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Abstract: Many biologically active compounds feature low solubility in aqueous media and, thus,
poor bioavailability. The formation of the host-guest complex by using calixarene-based macrocycles
(i.e., resorcinol-derived cyclic oligomers) with a good solubility profile can improve solubilization
of hydrophobic drugs. Herein, we explore the ability of resorc[4]arenes to self-assemble in polar
solutions, to form supramolecular aggregates, and to promote water-solubility of an isoflavone
endowed with anti-cancer activity, namely Glabrescione B (GlaB). Accordingly, we synthesized
several architectures featuring a different pattern of substitution on the upper rim including functional
groups able to undergo acid dissociation (i.e., carboxyl and hydroxyl groups). The aggregation
phenomenon of the amphiphilic resorc[4]arenes has been investigated in a THF/water solution by UV–
visible spectroscopy, at different pH values. Based on their ionization properties, we demonstrated
that the supramolecular assembly of resorc[4]arene-based systems can be modulated at given pH
values, and thus promoting the solubility of GlaB.

Keywords: resorc[4]arenes; supramolecular assembly; solubilizing agents; Glabrescione B; UV-vis
spectroscopy

1. Introduction

A wide range of biologically active compounds suffers from poor aqueous solubil-
ity impairing their bioavailability and, as a result, their preclinical and clinical devel-
opment. The self-assembly process of well-defined structures from various chemical
building blocks have found exponential growth in the development of drug delivery and
bio-nanotechnology systems [1]. In particular, these assemblies give the possibility to
encapsulate pharmaceutically active compounds in their core (or at their surface) and to
cargo them to the therapeutic targets [2]. Self-assembly can include different levels of
complexity: it can be as simple as the dimerization of two small building blocks driven by
hydrogen bonding or more complicated as a cell membrane [1], a remarkable supramolecu-
lar architecture created by a bilayer of phospholipids embedded with functional proteins.
In addition to a vast series of natural amphiphilic structures, several “engineered” syn-
thetic architectures have been designed as solubilizing agents, using a macrocyclic core
such as cyclodextrins and crown-ethers [2–13]. Among the large pool of macrocycles
available, calixarene-based macrocycles are one of the most ubiquitous host molecules
in supramolecular chemistry. These macrocycles are cyclic oligomers characterized by a
unique three-dimensional surface, featuring several phenolic units bound with methylene
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bridges, which can form large hydrophobic cavities. The high versatility of their chemical
structure, which can be variously functionalized at both the upper and lower rims, allows
the combination of hydrophilic and hydrophobic groups favoring the amphiphilic behav-
ior of macrocycles and the formation of self-associates with a varying morphology [14].
Supramolecular complexation techniques using calixarene-based macrocycles as hosts may
improve not only the solubility but also the stability of the guest molecules (including
drugs), several examples of calixarene-guest aggregates have been reported [15–17]. In
order to overcome the low aqueous solubility of these macrocycles, the upper or lower
rim can be easily functionalized with water soluble groups containing positive or negative
charges [18–24]. Among them, sulfonated calixarenes have dominated drug solubility
studies [16]. Within the calixarene family, resorcinol-derived cyclic oligomers, namely
resorc[4]arenes, endowed with cavities of molecular dimension, behave as an efficient arti-
ficial receptor [14,25,26]. The synthetic modularity and different complexation properties
of the resorcarene-based macrocycles make them a promising building block for the design
and synthesis of more sophisticated supramolecular architectures [27–31]. Efficient solu-
bilizing agents were designed and developed by using several resorc[4]arenes [15,32,33].
Recently, Morozonova et al. reported that aggregates of amphiphilic calix-resorcinarenes,
featuring amidoamino and dimethylamino peripheral groups on the upper rim and dif-
ferent aliphatic groups (pentyl, octyl, and undecyl) on the lower rim, behave as effective
solubilizing agents of hydrophobic drugs containing a carboxyl group (e.g., naproxen,
ibuprofen, and ursodeoxycholic acid) [34]. The driving force of the association process is
the ionization of organic acids and the peripheral nitrogen atoms of the macrocycles with
the subsequent inclusion of hydrophobic acids into the macrocycle self-associates. Intrigu-
ingly, the solubilization of carboxylic acids in more than an equimolar ratio leads to the
co-assembly of the macrocycle polydisperse associates into supramolecular monodisperse
nanoparticles with the diameter of about 100 nm [34]. However, to date, a limited use
of resorcarene derivatives as an amphiphilic host to complex poorly water-soluble drugs
has been made with the purpose of enhancing their water-solubility and bioavailability.
In a previous study, we demonstrated that physical descriptors, namely the aggregation
polarity index (API), the cavitation Gibbs free-energy change (∆∆Gcav), and the decrease
of the molecular surface (A) after the exposure of solute to the solvent upon aggregation
(%∆A), were able to monitor the propensity of a double-spanned resorc[4]arene derivative
(BSK), featuring a basket-like structure, to self-assembly in tetrahydrofuran (THF)/water
solutions [29]. Based on these findings, with the aim to investigate the self-aggregation
propensity of resorc[4]arene macrocycles, several architectures featuring a different pat-
tern of substitution on the upper rim, including functional groups able to undergo acid
dissociation, were synthesized (Figure 1). The self-assembly capability in polar solutions of
amphiphilic resorc[4]arenes R1, R2, and R3, containing on the upper rim ester, carboxyl,
and hydroxyl groups, respectively, were explored by UV-visible spectroscopy. Based on the
ionization properties of R2 and R3, we demonstrated that, by varying the pH values, the
supramolecular assembly of resorc[4]arene-based systems can be driven in polar solutions
paving the way for the design and construction of new drug formulations.
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2. Results and Discussion

The construction of supramolecular assemblies by using amphiphilic molecular
species is one of the most promising employable approaches to deliver hydrophobic
pharmaceutically active compounds in physiological fluids. In principle, a suitable mod-
ulation of the self-assembly process can be effectively achieved in polar solvents by per-
forming a proper chemical modification of the peripheral portion of the selected host,
in terms of number and/or type of the hydrophilic groups. As such, the exploitation
of supramolecular assembly of resorc[4]arenes represents a key approach to encapsulate
hydrophobic bioactive compounds into their wide lipophilic and relatively flexible cavity-
shaped architecture. In a previous study, we synthesized a cavity-shaped resorc[4]arene
resembling a basket (BSK, Figure 2) via a ring closing metathesis reaction, and we investi-
gated its self-aggregation propensity by UV-visible spectroscopy (Figure 2) [29]. To this
aim, we developed a set of physical descriptors that, together, allowed us to calculate
the hydrophilic−hydrophobic balance of the macrocycle. In this context, the Hildebrand
polarity index (δH) was employed as an indicator of the macrocycle affinity to the corre-
sponding solvent system; a specific parameter, namely API, which corresponds to the δH
of the solvent mixture at which a self-aggregation process has reached the 50%, was used
to reflect in a quantitative fashion the hydrophilic–hydrophobic nature of the molecule and,
thus, its amphiphilicity [29].
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Figure 2. Sigmoidal aggregation profile of BSK as obtained in THF/water solvent system. The API
parameter estimated for BSK from linear fitting of sigmoidal plot of ∆ABS350–400 vs. δH is reported.

The BSK resorcarene demonstrated a clear propensity to undergo self-aggregation
in THF/water solvent systems. The aggregation phenomenon begins when the solvent
composition shows a δH value of 16.0, i.e., THF/water = 52:48 (v/v), and stops when δH
is about 17.1, i.e., THF/water = 44:56 (v/v) [29]. Specifically, the API index of BSK self-
aggregation corresponded to a δH = 16.55 (kcal × dm3)1/2 in the THF/water composition
of 48/52 (v/v) [29]. The moderate API value found for BSK suggests that the hydrophobic
nature of the macrocycle largely overcomes the hydrophilic one. In general, the linear
relation between δH and the water percentage of the THF/water mixture can be expressed
by the following regression line achieved for the plot δH vs. H2O% (δH values have
been obtained by the linear combination shown here: H2O% × δH-of-H2O + THF% ×
δH-of-THF, with the Hildebrand polarities δH-of-H2O and δH-of-THF amounting to 23.4 and
9.1, respectively) [35]:

δH = 0.1435 × H2O% + 9.0929 (1)

Based on this evidence, by increasing the hydrophilic character of the resorc[4]arene
macrocycles through their upper rim chemical modification, the API parameter, as well as
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the range when the self-aggregation process occurs, should undergo a progressive shift
towards greater values of δH, corresponding to solutions largely rich in water which are
able to give rise to a more effective solvation. Accordingly, we decided to synthesize
three resorc[4]arene derivatives (R1, R2, and R3, Figure 3), featuring the same four alkyl
chains in the lower rim, but different upper rim functionalization, and to investigate their
self-assembly tendency by UV-visible spectroscopy. With respect to R1 which contains
four methyl ester groups, the R2 and R3 macrocycles own ionizable functions in their
hydrophilic portion (i.e., carboxyl or phenolic groups). As predicted by theoretical pKa
values calculated through the Marvin program [36] (Figure 3), the degree of deprotonation
of such groups can be finely modulated by the employment of the THF/water mixtures
at a fixed pH value X of the aqueous component (pHX). Accordingly, to perform the
self-assembly investigation of the ionizable resorc[4]arenes, the pHX was set by using a
suitable buffer solution, i.e., THF/(buffer-pHX) mixtures.
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Figure 3. Structure of amphiphilic resorc[4]arenes R1, R2, and R3, and pKa of acid groups calculated
by Marvin program.

2.1. Synthesis of Amphiphilic Resorc[4]arene Macrocycles

With the aim of constructing systems for pH-induced self-assembly of amphiphilic
resorc[4]arenes, we introduced in the resorc[4]arene macrocycle scaffold four long non-
polar hydrocarbon chains in the lower rim and polar groups in the upper rim. Resorcarene
R3 was prepared according to the literature [37,38]. Tetramethoxyresorcarenes (3) and R1
were obtained by slight modifications of the synthetic procedures reported by Li et al [39].
The synthetic route to resorc[4]arenes R1 and R2 is reported in Scheme 1. Compound
3 was obtained by a tetramerization reaction of 3-methoxyresorcinol (1) with dodecanal
(2). Successively, the phenol groups of resorcarene 3 were functionalized with methyl
bromoacetate in the presence of potassium carbonate as a base, to obtain resorcarene R1,
which bears methyl ester moieties in the upper rim. Finally, the ester functionalities of R1
were hydrolyzed with 2 M of potassium hydroxide and then the solution was acidified
with hydrochloric acid to obtain the resorc[4]arene tetraacid R2. All these 1H NMR and
13C NMR spectroscopical data were identical to the literature for compounds 3 and R1 [39].
Compound R2, which was unknown, has been fully characterized by NMR and HRMS.
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Scheme 1. Synthesis of amphiphilic resorc[4]arenes R1 and R2.

For all the resorc[4]arenes, the 1H and 13C NMR spectral data are featured by the
presence of single signals for equivalent internal and external aromatic protons and carbons,
suggesting a cone conformation with C4v symmetry in solution (Figure 4). Accordingly,
in addition to having a greater hydrophilic character, resorc[4]arenes R1–R3 are less pre-
organized and are more flexible systems with respect to BSK, in which a flattened cone
conformation occurs for the presence of the two cyclic alkenes (Figure 4).
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2.2. The Self-Association of Resorc[4]arene R1 in THF/Water Solution

The resorc[4]arene R1, which features similar structure to R2 but endowed with a
non-ionizable upper rim (-COOCH3 in place of -COOH), was used as a reference system to
compare its self-assembly behavior with that of the ionizable resorc[4]arenes. Accordingly,
we investigated the aggregation propensity of resorc[4]arene R1 in THF/water mixtures by
varying progressively the non-polar and polar solvent components in the δH range from
9.1 (100% of THF) to 21.3 (THF/water = 15:85, v/v). For this purpose, the concentration
of R1 was kept at a constant value of 3.2 × 10−5 M. The self-association process was
monitored by registering the changes in the UV-absorbance difference at the wavelengths
of 350 and 400 nm (∆ABS350–400) as a function of the δH value of the corresponding solvent
system. The scatter plot of ∆ABS350–400 vs δH was further fitted by using the following
equation [29,40]:

∆ABS350-400 = b/(1 + 10(−(δH − API)/a) (2)

with b and a parameters representing the maximum value assumed by ∆ABS350–400 and
the slope of the sigmoidal curve, respectively. As depicted in Figure 5, the self-aggregation
of R1 is featured by an API value of 17.3 which corresponds to a water amount of 57.3%
(with a = 0.42). This means that the resorc[4]arene assembly starts approximately when
the THF/water composition yields δH =16.9 (54.6% of water) and stops when δH =17.7
(60.1% of water composition). At the end of the R1 self-association process, a suspension
with visible turbidity is formed (Figure 5). Although R1 does not possess ionizable groups,
to further characterize the structure in terms of lipophilic/hydrophilic balance of the
macrocycle and to allow the comparison of its lipophilicity with that of resorc[4]arenes
R2 and R3, the distribution coefficient in the logarithmic form, Log(D), was calculated
through the Marvin program [36]. In general, Log(D) is a widely used descriptor measuring
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the lipophilicity of ionizable biologically active compounds, where the partition in two
immiscible solvents (octan-1-ol/water) is a function of the pH. Lower values of Log(D)
correspond to structures endowed with higher aqueous solubility. Specifically, the Log(D)
value of the resorc[4]arene R1 was established to be 21.8.
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2.3. The Self-Association of Ionizable Resorc[4]arenes R2 and R3 in THF/(Buffer-pHX) Solution

Due to the presence of four carboxyl groups in the upper rim, the R2 degree of
lipophilicity can be modulated in the Log(D) range from 21.6 to −5.2 by inducing the
formation of the ionized forms at different pH values (in the range of 2.0–11.4). Accordingly,
to investigate the self-assembly behavior of resorc[4]arene R2, the UV-visible spectroscopic
analysis was performed by using the THF/(buffer-pHX) mixtures. To establish the final
pH value (i.e., apparent pH) in the resulting THF/(buffer pHX) solution, the THF effect
was experimentally measured up to its total amount of 50% in the mixture (see Figure S1).
Specifically, as highlighted in Figure S1, the pH variation in the aqueous solution was
overall rather modest reaching the maximum deviation at pH 8.4 (∆pH = 0.54 units). To
explore the influence of the R2 deprotonation degree on the δH ranges at which the self-
assembly process begins and finishes, three different pH values (i.e., 1.9, 6.2, and 8.7) of the
aqueous component employed in the THF/(buffer-pHX) mixtures were chosen. The ratio
between the non-polar and the polar components of the solvent system was progressively
varied in the δH range from 9.1 (100% THF) to 21.3 (15% THF/85% water), when using
buffer-pH1.9 and buffer-pH6.2 solutions, and in the δH range from 9.1 (100% THF) to 22.7
(5% THF/95% water), when using a buffer-pH8.7 solution. In all cases, the R2 concentration
was maintained at a fixed value of 3.0 × 10−5 M. The self-aggregation plots of R2, registered
as a function of the THF/(buffer pHX) mixtures at the three above-mentioned pH values, are
reported in Figure 6. By using a buffer-pH1.9 solution, the ionization of the resorc[4]arene
R2 is substantially suppressed and the Log(D) value accounts for 21.6. The total charge on
the upper rim of R2 was estimated to be −0.2, corresponding to the following distribution
of each unionized and ionized species in water: 85% of the uncharged form; 14% of the
mono-anionic form; and 1% of the di-anionic form. In the THF/(buffer-pH1.9) mixture, the
aggregation process of R2 starts at δH = 17.3 (57.3% of water) and stops at δH = 20.9 (82.5%
of water). By comparing the self-assembly of R2 with that of R1, the more hydrophilic
resorc[4]arene R2 (Log(D) = 21.6 vs Log(D) = 21.8) begins the aggregation at a little bit
greater δH value (δH = 17.3 vs. δH = 16.9, corresponding to a difference of +2% in water),
and completes the process to a higher δH value (δH = 20.9 vs. δH = 17.7, corresponding to
a difference of +23% in water).
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Figure 6. The sigmoidal aggregation profile and the corresponding UV-visible spectra of resorc[4]arene R2 as obtained in
THF/water solvent systems at fixed pH values of the aqueous component. Regression analysis to fit the experimental data
was performed according to Equation (2). Subfigures (A–E) represent the deprotonation states of R2 at the analyzed pH
values of 1.9, 6.2 and 8.7 (the relevant percentages are shown next to the respective aggregation plots).

When the aggregation process of R2 was performed at the higher pH values (i.e.,
6.2 and 8.7), marked changes in the δH values, as well as in the API and a parameters,
were found. In particular, by employing a buffer pH 6.2 solution, the self-assembly of R2,
featuring an estimated Log(D) of 10.0, is comprised in the δH range from 18.9 to 20.0, with
API and a parameters of 19.5 and 0.56, respectively. At the end of this aggregation process,
the solution appears slightly turbid, with the self-assembled molecules of R2 showing a
surfactant action evidenced by the formation of a small foam layer (Figure 7). When the
self-aggregation process of R2 was carried out by using the THF/(buffer-pH8.7) solvent
mixture, more drastic changes on the API and a parameters, as well as on the δH value at
which the assembly starts, were observed. In a buffer-pH8.7 solution, the resorc[4]arene
R2 is characterized by a Log(D) of 0.1, and it is completely deprotonated. As such, the
process is triggered when δH reaches the value of 20.5 (i.e., 86% of water), with the API and
a parameters assessed equal to 22.5 (i.e., 94% of water composition) and 2.17, respectively.
In these conditions, unlike in buffer-pH1.9 and buffer-pH6.2 systems, at the end of the
self-assembly process a clear solution appears, featured by a very low ∆ABS350–400 value of
0.01 (about ten times lesser than that registered for the aggregated form of R2 at pH = 6.2).
The self-assembled molecules of R2 show a strong surfactant action, as evidenced by
the formation of a thick layer of foam (Figure 7). These results suggest that, in such an
experimental condition, the resorc[4]arene R2 might act as an effective molecular shuttle of
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hydrophobic structures. Interestingly, the Log(D) value of 0.1 assessed for R2 at pH = 8.7
corresponds to the one owned by the stearic acid at pH = 11.5 and by the palmitic acid at
pH = 10.5 (values calculated by Marvin [36]). The sodium salts of these fatty acids, which
are the common components of natural soaps, are typically characterized in water by pH
values close to 11. Thus, resorc[4]arene R2 at a pH of around 9 is featured by a similar
lipophilic/hydrophilic balance to that of components of natural soaps.
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Further investigation was focused on the self-assembly behavior of resorc[4]arene R3,
featuring eight ionizable phenolic groups on the upper rim. The aggregation process was
monitored in the pH range from 2.4 to 11.8 by using specific THF/(buffer-pHX) mixtures
(i.e., X = 2.4, 6.2, 8.5, 10.0, 11.8), in order to allow a selective modulation of R3 hydrophilicity
in response to an appropriate pH value. Accordingly, the Log(D) values of resorc[4]arene
R3 were assessed by the Marvin program [36] as a function of the selected pH (Figure 8)
and the theoretical pKa values of the phenolic groups (Figure 3), thus reflecting the different
percentages in which R3 is neutral or in the charged forms. The ∆ABS350–400 values plotted
as a function of δH for each THF/(buffer-pHX) mixture are collected in Figure 8. From the
sigmoidal plots, an initial induction of R3 self-aggregation is followed by a progressive
disaggregation step, except for the THF/(buffer-pH2.4) mixture which preserves R3 in its
uncharged form. To experimentally explain this trend, Dynamic Light Scattering (DLS)
measurements were carried out by analyzing the diameters Ø of the R3 aggregates in
solutions prepared from a THF/(buffer-pH10.0) mixture in the δH range from 18.8 to 22.7
(i.e., from 68% to 95% of water composition). As outlined in Figure 9, the variation of
Ø (blue line) is perfectly related to the ∆ABS350–400 changes at the same δH range (gray
line). After one hour, the DLS measurements were performed on the same solutions,
showing how the R3 aggregates significantly increase in dimensions by a factor of 1.8 at
the water composition of 75%, while to a lesser extent at 68% of water (Figure 8, orange
line). Interestingly, the measured diameters of the R3 aggregates are linearly related to
the ∆ABS350–400 values at the same δH index (R2 = 0.9869), according to the following
equation:

Ø = 18,532 × ∆ABS350–400 + 207.49 (3)

Within the ∆ABS350–400 range of 0.001–0.03, this equation was employed to estimate
the variation in the aggregate size of the resorc[4]arenes R1, R2, and R3 as a function of
δH. The δ of the most significant aggregates are indicated in the sigmoidal profiles of
Figures 4, 5 and 7. The propensity of the macrocycle to self-assembly with the formation of
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colloidal aggregates is clearly demonstrated from the aggregation plots of R3. At higher
pH and δH values (water percentages greater than 85%), their diameters are lesser than
300 nm, giving rise to lyophilic colloids and thus to clear solutions. Nevertheless, by
using a THF/(buffer-pH11.8) mixture at δH > 20 (water composition greater than 90%), the
diameter of the colloid system exceeds the above limit, reaching the value of 647 nm in
100% of buffer and leading to a perfectly clear solution. Similarly to resorc[4]arene R2 in
the THF/(buffer-pH8.7) solvent system at δH greater than 20.5, the R3 solutions at specific
pH and δH values might favor the solubilization of hydrophobic compounds.
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2.4. Lyophilic Colloids Based on Self-Aggregated Resorc[4]arenes R2 and R3

The ability of lyophilic colloids based on resorc[4]arenes R2 and R3 to capture hy-
drophobic compounds in wide polar media was investigated towards Glabrescione B
(GlaB, Log(D) = 5.14) (Figure 9), a naturally-occurring isoflavone which proved to be a
good preclinical candidate for the treatment of Hedgehog (Hh) dependent tumors [41–44].
Based on the above-mentioned results, the self-aggregation process of R2 was induced in
its completely deprotonated form by using a THF/(buffer-pH8.7) mixture at δH values of
21.97 and 22.69 (corresponding to 90% and 95% of water composition, respectively). As
showed in Figure 10, while GlaB alone gives rise to cloudy suspensions in both selected
δH conditions, by using the R2 lyophilic colloids, the turbidity, although present, appears
strongly reduced.

Figure 10. The ability of lyophilic colloids based on resorc[4]arene R2 to encapsulate GlaB by using a
THF/(buffer-pH8.7) mixture at different δH values.
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The observed behavior of resorc[4]arene R3 was rather different. The aggregation
test of GlaB alone and in the presence of R3 was performed by employing THF/buffer
mixtures featuring different δH values: (a) 19.83, 21.97, and 22.69, with the use of buffer-
pH10.0 solution; (b) 21.97 and 22.69, with the use of buffer-pH11.8 solution. As outlined
in Figure 11, by using an equimolar concentration of GlaB and R3 (3.0 × 10−5 M), clear
colloidal solutions at both the analyzed pH values were obtained. Coherently, the aggregate
dimensions established by the DLS measurements indicate that the lyophilic colloids
(R3 + GlaB) at δH = 22.69 reach diameters very close to the ones measured for the self-
aggregated R3, at both the pH values of 10.0 and 11.8. In addition, the dimensional stability
of lyophilic colloids (R3 + GlaB) in the THF/(buffer-pH11.8) solvent system at δH = 22.69
was analyzed over time by DLS measurements (Figure 11). The R3-GlaB aggregates were
stable within the first hour (h), characterized by a diameter of 276 nm. Later (4 h), a
reduction occurred, reaching a δ of 136 nm, and a further increment towards the value of
400 nm was observed within 24 h.

Figure 11. The ability of lyophilic colloids based on resorc[4]arene R3 to act as a molecular shuttle of GlaB by using
THF/(buffer-pH10.0) and THF/(buffer-pH11.8) mixtures at different δH values.

3. Materials and Methods
3.1. Synthesis of Resorc[4]arenes

General remarks: melting points were recorded with a Büchi melting point B-545 and
are not corrected. The 1H and 13C NMR spectra have been acquired with a Bruker Avance
400 spectrometer operating at 400.13 and 100.6 MHz, respectively, at 300 K in CDCl3 or
DMSO-d6, using 5 mm diameter glass tubes. Chemical shifts were expressed in ppm and
coupling constants (J) in hertz (Hz), approximated to 0.1 Hz. The residual solvent peak
was used as an internal reference for 1H and 13C NMR spectra. Data for 1H NMR are
reported as follows: chemical shift, multiplicity (br = broad, ovrlp = overlapped, s = singlet,
d = doublet, t = triplet, q =quartet, m = multiplet, dd = double doublet), coupling constant,
and integral. Spectra were processed with the program MestReNova version 6.0.2-5475,
FT and zero filling at 64 K. High-resolution (HR) mass spectra were obtained using a
Thermo Fischer Exactive mass spectrometer equipped with an ESI source and an Orbitrap
analyzer: capillary temperature 275 ◦C, spray voltage 3.5 kV, sheath gas (N2) 10 arbitrary
units, capillary voltage 65 V, and tube lens 125 V. Analytical TLC were performed using
0.25 mm Fluka F254 silica gel. The compounds on TLC were revealed by quenching
fluorescence (at 254 and 365 nm) using a 4 W UV lamp. Otherwise, plates were stained
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with an acidic solution of p-anisaldehyde or a 10% phosphomolybdic acid solution in
EtOH and heated (T = 120 ◦C). The product mixture purifications were carried out with
silica column chromatography using Fluka 60 Å silica gel (0063−0200 mm, 70−230 mesh).
Flash chromatography was performed using 200−400 mesh silica gel. Commercially
available reagents were supplied by Sigma-Aldrich and used without further purification.
Dry solvents were purchased from Sigma-Aldrich or dried by distillation. Resorcarene
R3 [37,38] and GlaB [45] were synthesized according to the literature. Yields of synthesized
compounds are referred to chromatographically and spectroscopically pure compounds,
unless otherwise stated.

3.2. Synthesis of Tetraundecanyl Tetra-O-methyl Resorc[4]arene (3)

Boron trifluoride etherate (2.3 g, 2 mL, 16.2 mmol) was added to a solution of 3-
methoxyphenol (1) (1 g, 0.88 mL, 8.0 mmol) and dodecanal (2) (1.47 g, 1.76 mL, 8.0 mmol)
in anhydrous dichloromethane (40 mL), and the reaction was kept under stirring at room
temperature for 2 h. The reaction mixture was then washed with water (2 × 40 mL) and
brine (1 × 40 mL). The organic layer was dried over anhydrous Na2SO4, and the solvent
was removed under reduced pressure to give a dark red oil. The crude was crystalized
from hot ethanol to give a reddish solid. The product was recrystallized from hot methanol
to obtain pure compound 3 (0.687 g, 80% yield) as a pale pinkish solid. 1H NMR (400 MHz,
CDCl3) δ 7.51 (s, 4H), 7.22 (s, 4H), 6.35 (s, 4H), 4.27 (t, J = 7.4 Hz, 4H), 3.83 (s, 12H), 2.19 (d,
J = 6.7 Hz, 8H), 1.27 (M, 72H), and 0.89 (t, J = 6.3 Hz, 12H); 13C NMR (101 MHz, CDCl3) δ
153.7, 153.1, 124.9, 124.7, 123.8, 100.1, 77.5, 77.2, 76.8, 56.0, 34.1, 33.2, 32.1, 29.9, 29.9, 29.6,
28.2, 22.8, and 14.3.

3.3. Synthesis of Tetraundecanyl-tetra(methoxycarbonylmethoxyl)-tetra-O-methyl Resorc[4]arene
(R1)

Methyl bromoacetate (0.225 mL, 0.364 g, 2.38 mol) was added to a stirred solution of
resorc[4]arene 3 (0.554 g, 0.476 mmol) and K2CO3 (0.654 g, 4.76 mmol) in dry acetonitrile
(65 mL), and the reaction mixture was heated at reflux for 24 h under inert atmosphere.
Then, the reaction mixture was cooled down and the solvent was removed under reduced
pressure. The residue was dissolved in dichloromethane (40 mL), and the organic layer
was washed with 1 M HCl (10 mL), with water and brine. The organic layer was dried
over anhydrous Na2SO4, and the solvent was removed under reduced pressure. The
pure product R1 was obtained as a solid (0.398 g, 0.274 mmol) in 58% yield and used
without further purification. 1H NMR (400 MHz, CDCl3) δ 6.61 (s, 4H), 6.29 (s, 4H), 4.50
(t, J = 7.4 Hz, 4H), 4.21 (d, J = 15.9 Hz, 4H), 4.02 (d, J = 15.9 Hz, 4H), 3.77 (s, 12H), 3.61 (s,
J = 5.5 Hz, 12H), 1.85–1.77 (m, 8H), 1.32–1.21 (ovrlp m, 18H), and 0.87 (t, J = 6.9 Hz, 12H);
13C NMR (101 MHz, CDCl3) δ 170.3, 155.7, 155.0, 128.4, 127.6, 126.5, 99.7, 77.5, 77.2, 76.8,
68.4, 55.6, 52.0, 50.9, 35.6, 34.8, 32.1, 30.1, 30.0, 29.9, 29.87, 29.83, 29.5, 28.2, 22.8, and 14.2.

3.4. Synthesis of Tetraundecanyl-tetra(hydroxycarbonylmethoxyl)-tetra-O-methyl Resorc[4]arene
(R2)

A 2 M aqueous solution of potassium hydroxide (15 mL) was added to a solution
of resorc[4]arene R1 (0.400 g, 0.276 mmol) in THF (40 mL), and the reaction mixture was
stirred for 24 h at room temperature. Then the solution was acidified with 2 M HCl (40 mL)
and the THF was removed under reduced pressure. The white precipitate was filtered,
washed with water, and dried under a vacuum at 80 ◦C for 3 h. Then it was dissolved
in THF and the solution was filtered. The THF was removed under reduced pressure
to give R2 as a white powder (0.366 g, 0.262 mmol) in 95% yield. 1H NMR (400 MHz,
DMSO-d6) δ 6.65 (s, 4H), 6.38 (s, 4H), 4.51 (t, J = 7.0 Hz, 4H), 4.42 (d, J = 16.1 Hz, 4H), 4.25
(d, J = 16.1 Hz, 4H), 3.57 (s, 12H), 1.69 (br s, 8H), 1.16 (s, 72H), and 0.79 (t, J = 6.7 Hz, 12H).
13C NMR (101 MHz, DMSO-d6) δ 170.50, 155.23, 154.27, 125.88, 125.30, 125.23, 98.43, 66.47,
55.47, 35.05, 34.11, 31.40, 30.69, 29.58, 29.35, 29.19, 28.84, 27.62, 22.14, and 13.82. ESI-HRMS:
m/z [M−H]− C84H127O16 requires 1391.9130, found 1391.9100; [M−2H]−2 C84H126O16
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requires 695.4528, found 695.4524; and [M−3H]−3 C84H125O16 requires 463.2995, found
463.2993.

3.5. UV-Vis Spectroscopical Analyses

General remarks: all spectroscopic analyses were performed with the JASCO V-550
spectrometer with a Peltier thermostat at 25 ◦C using a quartz cuvette (cell length 1 mm).
The HPLC grade THF (tetrahydrofuran) and H2O (water) were obtained from Sigma
Aldrich, St. Louis, MO, USA.

3.6. Preparation of Solutions

Stock solution of R1 (C88H136O16, Mw 1449.76 g/mol; 6.1 × 10−3 g, 4.2 × 10−3 mmol)
at a concentration of 2.1 × 10−4 M in 20 mL of THF was prepared. Starting from this
solution, the samples used for the UV spectrophotometric analysis were obtained with
a different THF/H2O ratio (from 0% to 85% of water) having a final concentration of R1
equal to 3.2 × 10−5 M and a final volume of 2 mL. The baseline was obtained with the same
THF/H2O ratio as the samples. Stock solution of R2 (C84H128O16, Mw 1392.92 g/mol;
5.6 × 10−3 g, 4.0 × 10−3 mmol) at a concentration of 2.0 × 10−4 M in 20 mL of THF was
prepared. Starting from this solution, the samples used for the UV spectrophotomet-
ric analysis were obtained with a different THF/H2O ratio (from 0% to 85% of water)
having a final concentration of R2 equal to 3.0 × 10−5 M and a final volume of 2 mL.
The baseline was obtained with the same THF/H2O ratio as the samples. Modifications
of the pH were obtained by using an aqueous solution of phosphate buffer (NaH2PO4,
Mw 119.98 g/mol, 8.2 × 10−3 g in 50 mL of H2O, 10−3 M and H3PO4, Mw 97.99 g/mol)
at a different ratio. The baseline was obtained with the same THF/buffer phosphate ra-
tio as the samples. Stock solution of R3 (C72H112O8, Mw 1105.65 g/mol; 10.5 × 10−3 g,
9.5 × 10−3 mmol) at a concentration of 1.9 × 10−4 M in 20 mL of THF was prepared.
Starting from this solution, the samples used for the UV spectrophotometric analysis
were obtained with a different THF/H2O ratio (from 0% to 85% of water) having a
final concentration of R3 equal to 2.85 × 10−5 M and final volume of 2 mL. The base-
line was obtained with the same THF/H2O ratio as the samples. Modifications of the
pH at 11.78 were obtained by an aqueous solution of sodium tetraborate decahydrate
(Na2B2O7·10 H2O, Mw 381.49 g/mol, 5.63 × 10−2 g in 100 mL of H2O, 1.5 × 10−3 M) and
sodium hydroxide (NaOH, Mw 39.99 g/mol, 1 N). The baseline was obtained with the
same THF/buffer borate ratio as the samples. A stock solution of GlaB (C27H30O6, Mw
450.5 g/mol; 3.6 × 10−3 g, 8.0 × 10−3 mmol) of 4 × 10−4 M in 20 mL of THF was prepared.
Starting from this solution, the samples were diluted in THF in a ratio of 1:2 (final con-
centration 2 × 10−4 M) and used for the UV spectrophotometric analysis were obtained
with a different THF/buffer phosphate (pH 11.82) ratio (from 0% to 85% of water) having a
final concentration of GlaB equal to 3.0 × 10−5 M and a final volume of 2 mL. The baseline
was obtained with the same THF/buffer phosphate ratio as the samples. Stock solution of
guest (GlaB) and host (R3) in a ratio of 1:1 was prepared in THF. Starting from this solution,
the samples that were used for the UV spectrophotometric analysis were obtained with
a different THF/buffer phosphate (pH 11.85) ratio (from 0% to 85% of water) having a
final concentration of GlaB and R3 equal to 3.0 × 10−5 M and a final volume of 2 mL. The
baseline was obtained with the same THF/buffer phosphate ratio as the samples. Starting
from the stock solutions of R3 and GlaB at a concentration of 1.2 × 10−3 M, 0.100 mL of
sample was taken and solubilized in 0.100 mL of THF and 1.8 mL of buffer to obtain the
concentration of water at 90%. A 0.100 mL of solubilized sample in 1.9 mL of buffer was
used to obtain a 95% water concentration. In both cases the sample had a concentration
of 6 × 10−5 M. A 1 mL of solution of R3 was added to a 1 mL of solution of GlaB to give
a final volume of 2 mL, with a final equimolar concentration of the compounds equal to
3 × 10−5 M.
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3.7. DLS Analysis

The size and z potential values of resorc[4]arene R3 were measured by using a
90Plus/BI-MAS ZetaPlus multiangle particle size analyzer (Brookhaven Instruments Corp.,
Holtsville, NY, USA). For size measurements, the autocorrelation function of the scattered
light was analyzed assuming a log Gaussian distribution of the vesicle size. The mean size
and polydispersity index have been obtained. The z potential values were calculated from
the electrophoretic mobility by means of the Helm-holtz-Smoluchowski relationship.

4. Conclusions

In conclusion, we carried out a detailed characterization of the self-assembly process
of amphiphilic resorc[4]arene-based architectures featuring long aliphatic side chains and
a different pattern of substitution on the upper rim, including functional groups able to
undergo acid dissociation. Based on the hydrophilic features and the ionization properties
of the upper rim of the macrocycles, these amphiphiles revealed a strong propensity
to self-assembly in a specific THF/water composition. The combination of theoretical
calculations with the experimental results highlighted that the supramolecular assembly
of ionizable resorc[4]arenes is strictly dependent on the pH values, when using solutions
largely rich in water (i.e., 10% THF/90% H2O and 5% THF/95% H2O), leading to the
formation of lyophilic colloids with characteristic diameters. Based on these properties, we
demonstrated that the resorc[4]arene-based systems can entrap the poorly water-soluble
isoflavone GlaB, most probably due to inclusion complexation between the guest molecules
and the hydrophobic alkyl chains of the macrocycles. The next steps of the study will
be: (i) the NMR investigation to characterize the inclusion complexation more deeply;
(ii) the design of novel amphiphilic architectures featuring ionizable functional groups
with improved ability to supramolecular self-assemble in water at specific pH values. In
addition, we will investigate the in vitro bioactivity of GlaB-resorcarene aggregates in the
anticancer efficiency towards the Hh-dependent tumors.
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