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ABSTRACT 

This paper presents a masonry panel model for the nonlinear static and dynamic analysis of 

masonry buildings suitable for the seismic assessment of new and existing structures. The model 

is based on an equivalent frame idealization of the structure and stems from previous research on 

force-based frame elements. The element formulation considers axial, bending and shear 

deformations within the framework of the Timoshenko beam theory. A phenomenological cyclic 

section law that accounts for the shear panel response is coupled, through equilibrium between 

shear and bending forces along the element, with a fiber-section model, that accounts for the 

axial and bending responses. The proposed panel model traces with a low computational burden 

and numerical stability the main aspects of the structural behavior of masonry panels and is 

suitable for analyses of multi-floor buildings with a relatively regular distribution of openings 

and with walls and floors organized to grant a box-like behavior under seismic loads. The model 

capabilities are validated though analyses of simple unreinforced masonry panels and 

comparisons with published experimental results. The model accuracy is strongly dependent on 

the fiber and shear constitutive laws used. However, the formulation is general and laws different 

from those employed in this study are easily introduced without affecting the model formulation. 

 

KEY WORDS: Masonry structures; nonlinear analyses; equivalent frame; fibre elements; 

force-based formulation; cyclic analysis. 

 

1. INTRODUCTION 

Unreinforced masonry (URM) buildings, often conceived to carry vertical loads only, are 

found all over the world and represent the main part of the historic heritage in Italy and in several 

other countries worldwide. Many of them have shown poor performance in past earthquakes, due 

to the masonry intrinsic heterogeneity and its low tensile and shear strengths, which in turn stem 
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from the low mechanical properties of the masonry constitutive materials. Simple mechanics-

based reliable models are needed for assessing the seismic performance of a large number of 

masonry buildings in seismic prone areas, such as the South Mediterranean countries. This 

research area has become increasingly significant in recent years due to the frequent occurrence 

of natural earthquakes [e.g. in Italy: Umbria-Marche, 1997; Molise, 2002; Salò, 2004; L’Aquila, 

2009, Emilia Romagna, 2012] and the need to evaluate the seismic safety of large stocks of 

masonry buildings. Two main collapse mechanisms may be observed in masonry structures after 

an earthquake: in-plane and out-of-plane mechanisms [1-4]. Extensive damage surveys carried 

out by the authors in several historical centers after the L’Aquila 2009 earthquake [5] show that 

the parameter with the highest influence on the strength of existing masonry buildings is the 

effectiveness of the connections between horizontal and vertical load resisting elements. When 

the connections between orthogonal walls, or between walls and floor slabs or between walls and 

roof are poor, the building cannot behave as a box and the seismic vulnerability mainly depends 

on the out-of-plane collapse mechanisms of the resisting macroelements (e.g. masonry walls or 

portions of them), rather than on the in-plane excessive stress state in the masonry. Without a 

box-like behavior, collapse of masonry buildings can occur at low to moderate ground shaking 

intensities [6]. 

To assess the seismic safety of buildings with box-like behavior, where in plane failure of 

the vertical walls is of interest, nonlinear equivalent frame models, rather than more 

sophisticated and computationally more demanding bi- and tri-dimensional finite elements, are 

often used both in research and practice. This paper proposes an equivalent frame element for 

masonry walls that can efficiently model the in-plane seismic behavior of masonry panels for 

nonlinear static and dynamic analyses of panels, walls and buildings. 

2. FRAME-EQUIVALENT MODELING OF MASONRY STRUCTURES 

Because of its brittle behavior and often irregular constitutive pattern, unreinforced 

masonry is a difficult material to model. The development of simple yet computationally 

efficient and reliable procedures capable of solving complex nonlinear analyses for the seismic 

design and assessment of masonry structures is thus a challenging task. A reliable structural 

model includes different parameters such as the structure geometry and the masonry properties, 

the latter being difficult to represent because of the high anisotropy and nonlinearity of the 

material. At the same time, the model should require an acceptable computational effort and 

simplicity in the determination of the input parameters. Three-dimensional finite element 

analyses are still too lengthy and complex to be applicable to a large number of nonlinear static 

or dynamic analyses because of: numerical stability, computational time cost, identification of 

large number of numerical parameters, availability of reliable constitutive laws. For the above 

reasons, the equivalent frame modeling of masonry buildings - where the masonry walls are 

represented by one-dimensional macro-elements (or frame elements) - is a valid alternative 

largely used in research and practice. 



Several researchers from seismic prone southern European countries have recently 

proposed and used simplified methodologies based on the equivalent frame approach. A general 

description of different models for frame-type and macroelement modeling is reported by 

Magenes [7] and more recently by Marques and Lourenço [8]. The first models were developed 

in the 70’s (see POR method [9]) and were based on simplified elasto-plastic shear force-inter 

story drift laws. More recently, the equivalent frame approach was used to develop nonlinear 

programs for masonry structures, such as TREMURI [10] or SAM [11]. In these programs, 

nonlinear frame elements (or macro-elements) are formulated for the wall components. Macro-

element models offer the major advantage of being accurate in describing the main failure 

models of masonry walls (bending and shear) while retaining acceptable computational times. 

They obviously present some limitations as well, namely due to the inaccurate simulation of the 

structure geometry, the connection between macro-elements (spandrels are connected with the 

piers at a point, while in reality there is a more complex stress transfer mechanism between 

horizontal and vertical elements that takes place over the node) and the need to derive 

generalized bending and shear constitutive laws. Also, spandrels and panels are often modeled 

using the same constitutive laws, but the spandrels’ shear behavior is more brittle, since the axial 

compression is almost zero. To overcome these limitations modified two-dimensional macro-

elements were proposed by Vanin and Foraboschi [12] using strut and tie models and by Caliò et 

al. [13] using nonlinear springs. The latter is implemented in the computer code 3DMacro [14]. 

Recently, Casolo and Peña [15] have developed a specific rigid element approach for the in-

plane dynamic analysis of masonry walls.  

 

 

 

Figure 1. Equivalent frame discretization of a wall. 



In equivalent frame models, the wall deformation is assumed to be lumped in the piers and 

spandrels, while the other wall components are assumed rigid. A typical frame equivalent model 

is shown in Figure 1, where the piers and the spandrels are represented by columns and beams, 

respectively. In the example of Figure 1 the pier height is determined according to Dolce [16]: 

the pier is higher than the opening to approximately account for the nodal deformation, while the 

spandrels’ width is assumed equal to the openings’ width.  

The main advantage of this numerical approach is its computational efficiency, which 

makes it suitable for nonlinear analyses of large building stocks, including building aggregates in 

historical centers. With an appropriate formulation, the macroelement model can reasonably 

approximate the cyclic shear and flexural response of masonry walls. More specifically, the main 

failure mechanisms of masonry piers subjected to horizontal (e.g. seismic) loads [17] are: 

a) rocking (flexural) failure: failure is related to pier crushing in the compressed zone;  

b) shear-diagonal failure: pier failure is due to excessive shear stresses and the formation of 

inclined diagonal cracks;  

c) shear-sliding failure: failure is associated to horizontal cracks in the bed-joints.  

The rocking failure, associated with the flexural behavior of the pier, is typically assessed 

starting from the assumption that plane sections remain plane and computing the maximum 

compressive stress at the wall base. In elements made of brittle, unreinforced materials such as 

URM piers, bending is highly dependent on the compression force in the pier. If the masonry 

material is assumed to have zero tensile strength and no axial compression is applied to the pier, 

the pier has zero theoretical bending strength. 

The shear failure of URM piers associated with diagonal cracking is the result of several 

interacting factors that are difficult to describe and simulate. Based on tests performed in 

Ljubljana (Slovenia) on URM piers with fixed-fixed boundary conditions, Turnšek and Čačovič 

[18] proposed the formulation used in this study to estimate the shear strength of URM piers: 

diagonal shear failure is reached when the principal tensile stress at the pier center reaches a 

critical value, defined as the masonry reference tensile strength. The resulting shear strength 

expression is:
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where ftu is the masonry tensile strength, 0 the section average compression stress 

(0=N/lt), l and t the width and the thickness of the wall section, respectively, and b a parameter 

that depends on the pier aspect ratio and varies within a range of 1.0 to 1.5 and is constant 

outside these bounds [19]. The above formula is general, more specific expressions exist for 

brick masonry [20]. 

The sliding-shear strength is also evaluated on the basis of approximate formulas. For 

example, Eurocode 6 [21] uses the following expression:
 

  tltlfV cncvds   4.00      
 (2) 



where fvd is the design shear strength, lc is the length of the compressed portion of the 

section and d is the average compression stress on the section (n=N/lct). The masonry panel 

shear strength is the minimum between Eqs. (1) and (2). More details on the in plane behavior of 

masonry walls are found in [22] and [23]. 

A pier fails in shear or in bending according to the weaker of the two mechanisms. The two 

mechanisms are related through equilibrium and a correct representation of the wall behavior 

should account for this equilibrium.  

3. PROPOSED APPLICATION OF A FORCE-BASED MODEL 

This paper proposes the extension of an existing distributed plasticity, force-based frame 

element - that was originally developed for reinforced concrete frames [24-25] – to the 

description of the in-plane behavior of URM walls. Though the original element is available in 

several research programs, its implementation in the open source computational platform 

OpenSees [26] is used in this work because of the software flexibility and ease of 

implementation of new features. The element formulation is based on the Timoshenko beam 

theory and assumes that plane sections remain plane. The element behavior is obtained by 

numerical integration of the nonlinear response at the monitored sections along the element. The 

model uses the Gauss-Lobatto integration scheme in which two integration points coincide with 

the element end sections, where bending failure is expected to take place. Figure 2 shows the 

general cross section discretization into nz by ny fibers of area Af. This discretization accounts for 

the axial and flexure behaviors, and automatically accounts for their interaction. In this paper, 

only uniaxial bending is considered, though all figures refer to the general biaxial bending case, 

since the formulation is identical. Nonlinear cyclic uniaxial stress-strain laws are used for all 

fibers. For example, the nonlinear material constitutive law shown in Figure 2 takes into account 

the softening branch of the masonry behavior. Masonry (bricks plus mortar) is modeled as a 

homogeneous continuum. Thus the quasi-brittle uniaxial constitutive law used should be able to 

yield, through the fiber section discretization, the overall compression-tension and bending 

responses of a wall.  



 

Figure 2. Forced-based, fiber-section elements (for masonry piers and spandrels) in the 3D global 

system;distribution of Gauss-Lobatto points, section subdivision into fibers and fiber nonlinear stress-

strain law.  

Different behaviors can be expected based on the type of masonry wall (i.e. URM walls 

made of rubble stones, walls made of regular stones, walls made of hollow or solid bricks, walls 

made of concrete bricks, types of mortar, etc.), thus material parameters need to be calibrated 

from tests [27-29] or from code-specified mechanical properties. The proposed masonry frame 

model also accounts for the shear deformation and failure mode. Shear, axial and bending are 

described within the framework of the Timoshenko beam theory. The element formulation is 

based on the work developed by Marini and Spacone [30]. At the section level, bending and axial 

responses are decoupled from the shear response. The section forces and the corresponding 

deformations are: 

        TxVxNxMx S      (3) 

        Txxxx γεκ 0e      (4) 

Force-based elements stem from the weak form of compatibility, expressed through the 

Principle of Virtual Forces, which in the case of the beam takes the form: 
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where P and U denote the element nodal forces and displacements, respectively. The 

section bending moment and axial force are obtained by adding the contributions of the single 

fibers. The shear response is modeled via a phenomenological cyclic nonlinear V-constitutive 

law. The expressions for section forces S(x) and section tangent stiffness matrix k(x) are: 
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where nfib is the number of section fibers, fiber is the fiber stress, Efiber is the fiber tangent 

modulus, Afiber is the fiber area, yfiber is the distance from the fiber centroid to the section 

reference axis z  (in the case of simple bending). The section model is schematically shown in 

Figure 3. 

 

Figure 3. Schematic section wall formulation. 

Two constitutive laws, borrowed from the OpenSees one-dimensional material library, are 

used to simulate the masonry uniaxial behavior, one with and the other without tensile strength. 

Both laws, originally developed for concrete, lend themselves to model the uniaxial response of 

masonry, since they are both quasi-brittle materials. The first law used is the Kent and Park 

model [31] modified by Scott et al. [32] (Figure 4a). De Santis and De Felice [33] used the same 

law and calibrated the material parameters from experimental evidence on historic brick walls 

samples tested in compression. Similarly, the material parameters used in this work were verified 

against the results of the tests on URM brick walls carried out by other authors [34-35]. Within 

the equivalent frame approach, a force-based approach has been recently proposed by Addessi et 

al. [36], but they use a phenomenological law for the bending response and the applications are 



limited to monotonic loading. Addessi et al. [36] provide a comprehensive description of the 

element formulation, including rigid end offsets use for the rigid links of Figure 1. 

 

 

 

Figure 4. Uniaxial constitutive laws used for the masonry fiber 

a) Modified Kent and Park [32] b) Orakcal et al. [37]. 

The second law was proposed by Orakcal et al. [37] and is shown in Figure 4b. This law 

considers the material tensile strength and thus offers a more accurate description of the masonry 

behavior. The compression behavior is based on the work by Thorenfeldt et al. [38]. The 

compression envelope curve is described by the following equation: 
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where f'm is the masonry compressive strength, ε0 is the strain at peak compressive stress, n 

is the compressive shape factor and k is the post-peak compressive shape factor. Suggested 

values for n and k are found in Orakcal et al. [37]. The tensile behavior is based on the work by 

Belarbi and Hsu [39], where the tensile curve response is divided in the two following branches: 
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where fmr is the tensile strength, εcr is the strain corresponding to the tensile strength peak 

and b is a constant input parameter borrowed from Belarbi and Hsu [39] and described in 

Orakcal et al. [37]. Other constitutive laws have also been used by the authors to describe the 

masonry uniaxial response, including elastic and elastic-perfectly plastic responses, as discussed 

in the examples of section 4. 



The phenomenological shear force-deformation (V-behavior follows the nonlinear 

constitutive law proposed by Lowes et al. [40] and is shown in Figure 5a. The definition and 

calibration of this model require 16 parameters for the response of the negative and positive 

response envelope curves: V1p, V2p, V3p, V4p, define the force points on the positive response 

envelope, 1p, 2p, 3p, 4p define the corresponding deformation points. V1n, V2n, V3n, V4n define the 

force points on the negative response envelope, 1n, 2n, 3n, 4n define the corresponding 

deformation. Additional parameters define the unloading-reloading paths, as described in Lowes 

et al. [40]. 

For calibrating the material parameters of the loading envelope indicated in Figure 5a, 

following Magenes & Calvi [17] and Tomaževič [41], the initial diagonal cracking shear V1p was 

assumed equal to 90% of the ultimate shear strength V3p. The value of the shear deformation at 

the end of the initial elastic branch (1p) is computed as Vu/KVel, where KVel=GAs is the wall initial 

elastic shear stiffness. Alternatively, 1p can be estimated following FEMA 356 [45], that 

suggests a conventional drift range 0.075-0.1%. Numerical simulations by the authors show that 

the value of the initial elastic stiffness does not significantly affect the results. In the present 

work, the intermediate point 2 is placed for simplicity halfway between points 1 and 3. Based on 

work by Magenes & Calvi [17] and pseudo-dynamic tests carried out at the ELSA Laboratory 

[42] it was found that the ultimate drift 3p (corresponding to the attainment of the wall shear 

capacity) can be approximately set to 0.4%. This is also the value indicated in NTC 2008 [43]. 

The drift limit 4p is set equal to 1.0%, as proposed in FEMA 356 [45]. A discussion on the 

calibration of the post peak behavior can be found in FEMA 306 [44]. Finally, V4p - the residual 

shear strength– is conventionally set equal to a percentage of V3p (the default value in the present 

work is V4p = 20% V3p). Additional information on the mechanical shear response parameters’ 

selection can be found in Penna et al. [48]. In the cyclic analyses presented in this work, all 

parameters in the negative branch are set equal to the parameters in the positive branch. The 

above parameters’ values can be refined based on additional in depth studies and experimental 

data relevant to the URM type under consideration.  



 

Figure 5. Shear phenomenological constitutive law (adapted from [40]): 

a) loading and reloading envelopes; b) unloading stiffness degradation; 

c) reloading stiffness degradation; d) strength degradation. 

Hysteretic damage is simulated through deterioration in the unloading stiffness (Figure 5b), 

deterioration in the reloading stiffness (Figure 5c), and strength deterioration (Figure 5d). Lowes 

et al. [40] provide details on the deterioration rules, which they propose as a more general 

version of the damage index by Park and Ang [46]. Penna et al. [48] present an interesting 

discussion on cyclic damage that can be useful in selecting damage parameters. Experimental 

data, if available, should help calibrate the law for the specific case under consideration. In the 

present work, the default values for the parameters governing the deterioration rules suggested 

by Lowes et al. [40] were used. 

In the proposed frame element for masonry walls, the fiber section discretization accounts 

for the axial and bending responses, while the shear response is described by the above 

phenomenological law. There is no interaction at the section level between shear and axial-

bending behaviors, however equilibrium at the element level enforces equilibrium between 

bending and shear forces. As shown in Marini [30], the element flexibility is the sum of the shear 

and bending flexibilities. Additionally, when shear failure takes place the bending moment 

cannot increase, and vice-versa, because of equilibrium between bending and shear forces at the 



element level. The element formulation is however general enough to allow, in future 

developments, the implementation of a more general section formulation that accounts for N-M-

V interaction. This approach has already been pursued for reinforced concrete elements 

(Petrangeli et al. [47], Tortolini et al. [49]), but it is at this stage deemed too complex and 

potentially unstable for an unreinforced material such as URM walls. As previously discussed, in 

this work the wall shear strength is the minimum between diagonal and base sliding failure. In all 

cases considered, shear failure was attributed to diagonal shear failure. 

 

4. MODEL VALIDATION 

In order to validate its precision, the proposed model is applied to different URM panels of 

increasing complexity. First of all, the bending model based on the fiber-section approach is 

compared with an existing model widely used in research. Pushover analyses are then performed 

on a masonry panel to determine the drifts at which failure occurs and to compare the results 

with formulations available in literature. The validation of the model is extended to walls with 

different geometries and subjected to monotonic and dynamic loadings. Finally the model results 

are compared to published experimental results. 

 

4.1 Axial-flexural behavior: fiber section analysis 

 

The capability of the proposed fiber section model to describe the axial-flexural response 

of a masonry wall section is assessed by comparing a section response with that obtained 

following the closed-form equations presented in Penna et al. [48]. Because the results are given 

in terms of rotations and displacements (rather than section generalized deformations), the full 

wall of Figure 6 is considered. The wall cross section dimensions are t=0.6m, l=3m and the 

height is h=2m. 

The complete mechanical properties of the panel are shown in Table I, where G is the shear 

modulus, E the compressive Young modulus,the masonry specific weight, fm the masonry 

compressive strength, ftu the masonry tensile strength and  the friction coefficient. 



 

Figure 6. Details of sample wall:a) geometry and loading conditions; b) cantilever configuration boundary 

conditions; c) fixed-fixed configuration boundary conditions; d)fiber section deformed configuration. 

 

Table I. Mechanical properties 

G[MPa] E[MPa] [kN/m3] fm[MPa] ftu[MPa] [-] 

230 870 19 1 0.1 0.4 

 

Figure 7 shows the three uniaxial masonry constitutive laws with no tension used to model 

the panel: elastic, elastic-perfectly plastic and modified Kent and Park model.   

The pushover analysis is performed with a fixed vertical loads N=500kN and imposed 

horizontal displacements at the wall top, as shown in Figure 6. 

Figure 8 shows the  - w interaction curves obtained using the three constitutive laws in 

Figure 7, where – following the notation by Penna et al. [48] -  denotes the rotation of the top 

section of the wall and w its total vertical displacement (see Figure 6d). In the initial step of the 

pushover analysis the whole cross section is compressed. The figure shows that for small 

rotations, before the section cracks, the behavior of the wall with elastic and  elastic-perfectly 

plastic material is almost identical, while the two responses depart for increasing rotations. The 

vertical displacement at zero rotation is different for the nonlinear material because the Kent and 

Park constitutive law is nonlinear from the onset of loading. 

Figure 9 compares the results obtained using the proposed fiber model with those obtained 

with the formulation by Penna et al. [48]. Following Penna et al. [48], the analysis is performed 

with the elastic perfectly-plastic masonry constitutive law shown in Figure 7 and Figure 9 

indicates a very good agreement between results with the two formulations. 

 



0

0.5

1

1.5

0 0.01 0.02 0.03


[M

P
a]



Elastic perfectly-plastic material 

Elastic material 

Kent and Park model 

 

Figure 7. Masonry constitutive laws used to analyze the panel of Figure 6b. 
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Figure 8. Interaction between vertical displacement and rotation φ-w (analysis case shown Figure 6b). 

 

Figure 10 compares the section M-N interaction diagram obtained with the two 

formulations and shows good agreement between the proposed fiber-section formulation and the 

closed-form solution by Penna et al. [48]. It is important to point out that while the closed-form 

solution by Penna et al. [48] requires pre-assigned masonry laws (elastic-perfectly plastic in this 

case), the fiber section formulation can use any kind of constitutive law, with and without 

tension response, monotonic or cyclic, without any change in its formulation or implementation. 
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Figure 9. Interaction between vertical displacement and rotation: comparison between fiber section model 

and Penna et al. [48] formulation in the case of elastic-perfecty plastic material (analysis case shown 

Figure 6b). 
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Figure 10. M-N Interaction diagram: Comparison between fiber section model and results from theory by 

Penna et al. [48]. 

4.2 Pushover analysis of a simple wall with combined shear and flexural behavior 

 

The wall of Figure 6 is used here to show the interaction between axial-bending and shear 

responses. The wall is analyzed using different axial load ratios. Fixed-fixed boundary conditions 



are introduced and the modified Kent and Park model ([31] and [32]) with no tensile strength is 

used to describe the uniaxial response of the masonry material.  

The analyses are first performed with axial load N=180kN (N = 0.1Nmax, where Nmax is 

the wall strength under pure compression) with and without the shear behavior.   
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Figure 11. V-dbase shear displacement curve for N=180kN (N = 0.1Nmax for loading case of Figure 6c). 

 

 

The shear strength due to diagonal cracking is computed according to eq.(1) using the 

following parameters: ftu=0.1MPa; l=3000mm; t=600mm; b=1.00=N/lt=0.1MPa. Thus 

kN2541 0  tutud fbltfV  .The shear response follows the nonlinear shear constitutive 

law shown in Figure 12 (reported for two axial compression levels), which is obtained using 

appropriate parameters for the law shown in Figure 5. 

For an axial load N = 0.1Nmax, the maximum base shear corresponding to flexural failure 

(i.e. provided by the fiber model) is 242kN, and is thus lower than the shear capacity of the 

panel. The wall failure for this case of low axial load is due to flexural failure. The results of 

Figure 11 indicate that for this level of axial load the addition of the shear behavior does not 

change the failure mode but increases the wall flexibility on the initial pseudo-elastic branch due 

to the additional shear flexibility. 

For a higher vertical axial load N, the flexural strength increases and shear failure becomes 

the governing failure mode. For instance, in the case of N=225kN (i.e. N = 0.125Nmax), the wall 

shear capacity due to diagonal cracking calculated from eq.(1) is Vd= 270kN. Figure 12 shows 

the nonlinear V-shear constitutive law used in the analyses. The base shear curves with and 

without shear deformation are shown in Figure 13. The maximum base shear corresponding to 

the flexural capacity obtained with the fiber section analyses is Vf=298kN. 
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Figure 12. V- shear response (for N = 0.1Nmax and N = 0.125 Nmax). 
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Figure 13. V-dbase shear displacement curve for N = 0.125Nmax. 

In the ascending branch, the wall response is stiffer when the shear deformation is not 

accounted for, as already seen in the previous case. When the shear behavior is introduced, the 

wall fails due to shear failure, as correctly shown in Figure 13. 

The interaction between flexure and shear behavior is easily shown in Figure 14, which 

plots, for the given wall, the base shear corresponding to flexure and diagonal shear failure of the 

wall. For small axial load, the wall flexural capacity is lower than the shear capacity. As the 

applied axial load is increased, the flexural capacity increases at a higher rate than the shear 



capacity, thus for an axial load equal to approximately 0.11Nmax diagonal shear failure, as 

computed from eq. (1), governs the wall response. This behavior is correctly described by the 

proposed model. 
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Figure 14. The V-N Interaction diagram. 

4.3 Correlation with experimental results 

Next, the proposed application of the frame model to masonry structures is validated 

through correlation analyses with available experimental results. The first test analyzed was 

carried out by Abrams and Shah [29]. They tested a single wall under monotonic loading: the 

wall is fixed at the base and the vertical and horizontal loads are applied at the top of the wall as 

shown in Figure 15. A summary of the specimen properties is given in Table II. The material 

properties were selected to reflect the structural characteristics of a typical older masonry wall in 

North America [29]. 

 

 

 

Figure 15. Geometry of the panel tested by Abrams and Shah [29]. 



 

 

Table II. Mechanical properties reported in Abrams and Shah [29] 

Specimen 
Length 

[mm] 

Height 

[mm] 

Thickness 

[mm] 

E 

[MPa] 

G 

[MPa] 

fm 

[MPa] 

ftu 

[MPa] 

W2 2743 1626 198 2460 1130 6.28 0.15 

 

The wall was subjected to a low vertical axial load of N=282kN, equivalent to a vertical 

stress of 0.32MPa. The diagonal shear capacity (V3p) is computed from eq. (1) and is equal to 

175kN. The shear response is represented by the nonlinear law proposed by Lowes et al. [40] as 

shown in Figure 5. The other parameters are calculated as described in Section 3 and 

summarized in Table III. Given the low axial load, the first crack to develop was in flexure at the 

base. At higher lateral displacement, a diagonal crack formed initiating failure. A good 

agreement is found between the numerical and experimental results, in particular in terms of the 

wall lateral shear capacity (Figure 16). The numerical test was repeated with three different 

values of the initial elastic shear stiffness KVel. The best fit results from the use of KVel =GAs Even 

though the authors suggest using the above value for the elastic shear stiffness, using half or 

twice KVel =GAs does not result into a significant difference in the response.  

 

Table III. The mechanical parameters of the phenomenological shear model (Figure 5) 

V1p, V2p V3p, V4p 1p, 2p 3p 4p 

157.5 174.9 175 120 0.00035 0.00075 0.004 0.01 

 

 

Figure 16. V-dbase shear displacement curve for panel of Figure 15 



Next, the experimental research on masonry panels carried out by Anthoine et al. [42] at 

ELSA (European Laboratory for Structural Assessment, Ispra, Italy) is considered. Anthoine et 

al. [42] investigated the influence of slenderness on the masonry walls behavior in quasi-static 

cyclic conditions up to failure by testing walls with the same mechanical properties but with 

different height/width ratios. The brick size was 250x120x55mm and hydraulic lime mortar was 

used to build the masonry panel.  

  

Figure 17. Geometry of panels tested by Anthoine et al., [42]: 

a) squat wall b); slender wall. All dimensions are in mm. 

Several walls were tested under controlled boundary conditions, with fixed base and fixed 

rotation at the panel top. In the two tests considered in this study, the vertical load N was kept 

constant and equal to N=150kN, that is N ≈ 0.1Nmax.The two panels have the same section 

dimensions (width l=1000mm and thickness t=250mm) but different heights; the squat wall 

(Figure 17.a) height is h=1350mm and the slender wall (Figure 17.b) height is h=2000mm. 

The constitutive law proposed by Orakcal et al. [37] was used in the analyses to describe 

the masonry bending behavior. The main material properties used are summarized in Table IV. 

The first four are reported in Anthoine et al. [42], while the remaining five are set to the default 

values indicated by [26]. The numerical simulations were performed with the same loading and 

boundary conditions of the experiments reported in [42]. The resulting uniaxial constitutive law 

used in the analyses is shown in Figure 18. 

 

Table IV.Mechanical properties for the constitutive law by Orakcal et al.[37] and shown 

in Figure 4b 

f'm[MPa] 0[-] fmr[MPa] cr[-] n[-] k[-] b[-] 1[-] 2[-] 

6.2 0.0009 0.18 1.8 E 10-5 2 1 4 0.32 0.08 
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Figure 18. Uniaxial strain-stress constitutive law used for masonry. 

The shear response is represented by the nonlinear shear law proposed by Lowes et al. [40] 

and described in Sect. 3. For a constant vertical axial load N=150kN (i.e. 0.1Nmax) the maximum 

diagonal cracking shear is calculated from eq. (1) and is equal to 86.3kN. The deformation at 

peak shear strength is  =0.0008 (approximately computed dividing the shear strength by the 

shear elastic stiffness). The negative post-peak slope reflects the experimentally observed post-

peak strength degradation. A single frame element was used to model each wall.  
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Figure 19. Shear model for the panels in Figure 17. 
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Figure 20. V-d response curves of the squat wall: experimental (Antoine et al [42]) vs. numerical results. 

In the experimental tests by Anthoine et al. [42], horizontal displacements of increasing 

amplitude were imposed to the panels’ tops with three repetitions for each cycle. For the two 

walls of Figure 17, Figure 20 and Figure 21 compare the numerical predictions obtained with the 

proposed model with the experimental results by Anthoine et al. [42]. It is observed that the 

numerical analyses  capture well the experimental results in terms of stiffness, strength and 

failure mode and are capable of simulating the cyclic behavior in terms of energy dissipation, 

strength degradation, stiffness degradation and pinching behavior. 

More precisely, for the squat wall (Figure 20) the proposed model  correctly reproduces the 

shear failure of the experimental test, dominated by shear diagonal cracking, and the post-peak 

response characterized by progressive stiffness degradation with significant loss of strength and 

hysteretic energy dissipation.  For the flexure dominated slender wall, Figure 21 shows that the 

fiber model is capable of describing quite well the cyclic flexural behavior. The prevailing 

mechanism is flexural with a slight rocking. During cyclic loading the panel strength is reached 

quite rapidly but no significant loss of strength is caused by the cycles. There is little hysteretic 

energy dissipation and the unloading-reloading branches show the classical shape of the flexural 

response of unreinforced brittle materials due to crack closing on one side of the section and then 

opening on the other side. 
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Figure 21. V-d responses of the slender wall: experimental (Antoine et al [42]) vs. numerical results. 

5. CONCLUSIONS 

This work presents a model for describing the nonlinear monotonic and cyclic response of 

masonry structures applicable in the widely used equivalent frame approach. The proposed 

masonry frame element is capable of describing both the flexural and the shear response of 

masonry walls up to failure. The axial and flexural behaviors are obtained from a fiber-section 

model of the panel cross section, while the shear response is described through a 

phenomenological shear force-shear deformation law. The fiber section model automatically 

accounts for the influence of the axial compression on the flexural response of the wall. Bending 

and shear forces are in equilibrium during the analyses, thus the wall flexibility is the sum of the 

flexural and shear flexibilities, while strength is governed by the weaker of the two resisting 

mechanisms. This behavior is illustrated through simple panel tests and through comparisons 

with available experimental tests. These tests show that the element is capable of describing the 

salient characteristics of the response of masonry walls and report satisfactory comparison with 

experimental results. Accuracy of the predicted response is highly dependent on the material 

constitutive laws used, more so for the panel shear response. The phenomenological shear law 

strength values may be obtained from design code equations or derived from more sophisticated 

approaches. The element stability and computational efficiency were also tested. The element is 

fast and stability is typically guaranteed for the beneficial effect of the axial compression on the 

wall. Since the element formulation is “exact” within the Timoshenko beam theory assumptions, 



one frame element is used for each flexible structural member. The study was also extended to 

the analysis of multi story walls and complete buildings: these analyses are the focus of future 

publications. 

The proposed model can be effectively used for the nonlinear seismic analysis of single 

panels, multi-bay multi-story walls and three dimensional masonry structures that show a box 

behavior thanks to good connections between orthogonal walls and between walls and floors. 

The model is easily extendable to biaxial response of panels and walls, thus allowing the out of 

plane response of walls to be accounted for. Studies are also under way to extend the equivalent 

frame approach, and thus the use of the proposed model, to walls that show irregular openings 

and thus require care in the definition of the wall, spandrel and rigid zone geometry. Though the 

model described in this paper refers to unreinforced masonry, its extension to reinforced masonry 

is straightforward. The proposed model, similarly to currently available macro-models such as 

that by Penna et al. [48], can be effectively used in both research and practice to study and assess 

the nonlinear behavior of masonry structures.  
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