistence of conflicting strategies occurring within an evolutionary envir-
onment where, as it will be subsequently clarified, individual perceptions of the game turn out to be
biased due to cultural factors.

5. Binmore (1994, p. 140) points out that ‘A society’s pool of common knowledge — its culture, provides
the informational input that individual citizens need to coordinate on equilibria in the games that
people play. (...) An analyst ignorant of this data would not necessarily be able to predict the
equilibrium on which members of the society would coordinate in a specific game. He might therefore
categorize the equilibrium selection criteria that the society uses as arbitrary. However, the criteria will
not seem arbitrary to those within the society under study.’

6. It seems reasonable to assume that agents belonging to the same group have passed through similar
socialization processes and therefore share common values and tend to conform to the same
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10.

11.

12.

(population-specific) social norms: the majority of human customs and behaviors appears to be the
consequence of complex processes of cultural evolution. Binmore (1994) remarks that ‘A society’s
culture consists of more than the shared knowledge that we all belong to the same species. Vast
amounts of historical data are enshrined in its customs and traditions’.

. ‘A community of rational individuals is held together by the pool of common knowledge that I

shall call its culture. The gossamer threads of shared knowledge and experience may seem flimsy
bonds with which to hold a society together when compared with the iron shackles of duty and
obligation postulated by traditional ethical theories. However, one must remember that the iron
shackles of the traditionalists exist only in their imaginations, and even the most gossamer of real
threads is more substantial than an iron shackle that is only imagined. Moreover, like Gulliver in
Lilliput, we are bound by so many threads that even real shackles could fulfill their function
with no greater efficiency’ (Binmore 1994). With reference to the idea of ‘cultural bias’, see
Douglas (1982).

. For empirical evidence, see Ayres & Siegelman (1995) and Rapaport (1995) showing that market

outcomes appear to systematically depend on the ethnicity of the parties involved; at the experimental
level, Weimann (1994) observes that in a repeated public good game framework American students
turn out to be less cooperative than Germans, while Ockenfels & Weimann (1999) find that eastern
Germans are far more selfish than western subjects.

. Regarding the interpretation in terms of culturally-specific motivational systems, it is important to

clarify that we do not need to assume that OR players are actually driven by genuinely altruistic
concerns: we can equivalently interpret their conceptualization of the game as the effect of a sophistic-
ated ‘as if’ calculating morality, letting them to implement the cooperative outcome and so to
efficiently pursue their original selfish goals (see Sen 1974 for this intuition and Mueller 1986). On
this view, people are assumed to choose the most efficient among alternative motivational structures,
perceived as competing ‘happiness technologies’ (see Menicucci & Sacco 1997). An analogous expla-
nation may be provided for AG players.

In other words, we are assuming that a form of learning takes place over time. As Oechssler &
Schipper (2003, p. 137) remark, ‘“The theoretical and experimental literature on learning in games
has substantially increased in recent years .... By and large, however, this literature is concerned
with learning how to play a game rather than with learning about a game. That is, the question of
how players perceive a game has rarely been addressed so far. A normal form game consists of the
set of players, the set of possible strategies, and a payoff function for each player. Learning about a
game therefore means that players, who have incomplete knowledge about some of these elements,
learn about those elements while playing the game’ (emphasis added). As far as our paper is
concerned, we may assert that here learning is both ‘about how to play a given game’ and ‘about
the game itself”: insofar as their opponents perform better, players imitate both their ‘game framing’
and the strategies they play.

Referring to Granovetter’s (1985) work, Sacco & Zamagni (1996) remind us that the network of social
relations which individual behaviors are embedded represents one of the key factors affecting agents’
goals and motivations.

‘In psychological games the payoff to each player depends not only on what every player does but also
on what he thinks every player believes, and on what he thinks every player believes, and on what he
thinks they believe others believe, and so on. (...) the traditional theory of games is not well suited to
the analysis of such belief-dependent psychological considerations as surprise, confidence, gratitude,
disappointment, embarassment, and so on’ (Geanakoplos et al. 1989, pp. 60-61). The above recalled
interaction could, even radically, modify the ‘purely material’ payoff structure and, consequently, the
choices determined by them, as we showed in section 1 by illustrating how different levels of the ‘degree
of altruism’ w can lead to alternative payoff configurations, such as PD, AG and OR (see Taylor 1987
for a rigorous analysis).

. Similarly, Banerjee & Weibull (1995) set up a ‘discriminating players’ model where agents are able

to identify their opponents’ type and to consequently act on the basis of an ‘opponent-sensitive’ logic
of play.
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14. x; = 0 if there are no other players in the community deciding to adopt strategy j. Further, the
maximum number of equations is N x M, as this is determined by the number of actions (i, j)
coexisting at the fixed point (i.e. such that x; > 0).

15. Sahlins (1972) refers to a similar selective attitude describing human societies where the same agent
consistently displays a cooperative attitude toward people he feels ‘close’ to as well as a payoff-
maximizing or even hostile attitude towards people he perceives as ‘strangers’. Landa (1999b, p. 279),
referring to Sober & Wilson’s (1998) famous book on the evolution of unselfish behavior, remarks that
‘discriminating altruists will choose other altruists and the resulting assortive interaction is a mechan-
ism for the evolution of altruism of the group. The group of like-minded altruists in the group will
punish those members who do not cooperate. This kind of conscious choice of cooperating partners on
the basis of individual and group identity, and the punishment meted out to those who violate the
norms of the group, is exactly the same kind of behavior exhibited by Chinese merchants in Southeast
Asia.’
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