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Radar evidence of subglacial
liquid water on Mars
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The presence of liquid water at the base of the martian polar caps has long been suspected
but not observed.We surveyed the Planum Australe region using the MARSIS (Mars Advanced
Radar for Subsurface and Ionosphere Sounding) instrument, a low-frequency radar on the
Mars Express spacecraft. Radar profiles collected between May 2012 and December 2015
contain evidence of liquid water trapped below the ice of the South Polar Layered Deposits.
Anomalously bright subsurface reflections are evident within a well-defined, 20-kilometer-
wide zone centered at 193°E, 81°S, which is surrounded by much less reflective areas.
Quantitative analysis of the radar signals shows that this bright feature has high relative
dielectric permittivity (>15), matching that of water-bearing materials.We interpret this
feature as a stable body of liquid water on Mars.

T
he presence of liquid water at the base of
the martian polar caps was first hypothe-
sized more than 30 years ago (1) and has
been inconclusively debated ever since.
Radio echo sounding (RES) is a suitable

technique to resolve this dispute, because low-
frequency radars have been used extensively and
successfully to detect liquid water at the bottom
of terrestrial polar ice sheets. An interface be-
tween ice and water, or alternatively between ice
and water-saturated sediments, produces bright
radar reflections (2, 3). TheMars Advanced Radar
for Subsurface and Ionosphere Sounding (MARSIS)
instrument on the Mars Express spacecraft (4) is
used to perform RES experiments (5). MARSIS
has surveyed the martian subsurface for more
than 12 years in search of evidence of liquid water
(6). Strong basal echoes have been reported in
an area close to the thickest part of the South
Polar Layered Deposits (SPLD), Mars’ southern
ice cap (7). These features were interpreted
as due to the propagation of the radar signals
through a very cold layer of purewater ice having
negligible attenuation (7). Anomalously bright
reflections were subsequently detected in other
areas of the SPLD (8).
On Earth, the interpretation of radar data

collected above the polar ice sheets is usually
based on the combination of qualitative (the
morphology of the bedrock) and quantitative
(the reflected radar peak power) analyses (3, 9).
The MARSIS design, particularly the very large
footprint (~3 to 5 km), does not provide high
spatial resolution, strongly limiting its ability to
discriminate the presence of subglacial water
bodies from the shape of the basal topography
(10). Therefore, an unambiguous detection of
liquid water at the base of the polar deposit re-
quires a quantitative estimation of the relative
dielectric permittivity (hereafter, permittivity) of
the basal material, which determines the radar
echo strength.

Between 29 May 2012 and 27 December 2015,
MARSIS surveyed a 200-km-wide area of Planum
Australe, centered at 193°E, 81°S (Fig. 1), which
roughly corresponds to a previous study area (8).
This area does not exhibit any peculiar character-
istics, either in topographic data from the Mars
Orbiter Laser Altimeter (MOLA) (Fig. 1A) (11, 12)
or in the available orbital imagery (Fig. 1B) (13).
It is topographically flat, composed of water ice
with 10 to 20% admixed dust (14, 15), and sea-
sonally covered by a very thin layer of CO2 ice
that does not exceed 1 m in thickness (16, 17). In
the same location, higher-frequency radar obser-
vations performed by the Shallow Radar instru-
ment on the Mars Reconnaissance Orbiter (18)
revealed barely any internal layering in the SPLD
anddidnotdetect anybasal echo (fig. S1), inmarked
contrast with findings for the North Polar Layer
Deposits and other regions of the SPLD (19).
A total of 29 radar profiles were acquired using

the onboard unprocessed datamode (5) by trans-
mitting closely spaced radio pulses centered at
either 3 and 4 MHz or 4 and 5 MHz (table S1).
Observations were performed when the space-
craft was on the night side of Mars to minimize
ionospheric dispersion of the signal. Figure 2A
shows an example of a MARSIS radargram
collected in the area, where the sharp surface
reflection is followed by several secondary
reflections produced by the interfaces between
layers within the SPLD. The last of these echoes
represents the reflection between the ice-rich
SPLD and the underlying material (hereafter,
basal material). In most of the investigated area,
the basal reflection is weak and diffuse, but in
some locations, it is very sharp and has a greater
intensity (bright reflections) than the surround-
ing areas and the surface (Fig. 2B). Where the
observations from multiple orbits overlap, the
data acquired at the same frequency have con-
sistent values of both surface and subsurface
echo power (fig. S2).

The two-way pulse travel time between the
surface and basal echoes can be used to estimate
the depth of the subsurface reflector andmap the
basal topography. Assuming an average signal
velocity of 170 m/ms within the SPLD, close to
that of water ice (20), the depth of the basal
reflector is about 1.5 km below the surface. The
large size of the MARSIS footprint and the dif-
fuse nature of basal echoes outside the bright
reflectors prevent a detailed reconstruction of
the basal topography, but a regional slope from
west to east is recognizable (Fig. 3A). The sub-
surface area where the bright reflections are
concentrated is topographically flat and sur-
rounded by higher ground, except on its eastern
side, where there is a depression.
The permittivity, which provides constraints

on the composition of the basal material, can
in principle be retrieved from the power of the
reflected signal at the base of the SPLD. Un-
fortunately, the radiated power of the MARSIS
antenna is unknown because it could not be
calibrated on the ground (owing to the instru-
ment’s large dimensions), and thus the intensity
of the reflected echoes can only be considered
in terms of relative quantities. It is common to
normalize the intensity of the subsurface echo
to the surface value (21)—i.e., to compute the
ratio between basal and surface echo power.
Such a procedure has the advantage of also
compensating for any ionospheric attenua-
tion of the signal. Following this approach,
we normalized the subsurface echo power to
the median of the surface power computed
along each orbit; we found that all normal-
ized profiles at a given frequency yield con-
sistent values of the basal echo power (fig. S3).
Figure 3B shows a regional map of basal echo
power after normalization; bright reflections
are localized around 193°E, 81°S in all intersect-
ing orbits, outlining a well-defined, 20-km-wide
subsurface anomaly.
To compute the basal permittivity, we also

require information about the dielectric prop-
erties of the SPLD, which depend on the com-
position and temperature of the deposits.
Because the exact ratio between water ice and
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dust is unknown (15), and because the thermal
gradient between the surface and the base of
the SPLD is poorly constrained (22), we explored
the range of plausible values for such parameters
and computed the corresponding range of per-
mittivity values. The following general assump-
tions weremade: (i) The SPLD is composed of a
mixture of water ice and dust in varying pro-
portions (from2 to 20%), and (ii) the temperature
profile inside the SPLD is linear, starting from
a fixed temperature at the surface (160 K) and
rising to a variable temperature at the base of
the SPLD (range, 170 to 270 K). Various electro-
magnetic scenarios were computed (5) by con-
sidering a plane wave impinging normally onto a
structure with three layers: a semi-infinite layer
with the permittivity of free space, a homoge-
neous layer representing the SPLD, and another
semi-infinite layer representing the material be-
neath the SPLD, with variable permittivity values.
The output of this computation is an envelope
encompassing a family of curves that relate the
normalized basal echo power to the permittivity
of the basal material (Fig. 4A). This envelope is
used to determine the distribution of the basal
permittivity (inside and outside the bright area)
by weighting each admissible value of the per-
mittivity with the values of the probability dis-
tribution of the normalized basal echo power
(Fig. 4B). This procedure generated two dis-
tinct distributions of the basal permittivity esti-
mated inside and outside the bright reflection
area (Fig. 4C and fig. S4), whose median values
at 3, 4, and 5MHz are 30±3, 33± 1, and 22± 1 and
9.9 ± 0.5, 7.5 ± 0.1, and 6.7 ± 0.1, respectively.
The basal permittivity outside the bright area is
in the range of 4 to 15, typical for dry terrestrial
volcanic rocks. It is also in agreement with pre-

vious estimates of 7.5 to 8.5 for the material at
the base of the SPLD (23) and with values derived
from radar surface echo power for dense dry
igneous rocks on the martian surface at mid-
latitudes (24, 25). Conversely, permittivity values
as high as those found within the bright area
have not previously been observed onMars. On
Earth, values greater than 15 are seldom as-
sociated with dry materials (26). RES data col-
lected in Antarctica (27) and Greenland (9) show
that a permittivity larger than 15 is indicative
of the presence of liquid water below polar de-
posits. On the basis of the evident analogy of
the physical phenomena on Earth and Mars, we
can infer that the high permittivity values re-
trieved for the bright area below the SPLD are
due to (partially) water-saturated materials and/
or layers of liquid water.
We examined other possible explanations for

the bright area below the SPLD (supplementary
text). For example, a CO2 ice layer at the top or
the bottom of the SPLD, or a very low temper-
ature of the H2O ice throughout the SPLD, could
enhance basal echo power compared with sur-
face reflections. We reject these explanations
(supplementary text), either because of the very
specific and unlikely physical conditions required,
or because they do not cause sufficiently strong
basal reflections (figs. S5 and S6). Although the
pressure and the temperature at the base of the
SPLD would be compatible with the presence of
liquid CO2, its relative dielectric permittivity is
much lower (about 1.6) (28) than that of liquid
water (about 80), so it does not produce bright
reflections.
The substantial amounts of magnesium, cal-

cium, and sodium perchlorate in the soil of the
northern plains of Mars, discovered using the

Phoenix lander’sWet Chemistry Lab (29), support
the presence of liquid water at the base of the
polar deposits. Perchlorates can form through
different physical and/or chemical mechanisms
(30, 31) and have been detected in different areas
of Mars. It is therefore reasonable to assume that
they are also present at the base of the SPLD.
Because the temperature at the base of the polar
deposits is estimated to be around 205 K (32),
and because perchlorates strongly suppress the
freezing point of water (to a minimum of 204
and 198 K for magnesium and calcium perchlo-
rates, respectively) (29), we therefore find it
plausible that a layer of perchlorate brine could
be present at the base of the polar deposits. The
brine could be mixed with basal soils to form a
sludge or could lie on top of the basal material
to form localized brine pools (32).
The lack of previous radar detections of sub-

glacial liquid water has been used to support the
hypothesis that the polar caps are too thin for
basal melting and has led some authors to state
that liquid water may be located deeper than
previously thought [e.g., (33)]. The MARSIS data
show that liquid water can be stable below the
SPLD at relatively shallow depths (about 1.5 km),
thus constraining models of Mars’ hydrosphere.
The limited raw-data coverage of the SPLD (a
few percent of the area of Planum Australe) and
the large size required for a meltwater patch to
be detectable byMARSIS (several kilometers in
diameter and several tens of centimeters in
thickness) limit the possibility of identifying
small bodies of liquid water or the existence of
any hydraulic connection between them. Be-
cause of this, there is no reason to conclude
that the presence of subsurface water on Mars
is limited to a single location.
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Fig. 1. Maps of the investigated area. (A) Shaded relief map of
Planum Australe, Mars, south of 75°S latitude. The map was produced
using the MOLA topographic dataset (11). The black square outlines the
study area. (B) Mosaic produced using infrared observations by the
THEMIS (Thermal Emission Imaging System) camera (13), corresponding

to the black square in (A). South is up in the image.The red line marks the
ground track of orbit 10737, corresponding to the radargram shown
in Fig. 2A. The area consists mostly of featureless plains, except for a few
large asymmetric polar scarps near the bottom right of (B), which
suggest an outward sliding of the polar deposits (34).
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Fig. 3. Maps of basal topography and reflected echo power. (A) Color-
coded map of the topography at the base of the SPLD, computed with
respect to the reference datum. The black contour outlines the area in
which bright basal reflections are concentrated. (B) Color-coded map
of normalized basal echo power at 4 MHz. The large blue area (positive

values of the normalized basal echo power) outlined in black corresponds
to the main bright area; the map also shows other, smaller bright spots
that have a limited number of overlapping profiles. Both panels are
superimposed on the infrared image shown in Fig. 1B, and the value at
each point is the median of all radar footprints crossing that point.
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Fig. 2. Radar data collected by MARSIS. (A) Radargram for MARSIS
orbit 10737, whose ground track is shown in Fig. 1B. A radargram is a bi-
dimensional color-coded section made of a sequence of echoes in which the
horizontal axis is the distance along the ground track of the spacecraft,
the vertical axis represents the two-way travel time of the echo (from a
reference altitude of 25 km above the reference datum), and brightness is a
function of echo power. The continuous bright line in the topmost part of
the radargram is the echo from the surface interface, whereas the bottom

reflector at about 160 ms corresponds to the SPLD/basal material interface.
Strong basal reflections can be seen at some locations, where the basal
interface is also planar and parallel to the surface. (B) Plot of surface and
basal echo power for the radargram in (A). Red dots, surface echo power;
blue dots, subsurface echo power. The horizontal scale is along-track
distance, as in (A), and the vertical scale is uncalibrated power in decibels.
The basal echo between 45 and 65 km along-track is stronger than the
surface echo even after attenuation within the SPLD.
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