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Abstract 
 
Morphological evidence for ancient channelized flows (fluvial and fluvial-like 
landforms) exists on the surfaces of all of the inner planets and on some of the 
satellites of the Solar System.  In some cases, the relevant fluid flows are related to a 
planetary evolution that involves the global cycling of a volatile component (water 
for Earth and Mars; methane for Saturn’s moon Titan).  In other cases, as on 
Mercury, Venus, Earth’s moon, and Jupiter’s moon Io, the flows were of highly fluid 
lava.  The discovery, in 1971, of what are now known to be fluvial channels and 
valleys on Mars sparked a major controversy over the role of water in shaping the 
surface of that planet.  The recognition of the fluvial character of these features has 
opened unresolved fundamental questions about the geological history of water on 
Mars, including the presence of an ancient ocean and the operation of a hydrological 
cycle during the earliest phases of planetary history.  Other fundamental questions 
posed by fluvial and fluvial-like features on planetary bodies include the possible 
erosive action of large-scale outpourings of very fluid lavas, such as may have 
produced the remarkable canali forms on Venus; the ability of exotic fluids, such as 
methane, to create fluvial-like landforms, as observed on Saturn’s moon, Titan; and 
the nature of sedimentation and erosion under different conditions of planetary 
surface gravity.  Planetary fluvial geomorphology also illustrates fundamental 



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT
 2 

epistemological and methodological issues, including the role of analogy in 
geomorphological/geological inquiry. 
 
Keywords: planetary geomorphology; fluvial channels; volcanic channels; Mars; 
Venus; Titan 
 
*Corresponding author: Tel.: +1 520-621-7875; Fax: +1 520-621-1422; E-mail: 

 baker@email.arizona.edu. 
 
1.  Introduction 
 
      Geomorphology, as a science, has achieved its greatest advances through 
discoveries, notably through encounters with new landscapes, such as those 
explored on Earth during the nineteenth century (Baker and Twidale, 1991), and 
most recently those imaged on other planetary surfaces in the Solar System (Baker, 
1984, 1985a, 1993, 2008a).  The modern era of planetary exploration has revealed 
fluvial, or fluvial-like, landforms (in this paper the term fluvial will be applied to 
both) on the extraterrestrial surfaces of planets and moons (Table 1).  Moreover, 
these discoveries pose interesting challenges for advancing our fundamental 
understanding of fluvial processes and their associated landforms (Komatsu and 
Baker, 1996; Baker and Komatsu, 1999; Komatsu, 2007). 
 
       In the study of extraterrestrial planetary surfaces, one must contend with the 

directionality of space exploration.  Extraterrestrial planetary surfaces are first 
encountered by remote sensing at low resolution.  Subsequent, high-resolution 
imagery then allows focusing on details, but there may be controversy concerning 
the genesis of various landforms.  This controversy commonly arises because 
multiple processes can be envisioned that are physically capable of producing many 
aspects of the observed landforms, a problem that has been termed convergence and 
equifinality.  Schumm (1991) introduced the term “convergence” as applicable to 
actual landscapes, and the term equifinaility was introduced by Chorley (1962) in 
regard to systems theory, which functions to explain landscapes.  Thus, convergence 
is a strong version of the concept, holding that nature in reality does produce similar 
landforms by different combinations of causative processes.  In contrast, equifinality 
is a weak version, holding that diverse hypotheses or model formulations of a 
system, as envisioned by scientists, can explain the same landforms.  The strong 
version is ontological, in that it makes a claim about nature, whereas the weak 
version is epistemological, in that it deals with knowledge or the ability of scientists 
to understand nature. 
 
      A challenge for science is employ reasoning processes to get past the equifinality 
issues and to recognize the true cases of convergence.  For some problems, the 
increases in resolution that accompany planetary exploration, both spatial and 
spectral, can lead to a resolution of formative processes (Zimbelman, 2001).  More 
commonly these advances in data quality must be combined with the study of 
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terrestrial analog landforms with well-understood origins (Mutch, 1979).  While 
explanations for these landforms in terms of physical principles are necessary for 
full understanding of their development, such explanations will always suffer from 
the equifinality problem unless the full range of nature’s realities are explored, and 
analogs can aid with that exploration (Baker, 2014a). 
 
       Analogy implies similarity among like features of otherwise different things; and, 
as with all thinking (Hofstadter and Sander, 2013), science relies upon analogy.  
Models and computer simulations are actually extremely strong analogies, in which 
attributes presumed to be fundamental to the two things being compared 
(attributes such as basic physical or mathematical structure) are incorporated into a 
necessarily simplified system that can then be compared via testing to the real 
world. Particularly in the study of extraterrestrial planetary surfaces, the 
complexities of specific phenomena require investigation that begins with weaker 
forms of analogy, but which takes advantage of natural regularities that allow direct 
comparisons between real world entities, such that a newly discovered feature can 
be compared to features that are already known and understood.  Insights gained 
from this comparison then lead to further investigation into the cause(s) of the 
unknown feature.  Geological analogies serve not so much to provide definitive 
explanations as they do to provide a source for fruitful working hypotheses 
(Chamberlin, 1890) that move geological investigation into productive lines of 
inquiry (Gilbert, 1886, 1896). 
 
    In contrast to newly discovered fluvial-like landforms on other planets, fluvial and 
fluvial-like landforms on Earth are much more likely to have their key features and 
their causative processes understood.  Thus, the sharing of key features between 
terrestrial analogs and extraterrestrial phenomena can suggest possible causes for 
the latter through the understanding of the terrestrial causes.  These possible causes 
then become hypotheses that require further testing.  However, unlike classical 
physics, geology cannot achieve such testing through controlled experiments on its 
subject matter.  An entire river, volcano, or glacier cannot be isolated from its 
environment and placed into a completely controlled laboratory setting.  Instead, 
alternative means must be found to test or corroborate the hypotheses that are 
suggested through analogy.  This testing or corroboration can be accomplished by 
exploring consequences of the working hypotheses for consistency, coherence, and 
consilience (see Baker, 2014a, for an in-depth discussion of the role of terrestrial 
analogs in planetary geology and related aspects of geological reasoning). 
 
2.  Volcanic channels: Moon, Mercury, and Io 
 
2.1.  Lunar sinuous rilles 
 
     Channels visible by telescopic study of Earth’s moon (Fig. 1) initially looked 
promising as candidates for water flowing on that planetary surface (Pickering, 
1904; Firsoff, 1960).  The excellent, high-resolution images returned in 1966–1967 
from the Lunar Orbiter missions that were designed to prepare for manned landing, 
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provided data for detailed comparisons between sinuous lunar channel ways and 
terrestrial rivers (Peale et al., 1968; Schubert et al., 1970).  Moreover, before the 
return of rock samples from the Moon, the prevailing theories held that, like Earth 
itself, Earth’s moon had a primordial, water-rich hydrosphere (reviewed by Gilvarry, 
1960).  These theories even led the famous Nobel laureate chemist, Harold Urey 
(1967) to conclude that, given the obvious fluvial-like morphology of the sinuous 
rilles (e.g., their sinuous planform), special processes must have occurred on the 
airless Moon to allow water to flow.  He even suggested that a large comet impact 
might have produced a temporary water-rich atmosphere.  Lingenfelter et al. (1968) 
used theoretical modeling to show that the lunar rivers could have been ice-covered 
and thereby able to flow.  Following the consequences of this fluvial hypothesis, 
Gilvarry (1968) concluded that the lunar maria, instead of being the result of 
immense outpourings of lava, were actually the surface expressions of sediments 
and sedimentary rocks. 
 
    Geochemical analyses of rock samples returned from the Apollo landing missions 
showed clearly that the lunar primordial hydrosphere model was wrong and that 
the maria were the surface expressions of immense outpourings of basaltic lava 
(Taylor, 1982).  The Moon clearly has no water-related context in which to place the 
sinuous rilles.  In the lead up to the Apollo missions, the equifinality problem was 
encountered because a variety of nonaqueous processes were also hypothesized to 
be capable of producing sinuous rille morphologies.  The hypothesized genetic 
mechanisms included lava channeling and the collapse of lava tubes (Baldwin, 1963; 
Oberbeck et al., 1969), pyroclastic flows (Cameron, 1965), and various combinations 
of structure and subsidence (Quaide, 1965; Schumm, 1970).  In 1971, the Hadley 
Rille was inspected in the field by the Apollo 15 astronauts, and their findings, 
combined with studies of the regional geology showed that the lava channel and 
lava tube hypothesis was most consistent with all the available data (Greeley, 1971; 
Howard et al., 1972).  Thus, in this case, the various advances in resolution and 
measurement during the intensive lunar exploration program of the 1960s 
eventually resolved the equifinality issue of water-versus-lava as the agent for 
forming the lunar sinuous rilles. 
 
   In retrospect, important morphological differences exist between fluvial channels 
or valleys and lunar sinuous rilles.  Unlike fluvial forms, the latter most commonly 
have decreasing width and depth along their flow paths (Fig. 1).  In a recent study of 
more than 200 lunar sinuous rilles, Hurwitz et al. (2013a) found that their lengths 
range from 2 to 566 km, with a median width of about 500 m and a median depth of 
about 50 m.  These authors attribute the pervasive downstream decreases in width 
and depth to turbulent lava flow that facilitates thermal erosion in the proximal 
portions of the rille and then transitions distally to laminar flow, leading to a 
progressive decline in thermal erosion efficiency in a down-channel direction.   
 
     Hurwitz et al. (2012) used an analytical model to estimate the volume of lava 

needed to erode the Rima Prinz sinuous rill at ~50 km3 for a very low viscosity lava 
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and about 250 km3 for an intermediate viscosity lava.  From months to an Earth 
year would be required to form this feature by lava eroding at up to a meter per day, 
and the distal accumulation of solidified lava would extend over an area of about 
2500 km2.  Thus, what was a highly erosive fluid near its source transitions to a 
much less erosive fluid, eventually leaving a huge solidified accumulation of all the 
channel-forming fluid.  This is obviously very different than what would occur with 
water flows, which might leave some volume of sediment related to the amount of 
material eroded from the channel, but with most of the eroding fluid eventually 
leaving the depositional area by evaporation, infiltration, or other processes. 
 
2.2.  Mercury 
 
   The MErcury Surface Space ENvironment, GEochemisty, and Ranging 
(MESSENGER) mission that reached Mercury in 2008 revealed a dozen or so flat-
floored, shallow valleys associated with extensive volcanic plains at high latitudes in 
Mercury’s northern hemisphere (Head et al., 2011; Byrne et al., 2013).  The feature 
shown in Fig. 2 is about 20 km wide with a smooth, lightly cratered floor that 
contrasts with the adjacent rough and highly cratered terrain into which it is 
shallowly incised.  It was probably formed by the thermal and mechanical erosive 
action of high-magnesian, mafic or ultramafic lavas (Hurwitz et al., 2013b).  The 
irregular knobs in the center right portion of the image are remnants of a rim 
material of the 140-km-diameter Kofi impact basin that was eroded by lavas 
emanating from vents about 50 km to the northwest of the image. 
 
2.3.  Io 
 
    Lava channels were observed on the surface of Jupiter’s moon, Io, in the course of 
the 1996–2003 imaging phase of the Galileo space mission (Keszthelyi et al., 2001).  
Schenk and Williams (2004) documented a particularly large channel, Tawhaki 
Vallis, that extends for about 200 km and is up to 6 km wide, representing either an 
ultramafic or a sulfur lava flow.  The channel is shallowly incised (about 50 m) into 
plains that are probably primarily composed of sulfur (Schenk and Williams, 2004).  
The whole surface of Io must be relatively young, as it lacks impact craters.  The 
young surface age and the lava that generated the channel derive from widespread 
volcanism that resurfaces Io through the intense tidal interaction of this relatively 
small moon with the massive planet Jupiter (McEwen et al., 2004). 
 
3.  Venusian channels 
 

Channel landforms on Venus were discovered in the early 1990s through studies 
of images generated by the Synthetic Aperture Radar (SAR) instrument onboard the 
Magellan spacecraft.  More than 200 channels have been identified on the Magellan 
images of Venus (Baker et al., 1992a, 1997; Komatsu et al., 1993), and they exhibit a 
wide variety of morphological characteristics (Gulick et al, 1992a,b).  
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3.1.  Simple channels 
 
Simple channels (Baker et al., 1992a; Komatsu et al., 1993) generally consist of a 

single, sinuous main channel that lacks the complex branching and anastomosing 
reaches characteristic of other varieties of Venusian channels (Gulick et al., 1992a).  
Simple channels can be further subdivided into simple channels with flow margins, 
sinuous rilles, and canali (Fig. 3).  Some simple channels are located on well-defined 
flow deposits or flow fields (Fig. 3A) (Komatsu et al., 1993).  These simple channels 
with flow margins are similar in morphology to channels that form on terrestrial 
lava flows.  Because these channels have formed on lava flows and do not seem to 
have incised surrounding terrain, they appear to be similar to their terrestrial 
counterparts in being mostly constructional in origin.  In general, these simple 
channels lack distinctive source regions.  

 
Sinuous rilles emanate from distinct, circular, or elongated regions of collapse 

(generally several kilometers in diameter), and they form channels up to several 
kilometers wide and tens to hundreds of kilometers long (Baker et al., 1992a; 
Komatsu et al., 1993).  As in the case of lunar sinuous rilles, these Venus 
counterparts become narrower and shallower in a downstream direction (Fig. 3B).  
Most sinuous rilles on Venus are not associated with detectable lava flow margins.  
The similarities in morphology and size to lunar sinuous rilles may imply that 
thermomechanical erosion by high-discharge, highly fluid lava was also an 
important channel-forming process on Venus (Komatsu et al., 1993; Komatsu and 
Baker, 1994a; Oshigami et al., 2009).  Some of the Venusian sinuous rilles are 
associated with networks of valleys or depressions (Baker et al., 1992a; Gulick et al., 
1992a,b; Komatsu et al., 1993, 2001; Oshigami et al., 2009). 

 
Canali are features that are unique to Venus.  Unlike other simple channels they 

have generally constant width and depth over their entire flow path (Fig. 3C) (Baker 
et al., 1992a, 1997; Komatsu et al., 1992, 1993).  These channels generally have 
widths ranging up to 3 km and lengths exceeding 500 km.  However, some canali 
may be up to 10 km wide; and a few have enormous lengths, up to 6800 km in the 
case of Baltis Vallis (Baker et al., 1992a; Komatsu et al., 1993).  Canali may locally 
exhibit numerous abandoned channel segments, cutoff meander bends, levees, and 
radar dark terminal deposits (Baker et al., 1992a, 1997; Komatsu et al., 1993; Kargel 
et al., 1994).  Sources and termini are generally indistinct.  Canali are generally 
located in plains regions (Komatsu et al., 1993), considered to be mafic in 
composition (Kargel et al., 1993), and are tectonically deformed along their 
longitudinal profiles (Komatsu and Baker, 1994b; Langdon et al., 1996).  The 
extraordinary length and a relatively short formation time scale (i.e., geologically 
speaking) of Baltis Vallis allowed this feature to be used to tie distant geological 
units on Venus plains to understand their sequential relationships (Basilevsky and 
Head, 1996).   

 
The morphology of these channels suggests that they probably formed by 

continuously conveyed large discharges of low viscosity lava to distant regions over 
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prolonged periods (Baker et al., 1992a, 1997; Komatsu et al., 1992, 1993; Bray et al., 
2007).  Both erosional and constructional origins have been proposed (Komatsu et 
al., 1992; Gregg and Greeley, 1993; Bussey et al., 1995; Williams-Jones et al., 1998; 
Lang and Hansen, 2006; Oshigami and Namiki, 2007).  The formative fluids have 
been hypothesized to be a wide range of silicate lava varieties, as well as low- 
viscosity flows of sulfur or carbonatite lava (Baker et al., 1992a, 1997; Komatsu et 
al., 1992, 1993; Gregg and Greeley, 1993; Kargel et al., 1994).  More speculative 
hypotheses invoke the role of nonvolcanic fluids, including turbidity currents that 
would have had to occur at a time when an ocean existed on the Venusian surface 
(Jones and Pickering, 2003).  Alternatively, Waltham et al. (2008) envisioned 
particulate gravity currents resulting from the suspension of fine particulate matter 
in the dense Venusian atmosphere and moving downslope to travel long distances.  
The origin of the Venusian canali remains poorly understood. 

 
3.2.  Complex and compound channels 
 

Complex channels form anastomosing, braided, or distributary patterns that are 
generally (but not always) on flow deposits (Komatsu et al., 1993; Gulick et al., 
1992a).  Individual channel widths range from ~3 km down to the limit of 
resolution, while the total width of the channel system can range from 20 to 30 km, 
and up to hundreds of kilometers in length (Gulick et al., 1992a).  Most complex 
channels are located on flow deposits and are classified as complex channels with 
flow margins (Fig. 4A) (Komatsu et al., 1993).  Complex channels are often located 
along with simple channels on flow deposits, indicating a genetic connection to the 
lava flows.  These channels are commonly separated by radar-bright (or radar-dark 
in some cases) material that is considered to be lava, and the channels probably 
formed by a constructional process.  Complex channels that are not located on flow 
deposits appear to have eroded into surrounding terrain.  This particular subclass of 
complex channels is simply known as complex channels without flow margins  (Fig. 
4B) (Komatsu et al., 1993).   

 
Compound channels contain simple and complex segments (Fig. 4C) (Komatsu 

et al., 1993).  The channels vary greatly in size, with widths ranging between several 
tens of kilometers in complex regions down to the limit of resolution in simple 
reaches.  Total lengths of compound channels can range from 75 km to thousands of 
kilometers (Gulick et al., 1992a).   

 
Kalistos Vallis (Fig. 4C) is a particularly interesting compound channel.  It 

emanates from a distinct collapse region (Baker et al., 1992a, 1997; Komatsu et al., 
1993).  However, instead of becoming distally narrower and shallower like a 
sinuous rille, the channel displays a great variety of morphologies as it extends 
about 1200 km.  Some morphologic characteristics of Kallistos Vallis, in particular 
the collapsed source region and anastomosing segment, bear a resemblance to some 
aspects of what have been termed Martian outflow channels, and the informal name 
outflow channel was given to Kallistos Vallis (Baker et al., 1992a).  Leverington 
(2011) has drawn particular attention to these features of Kallistos Vallis and 
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applied the outflow designation much more generally to lunar and Venusian sinuous 
rills and various other volcanic channel forms sourced at fissures, vents, collapse 
areas, and other types of depressions, proposing further that these all share a 
common origin with the Martian channels (see Section 7) 

 
Important differences can be documented between Kallistos Vallis and what are 

more properly termed cataclysmic flood channels on Mars.  Of course, the regional 
geological context is totally different.  Venus is a planet dominated by the 
manifestation of volcanic processes, with the greatest variety of lava-related flow 
features to have yet been discovered.  No regional or temporal context indicates a 
role of water in forming any of the landscape features on the surface of Venus.  Mars 
is a completely different planet in regard to the role of water, with rich 
manifestations of relict fluvial forms and other indicators of water and water-ice 
compositions and processes in shaping the planetary surface (see Sections 5 and 7).  
Ancient Mars was earthlike in that regard (Carr, 2012); Venus was not. 

 
The main similarities of Kallistos Vallis to an outflow channel are its collapsed 

source region (upper left of Fig. 4C) and the anastomosing segment (lower center of 
Fig. 4C).  However, the collapse region leads not to a fluvial channel but to a linear 
trough about 400 km long and about 600 km deep.  The collapse source pit is 
connected to the trough by an incised gorge, and a sinuous canali-type channel also 
emanates from this gorge.  The canali channel is about 1.5 km wide and 175 km 
long.  Typical for Venusian canali, it maintains a relatively constant width over its 
entire length, implying genesis under very poorly understood conditions by a poorly 
understood fluid process.  The linear trough of Kallistos Vallis eventually narrows to 
only 1.5 km wide and shallows to less than 150 m deep.  Beyond this point the 
channeled fluid seems to have spilled out to create the distinctive anastomosing 
subchannels that are spread over a width of as much as 18 km (lower center part of 
Fig. 4C).  Deflected eastward, the flows were impounded upstream of a north-south 
ridge, eroding through that obstacle to create streamlined hills in the divide 
crossing.  Downstream of this divide the system displays a distinctive distributary 
pattern of radar-bright channels (lower right of Fig. 4C) that feed into an immense 
area of lobate deposits, the likely solidified flows that traversed the channel, and 

these cover an area of about 100,000 km2.  The distributary pattern of channels and 
most of the lava plains are not shown in Leverington’s (2014) map of the system. 
 
4.  The fluvial dissection of Titan 

 

     Titan is the largest satellite of Saturn.  Unusual for a moon, it has a thick, N2-rich 

atmosphere with ~5% methane (CH4) (Niemann et al., 2005).  The methane cycle on 

Titan generates clouds, fluvial features, and near-polar lakes (Lunine and Atreya, 
2008).  These atmospheric and surface features have been observed by instruments 
on board the Cassini-Huygens mission to the Saturnian (or Kronian) system (Matson 
et al., 2003).  Three instruments on the Cassini spacecraft—the Cassini Titan Radar 
Mapper (Elachi et al., 2004), the Visual and Infrared Mapping Spectrometer (Brown 
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et al., 2004), and the Imaging Science Subsystem (Porco et al., 2004)—can sense the 
moon’s surface.  Of these three surface-imaging data sets, the synthetic aperture 
radar data from the Titan Radar Mapper instrument (Elachi et al., 2004) provides 
the highest resolution surface images (~0.3 km/pixel to ~1.7 km/pixel).  In 
addition, a near-visible-wavelength camera, part of the Descent Imager / Spectral 
Radiometer (DISR) experiment on board the Huygens probe (Tomasko et al., 2002),  
took images from beneath the obscuring haze at a resolution of  ~20–90 m/pixel as 
the probe fell to the surface (Lebreton et al., 2005; Tomasko et al., 2005).   
 
    In addition, a near-visible-wavelength camera, part of the DISR experiment on 
board the Huygens probe (Tomasko et al., 2002), took images as the probe fell to the 
surface, with diminishing amounts of obscuring haze enabling higher resolutions 
(meters to tens of meters per pixel) than were achievable from the three Cassini 
instruments (Lebreton et al., 2005; Tomasko et al., 2005).  The SAR and DISR data 
sets form the basis for interpreting the fluvial geomorphology of Titan (Burr et al., 
2013b).  Although very localized and limited in coverage, the DISR images with their 
higher resolution reveal drainage networks with valleys on the scale of tens of 
meters in width (Fig. 5).  Although much coarser in resolution, the SAR data provide 
more global coverage (~50% of the surface for recent analyses conducted to date), 
which shows a broad distribution of drainage (or fluvial) networks (Fig. 6).  Aspects 
of the drainage networks and the individual fluvial features can be discerned in 
these complementary data sets. 
 
4.1.  Fluvial drainage distribution 
 
     Drainages mapped in SAR data (Lorenz et al., 2008; Langhans et al., 2012; Burr et 
al., 2013a) show a near-global distribution, although their density is not 
homogeneous.  A parameter entitled delineated fluvial feature density was calculated 

for each band of 30o latitude as the total distance along delineated network links 
ratioed to the area of SAR coverage.  The parameter is similar to drainage density 
but, because the resolution and noise of the SAR data preclude delineation of the 
low-order links or small networks, it underestimates true drainage density.  
Comparison of values among latitudinal bands shows that fluvial features are 
denser, by an order of magnitude, at high northern latitudes (Burr et al., 2013a) 
where they drain radar-bright, rugged terrain and empty into the numerous north 
polar lakes (Stofan et al., 2007; Hayes et al., 2008; Cartwright et al., 2011).  Like the 
lakes, the north polar networks are commonly radar-dark, possibly as a result of a 
drape of fine-grained organic sediments deposited either during backflooding of the 
river valleys during lake high-stand or during the waning stage of fluvial flow 
(Lorenz et al., 2008; Burr et al., 2013b). 
 
     Fluvial features are also concentrated around the Xanadu province (Burr et al., 
2013a), a photometrically and geographically distinct region that stretched over 
~100° along the equator (Radebaugh et al., 2011).  Standing as high as 2000 m 
above the surrounding landscape, Xanadu (like the north polar regions) has radar-
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bright high-relief terrain with irregular or crenulated texture, inferred to be 
mountain ranges (Radebaugh et al., 2011). Radar-bright fluvial valleys with cobble-
sized sediments  are incised within the crenulated terrain (Fig. 7) (Burr et al., 
2013b).  The fact that most of these networks within Xanadu are below the 
resolution of the SAR data suggests that other uplands on Titan that lack discernable 
networks may nonetheless be fluvially dissected (Burr et al., 2013b).  The networks 
imaged by DISR, although not discernable in overlying SAR data, are evidently 
heavily incised. Some higher-order links and trunk valleys are visible, as are wide 
radar-bright extensions that stretch from the Xanadu networks across the 
surrounding plains (Le Gall et al., 2010).  The radar-bright return from these wide 
fluvial features is interpreted as a result of rounded cobbles greater than a few 
centimeters in diameter (Le Gall et al., 2010), and the features themselves are 
inferred to be the deposits of gravel-bed, braided, ephemeral rivers (Burr et al., 
2013b). 
 
     The remaining fluvial networks visible in SAR data are scattered within the mid-
latitudes (Burr et al., 2013a, b); the extensive tropical dunes on Titan apparently 
either preclude the formation of fluvial flow because of aridity and/or cover over 
past fluvial flow features at tropical latitudes (Lorenz et al., 2006; Radebaugh et al., 
2008; Lorenz and Radebaugh, 2009).  In contrast to the polar and Xanadu networks, 
these scattered mid-latitude networks occur in relatively low-relief settings (the 
undifferentiated plains of Lopes et al., 2010), where they commonly form broad, 
shallow, radar-dark features, hypothesized to be braided or anabranching channel 
patterns (Lorenz et al., 2008; Burr et al., 2013b).  Often radar-dark, they are  
interpreted to be braided or anabranching fluvial systems with possible terminal 
splays of fine-grained sediment (Lorenz et al., 2008; Burr et al., 2013b).  
 
4.2.  Fluvial sediments observed on the surface 
 
     Although the networks imaged by DISR are below the resolution of the SAR data 
(Soderblom et al., 2007), their appearance in the DISR images provides some 
indication of sediment type and size.  In these visible-wavelength images from 
altitude, the DISR networks appear dark and are interpreted as being mantled with 
fine-grained, likely organic, sediment (Tomasko et al., 2005; Perron et al., 2006).  
The Huygens probe landed several kilometers from the outlet of the fluvial network 
on a dark flat surface hypothesized to be a dry lakebed.  At the surface, the DISR 
camera images show rounded cobbles (Fig. 8), inferred to be icy but with significant 
non-icy material.  The relationship between the fluvial networks and the icy cobbles 
is not clear, but the presence of the cobbles provides plausibility for the 
interpretation of rounded icy cobbles in the radar-bright fluvial features draining 
Xanadu (Le Gall et al., 2010).   
 
4.3.  Drainage (or fluvial) network morphologies 
 
     By virtue of their regional extent and responsiveness to formative conditions, 
drainage or fluvial networks provide important evidence for surface, and subsurface 
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conditions.  Terrestrial drainages have been classified into several basic and 
modified patterns (e.g., Howard, 1967; although see Drummond, 2012, for a 
discussion of the slight differences among drainage classification schemes).  Each of 
these drainage patterns carries specific implications regarding landscape slope, 
substrate erodibility biases, and other conditions at the time of fluvial runoff.  Based 
on a quantitative algorithm for classifying drainages on Earth, an analysis of 
drainage morphologies visible in SAR and DISR images classified one-half of all the 
mapped networks as rectangular (Burr et al., 2013a).  These rectangular networks 
are globally distributed in the available SAR data (Burr et al., 2013a), although gaps 
in the SAR coverage preclude a rigorous statistical analysis of geospatial 
distribution.  As rectangular networks on Earth are commonly the result of control 
on overland flow by subsurface structures or topography associated with structures, 
this finding for the Titan networks was interpreted as indicating wide-spread 
structural control on fluvial flow (Burr et al., 2013a).   
 
5.  The fluvial dissection of Mars 
 

As recognized early in the era of spacecraft exploration, channels and valleys 
extensively dissect the surface of Mars (Fig. 9).  Valleys are low-lying, elongate 
troughs on planetary surfaces that are surrounded by elevated topography.  On 
Earth, fluvial valleys either contain or formerly contained a stream or river with an 
outlet, but the river or its predecessor is/was confined to the valley floor or, 
commonly, to just a portion of the valley floor.  The stream or river flows or flowed 
in a channel, which is an elongate depression that conducts or conducted flows of 
water that wet the channel boundaries.  Most commonly such river channels have 
much smaller cross sections than do the valleys in which they occur.   

 
About 200 years ago a major geomorphological controversy arose concerning the 

origins of valleys on Earth (Davies, 1969).  One view held that valleys in areas such 
as Scotland were actually former channels that had been filled by the flowing water 
that had created them relatively rapidly as the result of cataclysmic events.  The 
alternative view held that the prolonged and progressive action of small streams 
occupying channels on the valley floors was responsible for the valley excavation.  
Although by the middle nineteenth century this debate was generally resolved in 
favor of the noncataclysmic, uniformitarian hypothesis, later discoveries revealed 
that cataclysmic flooding did indeed explain some terrestrial landscapes, notably the 
Channeled Scabland region of the northwestern United States (Bretz, 1923) -- 
though that insight was resisted by much of the scientific community until the 1960s 
(Baker, 1981, 2008b).  Interestingly the immense cataclysmic flooding channels 
discovered on Mars are much larger than the many fluvial valleys that dissect 
portions of that planet (Baker, 1982; Baker et al., 1992b); and unlike those valleys, 
the Mars channels display clear evidence for large-scale fluid flow across their floors 
and on their walls or banks, thereby leading to a resurrection of similar 
methodological issues that played out in regard to the origin of Earth’s cataclysmic 
flooding channels (Baker, 1978a, 1981).  
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         The Mariner 6 and 7 spacecraft first imaged the networks of small valleys 
dissecting the ancient, heavily cratered terrains of Mars in 1969 (Schulz and 
Ingerson, 1973).  However, these features were not recognized as fluvial until the 
higher resolution Mariner 9 images were obtained in the early 1970s (McCauley et 
al., 1972; Masursky, 1973; Milton, 1973).  Some confusion was imparted to the early 
literature by the designation of these small valleys as small and closely spaced 
channels (Masursky, 1973).  Because of their dendritic patterns, Sharp and Malin 
(1975) referred to the networks of small valleys as runoff channels, leaving open the 
possibility that the runoff could have been generated by precipitation in a manner 
familiar for Earth.  The original channel designation, as opposed to valley, can be 
attributed to the lower resolution of the available Mariner 9 imagery, which did not 
clearly show the morphology of the valley floors, which the newer high-resolution 
imagery has shown to be largely obscured by eolian and volcanic deposits. 
 
     As noted above, Mariner 9 also revealed other types of fluvial features on Mars.  
The most spectacular of these were the immense cataclysmic flooding channels, 
initially termed broad channels (Masursky, 1973) because of their size.  These were 
subsequently named outflow channels by Sharp and Malin (1975) because the 
examples first noted on the Mariner 9 images emerged from rubble-filled 
depressions termed chaotic terrain (Sharp, 1973).  It is now known that these very 
large channels have multiple modes of origin, but further discussion of their 
characteristics will be held until section 7 below. 
 
5.1.  Timing of fluvial activity 
 
    The extensive dissection of the heavily cratered terrain on Mars by valley 
networks (e.g., Fig. 10) was long used to argue that the networks themselves dated 
to the Noachian epoch (e.g., Carr and Clow, 1981; Carr, 1996).  As with other age 
categories for Mars, the Noachian epoch is defined by the density of impact craters 
and by comparisons to radiometric dates on lunar cratering (e.g., Hartmann and 
Neukum, 2001).  This procedure defines the Noachian as the portion of Mars 
geological history prior to 3.7 Ga.  Later Mars epochs are then divided into the 
Hesperian, from about 3.7 to 3.0 Ga, and the Amazonian for surfaces younger than 
3.0 Ga. 
 
    Recent work has shown that the formation of the well-developed valley networks 
on Mars is more concentrated in time, with much of the activity occurring close to 
the Noachian/Hesperian boundary (Howard et al., 2005; Irwin et al., 2005b).  
Moreover, as was apparent from some of the older Viking imagery of Mars (Baker 
and Partridge, 1986), fluvial activity in the valley networks continued into the 
Hesperian (Mangold and Asan, 2006; Bouley et al., 2009, 2010; Hynek et al., 2010).   
Also apparent from the earlier Viking images, dense networks of fluvial valleys 
dissect Amazonian-aged surfaces on some Martian volcanoes, such as Alba Patera 
and Hecates Tholis (Gulick and Baker, 1989, 1990).   
             
5.2.  Valley networks 
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     As noted in Table 2, two major types of martian valleys can be distinguished.  The 
longitudinal valleys (Baker, 1982) are relatively wide and elongate with few 
tributaries.  They commonly dissect upland plateaus, and their theater-like valley 
heads suggest an important role of groundwater seepage undermining slopes (i.e., 
sapping, in their origin; Goldspiel and Squyres, 2000; Harrison and Grim, 2008).  
Examples include Nirgal Vallis and Nanedi Vallis.  Some of these valleys have small 
but relatively well-preserved deltas at their termini (Fassett and Head, 2005; Irwin 
et al., 2005; Mangold and Asan, 2006; Di Achille et al., 2007; Mangold et al., 2007; 
Kraal et al., 2008; Hauber et al., 2009; Dehouck et al., 2010). 
 
      Topographic data provided by the Mars Orbiter Laser Altimeter (MOLA) 
instrument on the Mars Global Surveyor (MGS) orbiter (Smith et al., 1999) show 
that the orientations of the numerous multibranched networks of valleys are 
consistent with gravitational control of fluid flow on the martian surface.  The latter 
is locally warped by the formation of a trough and bulge that formed around the 
immense loading of the crust by the Tharsis volcanics (locality TV, Fig. 9) in late 
Noachian time (Phillips et al., 2001). 
 
      The network valleys widen and deepen in the downstream direction (Craddock 
and Howard, 2002; Howard et al., 2005; Hynek et al., 2010).  Small channels that are 
relicts from the rivers that formed the valleys are only rarely discernable because of 
the relatively young eolian deposits that commonly mantle the valley floors (Irwin 
et al., 2005a; Jaumann et al., 2005; Kleinhans, 2005).  Similarly, deposits at the valley 
termini, are commonly missing, either because of erosion or mantling by younger 
lava flows, mostly of Hesperian age (Irwin et al., 2005; Ansan et al., 2008; Ansan and 
Mangold, 2013).    
 
     The image resolution issue, discussed in section 1, played an important role for 
valley network interpretation in that the relatively low-resolution images from the 
Mariner 9 and Viking Orbiter missions of the 1970s and 1980s seemed to indicate 
low drainage densities (length of valleys or channels per unit area) for the networks.  
Based on a global analysis of the relatively low-resolution Viking orbital imagery 
Carr (1996) and Carr and Chaung (1997) inferred that areas of highly dissected 
southern highlands on Mars had average drainage densities of only ~0.005 km-1, 
which is much lower than typical values for fluvial drainage on Earth.  These low 
values suggested that regional rainfall and runoff processes might not be the major 
cause for valley network formation on Mars (e.g., Squyres and Kasting, 1994; Segura 
et al., 2002). 
 
    The early summaries of drainage densities on Mars did not incorporate some 
results, also from Viking data (Baker and Partridge, 1986), that showed that local 
valley networks in the heavily cratered terrain consist of younger (pristine) 
elements that are portions of much older, though degraded networks.  By 
considering the latter, Baker and Partridge (1986) found that the degraded network 
densities were as high as 0.1 km-1, which is consistent with some terrestrial data.  
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Using higher-resolution Viking data, Gulick and Baker (1989, 1990) determined that 
drainage densities were actually an order of magnitude higher for the fluvial valleys 
that formed on some younger Martian volcanoes (most notably Alba and Hecates) 
than those in the heavily cratered Noachian terrains. These values were much more 
similar to their terrestrial counterparts, with the Alba valleys (locality B, Fig. 9) 
having values between 0.3 and 1.5 km-1 compared to 0.2 and 5.0 km-1 on the 
Hawaiian volcanoes (Gulick and Baker, 1989, 1990).  These higher values imply at 
least localized atmospheric precipitation (Gulick et al., 1997), and overland flow 
developed on a volcanic ash mantle overlying the very porous volcanic lava flows 
(Gulick and Baker, 1990).   
 
     The subsequent recognition of higher drainage densities using MOLA topographic 
data and higher resolution imagery from the MGS mission of the late 1990s (e.g., 
Hynek and Phillips, 2003) provided a confirmation of what had been shown in the 
more localized study of Viking data, and it is now clear that drainage densities 
average 0.1 to 0.2 km-1

 over extensive areas of the martian surface (Ansan and 
Mangold, 2006, 2013; Luo and Stepinski, 2009; Hynek et al., 2010).  The high values 
of drainage density strengthen the case that prolonged precipitation and runoff 
processes were necessary for the origin of the valley networks (Ansan and Mangold, 
2006; Craddock and Howard, 2002; Mangold et al., 2004; Quantin et al., 2005; 
Mangold and Ansan, 2006; Ansan et al., 2008; Hynek et al., 2010;). 
 
     Mangold et al. (2012) relate the evolution of fluvial landscapes in the heavily 
cratered terrains of Mars to degradation of the highland craters.  Craters older than 
about 3.9 Ga (Middle Noachian) date from the Late Heavy Bombardment, a pulse of 
very high impact fluxes that occurred throughout the inner solar system for about 
100 My around 3.9 Ga.  These ancient craters typically have heavily degraded rims, 
and the older ones are essentially rimless, with their ejecta having been completely 
eroded away, probably by fluvial processes.  The eroded materials fill many of the 
crater floors and may represent a period of prolonged and effective fluvial planation 
(Howard et al., 2005; Irwin et al., 2005b).  In contrast, the valley networks 
developed near the time of the Noachian/Hesperian transition (~3.7 Ga) on this 
planation surface. They dissect areas around craters that are eroded, but much less 
so than the more ancient rimless forms.  In the Hesperian, from about 3.7 to 3.3 Ga, 
further degradation occurred within craters, leading to alluvial fans on their floors 
(Moore and Howard, 2005) and local dissection of rims but general preservation of 
the ejecta.  Amazonian craters (younger than ~3.3 Ga) lack fluvial landforms and are 
relatively fresh in appearance with pristine-looking ejecta blankets and central 
peaks. 
 
    Detailed work in the Libya Montes area, just to the southeast of the Syrtis Major 
volcanic complex (locality Y, Fig. 9), shows the later evolution of martian valley 
networks in relation to standing bodies of water on the planet’s surface.  The 
dendritic valley networks in the region were formed in the Noachian between about 
4.1 and 3.8 Ga (Jaumann et al., 2010; Erkeling et al., 2012), with some activity 
continuing into the Hesperian.  The fluvial activity was associated with the ponding 
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of water in craters with associated deltas, hydrated minerals, and alluvial fans.  At 
the western end of the Libya Montes, near its margin with the Syrtis Major volcanic 
complex, a large valley system, Zarga Vallis, has (i) an older, eastern network of 
dendritic valleys that probably formed by precipitation runoff processes and (ii) a 
younger, western segment that is a longitudinal valley that probably developed by 
volcanic melting of ground ice (Jaumann et al., 2010).  The transition from runoff 
valley development to sapping or ground-ice melting seems to have occurred in the 
middle Hesperian (~3.6 Ga). 
 
5.3.  Alluvial rivers, deltas, and sedimentary rocks 
 
     On 6 August 2012, the Curiosity Rover of the Mars Science Laboratory Mission 
successfully landed on the floor of the 150-km-diameter Gale Crater (locality G, Fig. 
9).  The material on which it landed was a fluvial conglomerate (Fig. 11), deposited 
near the distal end of an alluvial fan (Fig. 12).  As they were reported in the popular 
media, these features had the appearance of unique discoveries.  However, the 
landing site had actually been carefully chosen to make such observations; the 
choice was based on the developing understanding of Mars’ watery early history.  
Combined with observations from the Mars Exploration Rover (MER) Opportunity 
landing site (the Burns Formation of Grotzinger et al., 2005, 2006) and the related 
documentation of sedimentary rocks by various orbiters, the recent lander studies 
leave no doubt that Mars had a watery ancient past, involving the extensive 
emplacement of sedimentary rocks (Grotzinger and Milliken, 2012). 
 
      Until the later 1990s, channels and valley networks cut into rock had comprised 
the main evidence that was cited in support of the view that Mars once had 
conditions that supported an earthlike hydrological cycle.  The view of a water-rich 
planet sharply contrasted with current conditions on the planet and with the then-
prevailing views from physics and chemistry that Mars had always been cold and 
dry (Baker, 2014c).  However, starting in the late 1990s, a rapid succession of 
discoveries added to the list of evidence for more earthlike hydrological conditions 
on early Mars.  Although possible delta and fan-like depositional landforms had 
been tentatively recognized from the older low-resolution data (e.g., De Hon, 1992; 
Cabrol and Grin, 1999; Ori et al., 2000), the meter-scale images of the Mars Obiter 
Camera (MOC) on the MGS spacecraft led to the key discovery of deltaic features 
very similar in general morphology to what occurs on Earth (Malin and Edgett, 
2003).  The most impressive of these discoveries is a delta (Fig. 13) in Eberswalde 
Crater (locality U, Fig. 9).  Multiple studies have estimated a dominant, channel-
forming discharge for the paleochannels on this delta at a few to several hundred 
cubic meters per second (Malin and Edgett, 2003; Moore et al., 2003; Jerolmack et 
al., 2004; Howard et al., 2007; Irwin et al., 2014). 
 
     Related to the Eberswalde Delta discovery (Malin and Edgett, 2003) is the 
recognition of sinuous channels showing meander cutoffs, scroll topography, and 
related features of alluvial rivers with floodplains.  Unlike rivers that are cut into 
bedrock, alluvial rivers on Earth have channel beds and boundaries composed of the 
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same sediments that they transport.  The Mars alluvial channels commonly display 
an inverted relief, probably because eolian deflation selectively removed the fine-
grained sediments of the adjacent floodplains relative to the coarse-grained 
channel-filling sediments (Williams and Edgett, 2005; Pain et al., 2007).   
Particularly extensive alluvial river paleomeander belts occur in the Aeolis Dorsa 
region (Burr et al., 2009a, 2010; Williams et al., 2009, 2013), which lies a few 
hundred kilometers east of the Gale Crater region (locality G, Fig. 9).  The 
meandering patterns seem to have formed in alluvial rivers because of the 
deposition of relatively fine sediments (clay/silt muds) that were flocculated by 
dissolved salts (Matsubara et al., 2014). 
 
    Another interesting Mars delta (Fig. 14) occurs in Jezero Crater in the Nili Fossae 
region of Mars (locality F, Fig. 9).  Hyperspectral data from the Visible and Near 
Infrared Mineralogical Mapping Spectrometer (OMEGA - Observatoire pour la 
Minéralogie, l'Eau, les Glaces et l'Activité) instrument on Mars Express and the 
Compact Reconnaissance Imaging Spectrometer (CRISM) instrument on the Mars 
Reconnaissance Orbiter (MRO) revealed that this region has a diverse assemblage of 
minerals, including phyllosilicates (e.g., clay minerals), consistent with widespread 
liquid water activity that range from surface weathering to hydrothermal processes 
(Mangold et al., 2007).  A valley network feeds from this altered source terrain to 
bedded sediments on the floor of Jezero Crater (Fig. 14), and these were probably 
emplaced in a crater lake near the time of the Noachian/ Hesperian boundary 
(Fassett and Head, 2005).  Some of these sediments are rich in iron-magnesium 
smectite clay (indicated in green on the image shown in Fig. 14) (Ehlmann et al., 
2008), and the clay was probably transported as suspended load by a river that 
drained source areas characterized by clay-rich rocks (Mangold et al., 2007; 
Ehlmann et al., 2008). 
 
      While most Mars delta landforms are younger than the main phase of valley 
network development, a striking example of a late Noachian/early Hesperian delta 
occurs at Terby Crater, a 174-km-diameter feature on the northern edge of Hellas 

Planitia (locality H, Fig. 9) centered at 28oS, 73oE.  At that location a cumulative 
thickness of 2000 m of sedimentation is inferred (Ansan et al., 2011).   Such great 
accumulations of sediment show that the erosion by the valley networks probably 
was an important contributor to the filling of craters in the ancient heavily cratered 
terrain of Mars. 
 
5.4.  The early Mars climate conundrum and a northern plains ocean 
 
     The spatial distribution of the valley networks is not uniform throughout the 
heavily cratered terrain (Gulick, 2001), as might be expected if impacts into the 
southern highlands were responsible for episodic formation of the networks (e.g., 
Toon et al., 2010).  Instead, the densest concentrations of valleys (Fig. 9) follow a 
swath that circles the planet, extending several hundred kilometers into cratered 
highlands from the latter’s boundary with the northern plains.  Allowance must be 
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made for the great Tharsis volcanic province, which is younger than the valley 
networks and which imposed itself on this boundary.  This pattern is consistent 
with what would be expected for a precipitation source associated with a 
hypothetical northern plains ocean (Luo and Stepinski, 2009; Stepinski and Luo, 
2010).  The relationship of valleys to the northern margins of the heavily cratered 
terrain of the southern highlands has been confirmed by an independent study that 
quantified the spatial distribution of drainage densities (Hynek et al., 2010). The 
distribution also corresponds to the locations of deltas that are graded to the base 
level of the northern plains ocean (Di Achille and Hynek, 2010), to the 
concentrations of sedimentary rocks on Mars (Malin and Edgett, 2000a; Delano and 
Hynek, 2011), and to the presence of high-Al clay minerals in deep weathering 
profiles (Le Deit et al., 2012; Loizeau et al., 2012).  The latter would require intense 
leaching in a surficial environment for their formation.  Moreover, such a leaching 
episode would occur at the Hesperian/ Noachian boundary (Loizeau et al., 2012), 
corresponding to the same episode of precipitation that is recognized in regard to 
the valley networks. 
 

      An ancient ocean-scale water body, about 3 × 107 Km2 in area, informally named 
Oceanus Borealis (Baker et al., 1991), has long been hypothesized for the northern 
plains of Mars (Fig. 9).  Although it was initially inferred from the mapping of 
sedimentary landforms (Jons, 1985; Lucchitta et al., 1986), the ancient ocean 
hypothesis was more controversially tied to the identification of what were 
interpreted as shoreline landforms by Parker et al. (1989, 1993).  However, failure 
to confirm the latter (Malin and Edgett, 1999, 2001) and variations in the 
hypothesized shoreline elevations of up to a couple of kilometers (Carr and Head, 
2003) led some to reject the hypothesis.  More recent studies, including the 
explanation of shoreline deformation by true polar wander generated by the 
formation of the immense Tharsis rise (Perron et al., 2007) and interpretations of 
compositional data (Dohm et al., 2009), have lent support to the ocean hypothesis.  
Moreover, recent studies have shown that, unlike Earth’s oceans, Mars’ Oceanus 
Borealis formed episodically (Baker et al., 1991; Fairen et al., 2003).  At least one 
earlier oceanic phase occurred at a time coincident with the formation valley 
networks in the martian highlands (Clifford and Parker, 2001), and later phases 
were associated with inflows from the immense cataclysmic flood channels that are 
described in section 7. 
 
     Multiple studies indicate that the formation of the valley networks required 
prolonged periods of rainfall in amounts comparable to what occurs for Earth’s arid 
or semiarid regions (Howard, 2007; Barnhart et al., 2009; Hoke et al., 2011; Irwin et 
al., 2011; Luo and Stepinski, 2012; Matsubara et al., 2013).  Associated lakes, deltas, 
and alluvial fans show complex histories of fluctuating water and sediment 
discharges (Malin and Edgett, 2003; Moore and Howard, 2005; Fassett and Head, 
2005, 2008; Di Achille et al., 2006; Ponderelli et al., 2008; Di Achille and Hynek, 
2010; Grant et al., 2011; Hoke et al., 2014;), and these also imply prolonged periods 
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of precipitation and runoff (Moore et al., 2003; Jerolmack et al., 2004; Matsubara et 
al., 2011). 
 
    This extensive evidence for warm, wet conditions on early Mars climate poses a 
conundrum because of the inability of current theoretical models to explain all this.  
In contrast to earlier theory (e.g., Pollack et al., 1987), if one assumes a CO2-H2O 
atmosphere, which involves the most parsimonious extrapolation that can be made 
from current Mars conditions to those of the ancient past, then brining the global 
mean surface temperature of Mars to near the freezing point of water would not 
physically have been possible at or before about 3.8 Ga ago (Kasting, 1991). These 
same assumptions apply to more complex calculations (Forget et al., 2013; 
Wordsworth et al., 2013), which also lead to a conclusion that a CO2-H2O martian 
atmosphere cannot generate the needed warm temperatures.   
 
 Another view holds that it may not be necessary to bring global mean 
temperatures above the freezing point.  Gulick et al. (1997) explored the potential 
climatic effects of instantaneous pulses of CO2, such as may have been released 
during outflow channel formation and subsequent ocean formation as hypothesized 
by Baker et al. (1991).  They found that a one to two bar pulse is sufficient to raise 
mean global temperatures above 240 or 250 K for tens to hundreds of millions of 
years, even when accounting for CO2 condensation.  Such pulses can place the 
atmosphere into a stable, higher pressure, warmer greenhouse state, where 
substantial water volumes could be transported from a frozen lake or ocean to 
higher elevations, despite global temperatures well below freezing. This water, 
precipitated as snow, could melt, infiltrate, and runoff, ultimately forming fluvial 
valleys in the southern highlands if associated with localized heat sources and 
hydrothermal systems, such as magmatic intrusions, volcanoes, or cooling impacts 
(Gulick, 1998). Thus, if outflow channel discharges were accompanied by a 
significant release of CO2, a limited hydrological cycle could result that would be 
capable of producing fluvial erosion and valley formation.  Sources of atmospheric 
CO2 during this time could have been provided by venting from associated 
volcanism, release of gases dissolved in groundwater, de-adsorption of gases from 
inundated regolith, and vaporization of clathrate in the regolith and ices resident in 
the polar caps (Baker et al., 1991). 
 
     Mischna et al. (2013) recently proposed another scenario.   They envision 
combinations of three driving factors for promoting transient warm/wet conditions 
on early Mars: (i) an insolation effect, mainly driven by changes in Mars’ obliquity; 
(ii) a trigger effect, mainly as it will subsequently promote a transient water-rich 
greenhouse effect; and (iii) an albedo effect involving relatively dark portions of the 
Martian surface.  The insolation effect results in periods of increased solar heating at 
various latitudes.  The albedo effect can arise either (i) from dark, dust-free 
exposures of basalt bedrock or (ii) from the temporary presence of relatively low 
albedo, ponded water, notably the northern plains ocean inferred for early Mars, 
acting in the manner hypothesized by Baker et al. (1991) and Baker  (2001, 2009a).  
Finally, a trigger effect can be provided by the massive, short-term volcanic injection 
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into the atmosphere of particularly potent greenhouse gases, such as sulfur dioxide. 
Though such gases may be generally short-lived in the atmosphere, their temporary 
warming effect can provide a trigger to get large quantities of water vapor into the 
atmosphere and that water will contribute to more prolonged greenhouse warming.   
 
     Halevy and Head (2014) also invoke the episodic volcanic release of sulfur 
dioxide, but in combination with aerosols, as a means of short-term warming of a 
dusty martian atmosphere.  The combination of mechanisms envisioned by Mischna 
et al. (2013) might then achieve the necessary warming, especially adjacent to the 
margins of the northern plains ocean that would supply water vapour.  The warming 
could persist long enough to generate the rainfall/runoff conditions needed to 
produce the valley networks, but ultimately Mars would return to ice-house 
conditions as the obliquity changed on timescales of millennia.  These overall 
interactions are similar to what was hypothesized by Baker (2009a). 
 

5.5.  Gullies and other recent flow phenomena  
 

The discovery of gully forms (Malin and Edgett, 2000b) in MGS MOC images 
sparked a spirited new debate over the history of water on Mars. Although current 
average temperatures are below 273 K and atmospheric pressures are at or below 
the triple-point vapor pressure of water at 6.1 mbar, many investigators concluded 
that the morphology of at least some of the gullies implied a formation mechanism 
involving the flow of water. Additional studies imply that some gully modification 
processes may still be ongoing today, including the discovery of gullies on surfaces 
devoid of craters and gullies with deposits that overlap other modern, possibly 
active, landforms, such as dunes and polygons. 

 
Although terrestrial gullies are commonly defined simply by the presence of 

an incised channel segment, Malin and Edgett (2000b) defined the martian gullies as 
having an alcove in the source region, a defined channel or system of channels in the 
mid-section and a debris apron in the terminus. The formation and modification of 
gully systems on Earth involve a variety of fluvial and hillslope processes. These 
include fluvial (including overland, soil water, and groundwater flow), colluvial, and 
mass wasting (e.g., debris flows and avalanches) processes. The challenge posed by 
the martian gullies is to determine which of these, or other, mechanisms are 
primarily responsible for gully formation and which are simply modification 
processes. 
 
5.5.1.  Gully distribution and types 

 
Gullies on Mars are concentrated in the mid-latitude regions, primarily in the 

southern hemisphere, but they are also found in the northern hemisphere (Malin 
and Edgett, 2000b; Costard et al., 2002; Heldmann and Mellon, 2004; Balme et al., 
2006; Dickson et al., 2007; Heldman et al., 2007). Although the earlier studies 
concluded that gullies are mostly located on pole-facing slopes in the southern 
hemisphere, later work points to prominent gully systems formed at various slope 
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orientations in the northern hemisphere and southern latitudes (e.g., Gulick, 2008, 
Head et al., 2009; Gulick and Davatzes 2009; Hart et al., 2010). These systems are 
located on a variety of surfaces, including central peaks and pits of craters, craters, 
channel and valley walls, polar pits, mounds, mesas, and mid-latitude dune fields.  

Imagery from the High Resolution Imaging Science Experiment (HiRISE) 
camera of the current MRO mission affords a much closer look (~0.3 m/pixel; 
meter-scale features resolvable) at the gullies than was available in the MOC 
discovery images (~1.5 to 12 m/pixel; tens of meters-scale features resolvable), and 
at this higher resolution gullies exhibit a great deal of morphological diversity. 
While some gullies exhibit the canonical single source alcove, incised middle reach 
and terminal debris fan deposits, others form tributaries that coalesce into complex 
networks. Lengths range from several tens of meters to several kilometers; 
widths range from several tens of meters down to HiRISE’s resolvable meter-scale. 
Some gully sources blend in gradually with the surrounding uplands, while others 
start full-borne from blunt theater heads. Gully systems displaying different 
morphologic patterns can be located adjacent to each other, morphologically 
complex gully systems commonly originate at rocky layers on a cliff face (Fig. 15). 
Such gullies often undercut walls, erode into the underlying rock and sediment, 
form point bars and cut banks, exhibit braided and anastomosing reaches, erode 
multiple terraces along gully margins, and deposit rocks and sediments along the 
gully and superposed adjacent systems. The resulting complex suite of 
morphological features is consistent with a fluvial origin (Gulick, 2008). 

In contrast, gullies located on mid-latitude dune fields (Mangold et al., 2003; 
Reiss and Jaumann, 2003) are sourced from alcoves located at dune crests, erode 
constant-width channels with levees, but generally lack the distal deposits common 
to the other gullies. Boulders are present at the termini of some dune gullies. 
Multitemporal imaging (repeat imaging of specific locations taken over multiple 
seasons and/or years) has documented seasonal changes in the dune gullies 
(Jouannic et al., 2012; Diniega et al., 2013).  Sliding blocks of CO2 ice down dune 
slopes (Diniega et al., 2013) and seasonal melting of an upper H2O ice and brine 
layer are among several hypotheses that have been proposed for the formation of 
the linear dune gullies (Kereszturi et al., 2009: Reiss et al., 2010).  Recently, long-
term observations of crater wall gullies employing HiRISE imagery has documented 
the role of CO2 processes on present-day Mars as active processes related to gully 
morphology (Dundas et al., 2014). 

  Still other gully types have distinct source regions and debris fans, but lack 
incised middle reaches. These particular gully forms are usually located on steep 
slopes, such as the inner walls of several volcano calderas, as well as on some 
crater, valley, and canyon walls; and they may be more akin to debris chutes where 
material is transported down steep slopes mostly by gravity alone. 

 HiRISE imaging also shows that gullies in a single locale sometimes emerge at 
multiple elevations and display a striking variety of morphologies. For example, 
miniature gully systems, some less than a kilometer long, are located along a crater 
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wall in the Terra Sirenum region (Fig. 16A). These small gullies exhibit typical gully 
morphologic characteristics. However they emerge much farther downslope than do 
their nearby full-scale counterparts (Gulick et al., 2008). Other intriguing gully 
systems are located on some pristine, mid-sized impact craters (McEwen et al., 
2007a; Tornabene et al., 2007). For example, well-developed and integrated 
gully systems heavily dissect the eastern rim region of Mojave Crater (Fig. 16B). In 
another example, pristine gullies have eroded both sides of the rim of Hale Crater 
(Figs. 17, 18), flowing in opposite directions. In one location, only a narrow 
ridge separates eastward- and westward- oriented gullies (Gulick, 2008). Although 
these gullies display morphological characteristics consistent with a fluvial origin, 
associations such as these may challenge any single gully formation mechanism 
applicable to geologically recent times.   

5.5.2.  Formation processes 

Given such diversity in morphology, a continuum of processes likely involved in 
the formation and modification of various gully systems. Formation mechanisms 
may include flows of hyperconcentrated fluids, debris flows, dry mass wasting flows 
and slides, and seasonally active processes involving CO2 and/or H2O ice. Proposed 
sources of water flows include melting snowpacks (Christensen, 2003); melting 
ground ice during periods of high obliquity (Costard et al., 2002; Dickson and Head, 
2009); and melting ice-rich, debris-covered, glacial material (Schon and Head, 
2012).  Other mechanisms involve liquid water from groundwater flow in near-
surface aquifers (Malin and Edgett, 2000b), from atmospheric sources (Costard et 
al., 2002; Hecht, 2002; Christensen, 2003; Dickson et al., 2007a; Head et al., 2008; 
Williams et al., 2009), or from wet debris flows (Costard et al., 2003; Dickson and 
Head, 2009; Williams et al., 2009; Mangold et al., 2010; Schon and Head, 2011). Still 
other proposed mechanisms include dry mass wasting; granular flows; exotic fluids 
(Musselwhite et al., 2001; Treimann, 2003; Hugenholtz, 2008); seasonal CO2 frost 
(Dundas et al., 2014); and, for the linear dune gullies in particular, sliding and 
sublimation of CO2 blocks (Hansen et al., 2007; Diniega et al., 2013).  

HiRISE has taken several thousand images of gully forms since 2006, and many 
of these are repeat, stereo images. Such long-term repeat imaging of specific sites, 
taken over multiple seasons and years, provides information on seasonal 
morphologic changes or clues that may lead to detection of processes that are 
currently active in the gully systems. Additionally, HiRISE digital terrain models 
(DTMs) can be produced from many of these HiRISE stereo image pairs. Most 
images are generally ~0.25–0.50 m/pixel, which yields a post-spacing equal to ~1–2 
m with vertical precision in the tens of centimeters (McEwen et al., 2007b). In 
particular, HiRISE DTMs have enabled a new level of gully studies for quantitative 
detailed longitudinal profile analysis and more accurate volume calculations using 
slope, distance, and elevation. Several recent studies of martian gully systems (e.g., 
Hart et al., 2010; Jouannic et al., 2012; Glines and Gulick, 2014; Hernandez et al, 
2014; Hobbs et al., 2014; Narlesky and Gulick, 2014) have incorporated analysis of 
HiRISE DTMs.  These studies have led to estimates of eroded gully volumes and their 
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associated deposits, thus providing a measure of the missing water or volatile 
volumes associated with gully formation. For example, Gulick et al. (2014) 
determined that the volume of the resulting debris aprons within Kaiser and Corozal 
craters was ~40% of the eroded gully volumes that resulted in a total water or 
volatile volume of ~60% of the total gully volume. Such studies provide a better 
understanding of Mars recent hydrological history and detailed comparisons with 
terrestrial gully systems. 

5.5.3.  Recurrent slope lineae (RSL) 

     A relatively recent discovery on Mars is the identification of what may be the best 
candidate for modern-day liquid water flow on Mars. The evidence for flow consists 
of linear patterns, probably of wetting and/or chemical precipitation, that extend 
and contract seasonally on steep, warm, rocky martian slopes (McEwen et al., 2011).  
The phenomenon has been documented on equator-facing slopes of the southern 
mid-latitudes of Mars, and the transient flow features occur in the local spring and 
summer seasons (McEwen et al., 2011; Ojha et al., 2014).  Termed recurring slope 
lineae (RSL), these features also occur in the Valles Marineris (McEwen et al., 2014). 
While McEwen et al. (2011) originally proposed that these present day flows would 
likely need to be briny because of the current surface temperature and pressure 
conditions, new observations by Stillman et al. (2014) support fresh shallow water 
flows forming RSL in the southern mid-latitudes. They observed that the vast 

majority of RSL lengthen only when mid-afternoon surface temperatures are 

>273 K. Detailed RSL observations over time (Stillman et al., 2014) have been 
shown by modeling to be consistent with subsurface water flow over a shallow 
aquitard (Grimm et al., 2014). 
 
6.  Lava flow channels on Mars 
 
     Mars obviously has a rich fluvial history, particularly in its first billion years.  
However, this history is also interconnected with a rich history of volcanic 
phenomena, including interactions of volcanism with water-related processes.  
These interactions lead to equifinality issues in regard to volcanic versus fluvial 
channel origins.  As an alternative to the fluvial outflow channel hypothesis (see 
section 7 below), Leverington (2004, 2006, 2009, 2011) argued that thermal and/or 
mechanical erosion by lava may have carved the martian outflow channels. 
However, discrimination between fluvial and lava channels on Mars is complicated 
by possible overprinting relationships in which lava flows may have resurfaced 
fluvial outflow channels. For instance, high-resolution imaging of Amazonian-aged 
Athabasca Valles shows that this outflow channel is draped in lava (Jaeger et al., 
2007, 2008, 2010; Ryan and Christensen, 2012), possibly implying a secondary 
rather than primary role for lava. Understanding the relative roles of fluvial and 
volcanic processes in channel formation is therefore vital for understanding the 
evolution of the martian surface and climate. 
 
6.1.  Channel structures within volcanic plains  
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     On Mars, basaltic provinces divide into three main types (Greeley and Spudis, 
1981; Zuber and Mouginis-Mark, 1992): (i) large shield volcanoes fed primarily 
from centralized sources (e.g., Olympus Mons and the other Tharsis Montes; 
Bleacher et al., 2007), (ii) regional packages of sheet-like flood lava that appear to 
originate from fissures (e.g., the Cerberus Fossae Units in Elysium Planitia; Plescia, 
1990; Jaeger et al., 2007, 2010), and (iii) vent fields composed of coalesced lava 
from widely distributed low shields (e.g., Tempe Terra Formation in northeastern 
Tharsis; Plescia, 1981). Each of these basaltic landscapes includes a diverse range of 
channels, which may be related to volcanism, bedrock erosion by overland flows of 
water, or a combination of both processes. However, distinguishing among these 
hypotheses requires determining if the channels are primarily features associated 
with lava flow emplacement, or if they are products of subsequent erosional 
processes. This can be achieved by considering the morphological characteristics 
and facies relationships associated with lava flows, which generally involve two 
end-member emplacement mechanisms: channel-fed growth (e.g., Booth and Self, 
1973; Baloga et al., 1995; Kilburn, 1996; Harris and Rowland, 2001; Glaze et al., 
2009; Harris et al., 2009) and endogenous growth (e.g., Walker, 1991; Hon et al., 
1994; Keszthelyi and Denlinger, 1996).  
 

6.2.  Channel-fed flows 
 
     Channel-fed lavas (Figs. 19, 20) can form within a range of lava flow types 
including ‘a‘ā, pāhoehoe, and transitional lavas (e.g., blocky, rubbly, slabby, and platy 
flows).  Lava channels are commonly associated with high lava-discharge rates, 
which favor the transport of lava in open ‘a‘ā channels caused by shear-induced 
disruption of the lava surface (Macdonald, 1953; Pinkerton and Sparks, 1976; 
Rowland and Walker, 1990). Viscous tearing of the lava surface also enhances the 
cooling of the underlying molten lava, thereby resulting in a thermally inefficient 
lava transport system, relative to endogenous flows. With distance from the vent ‘a‘ā 
channel geometries tend to evolve from being narrow and leveed in the proximal 
regions to wide and nonleveed near the flow front (Lipman and Banks, 1987; 
Kilburn and Guest, 1993; Cashman et al., 1999). However, as the flow front 
continues to advance, the stagnated lateral margins of the ‘a‘ā can develop into 
stationary levees that help to focus the continued through flux of lava. As the 
eruption progresses, the levees may continue to grow as lava episodically overtops 
the channel banks to form a combination of overbank flows and rubble avalanches. 
However, as lava-discharge rates wane, the ‘a‘ā channel may partially drain to 
produce a deep topographic depression bounded by levees on either side.  
 

Pāhoehoe flows tend to be associated with lower lava-discharge rates (Rowland 
and Walker 1990), which favor the formation of lobes that are bounded by a 
continuous surface crust (see the discussion of endogenous flows below for more 
detail). However, in the vent-proximal region, or along segments of a lava pathway 
where local lava-discharge rates are high (e.g., due to topographic constrictions 
and/or breakouts of stored lava), lava flow velocities may be sufficiently great that a 



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT
 24 

continuous surface is unable to form. At these localities, pāhoehoe and transitional 
lavas may also form open channels that can subsequently drain to produce 
topographic depressions. 

 
Channels within ‘a‘ā and pāhoehoe lava flows can be expressed as distinctive 

landforms that are perched above their surroundings by their high-standing 
margins. However, large eruptions can also produce broad sheet-like flows that 
inundate the landscape such that they are confined by pre-eruption topography 
rather than auto-confining by lateral lava levees (Self et al., 1996, 1998; Thordarson 
and Self, 1998). These flood lavas may include one or more preferred pathways that 
drain as lava-discharge rates wane to produce channel-like depressions that appear 
to incise into an existing plain. In some cases, lava pathways may carve into the pre-
eruption landscape through processes of thermal-mechanical erosion (Baloga et al., 
1995; Williams et al., 2000, 2001a,b, 2005), but this process is exceedingly difficult 
to discern from remote sensing data alone because the apparent excess depth of the 
channel may simply reflect the fact that the preferred pathway formed above the 
lowest point in the initial landscape.  
 

6.3.  Endogenous flows 
 
     In contrast to channelized flows, endogenous (e.g., pāhoehoe) lava flows tend to 
be composed of self-similar lobes (Bruno et al., 1994) that transport lava though 
thermally insulated internal pathways, which may range from to narrow lava tubes 
to broad sheet-like regions (Self et al., 1998). Endogenous flows grow as new lobes 
breakout along existing flow margins (Crown and Baloga, 1999). These breakouts 
expose fluidal lava that quickly cools to develop a rheological gradient consisting of 
a brittle outer crust, underlying viscoelastic layer, and inner molten core. Once lobes 
develop sufficient rigidity to retain incoming lava, they can pressurize and inflate as 
a network of lobes or coalesce to form a lava-rise plateau (Walker, 1991). Lava-rise 
plateaus generally have a broad sheet-like geometry, but as they thicken by 
inflation, they can also generate lava-rise pits above topographic highs in the pre-
eruption landscape (Walker, 1991). Lava-rise plateaus and lava-rise pits are 
important diagnostics of inflation because they are large enough to be observable on 
high-resolution remote sensing data (e.g., MRO HiRISE and Context Camera (CTX) 
imagery).  
 

6.4.  Facies changes 
 
     Distinguishing between channelized and endogenous growth mechanisms is vital 
for inferring lava emplacement dynamics, modeling flow behavior, and 
understanding the origin of volcanic plains units on Earth, Mars, and other planetary 
bodies (Self et al., 1998). However, lava transport mechanisms evolve with distance 
from source and with time such that structures preserved at the surface of a flow 
may only represent one part of a complex emplacement history. To address this 
issue, a facies-based approach can prove fruitful for advancing understanding the 
formation and characteristics of lava channels.  
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A facies refers to the suite of characteristics (i.e., appearance, composition, etc.) 

of a rock unit, or stratified, body that reflects its origin and enables the unit to be 
distinguished from others around it. In the context of lava facies, Kilburn and Guest 
(1993) described how lava flows can change continuously from the initial 
emplacement of isothermal sheets to flows with tubes and channels, which 
commonly evolve from pāhoehoe to ‘a‘ā flows. Kilburn and Guest (1993) also 
explored how combinations of poorly/well-crusted and sheet/channel zones can be 
used to establish a continuum of facies. These facies reflect the balance between 
dynamic processes of lava cooling, crustal growth, and surface stability relative to 
the mode of lava transport in either thermally insulated internal pathways or open 
channels. Facies change with distance from the source and at any given location 
with time, which makes facies relationships a much stronger diagnostic of a unit’s 
volcanic origin than isolated observations.  

 
In the context of Mars (Fig. 21), small sinuous channel systems in volcanic 

terrains have been particularly contentious, with proposed origins ranging from 
fluvial processes and mudflows (e.g., Murray et al., 2010; El Maarry, 2012) to lava 
flow emplacement (e.g., Hamilton et al., 2010, 2011). These channels are hundreds 
of meters wide, tens of meters deep, and tens to hundreds of kilometers long. Such 
channels tend to head from fissures, but they are much smaller than outflow 
channels. These smaller sinuous channel systems are typically located in the Tharsis 
and Elysium volcanic provinces (localities TV and E, Fig. 9), but they are also 
distributed in the southern highlands. The channels can have single-stem or 
multichannel (anabranching) forms with streamlined islands and terraced margins, 
which are often thought to be diagnostic of bedrock erosion by water. However, 
examples of similar landforms are also observed within lava flows on Earth (Soule 
et al., 2004). Unfortunately, in cases where volcanic eruptions have continued for 
long periods of time, initial lava flow structures, such as anabranching channel 
morphologies, may be overprinted and erased by subsequent lava flows. For 
example, as lava-discharge rates wane, endogenous flow units emplaced under 
lower lava-discharge conditions may overlie channel-fed flows that formed under 
peak lava-discharge conditions. The time-scales of emplacement for lava flows on 
Mars are poorly constrained, but Jaeger et al. (2007, 2008, 2010) advocated that 
some martian lava flows, such as the Athabasca Valles flood lava (locality I, Fig. 9), 
may have been emplaced over a relatively short duration, on the order of several 
weeks. If so, short-lived, but relatively high lava-discharge rate eruptions (e.g., the 
December 1974 flow on Kīlauea, Hawai‘i) may provide valuable insight into the 
formation of sinuous lava channels on Mars.  

 
7.  Martian cataclysmic flooding channels 
 
    The largest fluvial channels of the solar system occur on Mars.  Their discovery on 
the Mariner 9 images revealed morphologies that, despite the then-prevailing 
physical theory of a water-impoverished planet (e.g., Leighton and Murray, 1966), 
indicated formation by flowing water to the geologists on the Mariner 9 team 
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(McCauley et al., 1972; Masursky, 1973; Milton, 1973).  The name outflow channel 
was applied (Sharp and Malin, 1975) because of the immense collapse areas of 
blocky, fractured terrain at the heads of the largest channels, including Kasei, Maja, 
Shalbatana, Simud, Tiu, and Ares Valles (Fig. 22).   The indicated immense flows of 
water were attributed to volcanic melting of ground ice (McCauley et al., 1972; 
Sharp, 1973; Masursky et al., 1977), and various formulations of this mechanism 
have been dominant in explanations ever since. 
 
      In published scientific papers over the seven or eight years following their 
discovery in 1972, nearly every conceivable fluid was invoked to explain the 
martian outflow channels.  These included flows of lava (Cutts et al., 1978; 
Schonfeld, 1979); wind (Whitney, 1978a,b; Cutts and Blasius, 1981), CO2 (Lambert 
and Chamberlin, 1978), flows of debris (Thompson, 1979; Nummedal and Prior, 
1981), glacial flow (Lucchitta et al., 1981; Lucchitta, 1982), tectonism (Schumm, 
1974), and even flows of liquid alkanes (Yung and Pinto, 1978).  Motivation for 
these hypotheses derived from the perceived inconsistency with physical models of 
the martian atmosphere (e.g., Leighton and Murray, 1966) and geochemical 
arguments that purported to indicate a very small planetary water inventory 
(Anders and Owen, 1977), as well as the lack of deltas at the mouths of various 
channels (Cutts et al., 1978).  However, all the various nonaqueous fluid-flow 
candidates had consequences for morphology and planetary history that could be 
evaluated against the facts that were known in regard to those consequences (e.g., 
Baker, 1982, 1985b).  This testing of hypotheses led to a general investigative 
community consensus in favor of the cataclysmic flooding hypothesis (Mars Channel 
Working Group, 1983; Baker et al., 1992b) that relied heavily on the analogy drawn 
to the megaflood landscapes of the Channeled Scabland and Iceland (Baker and 
Milton, 1974; Baker and Nummedal, 1978; Baker, 1982, 2009b, c; Rice and Edgett, 
1997).  Relationships for cataclysmic flooding features in Martian channels have 
since been reviewed in numerous publications (e.g., Nelson and Greeley, 1999; 
Baker, 2001; Coleman, 2005; Pacifici et al., 2009; Warner et al., 2010a). 
 
     After a hiatus of a couple of decades, a new generation of nonaqueous models has 
been resurrected, including the decompression of solid CO2 (Hoffman, 2000) and 
massive eruptions of very fluid lava (Leovy, 2002; Leverington, 2004, 2011; Leone, 
2014).  The CO2 hypothesis of Hoffman (2000) predicted that Mars had always been 
so cold and dry that water never could have been liquid on its surface—a 
consequence clearly at odds with the immense number and variety of newly 
discovered features on Mars that are clearly associated with liquid water processes. 
Urquhart and Gulick (2001) reviewed the plausibility of the White Mars hypothesis 
and concluded that the subsurface of Mars is unlikely to have been as cold as this 
model suggested and that liquid water would be present much closer to the surface 
than predicted by this hypothesis. The assumptions of the White Mars hypothesis 
regarding the globally averaged crustal heat flow are below most estimates for the 
current thermal state of the Martian crust and well below probable values. 
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     Recently the term outflow channel has been applied to many features with very 
different morphologies than those associated with the original designation.  In his 
model of massive outpourings of very fluid lava on the surface of Mars, Leverington 
(2011) applied the term not only to features associated with the original definition 
but to a great variety of large channel forms of volcanic origin, including lunar 
sinuous rilles (see section 2.1); channels of more uncertain origin, such as those on 
Venus (see section 3); and to Martian channels that do not head at outflow regions, 
such as Ma’adim Vallis, which has a complex history associated with crater lake 
spillways (Irwin et al., 2002, 2004).  Leone (2014) even applied the term outflow 
channel to the troughs of the Valles Marineris.  Carr (2012, pp. 2204–2205) 
responded to the massive lava hypothesis in his review of the fluvial history of Mars 
by observing, as follows:  “…the consensus is that the channels were cut by water, 
based on the strong resemblance to terrestrial flood features, on the availability of 
water as indicated by other indications of hydrological activity such as the valley 
networks, and on geophysical modeling of channel formation…” Nevertheless, as 
noted in section 5, problems remain for relating the aqueous origins of fluvial 
features on Mars to the general theory of environmental change on the planet, but 
this poses a challenge to the theory -- not to the realities of the fluvial features. 
 
7.1.  Cataclysmic megaflooding forms and processes on Earth and Mars 
 
7.1.1.  Hierarchy of morphological forms in cataclysmic flooding channels 
 

  The erosional and depositional bedforms of terrestrial catastrophic floods can be 
described according to a hierarchical classification of macroforms and mesoforms, 
as originally recognized in the Channeled Scabland (Baker, 1978b, 2009b,c).  
Macroscale forms (scale controlled by flow width in the channel) develop in 
cataclysmic flooding channels through the erosion of rock and sediment and/or by 
deposition (generally as in-channel bars). Some examples of erosional macro-scale 
forms are channel anastomosis, channels with low sinuosity and high channel 
width--depth ratios, large-scale streamlined residual hills, and scoured surfaces. 
Examples of depositional macroscale forms include the largest pendant bars, 
expansion bars, eddy bars, and fan complexes. 

 
Catastrophic floods also produce mesoscale forms, which have their scale 

controlled by flow depth in the channel.  Some examples of erosional mesoscale 
forms include longitudinal grooves, cataracts, and inner channels. Depositional 
mesoscale forms include large transverse bedforms (fluvial dunes), smaller pendant 
bar forms, and slackwater depositional areas.  Although the hierarchical 
arrangement of cataclysmic flooding landforms was originally recognized on Mars at 
scales considerably larger than what occurs in the Channeled Scabland (e.g., Baker 
and Milton, 1974; Baker and Kochel, 1979), more recent work with high-resolution 
imagery has revealed areas where the scales are more comparable (Rodriguez et al., 
2014). 
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 In terrestrial catastrophic flooding examples the association of macroforms and 
superimposed mesoforms result from the nature of the flood hydrograph.  For most 
continuously flowing rivers, flood hydrographs have a long recession phase. The 
depositional bedforms that are stable at high flow stages (meso-scale forms) get 
washed out during the prolonged recessional phase, and post-flood surfaces 
preserve only the more stable macroscale forms, such as alternate bars. However, 
some catastrophic floods, such as those responsible for the Channeled Scabland 
(Baker, 1973), undergo an abrupt cessation of flood discharge, and this results in the 
preservation of many of the mesoscale forms (e.g., fluvial dunes), especially those 
located on higher elevation bar surfaces.  In contrast, other terrestrial catastrophic 
flood landscapes do not preserve mesoforms because of their more prolonged flow.  
This was the case for the Bonneville megaflooding (Malde, 1968; O’Connor, 1993), 
which has no known examples of large-scale transverse bedforms (fluvial dunes).  
The lack of fluvial dunes in many Mars catastrophic flooding channels may result 
from similarly prolonged flow phenomena. 

 
Examples of cataclysmic megaflooding landforms on Mars include channel 

anastomosis (Fig. 23), streamlined hills and longitudinal grooves (Figs. 23 and 24), 
and expansion bars (Fig. 25).  Detailed mapping and analysis of Ares Vallis (locality 
A, Fig. 22), one of the largest cataclysmic flood channels that was a type example for 
the designation outflow channel, revealed excellent examples of eddy and pendant 
bars (Pacifici, 2008; Pacifici et al., 2009).  These features are characteristic of 
macroform deposits in the Missoula megaflooding landscapes of the Channeled 
Scabland (Baker, 1973, 2009b, 2009c).  Pacifici’s (2008) detailed mapping of upper 
Ares Vallis using Mars Express HRSC data showed the association of these 
depositional landforms with erosional landforms that are also typical of the 
Channeled Scabland, including longitudinal grooves, streamlined uplands, and 
cataracts.  A spectacular example of the latter is about 500 m high and 15 km wide 
(Pacifici et al., 2009; Warner et al., 2010a).   

 
      The downstream reaches of Ares Vallis are dominated by ice-related landforms 
that developed after the cataclysmic flooding phase (Costard and Baker, 2001; 
Costard and Kargel, 1995).  These include kame-like features and thermokarst 
depressions that occur in sediments overlying the cataclysmic flooding landforms 
(Costard and Baker, 2001; Pacifici et al., 2009; Warner et al., 2010b,c).  It is also 
clear from recent work (Pacifici, 2008; Roda et al., 2014; Warner et al., 2009, 2010a. 
2011) that Ares was formed by multiple cataclysmic flooding events/episodes 
spanning from Early Hesperan (~3.7 Ga) to early Amazonian (~2.7 Ga) time. 
 
7.1.2.  Differences in sediment transport and deposition on Mars and Earth 
 

The lack of extensive deposits within the Martian catastrophic flood channels and 
at their mouths has been noted from the time of their earliest study in the 1970s. 
Recently resurrected by Leverington (2011), these observations include the 
supposed lack of fluvial bars within the channels and the lack of deltas at the mouths 
of many martian “rivers” where they entered lakes or the ancient ocean that is 
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hypothesized to have episodically occupied the planet’s northern plains (see Section 
5.4 above).  This is an example of a flawed analogy. 

 
The large Martian channels were not formed by the long-term action of Earth-like 

river flows (hence the need to refer to them as cataclysmic flooding channels).  Their 
appropriate terrestrial analogues are not rivers at all, but rather the relatively rare 
cataclysmic food channels on Earth that are mainly associated with past periods of 
glaciation in which large ice sheets developed various instabilities because of 
subglacial volcanism and/or marginal or subglacial lakes.  Since the early work in 
the 1970s on the origin of the Mars cataclysmic flooding channels, many new 
discoveries have been made of cataclysmic flooding landscapes on Earth (Baker, 
1997, 2002a, b, 2009d, 2013), and megaflood-generating processes (e.g., Table 3) 
are now recognized as being much more important, particularly for the glacial 
periods of Earth’s Pleistocene epoch (e.g., Baker, 1997, 2014b). 

 
High-energy cataclysmic flooding on Earth and Mars occurred when water many 

tens to hundreds of meters deep flowed with very steep energy slopes, thereby 
generating velocities of tens of meters per second, which were associated with 
values of bed shear stress and unit stream power that exceeded by many orders of 
magnitude those of rivers like the Mississippi (Baker and Costa, 1987; Baker, 
2002a).  The latter has a very flat gradient, and its channels convey mainly mud and 
some sand at velocities of no more than about a meter per second and at very low 
values of bed shear stress and unit stream power.  The sand separates out as 
bedload that is locally deposited as channel or point bars, while the silt and clay 
move as suspended load that either is conveyed to the river’s mouth and delta or is 
deposited as overbank mud on the floodplains that border the river channel. 

 
As pointed out by Komar (1979, 1980), the combination of extremely high unit 

stream power and reduced gravity means that the particles in the high-velocity 
martian flood flows did not separate out as bedload and suspended bed-material 
load in a manner typical for a low-energy Earth river like the Mississippi.  In 
cataclysmic megaflooding on Mars, very coarse particles moved as washload, or 
auto-suspension load, that, instead of being deposited as bars, was mostly flushed 
through the whole channel system and only was subject to deposition where the 
high energy levels dropped, as occurred in the huge expanse of a terminal basin, 
which for Kasei Vallis was the northern plains of Mars (Fig. 26).  Figure 26 shows 
the immense amount of erosion that occurred along Kasei Vallis and the lack of an 
obvious delta or fan where the Kasei channels terminated in the northern plains 
lowlands (blue colors in Fig. 26).  The correct analogy here is not to a terrestrial 
river that would deposit its load at this point, but to terrestrial cataclysmic flood 
channels entering Earth’s oceans.  The Columbia River, one of the largest in North 
America, also has no delta of sediment accumulation at its mouth.  Instead, the 
immense fluxes of sediment generated by the megafloods that occurred in the 
Columbia River basin are distributed over 2000 km of the abyssal plains of the 
Pacific Ocean (Normack and Reid, 2003).   The bulk of the sediments were carried 
far out into the terminal basin and spread thinly over immense areas (Baker, 2007).  
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Similarly, sediments moved through the martian cataclysmic flood channels 
terminating at the northern plains would have entered the Oceanus Borealis (see 
section 5.4) as hyperpycnal flows, and the resulting submarine density flows would 
have been spread out over distances of thousands of kilometers from the channel 
mouths, constituting deposits that would mantle the entire northern plains of Mars. 

 
  While a complete discussion of the hydraulics of the ancient martian floods and 

their related erosional/depositional processes is beyond the scope of this review, 
useful summaries can be found in papers by Baker (1979, 1982), Komar (1979),  
Baker and Komar (1987), Komatsu and Baker (1997), Burr (2003), Kleinhans 
(2005), and Wilson et al. (2004, 2009).  Advances in computational power now 
allow the application of two-dimensional hydraulic models to very complex 
channelized regions like Athabasca Vallis (Keszthelyi et al., 2007; Kim et al., 2014), 
and it is clear that more work of this type will contribute greatly to our 
understanding of mechanics of both erosion and deposition for the martian 
cataclysmic flooding channels 
 
7.2.  The circum-Chryse outflow channels region 
 
    The chaotic source areas and related outflow channels surrounding the Chryse 
region of Mars (locality C, Figs. 9 and 22) have received extensive study for more 
than 40 years (Sharp, 1973; Baker and Milton, 1974; Carr, 1979; Baker et al., 1991; 
Clifford and Parker, 2001; Rodriguez et al., 2003, 2005a,b, 2006b, 2007, 2011; 
Bargery and Wilson, 2011; McIntyre et al., 2012).  The upper crustal stratigraphy in 
this region is thought to consist of interbedded volcanic and sedimentary deposits 
that were mostly emplaced during the Noachian (Scott and Tanaka, 1986; 
MacKinnon and Tanaka, 1989; Rotto and Tanaka, 1995a). These deposits are 
hypothesized to contain large populations of buried impact craters (Malin and 
Edgett, 2001; Frey, 2003; Rodriguez et al., 2005b). Regional investigations indicate 
that aquifers developed in association with buried craters (Malin and Edgett, 2001; 
Frey, 2003; Rodriguez et al., 2005b) and tectonic fabrics (Rodriguez et al., 2007). 
The instabilities within these aquifers probably led to the formation of chaotic 
terrains. Though not well understood, the instabilities have been linked to 
conditions such as intrusive magmatism into the hydrosphere/cryosphere (e.g., 
Rodriguez et al., 2003, 2005b; Harrison, 2012), explosive dissociation of upper 
crustal clathrate deposits (e.g., Komatsu et al., 2000; Rodriguez et al., 2006b; Gainey 
and Elwood-Madden, 2012), and the thermally insolating effect of hydrated salts 
(Kargel et al., 2007) and porous sediments (Rodriguez et al., 2011).  

 
The regional mapping of Rotto and Tanaka (1995) portrays a generalized history of 
channel dissection and includes four outflow channel units that distinguish older 
and younger, higher (shallow) and lower (deep) channel floors. Their mapping 
suggests that the chaotic terrains and outflow channels mostly developed between 
the Late Hesperian and the Early Amazonian. However, recent analysis of very high-
resolution imagery shows that portions of Simud, Tiu, and Ares Valles experienced 
major outflow channel flows during the Early and Middle Amazonian, extending to 
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as recent as ~ 900 Ma (Rodriguez et al., 2015). Other regional hydrogeologic 
processes, including valley dissection and groundwater upwelling, may have lasted 
from the Late Noachian until the Amazonian (Andrews-Hanna et al., 2007; Glotch 
and Rogers, 2007; Fassett and Head, 2008). 

 
Higher levels within the circum-Chryse outflow channels consist of ~20–50-km-

wide canyons, the floors of which are marked by prominent ridges and grooves. 
Their formation has been attributed to catastrophic floods generated by 
groundwater eruptions along the flanks of chaotic terrains and plateau zones of 
subsidence (Rodriguez et al., 2006a).  Some of these chaotic terrains are enclosed, 
while others extend over highlands and modify craters and intercrater plains alike. 
Associated zones of subsidence consist of complex systems of warped and faulted 
highlands (Rodriguez et al., 2003, 2005a, b). In addition, a few of these outflow 
channels extend from structures produced by dilational (Hanna and Phillips, 2006; 
Coleman et al., 2007) and contractional  (Rodriguez et al., 2007) tectonism.  

 
  Lower levels within the circum-Chryse outflow channels consist of much broader 

troughs, generally a few hundred kilometers in width. Their floors are marked by 
faint ridges and include widespread knobs, which may consist of large blocks likely 
transported by debris flows (Tanaka, 1997, 1999; Rodriguez et al., 2006b). The 
debris flow hypothesis is consistent with the finding of rounded, submeter size 
clasts and imbricated boulders at the Mars Pathfinder landing site (Golombek et al., 
1997; Tanaka, 1997, 1999).  These debris flows might have been triggered during 
episodes of large-scale collapse within the Ganges chasma (Rodriguez et al., 2006a) 
or by  discharges from vast paleolakes within Valles Marineris (locality VM, Fig. 22)  
(Lucchitta et al., 1994; Rotto and Tanaka, 1995; Warner et al., 2013). In addition, 
glaciers appear to have significantly contributed to the formational history of the 
circum-Chryse outflow channels (Lucchitta, 1982, 2001), and immense amounts of 
glacial ice may have occupied the Valles Marineris (Mege and Bougeois, 2011; 
Gourronc et al., 2014). 
 
7.3.  Megaflood generation processes 
 
7.3.1.  Pressurized outbursts from confined aquifers  
 

  The classic morphology of outflow channels involves a headward source area of 
chaotic terrain.  This has long been inferred to imply a morphogenetic relationship 
between chaotic terrains/zones of subsidence in the ice-rich martian subsurface 
and the outflow channels ( McCauley et al., 1972; Sharp, 1973; Baker and Milton, 
1974; Sharp and Malin, 1975; Scott and Carr, 1978; Carr, 1979, 1996; Scott and 
Tanaka, 1986; Baker et al., 1991; Clifford, 1993; Clifford and Parker, 2001; 
Rodriguez et al., 2003, 2005b, 2006a, 2007).  One of many models for megaflood 
generation from this association (see Table 4) invokes pressurized water emerging 
from a confined aquifer (Carr, 1979).  A transition from the hypothesized warm wet 
conditions of the late Noachian (see Section 5) to dominantly frigid climatic 
conditions during the Early Hesperian was proposed by Carr (1979) to have led to 
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the formation of vast aquifers (hydrosphere) trapped underneath thick ice-rich 
permafrost (cryosphere) (Clifford, 1993). These aquifers might have been globally 
connected (Clifford and Parker, 2001) or regionally compartmentalized (Harrison 
and Grimm,  2008).  This particular hypothesis has many difficulties, some of which 
have been summarized by Leverington (2011), who claims that the falsification of 
this particular mechanism, which he claims to be the generally accepted mechanism 
for the formation of all the martian outflow channels, achieves a kind of blanket 
falsification of aqueous origins for cataclysmic flooding channels on Mars and 
therefore results in a need to explain these features by volcanic processes. 

 
      Ground-water flow through porous media is inadequate to generate the huge 
discharges evident from the size of the largest cataclysmic flood channels, including 
Ares, Kasei, Simud-Tiu, and Maja (Fig. 22).  Closed basins at the head of these 
channels and the immense canyon system of Valles Marineris were more likely to 
have filled relatively slowly with any water provided by groundwater flow.  
However, the ponding of this water would have led to opportunities to release 
immense outbursts through the breaching of divides (Coleman and Baker, 2009; 
Irwin and Grant, 2009; Warner et al., 2010a).  Alternatively or in combination, 
volcanism may have contributed, either by impacting the cryosphere (Chapman and 
Tanaka, 2002) or by interaction with glacial ice, such as might have occupied the 
Valles Marineris (Gourronc et al., 2014).   

 
   Ravi Vallis (Fig. 27) (locality R, Fig. 22) shows the typical headward chaos zones 

of an outflow channel.  However, it can also be seen that chaos areas are also 
developed along lower reaches of the channel.  Moreover, these have been eroded 
by flows coming from the upstream portions of the channel (Coleman and Baker, 
2009).  This relationship is one of secondary chaotic terrains (Coleman, 2005; 
Rodriguez et al., 2005a, b, 2011), which form within the floors of outflow channels, 
and therefore post-date the outflow channel formational events. Their origin has 
been attributed to gradual volatile-driven resurfacing by intra-cryospheric fluid 
lenses exhumed by catastrophic flood erosion (Rodriguez et al., 2011), 
devolatilization of water-rich sediments (Rodriguez et al., 2005a, b), and exposure 
of the hydrosphere’s upper boundary (Coleman, 2005).  Whatever process was 
releasing fluid from the subsurface, it was clearly acting in a complex manner. 

 
   A number of cataclysmic flooding channels also terminate in sites where the fluid 

flows disappear into subsurface fractures of crevices, as in the case of Hrad Vallis 
(Rodriguez et al., 2012) and Osuga Vallis (Fig. 28) (locality O, Fig. 22).  This 
suggests that huge subsurface cavities are present.  Acting as conduits, such cavities 
would also have been capable of conveying immense discharges of water to channel 
source areas, as has been argued for Shalbatana Vallis (Rodriguez et al., 2005b).  
Water flow through large subsurface conduits, perhaps formed within buried ice 
zones, would have resulted in the capability to produce much greater subsurface 
flow than would be possible through the porous media that was envisioned by the 
confined aquifer hypothesis. 
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7.3.2.  Fissure eruption channels: water and lava 
 
     Some cataclysmic flood channels are associated with fissures that evidently 
erupted lava and pressurized water.  The presence of a thick, ice-rich cryosphere 
seems to be an important factor for this mode of sourcing cataclysmic flows.  Magma 
rising along fractures (dikes) may have risen to just below this thick cryosphere, 
promoting its widespread melting and emergence on the surface as erosive 
megafloods of water.  The magma accumulations at depth would also have sourced 
effusive lavas, which would then run down the preexisting channelways created by 
the flood erosion.  This sequence of processes seems reasonable as an explanation 
for relationships observed at Mangala Vallis (locality L, Fig. 9) (Tanaka and 
Chapman, 1990; Wilson and Head, 2004; Basilevsky et al., 2009) and Athabasca 
Vallis (Burr et al., 2002, 2009b).  The flooding episodes at Mangala Valles spanned 
much of Mars history with phases dated to 3.5, 1, 0.5, and 0.2 Ga (Basilevsky et al., 
2009).  The Athabasca flooding was much younger, perhaps as recent as 10 Ma 
(Berman and Hartmann, 2002). 

 

7.3.3.  Spillway cataclysmic flooding channels 
 
    Ma’adim Vallis (locality M, Fig. 9) extends for about 900 km from a large enclosed 
basin in the heavily cratered southern highlands northward to Gusev Crater at the 
junction of the highlands with the northern plains (Irwin and Grant, 2009).  The 
source basin is interpreted as filling and overflowing in Late Noachian time, 

releasing as much as 250,000 km3 of water (Irwin et al., 2002, 2004).  A series of 
breached basins occur along its length, as well as local anastomosis, longitudinal 
grooves, and at least one large sedimentary bar (Irwin and Grant, 2009).  Gusev 
Crater was the landing site for the Spirit Mars Exploration Rover, which found that 
floor of the crater was resurfaced by basaltic lava flows of Early Hesperian age 
(Greeley et al., 2005).  This precluded access by the lander to any direct evidence of 
the earlier breaching of the crater by the Late Noachian megaflooding that formed 
Ma’adim Vallis. 
 
    Another example of a spillway system of cataclysmic flood channels is Okavango 
Vallis (locality D, Fig. 9) (Mangold and Howard, 2013).  This system extends for 
about 400 km flowing northward toward the northern plains from the cratered 
southern highlands, at around Lat. 400 N, Long. 100 E.  Okavango Vallis displays 
erosional scour/groove morphologies, fluvial bars, and anastomosing channels, 
where cataclysmic floods of water spilled through crater rims.  Multiple delta fans 
are developed where the floods entered ponded water on the floors of the 
depressions.  As noted by Mangold and Howard (2013), these relationships are in 
conflict with the model of Leverington (2011), who considers all outflow channels of 
planetary surfaces to be of volcanic origin. 
 
7.3.4. The greatest fluvial system 
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     An especially remarkable fluvial phenomenon on Mars is the connection of 
several of the cataclysmic flood channels and related paleofluvial and 
paleolacustrine features into a great 8000-km-long chain (Fig. 29).  As recognized 
by Parker (1985), this system of channels fed through various breached impact 
basins to eventually connect up to channels leading to the northern plains of Mars 
(Clifford and Parker, 2001).  As noted in section 5.4, the latter region has been 
inferred to have been periodically occupied by the temporary water informally 
named Oceanus Borealis by Baker et al. (1991). 
 
      What is now termed the Uzboi-Ladon-Morava (ULM) (near locality U, Fig. 9) 
channel system (Irwin and Grant, 2009) heads at the Argyre impact basin (locality 
A, Fig. 9) and trends northward along a broad, elongate topographic depression, the 
Chryse Trough (Saunders, 1979; Baker, 1982).  The Agyre Basin is connected to the 
south polar region of Mars by longitudinal valleys that head in areas underlain by 
the Dorsa Argentea Formation (Head and Pratt, 2001).  Fastook et al. (2012) 
considered portions of the Dorsa Argentea Formation to be evidence of south polar 
ice sheet activity that extends back to the late Noachian.  This would have been the 
ultimate source of the great system of channels that spilled into multiple impact 
basins (Fig. 30) before reaching the northern plains. 
 
     Baker (2007) pointed out that the great Mars fluvial system would be comparable 
in length to the interconnected paleolakes and spillways that developed in Asia at 
the end of the last ice age.  These two systems would have temporarily constituted 
the largest river systems for their respective planets, and it is interesting that they 
shared many morphological similarities, including spillways between basins, ice-
rich source areas, termination in their respective world oceans, and perhaps even 
influences on global climates (Baker, 2009a). 
 
8.  Discussion 
 
      In studying newly discovered fluvial phenomena on planetary surfaces, one 
needs to rely upon analogy (Baker, 2014a). As pointed out by Gilbert (1886), 
analogical reasoning does not work by comparing a phenomenon that is not fully 
understood, like the Kallistos Vallis compound channel (section 3.2) on Venus, to a 
newly discovered phenomenon that one is trying to understand, like the cataclysmic 
flood channels on Mars.  In planetary science one employs terrestrial analogs 
precisely because they are understood (Baker, 2014a), though one must also make 
allowances for physical realities, as in the case of how the relatively low Martian 
gravity affects fluid flow and sediment transport.   Analogical reasoning in geology 
cannot be verified by controlled experimentation, but must rather rely upon 
consistency, coherence, and consilience (Baker, 2014a).   The fluvial-like channels of 
Mercury, Venus, the Moon, and Io all occur in volcanic contexts and completely lack 
any aqueous context.  The valley networks and cataclysmic flood channels of Mars 
and Earth all have extensive aqueous contexts.  Some very interesting Mars and 
Earth channels have contexts involving interactions among both volcanism and 
water. 
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     In addition to the similarities of landform assemblages between the martian 
cataclysmic flood channels and the Channeled Scabland, interesting similarities can 
be found in the history of finding the source for the megaflooding.  In both cases it is 
the landforms indicative of aqueous flooding that were first discovered.  Various 
perceived problems with the cataclysmic explanation were then noted, and this led 
to controversy concerning the mechanism for explaining those landforms and 
identifying the source of the immense fluid flows.  In the case of the Channeled 
Scabland controversy, glaciation, normal river flow, and collapsed lava tubes were 
all invoked to explain the landforms (Baker, 1978a, 1981, 2008b).  In the initial 
stages of the debate, J Harlen Bretz, the advocate of the cataclysmic flooding 
hypothesis, posed a number of problematic source mechanisms.  These included the 
rapid melting of ice sheets and the effects of subglacial volcanism.  Neither of these 
hypotheses proved viable and that recognition was used as an argument against 
Bretz’s cataclysmic flooding hypothesis, with some claiming that failure of Bretz’s 
generative mechanisms made alternatives to cataclysmic flooding more likely.  The 
problem with this type of argument is that rejection of imperfect hypotheses for 
generating scabland flooding does not constitute a falsification of all the possible 
ways that nature could generate such flooding.  It is nature that has the answer to 
this problem, not the scientists.  Ultimately a very complete case was developed for 
a cataclysmic flooding origin for the assemblages of Channeled Scabland landforms 
and for their relationship to the geological context.  That context included effects 
beyond the Channeled Scabland region that could clearly be related in time and 
genesis to the megaflooding.    
 
     The study of extraterrestrial fluvial and fluvial-like features raises many 
questions, and the foregoing review has introduced some of these.  The surface of 
Venus (see section 3 above) is particularly puzzling in regard to the indicated scale 
and erosive capability of lava flows, especially those that formed the canali.  
Moreover, this puzzle illustrates the general need to advance understanding of the 
flow mechanics and physical conditions that occur for various lava compositions, 
water--sediment mixtures, and more exotic fluids, such as liquid sulfur and methane 
(see section 4 above).  Much more can be gleaned from terrestrial analogs (see 
section 6 above), but a challenge remains for explaining those phenomena that 
differ greatly in their causal associations from what can be accessibly inferred from 
Earth analogs. 
 
     The surface of Mars is particularly interesting with regard to understanding 
fluvial phenomena on Earth.  The very early geological history of Mars probably 
involved conditions that were able to generate the Earthlike valley networks (see 
Sections 5.2 and 5.3 above).  Unresolved, however, is the role of the hypothesized 
northern plains ocean in facilitating an Earthlike global hydrological cycle on Mars.  
Moreover, there is a climate conundrum in that physical models do not seem to be 
able to produce the climatic conditions that would be consistent with the fluvial 
evidence (see section 5.4 above).  Equally puzzling is the intriguing evidence for 
very recent, even current, water-related activity on Mars (see section 5.5 above). 
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     Another first-order unresolved problem involves the cataclysmic flooding 
channels that formed on early Mars, with some activity even extending to relatively 
recent geological history.  Those channels emanating from subsurface sources are 
still not well understood.  How can the indicated immense flows be generated?  How 
many flow events are required to produce the resulting channel morphologies?  
How do some source areas, such as those for Athabasca and Mangala Valles, 
apparently produce alternating outbursts of both lava and water?  Clearly then, 
plenty of unanswered fluvial geomorphological questions remain for future 
scientific inquiry.  
 
9. Conclusions 
 
     This review has highlighted the very rapid progress in discovery and explanation 
concerning the great variety of fluvial and fluvial-like landforms on extraterrestrial 
planetary surfaces.  Unlike Earth and Mars, the Moon, Io, and Mercury do not have 
geological contexts that include water-related landforms and a history of water-
related processes on their surfaces.  Earth and Mars have such a history, and their 
surfaces display an immense abundance and variety of fluvial landforms, though, in 
the case of Mars, these are generally related to the planet’s ancient geological 
history and are not forming today. 
 
      After decades of arguing whether Mars was water-rich or not, discoveries of the 
last decade or so have completely eliminated the not (Baker, 2014c).  It is no longer 
necessary or even reasonable to invoke nonaqueous mechanisms for explaining 
fluvial features on Mars because of physical and chemical models that purport to 
demonstrate the not (e.g., Hoffman, 2000).  The inconsistency of the 
geomorphological interpretations of water-related processes with physical and 
chemical arguments for Mars being water-poor, summarized by Carr (1996), has 
now been replaced by the conundrum of reconciling the geochemical and physical 
understanding of Mars with the fact of its watery past.  Moreover, no longer does the 
geomorphological interpretation of imagery provide the main evidence for that 
aqueous history.   The abundance of Mars water, mostly ice today, but liquid in the 
ancient past, is now supported by the physical measurements of gamma ray 
spectrometry (Boynton et al., 2002), neutron measurements (Feldman et al., 2002), 
and radar penetration of the subsurface (Holt et al., 2008; Plaut et al., 2009), as well 
as by chemical signatures obtained from orbital spectrometers (Bibring et al., 2006) 
and insitu measurements made from multiple lander missions (Grotzinger et al., 
2006, 2014; Smith et al., 2009; Arvidson et al., 2014).  These new data confirm the 
geomorphological inference (e.g., Baker, 1982) that Mars, like Earth, has a geological 
history as a water planet.   The problem today is reconciling this abundant evidence 
with a physical understanding of environmental change on the planet. 
 
      Early in the modern era of exploring planetary surfaces with spacecraft 
observations, the geomophologist Robert Sharp (1980) recognized that planetary 
geomorphology is not confined to the understanding of alien landscapes.  What is 
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learned from such study is that other planetary surfaces can also be used to advance 
terrestrial geomorphology (Baker, 1985a, 1993, 2008a).  However, one must exert 
care in that application.  As noted in regard to cataclysmic flood sedimentation on 
Mars, the controls on processes can be different, and this will result in differences of 
response.  Today with growing prospects for exciting discoveries of extra-solar, 
water-rich Earthlike planets (Heller, 2015), Sharp’s broad vision can be seen to 
apply particularly well to fluvial geomorphology and that many new discoveries 
from Earth-like planets will greatly enhance what has already been learned from the 
familiar fluvial forms that have been studied on Earth. 
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Figure Captions  
 
 
Fig. 1.  Apollo 15 image AS15-93-12628 showing Vallis Schröteri (Schröter’s Valley) 
on the Moon   Typical of lunar sinuous rilles the valley’s maxmum width (11 km) 
and depth (about 500 m) occur near its source.  It narrows distally over about 160 
km to less than a kilometer wide near its terminus, where it grades into volcanic 
plains that resulted from the immense amounts of lava that coursed through the 
channel.  This is one of the largest sinuous rilles on the Moon.  The astronomer 
Johann Hieronymus Schröter first observed it with a telescope in 1797.  The sun 
direction for the image is from the upper left. 
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Fig. 2.  Portion of the Mercury lava channel Angkor Vallis at 570 N latitude, 1150 E 
longitude.  The image is from the Mercury Dual Imaging System (MDIS) of the 
MESSENGER spacecraft and has a resolution of 250 m per pixel. 
 
Fig. 3. Examples of simple channels on Venus (all examples are Magellan left-
looking  SAR images): (A) simple channel with flow margin; (B) sinuous rille; and 
(C) a canali-type channel (Baltis Vallis).  Arrows show the channel locations, and 
north is up in this figure. 
 
Fig. 4. Examples of complex channels and compound channels on Venus (all are 
Magellan left-looking SAR images: A) complex channel with flow margin; B) complex 
channel without flow margin; C) compound channel (Kallistos Vallis).  Arrows show 
the channel locations, and north is up in this figure. 
 
Fig. 5. Mosaic of images taken by the Descent Imager/Spectral Radiometer (DISR) 
on the Huygens probe during descent to the surface of Titan showing fluvial 
networks.  Image quality varies across the mosaic as a function of the amount of 
haze between the camera and the surface.  North is up, and the mage is ~6 km wide, 
so that the most prominent network in the center of the mosaic is ~4 km from west 
to east.  Image courtesy of National Aeronautics and Space Administration 
(NASA)/Jet Propulsion Laboratory (JPL)/European Space Agency (ESA)/U. Arizona. 
 
Fig. 6.  (A) Colorized mosaic of Titan Radar Mapper synthetic aperture radar (SAR) 
images of the northern lakes region of Titan. The scene shows a large dark region, 
Ligeia Mare, interpreted to be a shallow lake of liquid methane. An example of a 
narrow, elongate valley can be seen in the lower right of the image, feeding into a 
drowned network.  Other drowned valleys are visible along the lake margins to the 
west and east.  Ligeia Mare is ~400 km in maximum north–south extent (along 
longitude lines).  The North Pole is off the image to the upper left.  SAR image quality 
varies across the mosaic.  The inset (B) shows the location of the image on the right. 
Right: Another drowned network near the lower center of the image is shown in 
more detail in the black-and-white SAR image.  Images courtesy of National 
Aeronautics and Space Administration (NASA)/Jet Propulsion Laboratory 
(JPL)/European Space Agency (ESA)/U. Arizona. 
  
 
Fig. 7.  Mosaic of synthetic aperture radar (SAR) images from the Titan Radar 
Mapper of the Cassini Mission, showing narrow, elongate fluvial valleys in the 
Xanadu region, approximately 100 S, 1370W on Titan. On this image, fluvial feature 
are bright, which is hypothesized for other radar-bright fluvial features to result 
from internal reflections from cobble-sized debris.  SAR image quality varies across 
the mosaic.  North is up in this figure.  Image courtesy of National Aeronautics and 
Space Administration (NASA)/Jet Propulsion Laboratory (JPL)/European Space 
Agency (ESA)/U. Arizona. 
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Fig. 8.  Rounded cobbles imaged by the Huygens probe at its landing site.  The 
largest clast in the image is about 15 cm in diameter. 
 
Fig. 9.   Map of Mars showing the distribution of small valleys in red and possible 
extents of ancient inundation to up to topographic level of -3780 m (dark blue) and  
-1680 m (light blue).  The possible inundation levels correspond to the Contact 2 
(lower level) and Contact 1 (higher level) shorelines defined by Parker et al., (1989, 
1993), which were renamed respectively the Deuternolilus and Arabia Shorelines by 
Clifford and Parker (2001).  Other features indicated by letters are volcanoes, B - 
Alba Patera, E – Elysium Mons, O – Olympus Mons, TV – Tharsis volcanoes, Y – Syrtis 
Major Planitia, and Z – Hecates Tholis; impact basins and craters, A – Argyre, C – 
Chryse, F – Jezero Crater, G – Gale Crater, H – Hellas; deltas – F – Jezero, U – 
Eberswalde; tectonic features, N – Noctis Labyrinthus, V – Valles Marineris; channels 
and valleys, D – Okavango Vallis, I – Athabasca Vallis, J – Maja Vallis, K – Kasei Vallis, 
L – Mangala Vallis, M – Ma’adim Vallis, P – Marte Vallis, Q – Warrego Vallis, R – Hrad 
Vallis, S – Shalbatana Vallis, T – Tiu and Simud Valles, U – Uzboi Vallis, W – Mawth 
Vallis, X – Aram Chaos and channel.  The valleys were extracted from Mars Orbiter 

Laser Altimeter (MOLA) digital elevation model (DEM) data using a computer 

algorithm that recognizes valleys by their concave upward morphologic signature, 

aided by visual inspection against Thermal Emission Imaging System (THEMIS) 

imagery to remove any false positive identifications by the algorithm (see Luo and 

Stepinski, 2009). 
 
Fig. 10.  Fluvial network dissection of the heavily cratered highlands of Mars.  
Elevation data from the Mars Observer Laser Altimeter was combined with imagery 
so that low-lying areas are indicated in darker shades of blue and higher areas in 
darker shades of brown.  North is up in this figure. 
 
Fig. 11.  Fluvial conglomerate imaged by the Curiosity Lander of the Mars Science 
Laboratory Mission. 
 
Fig. 12.  Peace alluvial fan, the site of the Curiosity landing in Gale Crater, Mars.  The 
small cross shows that actual landing site, and the dark ellipse outlines the planned 
landing zone.  Note the red colors indicating high thermal inertia measured with the 
Thermal Emission Imaging System (THEMIS) on the Mars Odyssey spacecraft.  
These are areas of finer-grained sediments at the distal end of the alluvial fan. 
 
Fig. 13.  (A) Image of Eberswalde delta taken by the High-Resolution Stereo Camera 
(HRSC) of the Mars Express spacecraft.  The delta surface is marked by alluvial 
paleochannels that fed into a lake that occupied the Eberswalde crater. The inset (B) 
shows the location of the figure on the right. Right: Detail of the distributary 
complex of alluvial channels imaged by the Mars Orbiter Camera (MOC).  The 
channel sediments, presumably sand and/or gravel, are etched into positive relief 
because of the erosional removal of adjacent materials, presumably overbank silt 
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and/or clay. Note the prominent scroll bar topography associated with the meander 
bend near the center of the image.  North is up in each figure. 
 
Fig.14.  Composite imager generated from data from the Mars Reconnaissance 
Orbiter (MRO) Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) 
and Context  (CTX) Imager data.  The background is composed on a CTX image with 
a resolution of 6 m per pixel resolution, and the spectrometer data are show for the 
following wavelengths: 2.38 m (red), 1.80 m (green), and 1.15 m (blue), which 
were acquired at 35 m/pixel resolution from CRISM image HRL000040FF.  North is 
up in this figure.  
 
Fig. 15.  (A) Crater gullies southeast of Gorgonium Chaos.  Note the detail of gullies 
that have eroded into bedrock of the proximal source regions shown in (B) and into 
distal surfaces shown in (C) of drainages off the inner rim of an impact crater shown 
in (A).  North is up in each figure.  

Fig. 16.  (A) A portion of Mars Reconnaissance Orbiter (MRO) High Resolution 
Imaging Science Experiment (HiRISE) image PSP_1712_1405 (0.3 m/pixel 
resolution) showing theater headed gully tributaries with inner channels (left).  Sun 
direction is from the left, and north is up.  (B) Portion of HiRISE 
image PSP_001415_1877 (0.3 m/pixel resolution).  The image shows the eastern 
rim region of Mojave crater, which is extensively dissected by integrated gully 
systems.  North is up in the figure, and the sun is illuminating from the left. 
 
Fig. 17.  Portion of High Resolution Imaging Science Experiment (HiRISE) 
image ESP_011753_1445 (0.3 m/pixel resolution), showing gullies along the 
eastern rim of Hale Crater (left). Gullies with different orientations are developed on 
both sides of the ridge running through the center of the image. Note bright deposits 
along some gullies.  North is up in the figure, and the sun is illuminating from the 
left. 
 
Fig. 18.  Greater details for some the Hale gullies are shown in a color image.  North 
is up in the image, and the sun is illuminating from the left. 
 
Fig. 19.  Lava channel formation scenarios: (A) partially drained channel bounded 
by confining levees; (B) broad sheet‐ like lava lobe bounded by the initial 

topography; (C) deep channel formed by thermal‐ mechanical erosion into the 
substrate followed by partial drainage of the preferred lava pathway; (D) deep 
channel formed by constructional processes followed by lava drainage without 
substrate erosion. 
 
Fig. 20.  Examples of terrestrial lava channels: (Left) example of an active lava 
channel forming on Kīlauea, Hawaii, during the 2007–2008 phase of the Pu‘u ‘Ō‘ō 
eruption; (Right) example of a 5-m-deep channel formed within the 1783–1784 A.D. 
Laki eruption in Iceland.  
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Fig. 21.  Examples of partially drained lava channels on Mars: (A) digital terrain 
model (DTM) (1 m/pixel) derived from High Resolution Imaging Science 
Experiment (HiRISE) stereo-images ESP 012444 2065 and ESP_014000_2065; and 
(B) DTM (1 m/pixel) derived from HiRISE stereo-images ESP_019235_2050  
 and ESP_018945_2050. North is up in each figure. 
 
Fig. 22.  Map of eastern Tharsis and and circum-Chryse areas of Mars on MOLA 
topographic base (low areas in blue, high areas in red and brown).  Features 
indicated by letters include volcanoes, I – Alba Patera, P – Pavonis Mons, Q – Arsia 
Mons, Z – Ascraeus Mons; impact basins and craters, C – Chryse, H – Holden; delta – 
Eberswalde; tectonic  features, N - Noctis Labyrinthus, VM – Valles Marineris; 
channels and valleys, A – Ares, B – Columbia and Daga Valles, D – Simud Vallis, F – 
Nanedi Vallis, G – Nirgal Vallis, J – Maja Vallis, K – Kasei Vallis, L – Ladon Vallis, M – 
Morava Vallis, O – Osuga Vallis, R – Ravi Vallis, S – Shalbatana Vallis, T – Tiu Vallis, U 
– Uzboi Vallis, W – Mawth Vallis, X – Aran Chaos and channel, Y – Iani Chaos. 
 
Fig. 23.  Mouth of Kasei, the largest and longest (2400 km) “outflow channel” on 

Mars. This oblique view was generated at 2× vertical exaggeration from the THEMIS 
data acquired by the Mars Odyssey spacecraft.  The view is upstream, and the large 
crater in the center is Sharonov, which is 100 km in diameter.  Note the splitting and 
convergence of channels (anastomosis). 
 
Fig. 24.  Streamlined features in Ares Vallis (15.90 N, 3300 E) imaged at visible 
wavelengths by the Thermal Emission Imaging System (THEMIS) on NASA's Mars 
Odyssey orbiter.  The cataclysmic flooding came from the lower right.  Lins is the 
post-flooding, fresh looking crater in the lower right.  It is about 6 km in diameter, 

and the imaged scene is about 40 ×50 km.  The streamlined features probably 
developed by a combination of deposition and preservation of pre-flood bedrock 
downstream from obstructions to the cataclysmic flood flows.  There are also 
smaller-scaled lineated forms that may have developed as grooves or as 
depositional accumulations behind small obstructions.  They are oriented 
longitudinally relative to the cataclysmic flood flows.  Some intriguing transverse 
bedforms occur in the upper left quadrant of the image.  These have orientations 
similar to what would be expected for subfluvial dunes, but at a spacing of about 
500 m they are even larger that would occurs in terrestrial cataclysmic flooding 
channels.  North is up in the figure. 
 
Fig. 25.  Expansion bar complex in Osuga Vallis.  This is an oblique view generated 
data provided by the High Resolution Stereo Camera (HRSC) on the Mars Express 
spacecraft.  The view is downstream, and the channel width is about 20 km.  The 
regional context for this image is shown in Fig. 29. 
 
Fig. 26.  Kasei Vallis (bottom right quadrant) entering the northern plains of Mars as 
shown on a topographic base provided by the MOLA instrument on Mars Global 
Surveyor.  Note the transitions from the cataclysmic flooding channels directly into 
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the northern plains without extensive sediment accumulation.  The mouth of Kasei 
in the lower center of the image is also shown in Fig. 23. 
 
Fig. 27.  Ravi Vallis. A 200-km long catastrophic flooding channel that emanates 
from 
Aromatum Chaos (left). Note the erosion of two chaos zones in the channel (center) 
and distal spilling of the channel-forming fluid over and the plateau edge to 
disappear into another chaos region (right foreground).  This oblique view was 
generated from the Mars Odyssey spacecraft using the THEMIS instrument with a 

vertical exaggeration of about 1.5×. 
 
Fig. 28.  High Resolution Stereo Camera (HRSC) image of Osuga Vallis.  This 
relatively short cataclysmic flooding channel has length of ~160 km, but its depth is 
up to 900 m.  The expansion bar complex in the upper center portion of the image is 
also shown in Fig. 25.  The cataclysmic floodwaters flowed toward the northeast 
(lower right in the image), entering a depression at the lower right of the image.  
The floodwater entering this depression must have been able to drain away very 
quickly, probably into the adjacent chasmata canyons of the Valles Marineris (Fig. 
22).  Otherwise, the water would have ponded, preventing the erosion of the 
channel.  Subterranean conduits would have been necessary to convey the immense 
flows.  North is to the right in this figure. 
 
Fig. 29.  Sketch map of the western hemisphere of Mars, showing the 8000 km 
drainage system, including the Uzboi-Ladon-Margaritifer (ULM) system, that 
extends to the northern plains (‘Oceanus Borealis’) from the layered deposits (LD) 
that underlie the South Polar Cap (SPC). Elements of the drainage include (from 
south to north): Dzigai Vallis (D), the Argyre impact basin, Uzboi Vallis (U), Holden 
Crater (H), Ladon Vallis (L), Ladon Basin (LB), Margaritifer Vallis (M), and Ares 
Vallis (A). Other prominent cataclysmic flooding channels include Mangala Vallis 
(N), Kasei Vallis (K), Maja Valis (J), and Shalbatana Vallis (S) 
 
Fig. 30.  Oblique view with a 2x vertical exaggeration of a portion of the Uzboi-
Ladon-Margaritifer (ULM) system generated from visible THEMIS data acquired by 
the Mars Odyssey spacecraft.  The view is toward the southwest, showing the mouth 
of Uzboi Vallis (center) into Holden Crater through its southern rim.  There is a fan-
like accumulation of layered sediments at this junction, and a possible landing site 
for the Mars Science Laboratory rover was proposed for the flat, smooth area at 
right center, close to where the channel cuts through the rim.  
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Table 1   
Fluvial and fluvial-like features on planetary surfaces discussed in this article. 
_________________________________________________________________________________________________________________________________________________ 
Surface        Feature  Example                   Geological context  Origin   References 
_________________________________________________________________________________________________________________________________________________ 
 
Moon         Sinuous Rilles  Rima Prinz   Volcanic and Impact  Lava  Hurwitz et al. (2012) 
     Schroter’s Valley (Fig. 1)       (no water-related context) 
       
 
Mercury Broad Channels Anghor Vallis (Fig. 2) Volcanic and Impact  Lava  Hurwitz et al. 
(2013b) 
     Timgad Vallis   (no water-related context) 
 
Io  Channels  Tawhaki Vallis  Volcanic   Lava  Schenk and Williams 
(2004) 
         (no water-related context) 
Venus  Simple Channels 
      with flow margins  Fig. 3a      “   Lava  Baker et al. 1992a 
      Sinuous Rilles  Fig. 3b    “   Lava   “ 
      Canali               Baltis Vallis  (Fig. 3c)   “   Exotic Lava? Komatsu et al., 1992 
  Complex Channels 
        Flow Margins     Fig. 4a    “   Lava  Komatsu et al 1993 
        no Flow Margins  Fig. 4b    “   Lava   “ 
  Compound Channel  Kallistos Vallis (Fig. 4c) Volcanic   Exotic Lava? Baker et al., 1997 
         (no water-related context) 
 

Titan  Channels/Valleys  Fig. 5   N2, CH4 Atmosphere  Runoff  Burr et al. (2013b) 
  Fluvial Dissection  Fig. 6                  “        “   “ 
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  Xanadu Channels  Fig. 7    “        “   “ 
  Fluvial Sediments  Fig. 8   Erosion of water ice       “   “ 
 
Mars    Valley Networks  Figs. 9, 10  Numerous other aqueous Runoff  Luo and Stepinski 
(2009) 
             Phenomena     Hynek et al. (2010) 
  Fluvial Sediments  Fig. 11    “   Fluvial  Palucis et al. (2014) 
  Alluvial Fans   Fig. 12    “        “  Moore and Howard 
(2005) 
       Fluvial Deltas   Figs. 13, 14   “        “  DiAchille and Hynek 
(2010) 
  Gullies        Figs. 15, 16, 17, 18   “   Hillslope Malin and Edgett 
(2000b) 
    
  Lava Channels  Fig. 21   Volcanic and Aqueous Volcanic Mouginis-Mark et al. 
(1992) 
  Cataclysmic Flooding    Figs. 22, 23,26,27,   “   Cataclysmic        Baker and Milton 
(1992) 
   Channels        28                     Flooding     Carr (1996) 
  Streamlined Uplands  Fig. 24   Aqueous                                          “                          Baker (1982) 
  Depositional Landforms Figs. 25, 30         “         “      Irwin and Grant 
(2009) 
  Spillway Channels  Figs. 29, 30         “         “      Irwin and Grant 
(2009) 
_________________________________________________________________________________________________________________________________________________ 
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Table 2   
Geomorphological aspects of the largest fluvial features on Mars 
_________________________________________________________________________________________________________________________________________________ 
Attribute  Valley networks         Longitudinal valleys   Cataclysmic flooding 
channels 
_________________________________________________________________________________________________________________________________________________ 
  Dendritic and quasi-parallel patterns Long, wide main valley with poor  Huge troughs with low 
sinuosity, local  
General    of dissection with multiple low-order tributary development.   Sourced  anastomosing reaches, 
streamlined  
  tributaries.  Locally high densities                at theater-like valley heads.  Width  uplands (“islands”), 
generally lacking 

  (0.1 to 1 km-1).  Valleys widen and                relatively constant in downstream  tributaries. 
  deepen in a downstream direction.              direction. 
 
Length  <200 – 2000 km    hundreds of km    few hundred to 3000 km 
 
Width  1 – 4 km     several to 20 km    3 – 400 km 
 
Depth   tens to 300 m     hundreds to 500 m    up to 2.5 km 
 
  Mid Noachian to Early Hesperian.                 Late Noachian to Hesperian                       Mainly Late Hesperian, but 
extend 
Age  Reactivation occurred locally in         from late Noachian to late 
Amazonian 
  Late Hesperian.  Early Amazonian 
                           valleys dissect some volcanoes. 
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Erosional Local inner channels, where not  Local inner channels, erosional  Suite of scabland erosional 
forms: 
Features obscured by eolian deposition  meander bends    longitudinal grooves, inner 
channels, 
              Cataracts, scour marks 
 
Depositional     Some deltas and fans, but termini  Deltas at channel termini, where  Depositional bars (pendant, 
eddy, and 
Features   obscured by later lava flows or  flows entered paleolakes   and expansion); fans; 
northern plains 
    eolian deposition          deposits 
 
Origin  Mainly precipitation, rainfall for   Ground-water sapping   Cataclysmic flood 
generation by a  
  the older networks, and probably        variety of processes (see 
Tables 3 and 
  snow for younger ones         4) 
 

Discharges    300-5000 m3s-1     104 – 105 m3s-1    105 – 109 m3s-1 
 
Examples Warrego V.     Nanedi Vallis                    Ares Vallis, Kasei Vallis, Ravi 
Vallis, Marte Vallis         Nirgal Vallis                    Athabasca 
Vallis, Mangala Vallis, Ma’adim Vallis 
        Zarga Vallis                    Uzboi-Ladon-Morava Valles, 
Okavango Vallis 
_________________________________________________________________________________________________________________________________________________ 
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Table 3   
Megaflood generation processes for Earth 
 

 
 Mechanism    Example   References 
_______________________________________________________________________________________________________________ 
 
Subglacial volcanism   Icelandic jokulhlaups Gudmundsson et al. (1997) 
 
 
Ice-dammed lake bursts  Missoula   Pardee (1942) 
     Altai    Baker et al. (1993) 
 
Lake spillways   Bonneville   Malde (1968), O’Connor (1993) 
     Man 
 
Ocean, sea spillways         English Channel (Le Manche)    Smith (1985); Gupta et al. (2007) 
     Bosporus   Ryan et al. (2003) 
     Strait of Gilbraltar  Baker (2001, 2002); Garcia-Castellanos  
         et al. (2009) 
 
Pressurized subglacial lake  Laurentide ice sheet  Shaw (1996) 
outbursts    Antarctic    
     Missoula   Shaw et al. (1999) 
_________________________________________________________________________________________________________________________________________________ 
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Table 4   
Various megaflood generation processes hypothesized for Mars 
_________________________________________________________________________________________________________________________________________________ 
Mechanism       Example       References 
_________________________________________________________________________________________________________________________________________________ 
 
Pressurized flow through permeable media        Circum-Chryse Channels Carr (1979, 2000), Clifford (1993), Andrews-
Hanna 
           and Phillips (2007), Harrison and Grimm (2008) 
              
Magmatic intrusion and melting of cryosphere Circum-Chryse Channels McCauley et al. (1972), Sharp (1973), Masursky 
et al.                                       (1977), Chapman and Tanaka 
(2002), Leask et al.                                        (2006), Meresse et 
al. (2008) 
              
Lake formation by melting of buried ice sheet Aram Chaos and Valley Zengers et al. (2010), Roda et al. (2014) 
 
Lake Spillways     Ma’adim Vallis  Irwin et al. (2002, 2004), Irwin and Grant (2009) 
       Uzboi-Ladon-Moreava Parker (1985), Grant  and Parker (2002)   
       Mangala Vallis  Zimbelman et al. (1992) 
       Okavango Vallis  Mangold and Howard (2013) 
 
Lake drainage     circum-Chryse channels Lucchitta and Ferguson (1983), Warner et al. 
(2013)                                 Columbia and Daga Valles Coleman and Baker (2009) 
 
Geothermal heating of confined water  General   Clark (1978) 
 
Fissure eruptions of water and lava  Mangala Vallis  Tanaka and Chapman (1990) 
       Anthabasca Vallis  Burr et al. (2002) 
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       Marte and Grjota Valles Burr et al. (2009) 
 
Liquefaction of sensitive substrates  Ravi Vallis   Nummedal and Prior (1981) 
 
Catastrophic dissociation of gas hydrates  General   Milton (1974), Komatsu et al. (2000), Max and 
Clifford                                       (2001), Kargel et al. (2007) 
 
Meteor impacts into ground ice   General   Maxwell et al. (1973) 
 
Catastrophic dewatering of evaporate deposits Circum-Chryse  Montgomery et al. (2009) 
 
Cavern formation by hydrothermal processes Shalbatana Vallis  Rodriguez et al. (2003, 2005b) 
       Xanthe Terra channels Rodriguez et al. (2005a, 2005b, 2007) 
_________________________________________________________________________________________________________________________________________________ 
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HIGHLIGHTS 
 
1.  Mercury, Venus, Earth’s moon, and Jupiter’s moon Io all have channels formed by 
lava 
 
2.  Saturn’s moon Titan has a dissection history involving methane 
 
3.  Mars has had an extensive fluvial history involving dissection by water 
 
4.  Lava channels and fluvial channels exist in geological contexts that allow for their 
distinction  
 
 


