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Radon (222Rn) and thoron (220Rn) are two isotopes belonging to
the noble gas radon (sensu lato) that is frequently employed
for the geochemical surveillance of active volcanoes.
Temperature gradients operating at subvolcanic conditions
may induce chemical and structural modifications in rock-
forming minerals and their related 222Rn–220Rn emissions.
Additionally, CO2 fluxes may also contribute enormously to
the transport of radionuclides through the microcracks and
pores of subvolcanic rocks. In view of these articulated
phenomena, we have experimentally quantified the changes
of 220Rn signal caused by dehydration of a zeolitized tuff
exposed to variable CO2 fluxes. Results indicate that, at low
CO2 fluxes, water molecules and hydroxyl groups adsorbed
on the glassy surface of macro- and micropores are physically
removed by an intermolecular proton transfer mechanism,
leading to an increase of the 220Rn signal. By contrast, at high
CO2 fluxes, 220Rn emissions dramatically decrease because of
the strong dilution capacity of CO2 that overprints the
advective effect of carrier fluids. We conclude that the sign
and magnitude of radon (sensu lato) changes observed in
volcanic settings depend on the flux rate of carrier fluids and
the rival effects between advective transport and radionuclide
dilution.
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1. Introduction

Radon (sensu lato) is a noble, rare, inert gas produced by radioactive decay of nuclides that naturally occur in
groundwaters, rocks and sediments of the Earth. This environmental radioactivity is determined by three
isotopes decaying to daughter nuclides by emitting alpha particles: (i) 222Rn (radon), a product of 238U
decay series (226Ra is the direct parent nuclide) with half-life of 3.823 days; (ii) 220Rn (thoron), a product
of 232Th decay series (224Ra is the direct parent nuclide) with half-life of 56 s; and (iii) 219Rn (actinon), a
product of 235U decay series (223Ra is the direct parent nuclide) with half-life of 4 s. Because of its very
short half-life and low activity, 219Rn is not employed in geochemical exploration. Conversely, 222Rn and
220Rn are widely monitored in volcano-tectonic settings, in order to discriminate areas with slow and fast
gas transport or shallow and deep radiogenic sources [1–6]. A great virtue of 222Rn–220Rn monitoring
consists of their different half-lives, in conjunction with an identical geochemical affinity due to negligible
isotopic fractionation between heavy radon and thoron isotopes, with mass difference of only 0.01%.

In the past decades, several experimental studies have investigated how 222Rn–220Rn emissions
measured from different lithologies change upon the effect of different laboratory-controlled variables,
such as deformation regimes, temperature changes, mineralogical and chemical reactions [7–14]. In
this respect, there is increasing knowledge that 222Rn–220Rn anomalies are not univocally precursors of
crust deformation and rupture, given that several radioactive phenomena may manifest a distinctive
non-tectonic origin [15]. As a consequence, the marked increase of 222Rn–220Rn signal in a monitored
area is not imperatively symptomatic of impending earthquakes and volcanic eruptions [16–19].

The geological complexity of crustal lithologies may exert local filtering effects on the transport of
radionuclides to the ground surface. These effects are exacerbated in volcanic areas, where the role played
by carrier gases is combined with a number of thermally activated meteoric, hydrothermal, metasomatic
and metamorphic reactions [20,21]. The final impact can be a decoupling between volcano-tectonic crises
and 222Rn–220Rn emissions, leading to transient, spatially heterogeneous, radioactive signals [4,5,22].

In a recent work, Mollo et al. [11] have experimentally documented the complex relationship between
220Rn emissions and zeolitized rocks, which typically originate by hydrothermal alteration in subvolcanic
environments. Zeolites have the capability of adsorbing high amounts of water (up to approx. 25 wt%) in
their structural cages and channels. Thermally activated dehydration reactions induced by shallow
magmatic injections and dike intrusions may cause the release of water from zeolites, with important
carrier effects on the transport of 220Rn radionuclides through the rocks [23,24]. The experiments
presented in Mollo et al. [11] were designed to isolate the effect of water absorption–desorption
phenomena on the background 220Rn signal measured under CO2-free conditions.

However, CO2 is an important carrier gas for radon (sensu lato) in volcanic settings [2,3,6], owing to its
very low solubility in ascending magmas [25]. A close relationship between 222Rn–220Rn and CO2

emissions denotes rapid fluid transport along faults owing to an increasing concentration of
radionuclides in the shallow soil/rock. Consequently, gas migration through lithologies with different
petrophysical characteristics may also produce coupling/decoupling phenomena between 222Rn–220Rn
and CO2 emissions [26]. There are volcanic conditions in which CO2 fluxes through permeable
(fractured/vesiculated) lithologies are high enough to overwhelm the radiogenic source, thus leading
to a diluted 222Rn–220Rn signal. For example, geochemical measurements carried out at the summit
areas of Mt Etna volcano (Sicily, Italy) and along active faults on its flanks show progressive
222Rn–220Rn dilution phenomena as the CO2 flux increases [2,3].

In this study, we have re-designed the experimental set-up used by Mollo et al. [11] to conduct new real-
time, long-term measurements on the transport of 220Rn nuclides emitted from the zeolitized rock under the
carrier effect of variable CO2 fluxes. We observe that 220Rn emissions are the expression of counterbalancing
effects related to the physical (i.e. pore structure and gas advection) and chemical (i.e. adsorption–
desorption of fluid molecular components) changes of the subvolcanic lithologies. Because of such
complexities, the radon (sensu lato) signal does not necessarily increase in the presence of carrier gases of
magmatic origin, providing explanation for spatio-temporal decoupling of radioactive patterns recorded
along fault systems, diffuse degassing structures, fumaroles, and in the proximity of hydrothermal craters.

2. Methods
2.1. Experimental system and conditions
Thoron experiments were conducted at the HPHT Laboratory of Experimental Volcanology and
Geophysics of the Istituto Nazionale di Geofisica e Vulcanologia (INGV) in Rome (Italy). A detailed
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Figure 1. Sketch of the experimental system consisting of a vertical furnace equipped with a gas-impermeable alumina tube in
which a cylindrical tuff sample is suspended. Four heating elements and one factory-calibrated thermocouple control the
temperature with ±3°C uncertainty. A digitally controlled CO2 mass flow meter operates from 0.01 to 3 l min−1 with ±1.5%
accuracy. An iron steel tube is inserted into the lower flange and fluxes a pure 100% CO2 gas in the vertical furnace. A Teflon
tube is inserted into the upper flange and connects the vertical tube with both a gas-drying unit (CaSO4 desiccant with 3%
CoCl2, as an indicator) and the RAD7 (Durridge Company Inc.) counting system.

royalsocietypublishing.org/journal/rsos
R.Soc.Open

Sci.8:201539
3

description of the experimental system is reported in Mollo et al. [11]. Briefly, the radon apparatus consists
of a vertical furnace equipped with a gas-impermeable alumina tube in which a cylindrical Tufo Rosso a
Scorie Nere (TRSN) (see below for more details) tuff sample is suspended (figure 1). Four heating
elements and one factory-calibrated thermocouple control the temperature with ±3°C uncertainty. For
the purpose of our experiments, the vertical furnace has been implemented with a digitally controlled
CO2 mass flow meter operating from 0.01 to 3 l min−1 with ±1.5% accuracy (figure 1). Gas-tight
flanges seal the upper and lower portions of the alumina tube. A steel tube is inserted into the lower
flange and fluxes a pure 100% CO2 gas in the vertical furnace. A Teflon tube is inserted into the upper
flange and connects the vertical tube with both a gas-drying unit (CaSO4 desiccant with 3% CoCl2, as
an indicator) and the RAD7 (Durridge Company Inc.) counting system (figure 1). CO2 transported to
the RAD7 is purged via a gas pipeline pre-installed at the HPHT Laboratory (figure 1).

RAD7 is set in a pump on (0.8 l min−1) configuration and is equipped with a solid-state detector for
alpha counting of 220Rn progeny. The electrostatic detector collects the charged ions and discriminates the
electrical pulses generated by their alpha decays. This allows us to only measure the short-lived 216Po to
rapidly determine the 220Rn. The radioactive equilibrium between 216Po and 220Rn is achieved in a few
seconds owing to the very short half-life of 216Po (0.15 s). A period of 30 min is selected as the
acquisition time of a single measurement cycle. To minimize the uncertainty associated with 220Rn
signal, 48 cycles per experiment (30 min acquisition time per cycle) were collected. For each dataset,
the uncertainty of the mean at 95% confidence level was then calculated.

For the thoron experiments, a TRSN cylindrical sample (60 mm in diameter and 200 mm in length for a
totalweight of 1784 g)was fitted to the alumina tube, ensuring thatCO2gaswasprevalently fluxedacross the
porous structure of thematerial. TRSNwas kept at 110°C for 72 h to removemoisture and, subsequently, the
sample was heated to the final target temperature. After 48 h of heat homogenization, 220Rn activity
concentration was monitored for very long-term measurements of 24 h relative to the very short half-life
of 220Rn nuclides. Three target temperatures of 170°C (EXP1), 230°C (EXP2) and 450°C (EXP3) were
adopted, in accord with the thermally induced devolatilization reactions of zeolite minerals which
characterize the rock structure (see below). For each target temperature, the CO2 flux was stepwise
increased by 0.5 l min−1, starting from 0 to 3 l min−1, corresponding to the maximum operating condition
of the mass flow meter. 220Rn reading was corrected for: (i) the percentage of CO2 in the system, which
reduces the electrostatic collection of thoron daughters [27]; (ii) the decay occurred during gas transport
through the tubing circuit [11]; and (iii) the effect of absolute humidity on the efficiency of the silicon
detector [28]. A detailed description of the correction procedure adopted for the experimental system can
be found in Mollo et al. [11], while 220Rn activity concentrations and related uncertainties are reported in
the electronic supplementary material.
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2.2. Petrochemical analyses

Microchemical and textural analyses were carried out at the HPHT Laboratory of INGV using the
back-scattered electron mode of a field-emission gun-scanning electron microscope Jeol 6500F
equipped with an energy-dispersive spectrometer detector and a JEOLJXA8200 electron probe micro-
analyser equipped with five wavelength-dispersive spectrometers (15 kV accelerating voltage and
10 nA beam current, following the analytical conditions and standards reported in Iezzi et al. [29]).

Total porosity was measured on cylindrical tuff specimens (4 cm in diameter) loaded in a helium
pycnometer AccuPyc II 1340 (Micromeritics Company) with ±0.01% accuracy.

Thermogravimetric (TG) and differential thermogravimetric (DTG) analyses were performed with an
SDT Q600 analyser (TA Instruments). The dual-beam design virtually eliminates beam growth and
buoyancy contributions to the underlying signal. For the analyses, approximately 30 mg of powdered
rock sample were heated in an air atmosphere (20 ml min−1) using a Pt crucible at a rate of
10°C min−1 up to 1000°C.

X-ray powder diffraction (XRPD) patternswere collectedwith a SiemensD5005 diffractometer operating
in the θ–2θ vertical configuration, equipped with a Ni-filtered CuKα radiation and installed at the
Department of Ingegneria and Geologia of the University of G. d’Annunzio. Each XRPD spectra were
recorded between 4° and 80° of 2θ, with a step scan of 0.02° and a counting time of 8 s. Crystalline phases
were identified by a search-match comparison with the commercial Inorganic Crystal Structure Database
(ICSD). Lattice parameters were refined with the Le Bail method and further phase abundances (wt%)
were derived by the Rietveld method, as reported in Mollo et al. [11].
39
3. Results and discussion
3.1. Characterization of the zeolitized tuff
TRSN belongs to the main body of a reddish ignimbrite from Vico volcanic apparatus (Latium, Italy).
This pyroclastic tuff contains crystals, ashes and black pumices and has a total porosity of
approximately 47%, owing to the concurrent presence of macro- (from 1 mm to 1 cm) and micro-
(from 1 to 100 µm) vesicles. Macroporosity is dominated by distinctive lithophysae, which are cm-
scale cavities formed by trapped pockets of gas within the cooling volcanic ash (figure 2a). In such
lithophysae-rich tuff, the internal structure is almost entirely characterized by connected pores,
thereby the material is highly permeable to gas flow [9]. At the micrometer scale, TRSN also shows
a spongy-like texture resulting from post-emplacement zeolitization phenomena caused by
hydrothermal alteration (figure 2b). Heat treatment of TRSN induces strong dehydration reactions of
zeolite minerals [11] and development of devolatilization features in the rock matrix (figure 2c).

A homogeneous matrix of fine glass shards resulting from rapid quenching of vesicular magma
fragments at the time of eruption and zeolite crystals of chabazite are the most abundant phases
(approx. 78 wt%) of TRSN. The XRPD pattern is prevalently resolved by the crystalline structure of
chabazite (figure 2d ), a hydrated Na and Ca aluminosilicate framework mineral and one of the most
porous natural zeolites. A DTG curve shows a faint peak at 95°C (figure 2e) that corresponds to
hydration water (H2O

+) resulting from atmospheric humidity adsorbed on the TRSN grains. The
structural water (H2O

−) of chabazite is released via thermally induced crystallochemical changes
caused by lattice deformation [30–32] and is identified by three endothermic peaks at 170, 230 and
450°C (figure 2e). TG analysis quantifies both H2O

+ and H2O
− contents as percentage mass loss

(figure 2f ). The amount of moisture is not negligible and corresponds to 3.6 wt% H2O
+. For the

purpose of our thoron experiments, any outgassing effect related to the adsorbed atmospheric
humidity was eliminated by heat treatment at 110°C for 72 h. As a consequence, the release of water
was entirely controlled by the thermal dehydration of chabazite as a function of the devolatilization of
5.5 (EXP1), 3.6 (EXP2), and 2.1 (EXP3) wt% H2O

− (figure 2f ).

3.2. Temporal evolution of 220Rn: dehydration versus dilution phenomena
Results from our experiments are plotted in the 220Rn signal versus dwell time diagram (figure 3). For the
sake of completeness, these new data are compared with 220Rn emissions (890–2650 Bq m−3) from CO2-
free experiments of Mollo et al. [11] conducted on a fully dehydrated tuff sample exposed to the same
thermal conditions (170–450°C). As a general rule, the onset of chabazite devolatilization causes the
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220Rn signal to increase by one order of magnitude with respect to the signal observed under anhydrous
conditions (figure 3). This points out that the simple enhancing effect of temperature on the diffusion of
220Rn nuclides through the material is greatly subordinate to the carrier effect of water vapour produced
by chabazite dehydration (cf. [11]).

As the CO2 flux increases from 0 to 1 l min−1, 220Rn emissions further increase monotonically up to a
maximum value that is proportional to the amount of H2O

− released via chabazite dehydration
(figure 3). More specifically, 220Rn emissions increase by approximately 165%, approximately 82% and
approximately 25% for EXP1 (5.5 wt% H2O

− released at 170°C), EXP2 (3.6 wt% H2O
− released at

230°C) and EXP3 (2.1 wt% H2O
− released at 450°C), respectively. The inverse relationship between

220Rn and H2O
− depicted by the dashed arrow in figure 3 points out that the thoron activity

concentration is mutually controlled by: (i) the dehydration process of chabazite as a function of the
activation temperature, and (ii) the adsorption–desorption of water molecules and hydroxyl (OH−)
groups on the grain surface of TRSN as a function of CO2 flux.

Because water molecules obstruct the direct passage of thoron through the medium, vapour
adsorption on the surface layer of interconnected pores may limit the diffusivity of 220Rn nuclides
[33,34]. A slow thoron mobility is exacerbated by condensation phenomena of water molecules in the
pore spaces upon the effect of capillary forces [11,35,36]. Furthermore, hydroxyl coverage takes place
in the highly porous structure of TRSN [37] and hydroxyl groups are easily bonded to Si cations of
the silica network to form silanol (Si–OH) groups [38–40]. This mechanism is particularly effective for
silicate materials thermally treated between 150 and 1200°C, as for the case of the hydrophilic surfaces
of silicate glass shards forming the TRSN cineritic matrix.
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Water molecules and hydroxyl groups adsorbed on the glassy surface of macro- and micropores are
physically removed under the increasing effect of CO2 flux. Thus, most of the free-state 220Rn nuclides
residing in the pore spaces are transported by the carrier fluid mixture through the medium and
delivered to the detector. A relatively low CO2 flux, in the range 0.5–1 l min−1, acts as a physical and
chemical agent for 220Rn mobility by permeating the pore structure of TRSN, desorbing water
molecules and carrying 220Rn radionuclides through the medium.

The diagram of 220Rn signal versus CO2 flux (figure 4) highlights one of the most important outcomes
from our experiments, that is the systematic decrease of 220Rn emissions for CO2 flux higher than the
threshold value of 1 l min−1. Such a declining trend is established irrespective of either the thermally
induced dehydration of chabazite or the desorption of water molecules and hydroxyl groups.
Rationally, the change in 220Rn behaviour is dictated by strong dilution phenomena that are more
markedly observable when the CO2 flux becomes so high that its magnitude overwhelms the
advective effect of carrier fluids [2,3,41,42]. At CO2 flux of 1.5 l min−1, 220Rn emissions return to
values almost comparable to those measured at 0 l min−1 (figure 4), denoting an apparent competition
between (i) 220Rn increase via chabazite dehydration, water desorption and advective transport, and
(ii) 220Rn decrease by CO2 flux in excess acting as a diluting agent for the concentration of
radionuclides into the advective gas carrier.

When the CO2 flux further increases to 3 l min−1, 220Rn emissions dramatically decrease to minimum
levels of approximately 1200 (EXP1), 2400 (EXP2), and 5600 (EXP3) Bq m−3, confirming the strong
dilution capacity of CO2. However, the diluted 220Rn signal remains systematically higher than that
(approx. 1000–2200 Bq m−3) measured by Mollo et al. [11] on the anhydrous TRSN sample under CO2-
free conditions (figure 4). This finding points out that thermally induced devolatilization reactions of
zeolites are still operative in the CO2-saturated tuff and that the overall decrease of 220Rn emissions is
the main expression of counterbalancing effects dictated by the physical (i.e. pore structure and gas
advection) and chemical (i.e. adsorption–desorption of fluid molecular components) changes of the
volcanic lithology.

3.3. Limitations and implications for natural volcanic settings
Radon–thoron laboratory experiments offer the advantage to isolate and analyse each single parameter
controlling the radioactive signal, thus enabling the quantification of the sign and magnitude of
222Rn–220Rn changes upon the influence of a specific effect [7–14]. It remains true that both physical
and chemical phenomena observed at the laboratory scale represent an oversimplification of more
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complex geological conditions encountered in nature. Indeed, multiple processes are expected to
influence the radioactive signal emitted from subvolcanic rocks before the gas reaches the ground
surface, such as moisture, temperature, degassing, mixing, contamination, rock alteration, chemical
reactions, soil radiogenic production and dilution effects (e.g. see Mollo et al. [25] for a comprehensive
review). Under such circumstances, a direct comparison between experimental and natural 220Rn
emissions is not a trivial task, given that geochemical data recorded in volcanic settings are mediated
by the contributions of different magmatic and crustal sources and so any resultant radioactive signal
cannot be univocally related to a single subvolcanic lithology.

In addition to the complexity of natural environments, we observe that there are only a few studies from
the literature where 220Rn and CO2 are concurrently investigated and, consequently, an overall comparison
between experimental and natural signals is difficult to accomplish. A further complication arises whenCO2

fluxes used in the laboratory are converted from l min−1 to g m−2 d−1 taking into consideration the diameter
(60 mm) of TRSN cylindrical sample, the molar mass of CO2 (44.01 g mol−1) and the volume of one mole of
gas (22.41 l mol−1). Results fromcalculations indicate that the putative natural CO2 flux is up to twoorders of
magnitude higher than that generally associated with 220Rn emissions measured during soil gas survey.
Moreover, the very short half-life (56 s) of 220Rn relative to that (3.823 days) of 222Rn must be taken into
consideration for a better interpretation of the geochemical dataset. In volcanic settings, the gas carrier
velocity through a subvolcanic succession rarely exceeds 100 m d−1 [5] and, therefore, the travelling
distances of 220Rn and 222Rn before complete decay of their radionuclides are 0.27 and 1900 m,
respectively. This implies that, owing to its short half-life, 220Rn is useful only as a tracer of very shallow
phenomena, such as porosity/permeability changes at depths of a few meters [2,3] and/or the presence
of Th-rich mineralization close to the surface [25].

According to the above considerations and looking at several previous studies, we have tentatively
interpolated 222Rn–220Rn–CO2 changes measured in natural volcanic settings, with the intention that
the resulting dataset will be germane to other volcanic areas. Following this line of reasoning, we
propose a general conceptual model that is independent of problems arising in scaling laboratory
quantities to natural environmental conditions. The corollary of this approach relies on two important
considerations: (i) 220Rn and 222Rn have the same geochemical behaviour, as long as heavy isotopes
do not fractionate owing to their extremely low mass difference (0.01%); and (ii) 220Rn and 222Rn
activity concentrations may substantially change under magma degassing conditions, accounting for
their different half-life.

The selected geochemical dataset comprises measurements from the fumarolic activity of Sugás-Bai
(Baraolt Mts, Eastern Carpathians, Romania; [43]), the Pernicana fault system (Mt Etna volcano; [3]) and
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numerical simulations based on an explicit finite-difference scheme [44].
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the degassing structures atNisyros caldera (AegeanArc, Greece; [6]). Some representative data are plotted in
figure 5, also showing a schematic sketch of subvolcanic thermal gradients anddegassingphenomena froma
putative magmatic reservoir located at depth of 1000 m below the ground surface. Degassing occurs by
pressure drop during the ascent of magmatic fluids through subvolcanic rocks and further fluid–soil
interaction at the ground surface [45]. The source of heat and fluid transfer is a small volume (approx.
0.1 km3) of magma that progressively cools over a temporal scale of 100 years (figure 5). Modelling was
performed by two-dimensional numerical simulations based on an explicit finite-difference scheme [44].
Following the parameterization procedure reported in Mollo et al. [46], the input data used for the
modelling was the initial temperature, bulk density, specific heat and thermal conductivity of magma
(1150°C, 2700 kg m−3, 1200 J kg−1 K−1, and 1.8 W m−1 K−1, respectively) and host rock (30°C, 2200 kg m−3,
1150 J kg−1 K−1, and 3 Wm−1 K−1, respectively). Modelling results localize the source of high-T (approx.
800°C) gas emissions at a maximum subvolcanic depth of approximately 600 m that further decreases to
200 m for low-T (approx. 100°C) gas emissions (figure 5).
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Importantly, the 220Rn/222Rn ratio measured in natural settings monotonically decreases with

increasing CO2 flux (figure 5), thus corroborating the role played by strong dilution effects on the
radioactive signal. There are volcanic conditions in which the rate of CO2 flowing through permeable
(fractured/vesiculated) lithologies is high enough to overwhelm the radiogenic source [2,3]. However,
some different evolutionary trends are also observed, as long as the 220Rn/222Rn ratio increases owing
to an increasing permeability/fracturing of the shallow soil/rock (figure 5). Local changes in the soil/
rock structure can be interrelated to the presence of preferential pathways for advective 220Rn
transport via carrier gases [47]. Increasing rates of gas discharge at very shallow depths are viable
mechanisms to explain abrupt changes in 220Rn emissions, especially along fault zones where CO2

advection is expected to bring 220Rn atoms to the ground over a short time scale, thus enhancing the
recorded radioactive signal [2,3].

Such different degassing behaviour confirms that chemical and physical properties of the
substrate may change significantly as a function of the local geology, thus making unequivocal
interpretation of the radioactive signal difficult. As discussed earlier, the changes of 220Rn and 222Rn
concentrations in volcanic environments account for complex mechanisms that cannot be accurately
isolated and ascribed to the magnitude of one specific time- and spatial-dependent geochemical
variation. In the light of this consideration, figure 5 represents a schematic and conservative overview
of more complex geological and radioactive processes. Bearing in mind the lithological and local
complexities of volcano-tectonic settings, the experimental CO2 flux threshold from our experiments
does not exhibit a universal relationship valid for the interpretation of geochemical anomalies in
natural environments. We conclude that the primary requirement for appreciating radon (sensu lato)
dilution phenomena is the presence of highly permeable lithologies, such as the lithophysae-rich
TRSN (approx. 47% porosity) or moderately to extensively fractured crystalline rocks, in conjunction
with a high advective gas transport related to abundant degassing from deep-seated magmatic
sources. In a holistic perspective, a remarkable decrease of radioactive signal becomes observable
when the detrimental-dilution effects of CO2 fluxes greatly exceed any other enhancing agent for the
radioactive source.

4. Conclusion
Experiments from this study document that the enhancing effect of 220Rn signal caused by thermally
activated devolatilization reactions in a zeolitized tuff is maximized by the carrier effect of relative
low CO2 fluxes. This condition facilitates the expulsion of water molecules and hydroxyl groups
adsorbed on the glassy surface of macro- and micropores. Conversely, at higher CO2 flux rates, the
increase of 220Rn by advective CO2 transport is counterbalanced by strong dilution phenomena of
radionuclides within the carrier gas. Zeolite dehydration and CO2 flux represent perturbation
mechanisms leading to contrasting non-equilibrium conditions for the activity concentration of 220Rn.
In particular, CO2 degassing may increase or decrease the 220Rn radioactive signal, whose sign and
magnitude depend on the CO2 flux rate. Because 220Rn emissions through a succession of different
subvolcanic rocks are mediated over the contributions of magmatic and crustal processes, the CO2

flux threshold responsible for radioactive dilution cannot be univocally quantified by laboratory
measurements. The association between highly permeable lithologies and large-scale diffusive CO2

degassing in volcanic areas appears as a viable mechanism for the radon (sensu lato) decrease, by
overprinting any other enhancing effect related to the radioactive source [2,3]. However, principal
component analysis of an entire multi-parametric dataset from volcanic areas (e.g. deep and biogenic
CO2 fluxes, CO2 concentration, temperature, 222Rn/220Rn ratio) is recommended to reduce
dimensionality in the dataset by selecting those variables that mainly control the variance in the
geochemical signal and thus discriminating between a deep and a shallow degassing component [6].
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