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Abstract. This paper introduces a new similarity measure derived from the Common Submatrix-
based measures for comparing square matrices. The novelty is that the similarity between two ma-
trices is computed as the average area of the largest sub-matrices exactly matching and being located
at the same position in the two matrices. By contrast, in the original similarity measures, the largest
sub-matrices can exactly or approximately match and be located at different positions. An experi-
ment conducted on a subset of the MNIST and NIST datasets shows that the new similarity measure
is very promising in retrieving relevant handwritten character images.
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1. Introduction

A similarity measure takes into consideration two real problems. In the first one, a refer-
ence object is observed. In the second one, the other object is in the focus. Basically, it is
evaluated how much it matches the first object (Goshtasby and Ardeshir, 2012). This ob-
ject is usually called the target object. Hence, a similarity measure quantifies how similar
are these two objects (reference and target). Also, this includes the matching of parts of
the given object.

Basically, the use of a specific similarity metrics deeply depends on the problem which
has to be solved. In particular, it is defined by the goal of a measurement process. The
final goal is the similarity level which is derived by the matching between a target object
and a reference object. However, the metrics heavily depend on the characteristics of the
objects to be compared.

Typically, we can consider the following similarity metrics: (i) mean squares, (ii) nor-
malized correlation, (iii) pattern intensity, (iv) mutual information, and (v) self-similarity
matrix.

*Corresponding author.
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Mean squares or Mean Square Error (MSE) uses the intensity values given by two
objects. It is typically used as an evaluator in a one-dimensional problem. Basically, it
evaluates the difference between the estimator and the reference by measuring the average
of the squares of the errors, i.e. deviations between them. This fact implies that their values
should be in the same range. In fact, MSE measures the level of estimator’s quality. It is
worth noting that it always receives a positive value, and if it is closer to zero, then the
estimation is better. However, in another way, MSE can be interpreted as a second moment
of the error. Accordingly, it includes the variance of the estimator as well as its bias. If
we have an unbiased estimator, then the MSE represents the variance of the estimator. In
such cases, MSE can be used as a good approximation of the difference between estimator
and reference. Still, it suffers from the same disadvantages as the variance if an estimator
includes heavily weighted outliers. Due to calculating the squared difference, large error
elements appear. In this case, the MSE approach can be troublesome in some types of
applications.

Normalized correlation calculates the correlation between the intensity values that
characterize the two objects. In this way, it establishes a similarity measure between them.
Basically, both objects are represented as two different vectors. Consequently, this method
is used for the template matching, which finds the patterns matching in both objects. The
normalized correlation can receive values in the range between +1 and −1. Accordingly,
a linear relationship between the objects is established. Hence, it also represents the two-
dimensional version of the Pearson’s correlation coefficient. The advantage of the method
is its easy implementation and computer time effectiveness. However, the main disadvan-
tage of the method is its limitation to the only linear problems.

Pattern intensity uses the differences between intensity values transformed by a func-
tion which is usually given as 1/(1 +x). After that, these differences are squared and then
summed at the end. These metrics are simultaneously increased when more samples are
accessible as well as when the intensity values are close to each other. It represents its
advantage over some other metrics methods.

Mutual information includes the metrics which are based on the information theory
postulate. Basically, it measures the dependence between two objects represented by vari-
ables. In this way, it quantifies how much one variable tells about the other one. This
measure gives the amount of information obtained by one variable through the other vari-
able. The initial concept of mutual information is connected to the entropy. Accordingly,
it can be considered to be a reduction in uncertainty about one variable given the knowl-
edge of another variable. The obtained value is a dimensionless quantity with units in
bits. Zero values of the mutual information mean that two variables are mutually indepen-
dent. On the contrary, a high value of mutual information demonstrates a high reduction
in uncertainty, while a low value reveals a small reduction in uncertainty.

Self-similarity matrix graphically represents similar sequences in a specific data se-
ries. The data series typically are feature vectors characterized by an N length. Then, it
computes a square self-similarity matrix of area N × N showing pairwise similarities or
dissimilarities between vectors. Basically, the self-similarity matrices match a series of
features to show similarities and differences between those features in the series. The di-
agonal elements correlate to the self-comparison, giving zero values in the diagonal. On
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the contrary, each element of the matrix is calculated according to a distance measure,
such as the Euclidian distance (or some other) and the features. This allows the compari-
son of repetitive elements and segments. Higher scores are given to more similar elements
(including repetitive elements), and lower or negative scores are characterized by dissim-
ilar elements. If similar sequences representing repetitive elements exist, then diagonal
stripes are shown in the plot.

At the end, it is worth noting that the choice of the right similarity measure depends
on the objects that are compared.

The aforementioned measures as well as their extensions are used for the objects that
are usually represented as bi-dimensional ones. Hence, these objects can be represented
as matrices. In that sense, the similarity of two objects can be evaluated in two different
circumstances: (i) the determination of the similarity between two matrices, and (ii) the
determination of the similarity between a template matrix and a window in a larger matrix.

According to the previous categorization, many similarity measures have been pro-
posed in the literature to evaluate the matching of the objects. Some of them are statistics-
based: (i) Pearson-Correlation Coefficient (Pearson, 1896), (ii) Stochastic Sign Changed
(Duda et al., 2000), (iii) Median of Square Differences (Lan et al., 1995), (iv) Intensity-
Ratio Variance (Woods et al., 1992), (v) Intensity-Mapping-Ratio Variance (Hill et al.,
1993), and (vi) Rank Distance (Goshtasby and Ardeshir, 2012). Also, some measures
have geometrical properties, such as: (i) Tanimoto Measure (Theodoridis and Koutroum-
bas, 2009), and (ii) Normalized Square L2 Norm (Evangelidis and Psarakis, 2008). Other
measures are information-theoretic, such as: (i) Incremental Sign Distance (Kaneko et

al., 2002), (ii) Joint Entropy (Shannon, 1948), (iii) Kullback-Leibler Divergence (Kull-
back and Leibler, 1951), (iv) Exclusive F-Information (Rougon et al., 2003), (v) Jensen-
Shannon Divergence (Fuglede and Topsoe, 2004), and (vi) Arithmetic-Geometric Mean
Divergence (Tourassi et al., 2007).

Lately, the similarity between matrices has been measured by Common Submatrix
approaches typically on image examples with the introduction of the baseline Average

Common Submatrix measure (ACSM) (Amelio and Pizzuti, 2013, 2016), and its variant
Approximate Average Common Submatrix (A-ACSM) (Amelio, 2016), which overcome
the limitations of the previously introduced (dis)similarity measures. They compute the
average area of the largest square sub-matrices matching in two images for measuring their
similarity. These methods are based on the principle that two matrices are more similar
to each other if they share larger patterns. The application of the Common Submatrix
approaches is predominantly linked to the images. However, they can be used in any other
area of interest in signal processing where data can be represented in the matrix format.

The main limitation of the baseline ACSM measure is its computational complex-
ity, which is critical when its brute-force algorithm is applied. Although a tree indexing
strategy has been introduced in ACSM for reducing the temporal cost of the brute-force
algorithm, the construction procedure of the tree is quite demanding in time and space.
On the other hand, the A-ACSM measure reduces the temporal cost of the brute-force al-
gorithm of ACSM by omitting the comparison of a portion of elements at regular intervals
during the match of the sub-matrices. Its main advantage is that it does not need any addi-
tional tree indexing data structure to be constructed and kept in memory. However, setting
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the correct size of the interval is a critical aspect which may compromise the similarity
computation.

In this paper, we propose an optimized version of the Common Submatrix approaches
for measuring the similarity. The new measure only considers the match of those sub-
matrices which are located at the same position in the two matrices. Also, the new mea-
sure exactly matches the sub-matrices because every element of the first sub-matrix is
compared with its corresponding element of the second sub-matrix. Hence, any element
is omitted from the comparison during the match. In this way, an improvement in time
complexity of the baseline ACSM method is achieved by including all elements in the
comparison of the sub-matrices, with no need of constructing a tree indexing data struc-
ture. An experiment is conducted on a subset of a 1000 images from the MNIST dataset
and a subset of 210 images from the NIST dataset for the retrieval of handwritten charac-
ter images. The obtained results show that the new similarity measure is very promising
in terms of retrieval precision and execution time, when it is compared with other well-
known (dis)similarity measures in the state-of-the-art.

The paper is organized as follows. Section 2 recalls the main concepts underlying the
baseline ACSM measure from which the new similarity measure is derived. Section 3
presents the main features of the new similarity measure. Section 4 describes the exper-
iment, i.e. the procedure for performance evaluation, the adopted datasets, and the com-
peting methods. Section 5 shows the results in terms of retrieval precision and execution
time. At the end, Section 6 draws a conclusion and outlines future work directions.

2. The ACSM Similarity Measure

ACSM is a suitable measure for computing the (dis)similarity between matrices, which
can be represented as images (Amelio and Pizzuti, 2013). The ACSM measure is based on
the concept that two matrices are similar to each other if the average area of their common
sub-matrices is large. This quantifies the similarity between the two matrices. Then, the
dissimilarity can be computed from the similarity value (Amelio and Pizzuti, 2013).

2.1. The Methodology

Let A and B be two square matrices respectively of area N × N and M × M defined on
the same alphabet 6. For each position (i, j) in A, ACSM finds the largest square sub-
matrix exactly matching a square sub-matrix at some position (h, k) in B . An exact match
implies checking all elements in the two sub-matrices and verifying if they are identical at
the corresponding positions. The area of the largest common square sub-matrices is pro-
gressively summed. Finally, the average area is computed as the similarity value between
A and B .

The ACSM similarity measure is defined as follows:

Sα(A,B) =
N

∑

i=1

N
∑

j=1

W(i, j)

N2
, W(i, j)> α, (1)
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where W(i, j) is the area of the largest square sub-matrix at position (i, j) in A exactly
matching a square sub-matrix at some position (h, k) in B , and α is a parameter setting
the minimum allowed area of the square sub-matrices to be considered.

The ACSM similarity measure varies between 0 (any match occurs between A and B)

and
∑N

i=1

∑N
j=1

min{i,j}2

N2 (when A and B are identical). In this last case, for each position
(i, j) in A, the area of the largest square sub-matrix exactly matching inside B is the
maximal area min{i, j }2 (Amelio and Pizzuti, 2013).

2.2. The ACSM Algorithm

Let A(i, j)k be the square sub-matrix of area k × k and bottom-right corner at position
(i, j) in A. The procedure for computing the ACSM similarity measure is reported in
Algorithm 1.

Algorithm 1 ACSM similarity measure.

Require: A, B , α

1: Wtot := 0, d := 0, i := 1

2: while i 6 N do

3: j := 1

4: while j 6 N do

5: W(i, j) := 0, d := min{i, j }, flag := true
6: while d >

√
α and flag do

7: if M(A(i, j)d,B) then

8: flag = false

9: else

10: d = d − 1

11: end if

12: end while

13: if ¬ flag then

14: W(i, j) = d2

15: end if

16: Wtot = Wtot + W(i, j), j = j + 1

17: end while

18: i = i + 1

19: end while

20: Sα(A,B) = Wtot/N
2

21: return Sα(A,B)

The algorithm iterates over A (steps 2–4). For each position (i, j) in A, it finds the
largest square sub-matrix of area bigger than or equal to α exactly matching inside B

(steps 6–12). It is accomplished starting from the square sub-matrix of maximal area
min{i, j }2 at position (i, j) in A (step 5). Its exact match is verified with a sub-matrix
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Fig. 1. Sample matrices A and B of area 5 × 5 defined on the same alphabet 6 = {1,2,3}.
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Fig. 2. Extraction of the largest common square sub-matrix at position (5,4) in A. This is A(5,4)2 of area 2×2

exactly matching the sub-matrix B(3,5)2 at position (3,5) in B.

in B , provided that its area is bigger than or equal to α (steps 6–7). If a match occurs, the
largest common square sub-matrix at (i, j) is found (step 8). Otherwise, the square sub-
matrix of smaller area at (i, j) is considered to match inside B , provided that its area is
bigger than or equal to α (step 10). Increasingly smaller square sub-matrices are verified
at (i, j) until an exact match inside B is found or the area of the sub-matrix is smaller
than α. If an exact match is not found at (i, j), the contribution of that position to the
similarity measure is zero (steps 13–15). The routine of match M(A(i, j)d ,B) at step 7
verifies if the square sub-matrix A(i, j)d has an exact match with some square sub-matrix
in B . The area of the largest common square sub-matrices at the different positions in A is
progressively summed (step 16). At the end, this value is averaged on the area of A (step
20), and the ACSM similarity measure is returned as output (step 21).

2.3. Example

Figure 1 shows two matrices A and B of size N = M = 5 with elements in the alphabet
6 = {1,2,3}.

Figure 2 shows the extraction of the largest common square sub-matrix at position
(5,4) in A (A(5,4)2 of area 2 × 2, in red). The maximal square sub-matrix at position
(5,4) is A(5,4)4 of area min{5,4}2 = 4 × 4 (in cyan). The smaller square sub-matrix of
area 3×3 at position (5,4) is A(5,4)3 (in blue). It is visible that A(5,4)4 neither A(5,4)3

exactly match inside B .
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Fig. 3. The largest common square sub-matrices between A and B.

Let α be equal to 4. Figure 3 shows the set of the largest square sub-matrices of A

exactly matching at some position inside B . Some positions of A are not considered,
because of the α value. For example, at position (4,3) in A the largest square sub-matrix
exactly matching inside B is A(4,3)1 = |2| of area 1 × 1. Because its area is smaller than
α = 4, it is disregarded.

At the end, the ACSM similarity measure is computed from the area of the largest
common square sub-matrices:

S4(A,B) =
Wtot

N2
=

4 × 9 + 9

25
= 1.8. (2)

2.4. Limitations of the ACSM Method and Its Variant A-ACSM

The time complexity of Algorithm 1 is dominated by the exact match procedure
M(A(i, j)d ,B), searching for the exact correspondence of the sub-matrix A(i, j)d in-
side B . It can take O(M2) time, which is independent from the area of the sub-matrix
(Crochemore et al., 1995). In the worst case, for each position (i, j) in A (for a total
of N2 positions), a maximum of N sub-matrices can be matched inside B (because of
the d parameter). Consequently, the brute-force approach takes O(M2N3) time, which
can be further reduced to O(M2N2log2N) performing a binary search on d (Amelio and
Pizzuti, 2013). Although a generalized suffix-tree based solution can be applied on the
two matrices, reducing the time complexity to O(M2 + N2), the construction of the trie
takes O(M2(log2M + log2|6|) + N2(log2N + log2|6|)), which can be quite demanding
for large matrices (Amelio and Pizzuti, 2016). Also, the trie data structure is memory-
allocated, requiring an extra space of O(M2 + N2) (Giancarlo, 1995).

To overcome the current limitations, the A-ACSM similarity measure, an approximate
variant of the ACSM similarity measure has been introduced, which omits a portion of
elements at regular intervals in the matching process of the sub-matrices (Amelio, 2016).
Accordingly, row and column offsets 1r and 1c determine the size of the interval, which
is the distance between the elements to match in the sub-matrices. Although a generalized
suffix-tree based solution is not used, the A-ACSM method obtains a lower execution time
than Algorithm 1 of ACSM. However, the main limitation of A-ACSM is the size of the
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Table 1
Characteristics and differences of the Common Submatrix approaches. Approximate

match indicates that checking the correspondence of some elements is omitted during the
match of the sub-matrices.

Method Match type Pattern matching type

ACSM Exact match Different positions of the sub-matrices
A-ACSM Approximate match Different positions of the sub-matrices
eACSM Exact match Same position of the sub-matrices

interval, which should be appropriately set in order to avoid information loss in measuring
the similarity.

Accordingly, a similarity evaluation which is more efficient than Algorithm 1 and re-
quires any element omission in matching the sub-matrices is still an unsolved problem,
and it is the object of our investigation.

3. Extended-Average Common Submatrix Similarity Measure

To overcome the previous limitations, we introduce an optimized version of the Common
Submatrix-based similarity measures, which is called Extended-Average Common Sub-

matrix (eACSM). Differently from the ACSM measure, it is based on the concept that two
matrices are similar to each other if their square sub-matrices match and are located at the
same position in the two matrices. This reduces the time complexity of Algorithm 1 of
ACSM without using tree indexing data structures. Also, differently from the A-ACSM
measure, eACSM exactly matches the sub-matrices because every element of the first sub-
matrix is compared with its corresponding element of the second sub-matrix. This avoids
to omit the match of some elements inside the sub-matrices, resulting in any information
loss in measuring the similarity. Table 1 reports the main differences among the Common
Submatrix approaches: (i) ACSM, (ii) A-ACSM, and (iii) eACSM.

This represents a suitable approximation of the similarity when the matrices are im-
ages. In other contexts, it may be unavoidable choice when the position of the sub-matrices
is associated with specific elements needing to be compared, like various problems in sig-
nal processing, image processing, biometry, physics, etc.

3.1. The New eACSM Measure

In Eq. (1), the term W(i, j) is substituted by W(i, j), which is the area of the largest
square sub-matrix at position (i, j) in A bigger than or equal to α exactly matching a
square sub-matrix at the same position (i, j) in B . It is worth noting that W(i, j) can be
different from W(i, j), because the two largest square sub-matrices at position (i, j) in A

matching: (i) at the same position (i, j) in B , and (ii) at some (other) position (h, k) in B ,
can be different.
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Accordingly, the eACSM similarity measure is defined as follows:

Sα(A,B) =
N

∑

i=1

N
∑

j=1

W(i, j)

N2
, W(i, j)> α. (3)

3.2. Modifications in the eACSM Algorithm

The procedure for computing the eACSM similarity measure is shown in Algorithm 2.

Algorithm 2 eACSM similarity measure.

Require: A, B , α

1: W tot := 0, d := 0, i := 1

2: while i 6 N do

3: j := 1

4: while j 6 N do

5: W(i, j) := 0, d := min{i, j }, flag := true
6: while d >

√
α and flag do

7: if SM(A(i, j)d ,B(i, j)d ) then

8: flag = false
9: else

10: d = d − 1

11: end if

12: end while

13: if ¬ flag then

14: W(i, j) = d2

15: end if

16: W tot = W tot + W(i, j), j = j + 1

17: end while

18: i = i + 1

19: end while

20: Sα(A,B) = W tot/N
2

21: return Sα(A,B)

The routine M(A(i, j)d,B) at step 7 of Algorithm 1 is substituted by the routine of
single match SM(A(i, j)d ,B(i, j)d ). In particular, it computes the exact match between
the square sub-matrix A(i, j)d of area d × d at position (i, j) in A and the square sub-
matrix B(i, j)d of area d ×d at the same position (i, j) in B . Hence, the match of A(i, j)d

is no more searched at every position inside B . The total area of the largest common square
sub-matrices at the same positions in A and B is denoted as W tot.

It is worth noting that the eACSM similarity value can be lower than the ACSM simi-
larity value. In fact, matching the sub-matrices in A and B at the same positions is a stricter
constraint in the similarity computation than matching at different positions. Nonetheless,
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Fig. 4. Extraction of the largest common square sub-matrix at position (3,4) in A. This is A(3,4)2 of area 2×2

exactly matching the square sub-matrix B(3,4)2 at the same position (3,4) in B.

like in the ACSM similarity measure, the eACSM similarity measure ranges in the interval

[0,
∑N

i=1

∑N
j=1

min{i,j}2

N2 ]. This value can be easily normalized dividing by the maximum
value.

3.3. Computational Complexity

The substitution of the match routine M in Algorithm 1 with the single match routine
SM noticeably reduces the time complexity of the procedure.

Theorem 1. The eACSM algorithm takes O(N3) time. It can be reduced to O(N2 log2 N)

time by performing a binary search on d .

Proof. Finding the exact match of A(i, j)d inside B is linear in the area of B , taking
O(M2). Accordingly, checking the exact match of A(i, j)d at the same position (i, j) in
B (B(i, j)d ) is constant in the area of B , hence O(1) (Crochemore et al., 1995). This re-
duces the time complexity from O(M2N3) to O(N3). Similarly, using the binary research
strategy on d (Amelio and Pizzuti, 2013), the time complexity can be further reduced from
O(M2N2 log2 N) to O(N2 log2 N). �

Although using a generalized suffix tree takes O(M2 +N2) time (Amelio and Pizzuti,
2016), the new method has the advantage to not require the construction and allocation of
the tree index. Hence, it is more efficient in this sense.

3.4. Example

Let A and B be the same two matrices depicted in Fig. 1. The largest square sub-matrix
at position (3,4) in A exactly matching at the same position (3,4) in B is A(3,4)2 =
B(3,4)2 of area 2×2, in red. The sub-matrix of maximal area at position (3,4) is A(3,4)3

of area min{3,4}2 = 3 × 3 (in blue). It can be observed that A(3,4)3 does not match at
the same position (3,4) in B .

Figure 5 shows the set of the largest square sub-matrices of A exactly matching at the
same positions inside B when α is set to 4. Some positions of A are not considered in the
similarity computation, because of the α value. For example, at position (2,3) in A, the
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Fig. 5. The largest common square sub-matrices at the same positions in A and B.

largest square sub-matrix exactly matching at the same position (2,3) in B is A(2,3)1 =
|3| of area 1 × 1. Because its area is smaller than α = 4, it is discarded.

It can be observed that the sub-matrices A(2,5)2 and A(4,2)2 (see Fig. 3) are no more
included in the set of the largest common square sub-matrices. This is because A(2,5)2

and A(4,2)2 do not match at the same positions (2,5) and (4,2) in B , but they match at
position (5,5) in B .

Finally, the eACSM similarity measure can be computed from the area of the largest
common square sub-matrices as follows:

S4(A,B) =
W tot

N2
=

4 × 7 + 9

25
= 1.48. (4)

4. Experiment

We test the performances of eACSM on two benchmark datasets of handwritten character
images. This is accomplished by evaluating the performances of a typical retrieval sys-
tem where eACSM is employed as the similarity measure. Then, we compare eACSM
with other well-known (dis)similarity measures previously introduced in the literature,
and show the difference in terms of retrieval performance and execution time.

4.1. Performance Evaluation

Let ID be an image dataset where the images are categorized in different semantic classes.
Also, let Q be a query image not included in ID and belonging to one of the semantic
classes. The aim is to retrieve from ID the top K most (less) (dis)similar images to Q

which are also relevant. Images belonging to the same semantic class of Q are considered
relevant. In order to evaluate the retrieval accuracy, we employ the well-known retrieval

precision measure (Tourassi et al., 2007), which is defined as follows:

retrieval precision =
RI

K
, (5)

where RI is the number of relevant retrieved images and K is the number of retrieved
images. In order to compute the retrieval precision, the (dis)similarity between the query
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image Q and each image in ID is computed. Then, the images are sorted in increasing or
decreasing order according to the obtained (dis)similarity values. At the end, the relevant
images among the top K retrieved images are selected, and their number RI is computed.

Because the retrieval precision is dependent on the selected query image, for a given
value of K , we compute this measure for different query images. At the end, we average
over the different query images and return the average retrieval precision for the evaluation.
Hence, for each value of K = 1, . . . ,N , where N ≪ |ID|, we compute the average retrieval
precision for the top K retrieved images.

Also, we evaluate the temporal performancesof the (dis)similarity measure by comput-
ing the Average Time per Query (ATQ), which is the execution time (in seconds) required
for computing the (dis)similarity between a query image Q and each image in ID averaged
over the different query images. Basically, we introduce the ATQ as follows:

ATQ =
1

|Q|
∑

Q∈Q
TQ, (6)

where Q is the set of considered query images, and TQ is the total execution time required
for computing the (dis)similarity between the current query image Q and all images in ID.

4.2. Datasets

We perform the evaluation on a randomly selected subset of images from the MNIST
dataset.2 MNIST is a dataset containing 60’000 training and 10’000 test images of hand-
written digits divided into 10 semantic classes (the digits from 0 to 9). The images are
extracted from the larger dataset NIST, a benchmark for testing pattern recognition and
machine learning methods in image processing and handwritten character recognition. In
particular, the training images are composed for one half of some test images from NIST
and for the other half of some training images from NIST. The same composition of images
is for the test set. Each image is centred and size-normalized.

From the original dataset, we randomly select for the experiment 100 images for each
semantic class, in order to obtain a subset of 1000 images with 10 semantic classes. Then,
we randomly select 7 query images from the original dataset, not included in the subset of
1000 images and belonging to 4 out of 10 semantic classes. Each image is of area 28 × 28

in bitmap format (.bmp).
Figure 6 shows sample images from the MNIST dataset.
Also, we perform a second evaluation on a randomly selected subset of images from

the NIST Special 19 dataset.3 NIST includes binary images of 3669 handwriting sample
forms and 814 255 digit, uppercase and lowercase alphabet letter images segmented from
those forms in Portable Network Graphics (.png) format. The area of each segmented
image is 128 × 128 pixels. All segmented images are divided in multiple categories for

2http://cis.jhu.edu/sachin/digit/digit.html.
3https://www.nist.gov/srd/nist-special-database-19.
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(a) (b) (c) (d)

Fig. 6. Sample handwritten digit images from the MNIST dataset: (a) number 0, (b) number 1, (c) number 6,
(d) number 7.

(a) (b) (c) (d)

Fig. 7. Sample handwritten alphabet letter images from the NIST Special 19 dataset: (a) letter j, (b) letter k,
(c) letter l, (d) letter m.

different recognition tasks: (i) by writer, (ii) by class, (iii) by caseless class (no distinction
between uppercase and lowercase letters), and (iv) by field origin.

We extract an image subset corresponding to the only alphabet letters. Basically, we
retrieve the relevant images corresponding to the class (letter of the alphabet) of the query
image, independently from the writer and the field origin. Accordingly, we use the catego-
rization of the segmented images by class. In this way, the retrieval task is more complex
because of the different writing styles and field information.

From the original dataset, we randomly select a subset of 30 segmented images from
7 classes, for a total of 210 images. Also, we randomly extract a set of 5 query images not
included in the subset of 210 images, each belonging to one of the 7 classes. Each image
is resized to 28 × 28 pixels and converted in bitmap (.bmp) format.

Figure 7 shows sample images from the NIST Special 19 dataset.

4.3. Competing Methods

Because the Common Submatrix approaches derive from the notion of shared informa-
tion, which has roots in information theory (Ulitsky et al., 2006), we compare eACSM
with other four information-theoretic dissimilarity measures usually adopted in image
processing (Tourassi et al., 2007): (i) Joint entropy, (ii) Kullback–Leibler divergence, (iii)
Jensen–Shannon divergence, and (iv) Arithmetic-geometric mean divergence.

The Joint entropy (JE) is the entropy of the joint histogram of two images A and B . If
the two images are similar, their joint entropy is low in comparison with the sum of their
individual entropies. Consequently, JE is considered a distance measure:

JE = −
∑

a

∑

b

pAB(a, b) log2[pAB(a, b)]. (7)
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The Kullback–Leibler divergence (KL) measures the distance between the probability
distribution of one image a(x) and the probability distribution of the second image b(x)

(approximated as the image histograms). KL quantifies the average efficiency of adopting
the histogram of one image for codifying the histogram of the second one. Consequently,
the more similar the two images are, the lower is the KL value:

KL(b||a) =
∑

x

b(x) log2

b(x)

a(x)
. (8)

The Jensen–Shannon divergence (JD) is a more stable version of KL to noise and
variations in histogram binning. Also, it is a symmetric measure and limited between 0
and 2:

JD(a, b) =
∑

x

(

b(x) log
2b(x)

a(x) + b(x)
+ a(x) log

2a(x)

a(x) + b(x)

)

. (9)

The Arithmetic-Geometric Mean divergence (AGM) quantifies the KL divergence be-
tween the arithmetic and geometric means of the probability distributions a(x) and b(x)

of the two images:

AGM(a, b) =
∑

x

a(x) + b(x)

2
log

a(x) + b(x)

2
√

a(x)b(x)
. (10)

We use the image histograms for approximating the marginal probability distributions
of the single images and the joint probability distributions. Accordingly,we set the number
of bins of the histograms equal to 256, which is a sufficient number for obtaining a good
approximation.

Finally, we compare the eACSM similarity measure with the baseline ACSM simi-
larity measure and its approximate variant A-ACSM. Hence, we set the α parameter of
all methods to 5, which revealed the best performances in a similar experiment (Amelio
and Pizzuti, 2016). In A-ACSM, we set the parameters of row and column offsets 1r and
1c respectively to 1 and 4, which experimentally obtained the highest accuracy (Amelio,
2016).

5. Results and Discussion

In the following, we show the results of our experiment on the subset of images from
the MNIST and NIST datasets in terms of retrieval precision and execution time. First,
eACSM is compared to the baseline ACSM and its approximate variant A-ACSM in terms
of retrieval precision. Our aim is to investigate how close the similarity measures are
in retrieving relevant images of handwritten characters. Then, eACSM is compared to
JE, KL, JD, and AGM in terms of retrieval precision. Finally, eACSM, ACSM and A-
ACSM are compared to each other in terms of ATQ in order to understand which similarity
measure is the best compromise in execution time and retrieval precision.
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Table 2
Retrieval precision obtained by eACSM, ACSM and A-ACSM for the top K = 10 most similar images from

the subset of images of the MNIST dataset. 1 quantifies the gain of eACSM vs. ACSM and A-ACSM. 1avg is
the average gain of eACSM vs. ACSM and A-ACSM.

K eACSM ACSM 1ACSM A-ACSM 1A-ACSM

1 1 1 0 1 0
2 0.929 1 −0.07 1 −0.07
3 0.905 1 −0.09 1 −0.09
4 0.893 0.929 −0.04 0.964 −0.07
5 0.886 0.886 0 0.971 −0.08
6 0.881 0.905 −0.02 0.952 −0.07
7 0.878 0.898 −0.02 0.939 −0.06
8 0.875 0.911 −0.04 0.929 −0.05
9 0.873 0.889 −0.02 0.921 −0.04
10 0.857 0.886 −0.03 0.914 −0.06

1avg −0.03 −0.06

5.1. Retrieval Precision Results

5.1.1. MNIST Dataset

Table 2 shows the retrieval precision obtained by eACSM, ACSM and A-ACSM and the
gains 1 of eACSM vs. ACSM and A-ACSM for the top K = 10 most similar images from
the subset of the MNIST dataset. Also, the average gains 1avg of eACSM vs. ACSM and
A-ACSM are reported.

For K = 1, eACSM obtains the maximum retrieval precision like ACSM and A-
ACSM. For K = 2,3,4, the retrieval precision of eACSM decreases up to 0.09 vs. ACSM
and A-ACSM. Finally, for K = 5, . . . ,10, the retrieval precision of eACSM decreases
up to 0.04 vs. ACSM and up to 0.08 vs. A-ACSM. On average, the retrieval precision
of eACSM only decreases up to 0.03 vs. ACSM and 0.06 vs. A-ACSM. It indicates
that matching the sub-matrices that are located at the same position in the two matrices
(eACSM) is a good approximation of the baseline matching procedure where the match-
ing sub-matrices can be located at different positions in the two matrices (ACSM and
A-ACSM). It is worth noting that the best performances are obtained by A-ACSM, fol-
lowed by ACSM and eACSM. Also, the Pearson’s correlation coefficient computed be-
tween eACSM and ACSM is 0.80, indicating a very good correlation between matching
the sub-matrices at the same position and at different positions in the two matrices.

Table 3 reports the retrieval precision obtained by eACSM, JE, KL, JD, and AGM

and the gains 1 of eACSM vs. JE, KL, JD, and AGM for the top K = 10 most (less)
(dis)similar images from the subset of the MNIST dataset. Also, the average gains 1avg

of eACSM vs. JE, KL, JD, and AGM are showed.
It is worth noting that eACSM obtains the best performances vs. all competing meth-

ods. Basically, it is more competitive with JE, with a gain of 0.29 for K = 1 and up to 0.14
for K = 2, . . . ,10. On average, eACSM gains 0.15 vs. JE. On the contrary, eACSM has
much better performances than KL, JD and AGM , which have the same retrieval precision
over K . Basically, for K = 1,2,3, eACSM gains up to 1, and for K = 4, . . . ,10, eACSM
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Table 3
Retrieval precision obtained by eACSM, JE, KL, JD, and AGM for the top K = 10 most (less) (dis)similar

images from the subset of images of the MNIST dataset. 1 quantifies the gain of eACSM vs. JE , KL, JD, and
AGM . 1avg is the average gain of eACSM vs. JE, KL, JD, and AGM.

K eACSM JE 1JE KL 1KL JD 1JD AGM 1AGM

1 1 0.714 +0.29 0 +1 0 +1 0 +1
2 0.929 0.786 +0.14 0 +0.93 0 +0.93 0 +0.93
3 0.905 0.762 +0.14 0.048 +0.86 0.048 +0.86 0.048 +0.86
4 0.893 0.750 +0.14 0.143 +0.75 0.143 +0.75 0.143 +0.75
5 0.886 0.771 +0.12 0.229 +0.66 0.229 +0.66 0.229 +0.66
6 0.881 0.762 +0.12 0.286 +0.60 0.286 +0.60 0.286 +0.60
7 0.878 0.755 +0.12 0.265 +0.61 0.265 +0.61 0.265 +0.61
8 0.875 0.750 +0.13 0.250 +0.63 0.250 +0.63 0.250 +0.63
9 0.873 0.730 +0.14 0.254 +0.62 0.254 +0.62 0.254 +0.62
10 0.857 0.729 +0.13 0.257 +0.60 0.257 +0.60 0.257 +0.60

1avg +0.15 +0.72 +0.72 +0.72

Table 4
Retrieval precision obtained by eACSM, ACSM and A-ACSM for the top

K = 10 most similar images from the subset of images of the NIST dataset. 1

quantifies the gain of eACSM vs. ACSM and A-ACSM. 1avg is the average gain
of eACSM vs. ACSM and A-ACSM.

K eACSM ACSM 1ACSM A-ACSM 1A-ACSM

1 0.800 0.800 0 0.600 +0.20
2 0.900 0.800 +0.10 0.600 +0.30
3 0.933 0.867 +0.07 0.533 +0.40
4 0.850 0.850 0 0.500 +0.35
5 0.840 0.800 +0.04 0.520 +0.32
6 0.733 0.767 −0.03 0.533 +0.20
7 0.686 0.714 −0.03 0.514 +0.17
8 0.650 0.725 −0.07 0.475 +0.17
9 0.622 0.711 −0.09 0.489 +0.13
10 0.640 0.680 −0.04 0.440 +0.20

1avg −0.005 +0.24

gains up to 0.75 vs. KL, JD and AGM . On average, eACSM gains 0.72 vs. KL, JD and
AGM .

5.1.2. NIST Dataset

Table 4 shows the retrieval precision obtained by eACSM, ACSM and A-ACSM and the
gains 1 of eACSM vs. ACSM and A-ACSM for the top K = 10 most similar images from
the subset of the NIST dataset. Also, the average gains 1avg of eACSM vs. ACSM and
A-ACSM are reported.

We can observe that eACSM has better performances than A-ACSM and in some cases
than ACSM. Basically, for K = 1, . . . ,5, eACSM gains up to 0.10 vs. ACSM. On aver-
age, eACSM only decreases up to 0.005 vs. ACSM. It indicates that matching the sub-
matrices that are located at the same position in the two matrices (eACSM) is still a good
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Table 5
Retrieval precision obtained by eACSM, JE , KL, JD, and AGM for the top K = 10 most (less) (dis)similar
images from the subset of images of the NIST dataset. 1 quantifies the gain of eACSM vs. JE, KL, JD, and

AGM . 1avg is the average gain of eACSM vs. JE, KL, JD, and AGM.

K eACSM JE 1JE KL 1KL JD 1JD AGM 1AGM

1 0.800 0.800 0 0.400 +0.40 0.400 +0.40 0.400 +0.40
2 0.900 0.600 +0.30 0.200 +0.70 0.200 +0.70 0.200 +0.70
3 0.933 0.467 +0.47 0.133 +0.80 0.133 +0.80 0.133 +0.80
4 0.850 0.450 +0.40 0.150 +0.70 0.150 +0.70 0.150 +0.70
5 0.840 0.400 +0.44 0.200 +0.64 0.200 +0.64 0.200 +0.64
6 0.733 0.367 +0.37 0.167 +0.57 0.167 +0.57 0.167 +0.57
7 0.686 0.343 +0.34 0.171 +0.52 0.171 +0.52 0.171 +0.52
8 0.650 0.325 +0.33 0.200 +0.45 0.200 +0.45 0.200 +0.45
9 0.622 0.333 +0.29 0.222 +0.40 0.222 +0.40 0.222 +0.40
10 0.640 0.320 +0.32 0.200 +0.44 0.200 +0.44 0.200 +0.44

1avg +0.32 +0.56 +0.56 +0.56

approximation of the baseline match at different positions. It is also confirmed by the
Pearson’s correlation coefficient computed between eACSM and ACSM which is very
high and equal to 0.93. In some cases, matching the sub-matrices at the same positions
like in eACSM is more effective than the traditional match. In fact, for K = 1, . . . ,5,
eACSM gains up to 0.40 vs. A-ACSM. Also, for K = 6, . . . ,10, eACSM gains up to 0.20
vs. A-ACSM. On average, eACSM gains 0.24 vs. A-ACSM. Hence, exactly matching the
sub-matrices that are located at the same position in the two matrices (eACSM) is more
effective than approximately matching the sub-matrices that are located at different posi-
tions in the two matrices (A-ACSM).

Table 5 shows the retrieval precision obtained by eACSM, JE, KL, JD, and AGM

and the gains 1 of eACSM vs. JE, KL, JD, and AGM for the top K = 10 most (less)
(dis)similar images from the subset of the NIST dataset. Also, the average gains 1avg of
eACSM vs. JE, KL, JD, and AGM are computed.

It is worth noting that eACSM overcomes all competing methods over K . The most
competitive method is JE, which obtains the same retrieval precision of eACSM for K =
1. Then, for K = 2, . . . ,10, eACSM gains up to 0.47 vs. JE. On average, eACSM gains
0.32 vs. JE. On the contrary, KL, JD and AGM have the same retrieval precision over K ,
which decreases up to 0.80 vs. eACSM. On average, eACSM gains 0.56 vs. KL, JD and
AGM .

5.1.3. Summary of the Retrieval Precision Results

Figure 8 illustrates the retrieval precision results reported in the Tables 2–5 for the subset
of the MNIST dataset (see Fig. 8 (a)) and for the subset of the NIST dataset (see Fig. 8(b))
and extended for the top K = 20 most (less) (dis)similar retrieved images.

We can observe that, for the subset of the MNIST dataset, eACSM, ACSM and A-
ACSM have a close trend to each other. For K = 1, . . . ,10, this trend is inferiorly limited
by eACSM, which is based on the stronger assumption that two matrices are similar if their
largest square sub-matrices match at the same position in the two matrices. Hence, it is an
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Fig. 8. Retrieval precision obtained by eACSM, ACSM, A-ACSM, JE, KL, JD, and AGM for the top K = 20

most (less) (dis)similar images from: (a) the subset of images of the MNIST dataset, and (b) the subset of images
of the NIST dataset.

expected result. However, for K = 11, . . . ,20, eACSM overcomes ACSM with retrieval
precision values above 0.85. As previously observed, the most competing method is JE,
with values up to 0.80, while KL, JD and AGM obtain the same lower performances up
to 0.3.

For the subset of the NIST dataset, eACSM and ACSM show a very close trend which
is never lower than 0.55, while A-ACSM obtains lower performances up to 0.60 which
are competitive with JE. On the contrary, KL, JD and AGM have the same performance
values up to 0.40 which are much lower than eACSM.

From all aforementioned, the main results obtained by the experiment can be summa-
rized as follows:

1. The eACSM obtains better performances than the other information-theoretic mea-
sures in retrieving relevant handwritten character images.
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Table 6
ATQ (in seconds) obtained by eACSM, ACSM and A-ACSM
on the subset of images from the MNIST and NIST datasets.

Method MNIST NIST

eACSM 3.14 0.01
A-ACSM 20.14 2.71
ACSM 17.28 3.57
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Fig. 9. ATQ graphical results.

2. Matching the sub-matrices at the same position like in eACSM obtains:
(a) A precision in retrieving relevant handwritten digit images which is very com-

petitive with the match at different positions like in ACSM and A-ACSM,
(b) In some cases, a higher precision in retrieving relevant handwritten letter im-

ages than the match at different positions like in ACSM,
(c) Higher precision in retrieving relevant handwritten letter images than the match

at different positions with omission of some pixels during the match like in A-
ACSM.

5.2. Time Performance Results

While the retrieval precision values obtained by eACSM are competitive with those ob-
tained by ACSM and A-ACSM in both the subsets of images from the MNIST and NIST
datasets, the temporal performances of eACSM are much better than the other two meth-
ods.

In particular, Table 6 reports the ATQ taken by eACSM, ACSM and A-ACSM on the
two datasets. Graphical results are depicted in Fig. 9.

It is worth noting that, for the subset of images from the MNIST dataset, the ATQ of
eACSM is around 7 times lower than A-ACSM, and around 6 times lower than ACSM.
For the subset of images from the NIST dataset, we can observe that the ATQ of eACSM
is around 270 times lower than A-ACSM, and around 350 times lower than ACSM. It
indicates that eACSM is much more scalable than ACSM and A-ACSM to be employed
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for larger datasets. Also, eACSM is the most efficient method to be used for retrieving
relevant handwritten character images from a larger dataset.

6. Conclusions

This paper presented eACSM, a new method which is a variant of the Common Submatrix-
based similarity measures. It is based on the concept that two matrices are similar to each
other if their largest square sub-matrices exactly match at the same position in the two
matrices. This noticeably reduced the time complexity of the ACSM brute-force proce-
dure with any element omission in the match of the sub-matrices, like in A-ACSM, neither
requiring the construction of a trie, like in ACSM. An experiment performed on a subset
of a 1000 images from the MNIST dataset and on a subset of 210 images from the NIST
dataset showed that eACSM is very competitive in retrieving handwritten digits and al-
phabet letters images in terms of retrieval precision and execution time, when compared
with other well-known (dis)similarity measures previously introduced in the literature.

Future work will test the proposed method in other contexts where the similarity eval-
uation is required in the bi-dimensional space, like some problems in physics and biomet-
rics.
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