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Abstract

In this study, we extend the research on the dynamic poverty indexes, namely the dynamic

Headcount ratio, the dynamic income-gap ratio, the dynamic Gini and the dynamic Sen,

proposed in D’Amico and Regnault (2018). The contribution is twofold. First, we extend the

computation of the dynamic Gini index, thus the Sen index accordingly, with the inclusion

of the inequality within each class of poverty where people are classified according to their

income. Second, for each poverty index, we establish a central limit theorem that gives us

the possibility to determine the confidence sets. An application to the Italian income data

from 1998 to 2012 confirms the effectiveness of the considered approach and the possibility

to determine the evolution of poverty and inequality in real economies.
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1. Introduction

Economists and econometricians have dedicated a lot of efforts to the investigation of

poverty. The literature is vast and comprehends theoretically oriented contributions as well

as applied researches. The advancement to more powerful indexes of poverty is always of

interest and it aims at capturing specific peculiarities of the phenomenon that were ignored by

previous indicators (see, e.g., Hirsch et al., 2020). In particular, multidimensional measures of

poverty are relevant in this context, with the inclusion of non-monetary sources of deprivation

which affect the well-being of individuals and households such as disability, exposure to
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environmental hazards and limited availability of healthcare services (see, e.g., Park and

Nam, 2020; Annoni et al., 2015; Parodi and Sciulli, 2008). This research stream has his

origin in the seventies of the last century when the stately contribution by Professor Sen

appeared (Sen, 1976). Since then, continuous improvements and generalisations have been

made (see, e.g., Takayama, 1979; Shorrocks, 1995; Foster, 2009).

Almost at the same time, it was recognised that poverty is not a static notion and

that this characteristic should be investigated in relation to time. The main idea is to

statistically assess frequencies of poverty condition and their variations through time. These

statistical properties of poverty mobility were determined and confirmed in several studies

(see, e.g., Bane and Ellwood, 1986; Duncan et al., 1993; Whelan et al., 2000). In general,

understanding the features of poverty over time needs the adoption of a stochastic model

of income evolution. Therefore, Markov chain models were frequently used. Some examples

are available in McCall (1971), Breen and Moisio (2004), Cappellari and Jenkins (2004),

Formby et al. (2004), and Langheheine and Pol (2016). In addition, poverty rates and

transition probabilities have been estimated in relation to noisy data by Lee et al. (2017).

In contrast to previous research, the idea of advancing dynamic indexes of poverty and

income inequality is relatively new and limited to a few contributions. Precisely, at authors

knowing, two approaches can be identified. They share the same starting idea, namely the

extension of static indicators into a dynamic framework, but then move away in relation to

methods and results to answer different questions. On the one hand, Ewald and Yor (2015)

consider a sequence of distributions parametrised in time and they look for conditions under

which the corresponding sequence of the indicator (in the specific case, the Gini index)

increases over time. On the other hand, starting from the work by D’Amico and Di Biase

(2010), D’Amico et al. (2012) and D’Amico et al. (2014) built up an economic system by

advancing a set of assumptions on the time evolution of income for every agent member of

the economic system. This approach was also adopted in D’Amico and Regnault (2018) in

relation to dynamic measures of poverty where the dynamic indexes were evaluated both

for finite and infinite size economic system. Specifically, the infinite size system (i.e., an

economy with an infinite number of agents) revealed to be particularly interesting. In fact,

for each index, using probabilistic arguments (i.e., strong law of large numbers), it is possible
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to determine a deterministic function (of the parameters of the model) to which the index

of the real economy converges to.

In this paper, we move further steps into this direction. First, we extend the computation

of the dynamic Gini index including the inequality within each class of poverty where people

are classified according to their income. This extension impacts also the Sen index that is

a function of the Gini index. Second, for each poverty index, we establish a central limit

theorem that gives us the possibility to determine confidence sets, i.e., bounds that at a

fixed probability level express the goodness of the approximations based on the strong law

of large numbers. These results derive from the specific assumptions defining the model

which are based on the probabilistic equality of the incomes of people belonging to the

same income class and that may migrate in time from one class to another according to a

continuous time Markov process. Finally, we present an application of the aforementioned

probabilistic approximations on the Italian income data provided by the Italian Central

Bank from 1998 to 2012 which contains information about family net disposable incomes

and household members. The results of the application suggests the effectiveness of the

considered approach and confirm the possibility to apply it for the determination of the

evolution of poverty and inequality in real economies.

The remainder of the paper is organised as follows. Section 2 sets out the assumptions that

define the model and presents the main theoretical results of the paper including probabilistic

approximations of the indexes and their confidence sets. Section 3 illustrates the result of

the application to real data and demonstrates the adequacy of the proposed approach to

the investigation of the evolution in time of dynamic indexes of poverty in real economic

systems. Section 4 summarises our contribution and results. All proofs are deferred to the

Appendix.

2. The stochastic model and confidence sets for dynamic poverty indexes

In this section we present the mathematical model. First, we introduce the stochastic

model of income evolution and the dynamic version of four poverty indexes in the case of

infinite size economic systems. Then, we derive the confidence sets for the poverty indexes.

They are obtained by proving the central limit theorem for the stochastic processes expressing
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the dynamic poverty indexes.

Following D’Amico and Regnault (2018), we consider an economic system composed of

a set H of N individuals. The income produced by each economic agent evolves randomly

in time and can be described through a stochastic process Y = (Yh(t))t∈R+ , where h denotes

the h-th individual in the economic system and t is the time variable. For our purposes we

classify individuals according to their income in one of three exhaustive and exclusive income

classes denoted by a random process Ch(t) such that:

Ch(t) :=


C1 if Yh(t) ≤ yep,

C2 if yep < Yh(t) ≤ yp,

C3 if Yh(t) > yp,

where yp and yep are the poverty and extreme poverty threshold rates, respectively. Clearly,

the possibility to extend the model to multiple richness classes is straightforward.

In the remainder of the paper, the simplifying notation {1, 2, 3} will be used to denote

the set {C1, C2, C3}.

The following assumptions advanced in D’Amico and Regnault (2018) define the model:

A1: the number N of individuals in the economic system is finite and constant in time;

A2: the income rate processes (Yh)h∈H are independent and hence the class allocation

processes (Ch)h∈H;

A3: the processes (Ch)h∈H are identically distributed ergodic Markov processes taking values

in the set {C1, C2, C3} with infinitesimal generator matrix Λ;

A4: For any time t ∈ R and any individual h ∈ H, the conditional distribution of the income

Yh(t) knowing that Ch(t) = Ci, with Ci ∈ E, does not depend on past income values, nor

on t or h. We denote it as Fi and we assume that it possesses finite first and second order

moments. In symbol,

D(Yh(t)|σt−(Yh), Ch(t) = Ci) = D(Yh(t)|Ch(t) = Ci) =: Fi(·), ∀t ∈ R, ∀h ∈ H, (1)

where σt−(Yh) := lims→t− σs(Yh) is the sigma-algebra generated by the income process of

agent h up to time t but excluding it.
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Now, according to D’Amico and Regnault (2018) we present the stochastic extension of

the poverty indexes. To this end we denote by

P(t) = {h ∈ H : Yh(t) ≤ yp},

the set of poor agents at time t and by

n(t) = {n1(t), n2(t), n3(t)}, t ∈ R+, (2)

the multivariate counting process denoting the composition of the income classes in time.

Precisely, ni(t) is the number of individuals allocated in class Ci at time t.

Definition 1. The Dynamic Headcount ratio, The Dynamic Income-gap ratio, the Dynamic

Gini and the Dynamic Sen Index are defined as follows:

H(t) :=
n1(t) + n2(t)

N
, (3)

I(t) := 1−
∑

h∈P(t) Yh(t)

yp(n1(t) + n2(t))
, (4)

G(t) :=

∑
h∈P(t)

∑
l∈P(t) | Yh(t)− Yl(t) |

2(n1(t) + n2(t))(
∑

h∈P(t) Yh(t))
, (5)

S(t) = H(t) · [I(t) + (1− I(t)) ·G(t)]. (6)

Although the previous indexes share the same functional form with their static counter-

parts, they are of different nature being stochastic processes due to the randomness of the

counting process n(t) and of the incomes {Yh(·)}h∈P(t).

This set of assumptions defines an economic system that describes the evolution of people

according to their income. The study of this system is very complex and since the number

of involved individuals N is very large, it requires a big computational effort. An alternative

strategy has been implemented in D’Amico and Regnault (2018) where assumption A1 is

relaxed in favour of a new assumption:

A1′: (large-size population) the number of individuals N in the economy is large enough to

be considered as infinity.

5



This new hypothesis allows us to use stochastic approximations based on limit theorems.

Next proposition is the first results of this strategy:

Proposition 2. Under assumptions A1′ - A4, we have that:

H(t)
a.s.−→ H∞(t) = H(µ,Λ, t) := µ′ (P.1(t) + P.2(t)) , (7)

where µ′ is the transpose of the initial distribution and P.1(t) and P.2(t) are the first and

second column of P(t) = exp(tΛ), respectively.

Similarly, the Dynamic Income-gap ratio I(t), the Dynamic Gini index G(t) and the

Dynamic Sen index S(t) converge almost surely to:

I∞(t) := 1− y1
yp

µ′P.1(t)
H∞(t)

− y2
yp

µ′P.2(t)
H∞(t)

, (8)

G∞(t) := (µ′P.2(t))2z1+2(y2−y1)(µ′P.1(t))(µ′P.2(t))+(µ′P.2(t))2z2
2H∞(t)(y1µ′P.1(t)+y2µ′P.2(t))

(9)

S∞(t) := H∞(t) · [I∞(t) + (1− I∞(t)) ·G∞(t)], (10)

where y = (y1, y2) is the vector of mean incomes per poor classes and

z1 :=

∫ yep

0

∫ yep

0

|y − x|dF1(y)dF1(x),

z2 :=

∫ yp

yep

∫ yp

yep

|y − x|dF2(y)dF2(x).

Proof: See Appendix.

Remark 3. Proposition 2 was already demonstrated in D’Amico and Regnault (2018). How-

ever, with respect to the Gini index, and in turn to the Sen index, the proof was limited to the

case of equivalence of the incomes of people belonging to the same class while the hypotheses

of the model advance only the equivalence of their probability distributions. The proof we

provide in this paper overcomes this limitation with the addition of the inequality within each

class.

The next step forward in global understanding of the time evolution of the dynamic

poverty indexes is the assessment of specific central limit theorems for each index and the
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subsequent derivation of the confidence sets. The confidence sets are centred to the asymp-

totic values obtained in Proposition 2 and have amplitudes proportional to their variances

computed in next proposition. This finding represents the main result. However, before its

exposition, we anticipate an auxiliary Lemma which is a useful tool for obtaining the proof

of our main result concerning the central limit theorems for the considered dynamic indexes

of poverty.

Lemma 4. For any h ∈ H and for any t ∈ R let F (t;x) := P[Yh(t)1{Ch(t)∈{C1,C2}} ≤ x].

Then,

F (t;x) = F1(x)µ′P.1(t) + F2(x)µ′P.2(t) + µ′P.3(t), (11)

and accordingly, for any integer r ≥ 1

E[(Yh(t)1{Ch(t)∈{C1,C2}})
r] = y

(r)
1 µ′P.1(t) + y

(r)
2 µ′P.2(t), (12)

where y
(r)
1 := E[(Y1)r] and y

(r)
2 := E[(Y2)r].

Moreover, if Θt := E[|Yh(t)1{Ch(t)∈{C1,C2}} − Yl(t)1{Cl(t)∈{C1,C2}}|], then

Θt = (µ′P.1(t))2

∫ yep

0

∫ yep

0

|y − x|dF1(x)dF1(y)

+ 2(y2 − y1)(µ′P.1(t))(µ′P.2(t))

+ (µ′P.2(t))2

∫ yp

yep

∫ yp

yep

|y − x|dF2(x)dF2(y).

(13)

Finally, using the notation

σ2(t) + Θ2
t :=

∫ +∞

−∞

[∫ +∞

−∞
|y − x|dF (t;x)

]2

dF (t; y), (14)

7



we find that

σ2(t) + Θ2
t = (µ′P.1(t))3

∫ yep

0

[∫ yep

0

|y − x|dF1(x)

]2

dF1(y)

+ (µ′P.2(t))2(µ′P.1(t))(y
(2)
1 − 2y1y2 + y2

2)

+ (µ′P.1(t))2(µ′P.2(t))(y
(2)
2 − 2y1y2 + y2

1)

+ (µ′P.2(t))3

∫ yp

yep

[∫ yp

yep

|y − x|dF2(x)

]2

dF2(y).

(15)

Proof: See Appendix.

Let us introduce basic notations for expectation and variance of the random variable

Yh(t)1{Ch(t)∈{C1,C2}}:

x12(t) := E[Yh(t)1{Ch(t)∈{C1,C2}}], σ2
12(t) := V[Yh(t)1{Ch(t)∈{C1,C2}}] (16)

Proposition 5. Under assumptions A1′ - A4, we have the following convergences in law:

i)
√
N
(
HN(t)−H∞(t)

) L−→ N (0,H∞(t)(1−H∞(t)
)
; (17)

ii)
√
N

(
1− I(t)− x12(t)

ypH∞(t)

)
L−−−−→

N→+∞
N
(

0,
σ2

12(t)

y2
pH2
∞

)
; (18)

iii)
√
N(GN(t)−G∞(t))

L−→ N
(

0,
σ2(t)

4H2
∞(x12(t))2

)
; (19)

where

σ2(t) =

∫ +∞

−∞

[∫ +∞

−∞
|y − x|dF (t;x)

]2

dF (t; y)−Θ2
t , (20)

and Θt is given in formula (13).

iv)
√
N(SN(t)− S∞(t))

L−→ N
(

0, (1−H∞(t))
S2
∞(t)

H∞(t)

)
. (21)

Proof: See Appendix.

Proposition 5 tells us that the dynamic poverty indexes, properly centralised and nor-

malised, converge in distribution to normal random variables. Accordingly, it is possible to

obtain their confidence sets, e.g., from formula (17) we can easily determine ∀a, b ∈ R an
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estimate of the probability P(a ≤ HN(t) ≤ b). Indeed, once we denote by Z the standard

normal distribution, the following approximation holds according to Proposition 5:

P(a ≤ HN(t) ≤ b) ≈ P

 a−H∞(t)√
H∞(t)(1−H∞(t))

N

≤ Z ≤ b−H∞(t)√
H∞(t)(1−H∞(t))

N


= Φ

 b−H∞(t)√
H∞(t)(1−H∞(t))

N

− Φ

 a−H∞(t)√
H∞(t)(1−H∞(t))

N

 .

(22)

A similar argument can be used to construct confidence sets for the other indexes. Here

we just focus on the Sen index which is the most powerful index among those considered in

this paper.

Let us denote by E2(t) the asymptotic variance in formula (21), i.e.

E2(t) := (1−H∞(t))
S2
∞(t)

H∞(t)
.

Then, ∀a, b ∈ R the following approximation can be established:

P(a ≤ SN(t) ≤ b) = P(a− S∞(t)) ≤ SN(t)− S∞(t)) ≤ b− S∞(t)))

= P

(
a− S∞(t))

E√
N

≤ SN(t)− S∞(t))
E√
N

≤ b− S∞(t))
E√
N

)

= P

(
a− S∞(t))

E√
N

≤ Z ≤ b− S∞(t))
E√
N

)

= Φ

(
b− S∞(t))

E√
N

)
− Φ

(
a− S∞(t))

E√
N

)
.

(23)

The construction of confidence sets is of crucial importance for the application of the

model since it shows the accuracy of the infinite size economic systems approximation to the

real system.

3. Empirical application

We test the model on the Italian income data provided by the Italian central bank, Banca

d’Italia. The historical database is based on the survey of Italian households budgets from
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count mean std min 25% 50% 75% max
1 14374.0 18233.79 16525.48 0.0 10795.80 15449.50 21877.92 810218.64
2 18675.0 29414.22 22868.09 0.0 17281.59 24662.21 35372.21 587783.94
3 13279.0 36047.38 24476.71 0.0 21451.87 31813.74 44322.66 453843.73
4 12089.0 37108.13 26956.98 0.0 21200.00 32478.33 46372.60 1022616.85
5 3488.0 35032.82 25323.86 0.0 18811.59 29715.74 44859.25 414159.70
6 854.0 37331.73 28507.22 0.0 19551.39 31298.05 48646.07 368689.73
7+ 211.0 41883.71 46678.48 0.0 17351.48 31000.00 53253.47 529872.81

Table 1: Summary statistics of the net disposable income in euro of Italian households from 1998 to 2012
by number of family components. Data sourced from the Italian households budgets survey from Banca
d’Italia.

1998 2000 2002 2004 2006 2008 2010 2012
1 5479.50 5833.54 5919.60 6623.88 6986.40 7197.60 7145.76 7134.36
2 9147.74 9722.56 9866.04 11039.76 11644.08 11996.04 11909.52 11890.56
3 12212.24 12931.00 13121.88 14682.84 15486.60 15954.72 15839.64 15814.44
4 14929.12 15847.76 16081.68 17994.84 18979.80 19553.52 19412.52 19381.56
5 17426.45 18472.86 18745.44 20975.52 22123.80 22792.44 22628.04 22592.04
6 19667.65 21000.72 21310.68 23845.92 25151.16 25911.48 25724.52 25683.60
7+ 21963.74 23334.13 23678.52 26495.40 27945.84 28790.52 28582.80 28537.32

Table 2: Italian poverty thresholds in euro for the years 1998-2012. Data sourced from the Italian National
Institute of Statistics (ISTAT)

1977 to 2012 and contains information about the characteristics of the individuals and their

household members, along with the family net disposable incomes, which include financial

assets. The poverty thresholds are reported by the Italian National Institute of Statistics

(ISTAT) and are available from year 1998. However, as stated from ISTAT, the data from

1997 to 2013 are not directly comparable with the data from other years due to a substantial

change in the design of the survey. Therefore, to have a clean and consistent dataset, we

bound our analysis to the range 1997 to 2013. Within this range, the households data are

available on a biennial basis on even years. The summary statistics for the net disposable

income and grouped by number of households components are reported in Table 1, while

the poverty thresholds are shown in Table 2. The first column of both tables indicates

the dimension of the household. On average, the household income increases sharply for

dimensions from 1 to 3 persons, with an approximate stability from dimension 3 to 6, followed

by another final increase for households bigger than 7 persons. A similar pattern is also

observable to the income variability.
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count % mean std min 25% 50% 75% max
C1 182.0 2.5 2136.62 977.95 0.00 1509.42 2354.29 2941.39 3285.68
C2 416.0 5.7 4488.47 613.02 3293.41 4020.49 4529.34 5001.68 5467.46
C3 6714.0 91.8 14802.99 9023.69 5480.92 9360.72 12870.52 17698.43 222822.47

Table 3: Summary statistics of the standardised income in euro of Italian households from 1998 to 2012 by
poverty class, where C1 is the class of extreme poor households and C2 is the class of poor households.

For the application of the model with two poverty classes, we need to define an extra

poverty class. We identify a class for extremely poor households by setting its threshold, yep,

at 60% of the poverty threshold, yp. Moreover, to make the incomes comparable between

the number of household components and to account for the inflation during the years, we

standardise the net disposable incomes. The standardisation by the components is performed

each year using the income for 1-component household as base income. Conversely, the

inflation adjustment is performed setting the first year income as base income. Consequently,

the poverty threshold yp is represented by the 1998 1-component value, i.e. 5479.50, and the

extreme poverty threshold yep is 60% of previous threshold, i.e. 3287.70.

In addition, to work on a clean sample, we require that all households show an income

each year, thus we exclude households with any missing income, reducing the number of

households to 914, and the number of observed incomes to 7312. Table 3 reports the summary

statistics for the standardised income divided by classes.

Now, considering that we do not observe the household incomes continuously but every

two years, we can estimate the generator matrix using the periodic sampling of class alloca-

tion processes described in D’Amico and Regnault (2018). According to this methodology

and with 914 independent trajectories of the class allocation processes D,

D1(1998), D1(2000), . . . , D1(2012),

...

D914(1998), D914(2000) . . . , D914(2012),

where Di(t) denotes the income class occupied by household i at year t.
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We first estimate the transition probability matrix P̂ = p̂ij with

p̂ij =
Kij

Ki

,

where

Kij =
914∑
k=1

6∑
t=0

1{Dk(2t+1998)=i,Dk(2t+2000)=j},

is the number of transitions from class i to class j, and

Ki =
3∑
j=1

Kij,

is the total number of times households have been allocated to class i.

Then, the maximum likelihood estimator Λ̂ of the generator matrix Λ satisfies the relation

P̂ = exp(ηΛ̂); accordingly, it can be obtained as the logarithm matrix,

Λ̂ =
log(P̂)

η
, (24)

where η is the period of observation, i.e. 2 years in our application. It should be remarked

that the maximum likelihood estimator of Λ under this observational scheme is not guaran-

teed to exist or to be unique (see e.g. Bladt and Srensen (2005), Regnault (2012)) but as

proved in D’Amico and Regnault (2018), estimator (24) exists and is unique whenever the

transition probability matrix is irreducible with positive eigenvalues.

The estimated transition probability matrix is

P̂ =


0.37 0.38 0.25

0.11 0.38 0.51

0.01 0.03 0.96

 , (25)

which can be readily recognised as an irreducible stochastic matrix. This matrix has positive

eigenvalues:

x1 = 1; x2 =
1

200

(
71 +

√
1401

)
; x3 =

1

200

(
71−

√
1401

)
.
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Thus, the generator matrix estimated through (24) is the following:

Λ̂ =


−0.59 0.58 0.01

0.17 −0.59 0.42

0.00 0.02 −0.02

 . (26)

Finally, given the estimated initial distribution in the year 1998,

µ̂′ = (0.050, 0.068, 0.882), (27)

and the average income for the poverty classes as reported in Table 3, we calculate the

four indexes, i.e. Headcount ratio, Income gap ratio, Gini Index, and Sen index, and their

respective confidence intervals at 95% level of significance. Figure 1 shows the four indexes

estimated from the model against the observed index. In all cases, the computed indexes

follow the trajectories of the observed indexes. Also, it is important to notice that the

observed indexes fall within the 95% confidence intervals with an extra small variability

for the Gini index, in which the observed value in year 2010 which goes above the upper

confidence limit. In general, the plots show that the model has a very good power in capturing

the dynamic of the observed indexes.

Figure 1 also indicates that all the indexes show a decreasing path in time. This means

that the different aspects of poverty represented by them are moving towards better economic

conditions of the given households which include a reduction of the percentage of poor, a

lower mean short-fall of people below the poverty line and a reduction of disparities among

the poor. However, it is relevant to remark that at year 2012 all the indexes are very close

to their stationary levels. This implies that a further decrease of poverty must necessarily

be accompanied by a reinforcement of poverty containment policies or by the adoption of

new ones because, if left in current conditions, the economic system cannot evolve towards

a lower level of poverty.

As a robustness test for the model, we now proceed to estimate the generator matrix

using a reduced set of data with only three years of observation, i.e. from 1998 to 2002. The

number of households and poverty thresholds remains the same. However, the number of
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Figure 1: Dynamic indexes of poverty for Italian households income from 1998 to 2012 computed with
parameters given in (25) and (27).
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available incomes for the estimation reduce from 7312 to 2742. The objective of this test is to

simulate a real life application in which there might be a limited history of data availability

and the necessity to forecast the poverty indexes. In this new setting, the estimated transition

probability matrix and generator matrix become,

P̂ =


0.32 0.41 0.27

0.12 0.37 0.51

0.01 0.02 0.97

 , Λ̂ =


−0.70 0.69 0.01

0.20 −0.63 0.43

0.00 0.02 −0.02

 , (28)

and the average income for the poverty classes become y1 = 2046.57 and y2 = 4430.35.

Figure 2 shows that, even with a smaller dataset for the estimation procedure, the model

is capable of capturing the dynamic of the observed indexes during the forecast period. This

may be particularly useful when the application of the model is required to evaluate the

impact of general shocks on the economic system that sometimes occur suddenly causing

effects that last for several years.

4. Conclusion

The analysis of the literature on poverty has demonstrated the importance of a dynamic

approach to the determination of poverty and inequality. With the advancements proposed

in this paper we aim at giving an additional tool to help the definition of the policies for the

poverty in the real economies.

In this study, we first proposed an extension of the dynamic Gini index, and consequently

the Sen index, with the inclusion of the inequality within each class of poverty where people

are classified according to their income. Then, we established the central limit theorem

for each poverty index for the determination of their confidence sets. An application to the

Italian income data from 1998 to 2012 confirmed the effectiveness of the considered approach

and demonstrated that the model has a very good power in capturing the dynamic of the

observed indexes.

This study leaves some open possibilities for further research. For example, the extension

to more complex dynamics or the relaxation of some of the model’s assumptions. On the

15



Figure 2: Dynamic indexes of poverty for Italian households income from 1998 to 2012 computed with
parameters estimated using only the initial three years of data, from 1998 to 2004. The vertical lines
represent the separation between observed data on the left and forecast on the right.
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application side, it would be interesting to assess the model to other real economies, especially

in condition of shocks, such as the recent Covid-19 disruption.
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Appendix A. Mathematical Proofs

Proof of Proposition 2

As already explained in Remark 3, we prove only the result concerning the dynamic Gini

index that here is more general than that presented in D’Amico and Regnault (2018) where

it is also possible to find the proof for the remaining indexes.
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From the definition of the dynamic Gini index it follows that

G(t) =

∑
h∈P(t)

∑
l∈P(t) | Yh(t)− Yl(t) |

N2
· N2

2(n1(t) + n2(t))(
∑

h∈P(t) Yh(t))
. (A.1)

We first determine the value to which the first factor of (A.1) converges to. Since the income

classes are mutually exclusive we obtain

1

N2

∑
h∈P(t)

∑
l∈P(t)

|Yh(t)− Yl(t)| =
1

N2

{
N∑
h=1

N∑
l=1

1{Ch(t)=2,Cl(t)=1}|Yh(t)− Yl(t)|

+
N∑
h=1

N∑
l=1

1{Ch(t)=1,Cl(t)=2}|Yh(t)− Yl(t)|

+
N∑
h=1

N∑
l=1

1{Ch(t)=Cl(t)=1}|Yh(t)− Yl(t)|

+
N∑
h=1

N∑
l=1

1{Ch(t)=Cl(t)=2}|Yh(t)− Yl(t)|

}
.

(A.2)

Analysing the four addends separately and observing that by construction Yh(t) > Yl(t)

for Ch(t) = 2 and Cl(t) = 1, we obtain:

1

N2

N∑
h=1

N∑
l=1

1{Ch(t)=2,Cl(t)=1}|Yh(t)− Yl(t)|

=
1

N2

N∑
h=1

N∑
l=1

1{Ch(t)=2,Cl(t)=1}(Yh(t)− Yl(t))

=

∑N
h=1

∑N
l=1 1{Ch(t)=2}1{Cl(t)=1}Yh(t)−

∑N
h=1

∑N
l=1 1{Ch(t)=2}1{Cl(t)=1}Yl(t)

N2

=

∑N
h=1 1{Ch(t)=2}Yh(t)

∑N
l=1 1{Cl(t)=1}

N2
−
∑N

h=1 1{Ch(t)=2}
∑N

l=1 1{Cl(t)=1}Yl(t)

N2

=
nC1(t)

N
·
∑N

h=1 1{Ch(t)=2}Yh(t)

N
− nC2(t)

N
·
∑N

l=1 1{Cl(t)=1}Yl(t)

N
(A.3)

Now observe that from the strong law of large numbers for i ∈ {1, 2} it holds

nC1(t)

N

a.s.−−→ E[1{Ch(t)=Ci}] = P[Ch(t) = Ci] = µ′P.i(t) (A.4)
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A further application of the strong law of large numbers guarantees that

∑N
l=1 1{Ci(t)=1}Yi(t)

N

a.s.−−→ E[1{Ci(t)=1}Yi(t)]

= E[1{Ci(t)=1}E[Yi(t)|σ(C1(s), . . . , CN(s), s ≤ t)]]

= E[yi1{Ci(t)=i}] = yiP[Ch(t) = Ci] = yiµ
′P.i(t).

(A.5)

A substitution of (A.4) and (A.5) in (A.3) gives

1

N2

N∑
h=1

N∑
l=1

1{Ch(t)=2,Cl(t)=1}|Yh(t)− Yl(t)|

a.s.−−→ µ′P.1(t)y2µ
′P.2(t)− (µ′P.2(t))y1µ

′P.1(t) = (y2 − y1)(µ′P.1(t))(µ′P.2(t)).

(A.6)

Similarly, it can be proved that

1

N2

N∑
h=1

N∑
l=1

1{Ch(t)=1,Cl(t)=2}|Yh(t)− Yl(t)|
a.s.−−→ (y2 − y1)(µ′P.1(t))(µ′P.2(t)).

Now, let us analyse the third addend of formula (A.2). To this end we define the random

variable Zh,l;1(t) = 1{Ch(t)=Cl(t)=1}|Yh(t) − Yl(t)| and consequently consider the following

representation:

1

N2

N∑
h=1

N∑
l=1

1{Ch(t)=Cl(t)=1}|Yh(t)− Yl(t)| =
1

N2

∑
h∈C1

∑
l∈C1

Zh,l;1(t),

As h and l belong to P(t), we have that {Zh,l;1(t)}h,l∈P(t) represents an array of (nC1(t))
2 −

nC1(t) i.i.d. random variables with mean z1, i.e.

z1 :=

∫ yep

0

∫ yep

0

|y − x|dF1(y)dF1(x).
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Again, the use of the strong law of large numbers for a random sample size gives

1

N2

nC1
(t)∑

h=1

nC1
(t)∑

l=1

Zh,l;1(t) =
(nC1(t))(nC1(t)− 1)

N2

1

(nC1(t))(nC1(t)− 1)

∑
h,l∈C1

Zh,l;1(t)

a.s.−−→ (µ′P.1(t))2 · z1.

The same reasoning can be applied to the fourth addend of (A.2):

1

N2

nC2
(t)∑

h=1

nC2
(t)∑

l=1

Zh,l;2(t)
a.s.−−→ (µ′P.2(t))2 · z2,

where

z2 :=

∫ yp

yep

∫ yp

yep

|y − x|dF2(y)dF2(x).

Therefore, the first factor of equation (A.1) converges almost surely to

(µ′P.2(t))2

∫ yep

0

∫ yep

0

|y − x|dF1(y)dF1(x) + 2(y2 − y1)(µ′P.1(t))(µ′P.2(t))

+ (µ′P.2(t))2

∫ yp

yep

∫ yp

yep

|y − x|dF2(y)dF2(x).

Analysing the second factor we obtain:

2(nC1(t) + nC2(t))
∑

h∈P(t) Yh(t)

N2
= 2

nC1(t) + nC2(t)

N

∑
h∈P(t) Yh(t)

N
.

Moreover we have the following convergence:

2
nC1(t) + nC2(t)

N

a.s.−−→ 2E[1{Ci(t)∈{C1,C2}}] = 2µ′ (P.1(t) + P.2(t)) = 2H∞(t),

and in virtue of (A.5) we have

∑
h∈P(t) Yh(t)

N
=

∑N
i=1 1{Ci(t)=C1}Yi(t) +

∑N
i=1 1{Ci(t)=C2}Yi(t)

N
a.s.−−→ y1µ

′P.1(t) + y2µ
′P.2(t).

(A.7)
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Therefore, for N → +∞,

GN(t)
a.s.−−→ G∞(t) :=

(µ′P.2(t))2z1 + 2(y2 − y1)(µ′P.1(t))(µ′P.2(t)) + (µ′P.2(t))2z2

2H∞(t)(y1µ′P.1(t) + y2µ′P.2(t))
.

Proof of Lemma 4

In general, because the random variables Yi are non-negative, ∀a < 0 we have Fi(a) = 0 and

accordingly it results

F (t;x) := P[Yh(t)1{Ch(t)∈{C1,C2}} ≤ x]

=
3∑

k=1

P[Yh(t)1{Ch(t)={C1,C2}} ≤ x|Ch(t) = Ck] · P[Ch(t) = Ck]

= F1(x)µ′P.1(t) + F2(x)µ′P.2(t) + 1 · µ′P.3(t),

where the last equality follows from assumption A4. The computation of the r-th moment

can be now accomplished by using the cdf F (t;x). Indeed, for any integer r ≥ 1

E[(Yh(t)1{Ch(t)∈{C1,C2}})
r] = r

∫ ∞
0

xr−1P[Yh(t)1{Ch(t)∈{C1,C2}} > x]dx

= r

∫ ∞
0

xr−1(1− F (t;x))dx.

(A.8)

Now observe that 1− u′P.3(t) = µ′P.1(t) + µ′P.2(t), thus

1− F (t;x) = µ′P.1(t)(1− F1(x)) + µ′P.2(t)(1− F2(x)).

Now by substitution of the latter expression in (A.8) we have:

E[(Yh(t)1{Ch(t)∈{C1,C2}})
r] = r

∫ ∞
0

xr−1
(
µ′P.1(t)(1− F1(x)) + µ′P.2(t)(1− F2(x))

)
dx

= rµ′P.1(t)

∫ ∞
0

xr−1(1− F1(x))dx+ rµ′P.2(t)

∫ ∞
0

xr−1(1− F2(x))dx

= y
(r)
1 µ′P.1(t) + y

(r)
2 µ′P.2(t),

(A.9)

where y
(r)
1 := E[(Y1)r] and y

(r)
2 := E[(Y2)r].

Next point is to prove formula (13). The expected value that defines Θt can be evaluated
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by computing the following double integral

Θ(t) =

∫ +∞

0

(∫ +∞

0

|y − x|dF (x)

)
dF (y).

In order to compute it, we first observe that ∀t ∈ R

dF (t;x) =



0, if x < 0

dF1(x)µ′P.1(t), if 0 < x < yep

dF2(x)µ′P.2(t), if yep < x < yp

0, if x > yp

.

Thus, we have

Θ(t) =

∫ yep

0

(∫ yep

0

|y − x|dF (x)

)
dF (y) +

∫ yp

yep

(∫ yp

yep

|y − x|dF (x)

)
dF (y)

+

∫ yep

0

(∫ yp

yep

(−y + x)dF (x)

)
dF (y) +

∫ yp

yep

(∫ yep

0

(y − x)dF (x)

)
dF (y).

Now, we separately proceed to compute previous integrals:

∫ yep

0

(∫ yep

0

|y − x|dF (x)

)
dF (y) =

∫ yep

0

∫ yep

0

|y − x|µ′P.1(t)dF1(x)µ′P.1(t)dF1(y)

= (µ′P.1(t))2

∫ yep

0

∫ yep

0

|y − x|dF1(x)dF1(y).

∫ yp

yep

(∫ yp

yep

|y − x|dF (x)

)
dF (y) =

∫ yp

yep

∫ yp

yep

|y − x|µ′P.2(t)dF2(x)µ′P.2(t)dF2(y)

= (µ′P.2(t))2

∫ yp

yep

∫ yp

yep

|y − x|dF2(x)dF2(y).
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∫ yep

0

(∫ yp

yep

(−y + x)dF (x)

)
dF (y) =

∫ yep

0

∫ yp

yep

−ydF (x)dF (y) +

∫ yep

0

∫ yp

yep

xdF (x)dF (y)

= −
∫ yep

0

y

(∫ yp

yep

µ′P.2(t)dF2(x)

)
µ′P.1(t)dF1(y) +

∫ yep

0

(∫ yp

yep

xµ′P.2(t)dF2(x)

)
µ′P.1(t)dF1(y)

= −(µ′P.1(t))(µ′P.2(t))

∫ yep

0

ydF1(y) + (µ′P.1(t))(µ′P.2(t))

∫ yep

0

y2dF1(y)

= (µ′P.1(t))(µ′P.2(t))[−y1 + y2] = (y2 − y1)(µ′P.1(t))(µ′P.2(t)).

Similarly, it is possible to prove that

∫ yp

yep

(∫ yep

0

(y − x)dF (x)

)
dF (y) = (y2 − y1)(µ′P.1(t))(µ′P.2(t)).

Therefore,

Θ(t) = (µ′P.1(t))2

∫ yep

0

∫ yep

0

|y − x|dF1(x)dF1(y)

+ 2(y2 − y1)(µ′P.1(t))(µ′P.2(t))

+ (µ′P.2(t))2

∫ yp

yep

∫ yp

yep

|y − x|dF2(x)dF2(y).

(A.10)

It remains to prove formula (15). For the application of this results, it remains to compute

the variance σ2(t) in formula (20). In order to reach this objective we decompose the integral

according to the values of dF (t; ·). It results

∫ +∞

0

[∫ +∞

0

|y − x|dF (t;x)

]2

dF (t; y)

=

∫ yep

0

[∫ yep

0

|y − x|dF (t;x)

]2

dF (t; y) +

∫ yp

yep

[∫ yp

yep

|y − x|dF (t;x)

]2

dF (t; y)

+

∫ yep

0

[∫ yp

yep

(−y + x)dF (t;x)

]2

dF (t; y) +

∫ yp

yep

[∫ yep

0

(y − x)dF (t;x)

]2

dF (t; y).

Now, we separately proceed to compute previous integrals:

∫ yep

0

[∫ yep

0

|y − x|dF (t;x)

]2

dF (t; y) =

∫ yep

0

[∫ yep

0

|y − x|µ′P.1(t)dF1(x)

]2

µ′P.1(t)dF1(y)

= (µ′P.1(t))3

∫ yep

0

[∫ yep

0

|y − x|dF1(x)

]2

dF1(y),

26



and similarly

∫ yp

yep

[∫ yp

yep

|y − x|dF (t;x)

]2

dF (t; y) =

∫ yp

yep

[∫ yp

yep

|y − x|µ′P.2(t)dF2(x)

]2

µ′P.2(t)dF2(y)

= (µ′P.2(t))3

∫ yp

yep

[∫ yp

yep

|y − x|dF2(x)

]2

dF2(y).

Furthermore we have

∫ yep

0

[∫ yp

yep

(−y + x)dF (t;x)

]2

dF (t; y)

=

∫ yep

0

[∫ yp

yep

(−y + x)µ′P.2(t)dF2(x)

]2

µ′P.1(t)dF1(y)

= (µ′P.2(t))2(µ′P.1(t))

∫ yep

0

[
−y
∫ yp

yep

dF2(x) +

∫ yp

yep

xdF2(x)

]2

dF1(y)

= (µ′P.2(t))2(µ′P.1(t))

∫ yep

0

[−y + y2]2 dF1(y)

= (µ′P.2(t))2(µ′P.1(t))

∫ yep

0

[
y2 − 2yy2 + y2

2

]
dF1(y)

= (µ′P.2(t))2(µ′P.1(t))

{∫ yep

0

y2dF1(y)− 2y2

∫ yep

0

ydF1(y) +

∫ yep

0

y2
2dF1(y)

}
= (µ′P.2(t))2(µ′P.1(t))

{
y

(2)
1 − 2y1y2 + y2

2

}
.

Similarly, it is possible to prove that

∫ yp

yep

[∫ yep

0

(y − x)dF (t;x)

]2

dF (t; y) = (µ′P.1(t))2(µ′P.2(t))
{
y

(2)
2 − 2y1y2 + y2

1

}
.

Then by substitution we get formula (15).

Proof of Proposition 5

i) Dynamic Headcount Ratio

The random variable expressing the Headcount ratio can be expressed as a sum of i.i.d.
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random variables,

HN(t) =
nC1(t) + nC2(t)

N
=

∑N
i=1 1{Ci(t)∈{C1,C2}}

N
,

where

1{Ci(t)∈{C1,C2} =

1, P(Ci(t) ∈ {C1, C2})

0, 1− P(Ci(t) ∈ {C1, C2}).

It is simple to observe that

E[1{Ci(t)∈{C1,C2}}] = P(Ci(t) ∈ {C1, C2}) = H∞(t),

V (1{Ci(t)∈{C1,C2}}) = H∞(t)(1−H∞(t)).

Then, as a direct application of the central limit theorem for i.i.d. random variable we can

conclude that

ZN :=

∑N
i=1 1{Ci(t)∈{C1,C2}}

N
−H(t)√

H∞(t)(1−H∞(t))
N

 L−−−−→
N→+∞

N (0, 1),

or equivalently,
√
N

(
HN(t)−H∞(t)√
H∞(t)(1−H∞(t))

)
L−→ N (0, 1),

and in turn
√
N
(
HN(t)−H∞(t)

) L−→ N(0,H∞(t)(1−H∞(t))

)
.

ii) Dynamic Income Gap Ratio

From the definition of the Income gap ratio we have that

1− I(t) =

∑
h∈P(t) Yh(t)

yp(n1(t) + n2(t))
=

∑N
h=1 Yh(t)1{Ch(t)∈{C1,C2}}

N
yp(n1(t)+n2(t))

N

.

Note that the denominator

yp
n1(t) + n2(t)

N
= ypHN(t)

a.s.−−−−→
N→+∞

ypH∞(t),
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as argued above in the proof of Proposition 2. The numerator expresses the sample mean

of the sample
(
1{C1(t)∈{C1,C2}}Y1(t), . . . ,1{CN (t)∈{C1,C2}}YN(t)

)
. According to Lemma 4, each

element of this random sample has

E[Yh(t)1{Ch(t)∈{C1,C2}}] = y1µ
′P.1(t) + y2µ

′P.2(t) := x̄12(t) (A.11)

V [Yh(t)1{Ch(t)∈{C1,C2}}] = E[Y 2
h (t)1{Ch(t)∈{C1,C2}}]− (x̄12(t))2

= [y
(2)
1 µ′P.1(t) + y

(2)
2 µ′P.2(t)]− [y1µ

′P.1(t) + y2µ
′P.2(t)]2 =: σ2

12(t).
(A.12)

Then, from the CLT for i.i.d. random variable we get

√
N

(∑N
h=1 Yh(t)1{Ch(t)∈{C1,C2}}

N
− x̄12(t)

)
L−−−−→

N→+∞
Zσ2

12(t) ∼ N (0, σ2
12(t)).

Now from Slutsky’s theorem (see e.g. Vaart (1998)) we can deduce that the random vector


√
N

(∑N
h=1 Yh(t)1{Ch(t)∈{C1,C2}}

N
− x̄12(t)

)

yp
nC1(t) + nC2(t)

N

 L−→

Zσ2
12(t)

ypH∞(t)

 ,

In addition, consider the function f : R2 → R defined as f(x, y) =


x
y

for y 6= 0

0 for y = 0

, again

from Slutsky’s theorems we could deduce that

f


√
N

(∑N
h=1 Yh(t)1{Ch(t)∈{C1,C2}}

N
− x̄12(t)

)

yp
nC1(t) + nC2(t)

N



=

√
N

(∑N
h=1 Yh(t)1{Ch(t)∈{C1,C2}}

N
− x̄12(t)

)
yp

nC1
(t)+nC2

(t)

N

L−→ f

Zσ2
12(t)

ypH∞(t)

 =
Zσ2

12(t)

ypH∞(t)
∼ N

(
0,

σ2
12(t)

(ypH∞(t))2

)

if P

Zσ2
12(t)

ypH∞(t)

 ∈ C(f)

 = 1, being C(f) the continuity set of f . In our case, the
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function f is discontinuous at every point belonging to the set {(x, y) ∈ R2 : y = 0} but

we can observe that the probability distribution of the limiting random vector

Zσ2
12(t)

ypH∞(t)


assigns mass zero to this set, i.e.

P

Zσ2(t)

ypH∞(t)

 ∈ {(x, y) ∈ R2 : y = 0}

 = 0,

In this way we proved that


√
N

(∑N
h=1 Yh(t)1{Ch(t)∈{C1,C2}}

N
− x12(t)

)
yp

nC1
(t)+nC2

(t)

N

 L−−−−→
N→+∞

N
(

0,
σ2

12(t)

(ypH∞(t))2

)
.

Simple algebra and the application of the convergence HN(t)
a.s.−−→ H∞(t) as N → +∞

produces the following result:

√
N

(
1− I(t)− x12(t)

ypH∞(t)

)
L−−−−→

N→+∞
N
(

0,
σ2

12(t)

y2
pH2
∞(t)

)
.

iii) Dynamic Gini index among the poor

We first observe that

∑
h∈P(t)

∑
l∈P(t)

|Yh(t)− Yl(t)| = 2
∑

1≤l<h≤N

|Yh(t)1{Ch(t)∈{C1,C2}} − Yl(t)1{Cl(t)∈{C1,C2}}|,

then we represent the dynamic Gini index as

G(t) :=

2
∑

1≤l<h≤N |Yh(t)1{Ch(t)∈{C1,C2}}−Yl(t)1{Cl(t)∈{C1,C2}}|
N2−N

2(n1(t)+n2(t))(
∑

h∈P(t) Yh(t))

N2−N

. (A.13)

We now proceed to consider the numerator of previous formula. To the random array

(|Yh(t)1{Ch(t)∈{C1,C2}}−Yl(t)1{Cl(t)∈{C1,C2}}|)Nl,h=1 we can apply Theorem 3.3 in Li et al. (2001)
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and we obtain that

√
N

(
2
∑

h∈P(t)

∑
l∈P(t) |Yh(t)− Yl(t)|
N2 −N

−Θt

)
L−→ N (0, σ2(t)),

where

σ2(t) =

∫ +∞

−∞

[∫ +∞

−∞
|y − x|dF (t;x)

]2

dF (t; y)−Θ2
t , (A.14)

Θt = E[|Yh(t)1{Ch(t)∈{C1,C2}} − Yl(t)1{Cl(t)∈{C1,C2}}|],

and F (t; ·) is the cumulative distribution function of the random variable Yh(t)1{Ch(t)∈{C1,C2}}

with h = 1, . . . , N , which has been derived in Lemma 4 together with the values of Θt and

σ2(t).

Now, consider the denominator of formula (A.13), we have

2(nC1(t) + nC2(t))
∑

h∈P(t) Yh(t)

N2 −N
=

2

1− 1
N

· (nC1(t) + nC2(t)

N
·
∑

h∈P(t) Yh(t)

N

a.s.−−−−→
N→+∞

2H∞(t)x̄12(t),

where the almost sure convergence is obtained by applying formulas (7), (A.7) and (A.11).

Therefore, from Slutsky’s theorem, we have that

√
N

(
2
∑

h∈P(t)

∑
l∈P(t) |Yh(t)− Yl(t)|
N2 −N

−Θt

)
· N2 −N

2(nC1(t) + nC2(t))(
∑

h∈P(t) Yh(t))

L−→ Z,

(A.15)

being Z ∼ N (0,A2(t)) with A2(t) = σ2(t)
4H2
∞(t)(x̄12(t))2

. From equation (A.15) and from the

definition of dynamic Gini index, it follows that

√
N

(
GN(t)−Θt ·

N2 −N
2(nC1(t) + nC2(t))(

∑
h∈P(t) Yh(t))

)
L−→ N (0,A2(t)). (A.16)

As last observation, we note that Θt, which was evaluated in (A.10), coincides with the

numerator of G∞(t) and considering that

N2 −N
2(nC1(t) + nC2(t))(

∑
h∈P(t) Yh(t))

a.s.−−→ 1

2H∞(t)x̄12(t)
,
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we find that equation (A.16) is equivalent to

√
N

(
GN(t)−Θt

1

2H∞(t)x̄12(t)

)
L−→ N (0,A2(t)),

and therefore
√
N(GN(t)−G∞(t))

L−→ N (0,A2(t)).

iv) Dynamic Sen Index

The Dynamic Sen Index is defined according to S(t) = H(t)[I(t) + (1− I(t))G(t)]. Since

we proved that I(t) a.s.−−→ I∞(t) and G(t)
a.s.−−→ G∞(t), then from the continuous mapping

theorem (see, e.g. Vaart (1998)) we can write

[I(t) + (1− I(t))G(t)]
a.s.−−→ [I∞(t) + (1− I∞(t))G∞(t)] ∈ R.

Furthermore, from point i) of Proposition 5 we know that

√
N(HN(t)−H∞(t))

L−−−−→
N→+∞

N
(
0,H∞(t)(1−H∞(t))

)
,

and then if we consider the function f : R2 → R defined as f(x, y) = xy due to the continuity

of f we have

f

√N(HN(t)−H∞(t))

I(t) + (1− I(t))G(t)

 L−→ f

Zσ2
H(t)

I∞(t) + (1− I∞(t))G∞(t)

 = Zσ2
H(t)·
(
I∞(t)+(1−I∞(t))G∞(t)

)
,

where Zσ2
H(t) ∼ N (0,H∞(t)(1−H∞(t)).

Thus, we have that

√
N(HN(t)−H∞(t))[IN(t)+(1−IN(t))GN(t)]

L−−−−→
N→+∞

N
(

0, σ2
H(t)(I∞(t)+(1−I∞(t))G∞(t))2

)
Simple algebraic manipulations give

√
N(SN(t)−H∞(t)[IN(t) + (1− IN(t))GN(t)])

L−→ N
(

0, (1−H∞(t))
S2
∞(t)

H∞(t)

)
,

32



but since [IN(t) + (1− IN(t))GN(t)]
a.s.−−→ [I∞(t) + (1− I∞(t))G∞(t)], we can conclude that

√
N(SN(t)− S∞(t))

L−→ N
(

0, (1−H∞(t))
S2
∞(t)

H∞(t)

)
.
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