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Abstract: Individual differences in temporal and probabilistic discounting are associated with a wide
range of life outcomes in literature. Traditional approaches have focused on impulsiveness and
cognitive control skills, on goal-oriented personality traits as well as on the psychological perception
of time. More recently, literature started to consider the role of social and contextual factors in
discounting behavior. Between others, higher generalized trust in human beings and specific trust in
people who will deliver the future/probabilistic rewards have been related to a stronger willingness
to wait and to assume risk. Moreover, the tendency to trust others has been associated with the
oxytocin receptor gene regulation that can be modified by life experiences. In this perspective, we
hypothesized that differences in the tendency to wait and to take risks for a more desirable reward
according to the proposer’s trustworthiness could be related to a different level of DNA methylation
at the oxytocin receptor gene. Findings confirmed that participants are less willing to wait and to risk
when the proposer is considered highly untrustworthy and revealed how higher oxytocin receptor
gene DNA methylation is associated with a stronger effect due to the presence of an untrustworthy
proposer. Limits and future directions are outlined.

Keywords: temporal discounting; probability discounting; trust; oxytocin; DNA methylation;
oxytocin receptor

1. Introduction

Most of the decision-making problems we face everyday concern choices whose
consequences will be clear over time. This is the case, for example, with choices concerning
investments, savings, and consumption, with choices related to one’s lifestyle or health,
as well as many problems of political economy. More specifically, intertemporal choices
and risky choices are considered relevant in determining the level of well-being that an
individual can enjoy [1,2].

Discount behaviors (both temporal and risk) have been widely investigated and
considered generally stable within the individual [3]. They are linked to the development
of numerous sub-optimal and pathological behaviors [4], related to physical exercise in
adults [5] and the elderly [6], to the use of alcohol and drugs [7], to the involvement in
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shopping or gambling addictions or in savings behavior [8–10], as well as to sexual and
food diseases [11,12].

Among others, individual differences in willingness to delay a gratification or to prefer
a sure option instead of a risky one has traditionally been related to cognitive control skills,
to impulsiveness, to the psychological perception of time, and to personality traits such as
goal orientation and sensation seeking [13,14].

Just recently those traditional accounts have been accompanied by other possible
explications related to more social and contextual factors.

For example, it has been reported that children tend to increase their willingness to
wait in order to obtain a more desirable reward when the delivering person is considered
trustworthy [15,16].

It has been also shown that trust plays a role in delaying gratification even when
children have no information about the individual who is promising the future reward
(neither face nor behavior) since just a higher level of generalized trust in humans was
enough to wait longer [17].

Trust seems to be crucial for many processes in our everyday life, contributing to
social and personal success. It is indispensable in friendship, love, families, and work
organizations and plays a key role in economic exchanges and politics [18].

Our ability to trust others can be considered multifactorial since it depends upon
our previous life experiences, but it is also biologically determined. From a biological
point of view, several studies suggest a role for different genes in trust including those
belonging to serotonin, arginine-vasopressin, and oxytocin systems [19], with the latter in
particular the recent object of several studies. Oxytocin is one of the brain’s most abundant
neuropeptides, involved in several physiological responses including social behaviors [20].
To elicit its effect, oxytocin must bind its receptor (OXTR) which is widely distributed in the
brain, including the middle insula and in the anterior cingulate cortex, which are known
to be part of the so-called social brain [21]. The production and release of oxytocin and
its activity on OXTR in specific brain regions affect our tendency to feel trust in others,
which can be considered one of the most crucial social emotions. This is confirmed from
several studies measuring endogenous levels of oxytocin and applying the intranasal
inhalation of oxytocin. The first evidence of a relationship with social behaviors was that
receiving a signal of trust was associated with higher levels of peripheral oxytocin, and
that this endogenous level was also related to trustworthy behavior [22,23]. This was then
further reinforced showing how during a classic trust game participants who received
the exogenous oxytocin were more willing to trust an (until then unknown) investor and
to take more financial risks, compared to the control group [24]. Moreover, the oxytocin
system has also been related to some disorders’ pathophysiology, such as autism, for which
a therapeutic use of this peptide hormone has been suggested to promote social skills [25].
More recently, the role of oxytocin signaling in the amygdala in different social-based
processes was highlighted [26,27].

It seems, therefore, that the oxytocin system plays a key role in the formation of social
bonds, attachment, and the memory social system. One approach to study the role of
the oxytocin system in relational and social skills concerns the influence of OXTR gene
polymorphisms in promoting a secure attachment style [28] in predicting risky decision-
making [29] affecting social anxiety symptom development [30] as well as influencing
social behavior in general [31].

However, besides the role of genetics in trust, recent evidence suggests the relevance
of the interactions between gene and environment that can evoke alterations in genes’
expression through epigenetic mechanisms [32]. Thus, for example, chronic experiences
of stress (e.g., low socioeconomic status—SES) or trauma (e.g., abuse during childhood)
throughout life can induce immune dysfunctions as consequence of epigenetic modifica-
tions, and so doing, produce a change in attitudes and behaviors [33]. For instance, low
SES modifies the extent to which people can expect to realize deferred rewards, leading to
more present-oriented behavior in a range of domains [34].



Brain Sci. 2022, 12, 98 3 of 18

The most investigated epigenetic mechanism is DNA methylation involving the trans-
fer of a methyl group to the C-5 position of the cytosine (C) pyrimidine ring when this
nucleotide is followed in the linear sequence, along the 5′ → 3′ direction, by a guanine
residue (CpG site). This modification is involved in transcriptional silencing [35].

Of relevance, it has been reported that a reduction in the OXTR gene DNA methylation,
leading to higher OXTR expression, in subjects showing more secure attachment styles,
improved the ability to recognize emotional facial expressions, greater superior temporal
sulcus activity during social-cognitive tasks, and larger fusiform gyrus grey matter volume
suggesting a general higher competence in social skills [36]. Moreover, a preclinical study
showed that early (negative) experiences can regulate OXTR DNA methylation in the
nucleus accumbens [37].

Given this evidence, our aim is to verify if the presence of an untrustworthy proposer
changes participants’ discounting behavior by decreasing both their willingness to wait
for and to take risk for a larger reward (i.e., increased preference for smaller immediate
over larger delayed, and preference for smaller sure over larger not sure rewards). To
this end, we developed two discounting tasks (described in detail in the next section)
where we manipulated the presence of proposers at various levels of trustworthiness by
showing an image of their face, a method that has been used to elicit an emotional reaction
in participants [38,39]. Moreover, we attempt to analyze and correlate behavioral outcomes
with participants’ OXTR gene DNA methylation levels.

2. Materials and Methods
2.1. Sample

Sixty right-handed neurotypical volunteers (26 males, 34 females. Mean age: 24.2 ± 2.9 SD)
with no psychiatric or drug addiction history participated in the study after providing
written informed consent in accordance with the ethical standards of the 1964 Declaration
of Helsinki. The research protocol was approved by the Institutional Review Board of
Psychology (IRBP) of the Department of Psychological, Health and Territorial Sciences at
G. d Annunzio University of Chieti-Pescara (identification code: 20026; date of approval:
19 February 2021). Participants were undergraduate and graduate students from the
same University. Compensation, in the form of monetary payment, was provided for all
participants by pulling out one random selected choice from one of the two decision tasks
they completed, so the range of possible earnings was between 11€ and 100€. This was
done to ensure that their choices reflected their preference for that trial.

Participants individually arrived at the laboratory and received a form containing
information about procedures. The whole experimental session was conducted in a quiet
and private environment by the same researcher.

2.2. Salivary Samples Collection

As the first activity, participants’ salivary samples were collected by using a standard
kit (Salivette, Sarstedt, Numbrecht, Germany). Saliva was chosen since it has technical
advantages over blood, particularly that it is a non-invasive sampling method, and several
molecular measures in saliva might reflect those in blood [40]. To ensure a correct sampling,
during the recruiting phase participants were asked not to take food, drugs, drinks (besides
water), or use lip products as well as not to smoke or brush their teeth at least two hours
before arriving at the laboratory to avoid possible contamination. Each sample was then
stored at −20 ◦C before being analyzed.

2.3. Discounting Tasks

After salivary sampling, participants completed two different tasks whose presentation
order was counterbalanced between participants.

In one task, participants’ temporal discounting behavior was assessed by using the
extensively validated and commonly used 27-item MCQ—Monetary Choice Question-
naire [41]. In the MCQ, on each item, participants chose between immediate, smaller
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rewards (e.g., €25 today) and delayed, larger rewards (e.g., €35 in 25 days) of three differing
magnitudes (9 small rewards, 9 medium, and 9 large).

Each item was presented 7 times. In the “baseline” block (Figure 1A), participants
were just presented the two alternatives and asked to choose, as soon as possible, the more
appealing one. In the “face” blocks (Figure 1B), in addition to the alternatives, participants
were presented one of six different faces. They were then instructed to imagine that the
person shown in the picture was the one making the proposal currently on the screen. As a
result, participants answered a total of 189 items presented in randomized order.
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Figure 1. Behavioral Paradigm. Participants were asked to press the “A” key if they preferred the
immediate reward in the MCQ and sure reward in the PDQ and to press the “L” key if they preferred
the delayed reward in the MCQ and the probabilistic reward in the PDQ. Choice items were randomly
presented in the baseline condition (proposer face was not shown) and in six face conditions as
obtained by manipulating face gender (male, female) and face trustworthiness (trustworthy, neutral,
untrustworthy). (A) Schematic representation of a trial in the baseline condition for the MCQ.
(B) Schematic representation of the same trial in the “face” condition, with the picture of a proposer
shown with the MCQ item.

The six different Caucasian faces were previously selected from a face database [42]
after asking an independent sample to rate each face for trustworthiness by using a 7-point
Likert scale (from 1 = completely untrustworthy to 7 = completely trustworthy). This
allowed us to pick out 3 male face pictures (untrustworthy, neutral, and trustworthy) and
3 female face pictures (untrustworthy, neutral, and trustworthy) to be used as proposers in
the “face” conditions.

In the other task, participants’ probabilistic discounting behavior was assessed by
using the 30-item PDQ—Probability Discounting Questionnaire [43]. In the PDQ, on each
item, participants chose between a sure, smaller reward (e.g., €20 for sure) and a larger
amount of money delivered probabilistically (e.g., 10% of winning €80). The probabilistic
discount indeed was used to investigate the effect of reward probability on decision-making
by determining the amount to be received for sure that is equally preferred to a risky
outcome. The questionnaire is composed of three blocks of 10 items each one comparing
different rewards at different probabilities (Block 1: €20 vs. €80, Block 2: €40 vs. €100,
Block 3: €40 vs. €60).

As for the MCQ, participants were randomly presented each one of the 30 items
in the “baseline” condition (no proposer face was shown) and in six “face” conditions
(untrustworthy male, untrustworthy female, neutral male, neutral female, trustworthy
male, and trustworthy female proposer).

Both tasks were presented via computer using a 15.5′′ LCD monitor (1366 × 768 pixels).
The software package E-Prime 3.0 was used for stimulus presentation and response sam-
pling. Participants, seated in front of the monitor at about 60 cm, were instructed on how
to use the keyboard to answer. Half of the participants were instructed to press “A” key if
they preferred the “Now” option (for the MCQ task) and the “Sure” option (for the PDQ
task), and to press the “L” key if they preferred the “Later” option (for the MCQ task) and
the “Not sure” option (for the PDQ task). To ensure that results were not affected by key
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side (A on the left and K on the right), the other half of the participants completed the two
tasks after being instructed to use the two keys in the opposite sense (“A” for “Later” and
“Not Sure”; “L” for “Now” and “Sure”).

2.4. DNA Methylation Study

Genomic DNA from buccal swab samples (Salivette, Sarstedt, Numbrecht, Germany)
was prepared using the salting-out method as described previously [44]. The NanoDrop
2000c UV-Vis Spectrophotometer (Thermo Fischer Scientific, Waltham, MA, USA) was
used to assess the quantity and quality of each sample. The ratio of optical density at
260 and 280 nm was used to assess protein contamination: a value of 1.8 was considered
acceptable. Each purified DNA was subjected to bisulfite modification by means of the
EZ DNA Methylation-GoldTM Kit (Zymo Research, Orange, CA, USA), according to the
manufacturer’s protocol. The DNA methylation status of each of the CpG sites in OXTR
CpG island located in exon III was assessed using a pyrosequencing assay. Bisulfite treated
DNA was first amplified by the PyroMark PCR Kit (Qiagen, Hilden, Germany) with a
biotin labelled primer (Hs_OXTR_01_PM PyroMark CpG assay, PM00016821) according to
the manufacturer’s recommendations. PCR conditions were as follows: 95 ◦C for 15 min,
followed by 45 cycles of 94 ◦C for 30 s, 56 ◦C for 30 s, 72 ◦C for 30 s, and, finally, 72 ◦C
for 10 min.

PCR products were then verified by agarose electrophoresis. The sequencing was
performed on a PyroMark Q24 ID using Pyro Mark Gold reagents (Qiagen, Hilden, Ger-
many), after immobilizing PCR products to Streptavidin Sepharose High-Performance
(GE Healthcare, Chicago, IL, USA) beads via biotin affinity and denatured to allow the
annealing with the sequencing primers. Within the CpG island depicted in Figure 2, we
chose to analyze the percentage of DNA methylation of 4 CpG sites. The methylation’s
level was analyzed through the PyroMark Q24 ID version 1.0.9 software which calculates
the methylation percentage mC/(mC + C) (mC = methylated cytosine, C = unmethylated
cytosine) for each CpG site, allowing quantitative comparisons.
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Figure 2. Schematic representation of human OXTR gene. Transcription start site position, exons,
and introns are depicted, as well as region sequenced to analyze DNA methylation levels of the
4 CpG sites (in bold).

Quantitative methylation results were expressed both as a percentage of every single
CpG site and as the average of the methylation percentage of all the CpG sites investigated
(see Figure 2).

2.5. Behavioral Analysis

Based on the participants’ observed behavior, we calculated k scores and h score by
using an R syntax [45]. The syntax is based on the following well-known equations, each
containing a single free parameter which is interpreted as degree of delay (k) or probability
(h) discounting. When the free parameter value increases, the subjective value of the
delayed or probabilistic outcome is more steeply discounted. For the MCQ, discounting
rates for each level were calculated using Mazur’s [46] and Kirby and colleagues’ [41]
hyperbolic discounting equation:

V = A/(1 + kD), (1)
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where V is the present value of the delayed reward, A is the amount of the delayed reward,
D is the delay, and k is the individual discounting rate. The discounting rate (k) represents
the slope of the hyperbolic function, the individual’s value of delayed rewards, with larger
k values reflecting larger delay discounting. Therefore, k describes the steepness of the
discounting curve or, in other words, the degree to which a monetary value is devalued
over time. For this task each one of the 27 items is classified according to the k rank. The k
rank classifies items in 9 different groups and is defined based on the k indifference. The k
indifference is the value of the discount rate at which the immediate and delayed rewards
are of equal value according to Equation (1).

A similar procedure was applied to assess probabilistic discounting. In this case, the
delay D is replaced by the odds against winning, Θ = (1− p)/p, as reported in the Equation (2)
which describes hyperbolically declining subjective values of probabilistic outcomes:

V = A/(1 + h Θ), (2)

As for the MCQ, also in the PDQ, each one of the 30 items is classified according to the
h rank. The h rank reflects the degree of probability discounting at indifference between
the certain and the probabilistic outcome. Thus, we obtained an individual k value—for
which the higher the k value, the more steeply the individual discounts’ rewards delayed
in time—and an individual h value—for which the higher the h value the more steeply the
probabilistic reward is discounted.

2.6. Statistical Analyses

One participant was excluded from the MCQ and two participants from the PDQ
analysis due to technical errors in the computer session. In total, 9 participants were not
included in the final moderation analysis because of a mistake during salivary sampling.
Thus, the final sample sizes for the behavioral analyses were 59 and 58 for the MCQ and
PDQ, respectively, and 48 for the analysis on methylation levels. Most statistical analyses
were conducted using R. We used linear mixed effects models to analyze discounting
parameters from the two tasks. We chose to use multilevel models instead of classical
ANOVA methods because they allow for the non-independence that we had in our data,
having multiple observations from each subject, explicitly declaring the structure of the
random effects accordingly. The models were coded using the lmer function from the lme4
R package [47]. Since discounting parameters measured with the choice questionnaire are
often skewed, we applied a log transformation as often suggested in the literature [45].

To analyze response times, first we filtered out implausibly fast and slow trials (shorter
than 250 ms or longer than 3 SD over the mean computed for each subject). Again, we
used mixed effects models, this time using the glmer function from the lme4 that allowed
us to utilize an inverse Gaussian distribution which better represents that of response
times, without applying any transformation to the data [48]. We chose to log-transform
the discounting parameters and not the response times because parameters on the original
scale are not easier to interpret than their log-transformed counterparts, whereas we have a
better sense and understanding of response times expressed in units of time compared to
their log-transformed counterparts.

Some of the models include higher level interactions, which are not easy to interpret
from the coefficients of the model. For this reason, we used the Anova function from the
car R package to obtain ANOVA-like omnibus tests of effects through Wald chi square
tests [49]. In order to obtain the proper main effects and interactions, and not simple effects,
we coded the categorical predictors of these models using sum contrast coding [50].

To carry out post hoc multiple comparisons of significant effects and compute esti-
mated marginal means, we used the R package emmeans with Bonferroni correction for
multiple comparisons [51].

Moderation analyses were performed using the PROCESS Macro Package for SPSS [52].
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3. Results

We will report results for the two tasks separately, and for each task we will present
results on discounting parameters and response times. At the end, we will report the results
of a moderation analysis with the methylation data.

3.1. Delay Discounting
3.1.1. Discounting Parameter k

To test for the effect of the proposer on the change in the discounting parameter
k, we use a linear mixed effect model, with the current proposer as the predictor of the
log-transformed k value, and with a random intercept for each participant, accounting for
individual differences and for the repeated measures design.

The model uses treatment coding for factors, with the baseline set as the reference
value, so each coefficient of the model can be used to test the change in k due to each
proposer. We apply the t as z criterion for significance of the coefficients, so t values higher
than two can be considered significant. Even though this method has been shown to be
anti-conservative, this mostly applies to much smaller sample sizes [53]. As reported in
Table 1, both untrustworthy proposers and the male neutral proposer elicit a significant
increase in discounting rate; therefore, compared to the baseline condition participants,
they show less willingness to wait. The estimated marginal means of the back-transformed
k values are plotted in Figure 3A.

Table 1. Results of lmm on k parameter (log scale). Each coefficient is a contrast between the baseline
and the condition. SE is the same for each level of proposer because the data are balanced. CI = 95%.
LL = lower level. UP = upper level. Significant statistics (t as z criterion) are reported in bold.

CI

Term Estimate SE Statistic LL UL

(Intercept) −3.768 0.154 −24.472 −4.070 −3.466

Proposer: Female Trustworthy −0.127 0.139 −0.913 −0.400 0.146

Proposer: Male Trustworthy −0.051 0.139 −0.365 −0.324 0.222

Proposer: Female Neutral 0.094 0.139 0.675 −0.179 0.367

Proposer: Male Neutral 0.333 0.139 2.388 0.060 0.606

Proposer: Female Untrustworthy 0.599 0.139 4.300 0.326 0.872

Proposer: Male Untrustworthy 0.727 0.139 5.218 0.454 1.000
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trustworthiness (trustworthy, neutral, untrustworthy). (B) Estimated marginal means of k parameters
for each level of trustworthiness, with female (left) and male (right) proposers.
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In order to test the different contributions of the proposers’ features, we use a second
mixed effect model with gender and trustworthiness of the proposer as fixed factors and
a random intercept for each subject, this time excluding the data regarding the baseline
condition (for which the tested factors are meaningless). In order to get proper omnibus
tests of the main effects and interactions, the factors are recoded with sum contrasts
coding [50].

Omnibus tests (type 3 Wald chi square tests) reveal that the effect of the trustworthiness
level is significant, as well as the effect of gender, but their interaction is not (see Table 2).
Post hoc comparisons with Bonferroni correction show that the discounting parameter
is significantly higher when the proposer is untrustworthy (0.045 ± 0.007) compared to
trustworthy (0.021 ± 0.003) and neutral (0.029 ± 0.004). Figure 3B shows the estimated
marginal means for the back-transformed k parameters in each tested condition.

Table 2. Results of Wald χ2 test for the lmm on the k parameter. df = degree of freedom. Significant
p values are reported in bold.

χ2 df p

(Intercept) 730.18 1 <0.001

Trustworthiness 24.62 2 <0.001

Gender 6.19 1 0.013

Trustworthiness: Gender 1.96 2 0.375

3.1.2. Response Times

A second analysis is carried out on response times. On average, response times in
seconds (s) in this task are 2.88 (SD = 1.84) s, 3.11 (1.68) s without a face, and 2.84 (1.62) s with
a face. We use a generalized mixed effect model with family set to inverse Gaussian and
identity link functions. This allows us to consider the skewed distribution that is typical of
response times without the need to transform the variable [48]. We use the current proposer
as the fixed effect with the baseline set as the reference level and we allow the random
intercept to vary for each subject. Again, each coefficient tells us the difference between
the baseline condition (with no proposer) and the other conditions. Each coefficient is
significant and negative, meaning that when a proposer is present, participants take less
time to decide compared to the baseline condition (see Table 3 and Figure 4A).

Table 3. Coefficient of glmm on response times. Each coefficient is a contrast between the baseline
and the condition. CI = 95%. LL = lower level. UP = upper level. Significant statistics (t as z criterion)
are reported in bold.

CI

Term Estimate SE Statistic LL UL

(Intercept) 3.336 0.079 42.014 3.180 3.492

Female Trustworthy −0.378 0.087 −4.329 −0.549 −0.207

Male Trustworthy −0.253 0.094 −2.690 −0.438 −0.069

Female Neutral −0.217 0.093 −2.336 −0.399 −0.035

Male Neutral −0.208 0.090 −2.322 −0.384 −0.032

Female Untrustworthy −0.341 0.089 −3.841 −0.515 −0.167

Male Untrustworthy −0.385 0.092 −4.200 −0.564 −0.205
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Figure 4. (A) Estimated marginal means of response times in seconds for the baseline and each
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times for each level of trustworthiness when the preference was for the immediate (red) or delayed
(blue) options. Only the main effect of response is significant, but the plot shows the non-significant
interaction for ease of comparability with similar figures in the paper.

Again, to test for different contributions of the factor at play, we use a second model,
without data from the baseline condition, with gender, trustworthiness of the proposer,
and the response given by the subject as fixed effects with two and three-way interactions,
and a random intercept for each subject. The response variable is the two levels factor that
carries the information on which of the two alternatives the subject ends up preferring,
either the immediate but smaller one or the delayed but larger one.

The omnibus Wald chi square test (see Table 4) shows that the only significant effect is
given by a given response, and a post hoc comparison reveals that participants are faster
to get to a decision when this decision is the immediate option (2.89 ± 0.05) rather than
the delayed option (3.19 ± 0.05). No main significant effect of gender or of the proposer’s
trustworthiness are detected. The estimated marginal means are shown in Figure 4B.

Table 4. Results of Wald χ2 test for the glmm on response times. df = degree of freedom. Significant
p values are reported in bold.

χ2 df p

(Intercept) 4133.68 1 <0.001

Gender 3.10 1 0.078

Trustworthiness 4.53 2 0.104

Response 101.92 1 <0.001

Gender: Trustworthiness 2.11 2 0.349

Gender: Response 0.23 1 0.631

Trustworthiness: Response 3.85 2 0.146

Gender: Trustworthiness: Response 2.85 2 0.241

3.2. Probability Discounting
3.2.1. Discounting Parameter h

Analyses for the probabilistic task closely follow the ones described in the previous
section. A mixed effect model on the log-transformed h parameter, with the current
proposer as the fixed effect and a random intercept for each subject shows that the two
untrustworthy proposers as well as the male neutral proposer elicit a higher discounting
rate for the uncertain option (see Table 5). Hence, in these conditions the participant tends
to devalue probabilistic options more steeply compared to the baseline decision style.
Figure 5A reports the back-transformed model estimates of h parameters.
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Table 5. Results of lmm on h parameter (log scale). SE is the same for each level of proposer because
the data are balanced. CI = 95%. LL = lower level. UP = upper level. Significant statistics (t as z
criterion) are reported in bold.

CI

Term Estimate SE Statistic LL UL

(Intercept) 0.933 0.117 7.942 0.703 1.163

Female Trustworthy 0.021 0.091 0.236 −0.156 0.199

Male Trustworthy 0.096 0.091 1.058 −0.082 0.273

Female Neutral 0.159 0.091 1.753 −0.019 0.336

Male Neutral 0.336 0.091 3.706 0.158 0.513

Female Untrustworthy 0.534 0.091 5.902 0.357 0.712

Male Untrustworthy 0.513 0.091 5.667 0.336 0.691
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We then apply the second mixed effect model on the log-transformed h parameter
with gender and trustworthiness of the proposer as fixed effects and a random intercept for
each subject. Again, we found that the level of trustworthiness is the only significant effect
of the model (Table 6). A post hoc comparison confirmed that untrustworthy proposers
elicit a higher h parameter (4.29 ± 0.48) compared to neutral (3.26 ± 0.36) and trustworthy
proposers (2.70 ± 0.30), but also that trustworthy proposers elicit a significantly lower h
compared to neutral proposers.

Table 6. Results of Wald χ2 test for the lmm on h parameters. df = degree of freedom. Significant
p values are reported in bold.

χ2 df p

(Intercept) 132.28 1 <0.001

Gender 2.14 1 0.144

Trustworthiness 53.19 2 <0.001

Gender: Trustworthiness 2.38 2 0.304

3.2.2. Response Times

In this task, the average response time is 2.42 (SD = 1.51) seconds, 2.82 (1.61) seconds
without a face, and 2.35 (1.49) seconds with a face. A generalized mixed effect model with
family set to inverse Gaussian and identity link function is used to test the effect of the
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presence of each proposer against the baseline condition on participants’ response times,
leaving a random intercept for each subject. Similar to what we found for the previous task,
all coefficients are significant and negative, meaning that response times are faster when a
proposer is shown with the choice (see Table 7).

Table 7. Coefficient of glmm on response times. Each coefficient is a contrast between the baseline
and the condition. CI = 95%. LL = lower level. UP = upper level. Significant statistics (t as z criterion)
are reported in bold.

CI

Term Estimate SE Statistic LL UL

(Intercept) 2.782 0.071 39.349 2.643 2.920

Female Trustworthy −0.393 0.076 −5.190 −0.541 −0.244

Male Trustworthy −0.400 0.076 −5.252 −0.549 −0.250

Female Neutral −0.360 0.075 −4.794 −0.507 −0.213

Male Neutral −0.342 0.076 −4.485 −0.492 −0.193

Female Untrustworthy −0.387 0.072 −5.394 −0.528 −0.247

Male Untrustworthy −0.467 0.075 −6.216 −0.614 −0.320

A second generalized mixed effect model is used to test for the different contributions
of the factors at play. We model the response times with proposer trustworthiness and
gender and with the given response (preference for the certain or uncertain alternative) as
fixed factors, and with a random intercept for each subject. An omnibus Wald chi square
test shows a significant main effect of a given response and a significant two-way interaction
between response and level of trustworthiness (see Table 8). Post hoc comparisons show
that response times are higher when participants prefer the uncertain option (2.47 ± 0.05)
compared to the certain option (2.25 ± 0.05). In particular, the difference is bigger when
the proposer is either neutral (mean difference = 0.28, p < 0.001) and untrustworthy (mean
difference = 0.26, p < 0.001), rather than trustworthy (mean difference = 0.14, p < 0.001). See
Figure 6A for model estimates of each condition.

Table 8. Results of Wald χ2 test for the glmm on response times. df = degree of freedom. Significant
p values are reported in bold.

χ2 df p

(Intercept) 2112.60 1 <0.001

Gender 0.45 1 0.503

Trustworthiness 1.42 2 0.492

Response 90.71 1 <0.001

Gender: Trustworthiness 0.31 2 0.857

Gender: Response 0.52 1 0.470

Trustworthiness: Response 8.56 2 0.014

Gender: Trustworthiness: Response 2.42 2 0.299
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3.3. Oxytocin Receptor DNA Methylation and Discounting Behavior

Firstly, for each participant, two delta scores are computed by subtracting the mean k
(or the mean h) obtained in the two untrustworthy conditions to the k value (or the h value)
obtained in the baseline condition, as reported in Formula (3).

∆k (h) = k (or h) untrustworthy − k (or h) baseline, (3)

Thus, a delta score near to 0 indicates no differences between conditions, a delta score
above 0 indicates that the participant discounted more when there was an untrustworthy
proposer, and a delta score below 0 indicates that the participant discounted less when
there was an untrustworthy proposer. As a consequence, the more positive the delta score
the more the untrustworthy proposer presence led the participant to prefer the immediate
reward over the delayed one and to prefer the sure reward over the not sure one.

The obtained delta scores are then used to calculate a Pearson’s product moment
correlation coefficient between those scores and the level of OXTR DNA methylation in
four different CpG sites (site 1, 2, 3, and 4). Results show a statistically significant positive
correlation between the percentage of methylation on site 3 and the ∆k score (r = 0.361,
n = 51, p = 0.005), suggesting that the greater the level of methylation, the stronger the effect
of the presence of an untrustworthy proposer on the participant’s delay discounting.

To test the hypothesis that the participants’ methylation level on site 3 predicts the
temporal discounting at the presence of an untrustworthy proposer, and to further verify
the effect of baseline discounting on this relationship, a moderation model is performed
by using PROCESS [52]. Within PROCESS, we select model 1 as representative of our
hypothesized model and we use a 1000 resamples bootstrap method with the confidence
interval set to 95%. In the moderation model, the site 3 methylation level is entered as
the predictor (X) while the k parameter in the untrustworthy condition functions as the
outcome (Y). Participants’ k parameter in the baseline (low, middle, high) is added as
moderator (M).

Results show that the moderation model is significant with F3,47 = 4.41, p = 0.008,
R2 = 0.22. Moreover, the conditional effect of X (site 3 methylation) on Y (k in untrustworthy
conditions) at different values of the moderator (baseline k) reveals that the effect of the
site 3 methylation level on increasing the discount rate in untrustworthy conditions is
significant only for participants with lower (compared to middle and high) baseline k
(with t = 2.64, p = 0.01; 95% CI: LLCI = 0.0035; ULCI = 0.0256) suggesting that the more
participants with low baseline k show methylation on site 3, the more they discount the
delayed reward when options are proposed by an untrustworthy face (see Figure 7A).
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Similarly, a positive Pearson’s correlation was found between the percentage of methy-
lation on site 3 and the ∆h score (r = 0.431, n = 51, p = 0.001). In this case, results suggest
that greater levels of methylation are associated with more preferences for the sure options
when there is an untrustworthy proposer. To further explore this relationship a moderation
model by using the site 3 methylation level as the predictor (X), the h parameter in the
baseline (low, middle, high) as moderator (M), and the h parameter in the untrustworthy
condition as outcome (Y) is performed.

Results show the significance for the model with F3,47 = 14.96, p = 0.0000, R2 = 0.488
and the significant conditional effect of X on Y at two different values of the moderator:
when participants present lower baseline h (with t = 4.509, p = 0.000; 95% CI: LLCI = 0.6048;
ULCI = 1.579) and middle baseline h (with t = 2.674, p = 0.01; 95% CI: LLCI = 0.1389;
ULCI = 0.9817) suggesting that the higher level of site 3 methylation generally explains the
higher level of probability discount in the untrustworthy condition except when considering
participants who already have high h parameters in the baseline (see Figure 7B).

4. Discussion

We here observed that the presence of a risky factor such as untrustworthiness activates
a protective behavioral pattern, represented by discounting parameters, and this shift
towards protective choices is stronger in individuals with altered DNA methylation at the
OXTR gene level.

The first set of analyses put the light on the role of the proposer’s trustworthiness in
influencing explicit choices. As presented in the previous section, participants’ explicit
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choices in the baseline condition significantly differ from various conditions in which
trustworthy or untrustworthy faces were introduced as proposers.

For what concerns discounting parameters, results seem to confirm our initial hy-
pothesis that the presence of an untrustworthy proposer would produce a decrease in
the availability to wait or to risk (read an increase in k and h) since participants showed
more preferences for sooner smaller rewards (“Now”) and for certain smaller rewards
(“Sure”) in the untrustworthy conditions. In the delay discounting task, the neutral male
proposer (p = 0.008), the untrustworthy female proposer (p < 0.001), and the untrustworthy
male proposer (p < 0.001) induced a higher discounting rate compared to the baseline
condition (see Figure 3A). The same three proposers induced a higher discounting rate in
the probability discounting task when compared to the baseline condition (p < 0.001 for
all three, see Figure 5A). When looking at the effects within the “face” conditions of the
tasks, we found in both a significant effect of the trustworthiness level on the discounting
parameters (p < 0.001, see Figures 3B and 5B), with untrustworthy proposers inducing
higher discounting rates compared to trustworthy and neutral ones. Surprisingly, even
neutral proposers seemed to produce an increase in the h discounting parameter when
compared to the trustworthy proposers, but this is only significant for the probability
discounting task. A similarly surprising result was a significant effect of the gender of the
proposer on the discounting rate for the delay discounting task (p = 0.013). These results
suggest that the bare presence of the proposer’s face induces changes in the availability
to wait and risk, so more preferences are for immediate or certain rewards, and that this
effect is stronger when the proposer is perceived as untrustworthy. It is not clear how
to interpretate the effects observed based on the gender of the proposer, since we have
found these just for the temporal discounting parameter, and we do not observe it in the
response times.

Thus, results coming from the explicit data analysis of both tasks suggest a difference
in the way the presence of a proposer’s face, particularly an untrustworthy one, affects
both temporal and probabilistic discounting. Indeed, from a temporal point of view, an
untrustworthy proposer promotes a protective choice pattern directing choices toward
the immediate option to ensure at least a small reward; from a probabilistic point of view,
an untrustworthy proposer promotes a protective choice pattern by directing preferences
toward sure options.

The second set of analyses aimed to verify whether implicit response times reflected
choice patterns between conditions.

In both tasks, all the choices made when the face of a proposer was shown were
faster when compared to the baseline condition (all p < 0.001, except for MT, MN, and
FN in the delay discounting task where p < 0.01, see Figures 4A and 6A). As a possible
explanation, it could be that the proposer’s face is a salient source of information that
makes the decision-making process easier and thus faster. A similar facilitation effect given
by the social nature of the stimuli used is well described in the Wason selection task, which
is often difficult to correctly solve in its numerical form, and is instead easily solved when
put in social terms [54].

When we look at the differences within the experimental conditions (with proposers),
the main result that we find is a difference in the time it takes to go for the immediate or
certain option compared to the delayed (p < 0.001, Figure 4B) or uncertain one (p < 0.001,
Figure 6B). In the probabilistic discounting task, we also observe a small interaction effect
between the given response and the proposer’s level of trustworthiness in that trial. When
participants prefer the uncertain option, the level of trustworthiness does not make much
difference in the time required to decide. By contrast, they appear to be quicker to go for the
certain answer when the proposer is untrustworthy compared to trustworthy. Analyzing
the temporal discounting task, although we do not find a significant interaction effect, the
trend in response times appears to be similar to what we find in the probabilistic task.

Finally, the hypothesis that the OXTR gene methylation level would explain differences
in the effect of an untrustworthy proposer on decision-making has been tested. The final
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sample size at this stage of the analysis was 48, due to technical problems with the salivary
sample collection. Despite the limited number of samples, both models reported a good
level of explained variance, especially when comparing it with previous works [55], thus
motivating further future investigation with lager samples. The results seem to confirm
a strong role of one of the CpG sites analyzed in the increase in k and h produced by an
untrustworthy proposer, particularly for participants who presented a lower baseline k and
for participants who presented a lower and middle baseline h.

Thus, our results seem to suggest that the higher the level of DNA methylation at the
OXTR gene, the higher the influence of the proposer’s social features (i.e., trustworthiness)
in the decision-making process.

These promising results are partially confirmed by some evidence on similar topics.
For example, it was recently shown how a higher OXTR methylation level is linked to
enhanced infants’ brain responses (as measured via fNIRS) to angry and fearful faces [55],
while other evidence suggests that higher OXTR methylation is associated with problems
with facial and emotional recognition [56]. While there is some evidence that the role of
oxytocin administration in social discounting may be modulated by empathy traits [57], to
the best of our knowledge there is only one paper directly investigating the role of oxytocin
administration in reducing temporal discounting in a sample affected by social anxiety
disorder [58].

In the wider scenario, it is difficult to draw conclusions on the role of OXTR in social
and emotional processing given the strong heterogeneity of the used experimental designs,
samples, and measures, as well as the different OXTR foci when in (epi)genetic settings [59].

Evidence coming from our study helps to highlight that current models of discount-
ing behavior (such as impulsivity-based ones) should consider more social variables in
pondering and selecting an option during decision-making. This is particularly true when
decisions are based on others’ behaviors (e.g., the proposer will or will not deliver the
promised delayed option in the future), since it is more likely that these will be predicted
from interpersonal representations (such as the proposer’s perceived trustworthiness). This
could be a particularly crucial point to be tested in future experiments. Even indepen-
dently from the epigenetics results, we believe our behavioral results contribute to the
theorical debate on variables affecting discounting behavior, suggesting that future studies
should produce more data on the interaction between individual baseline tendencies in
discounting (i.e., more or less discounting) and social variables. Hence, investigating the
role of this interaction in keeping stable or not discounting parameters over time would be
fundamental in clinical applications.

Finally, out of clinical applications, future studies should better investigate the role of
the proposer’s features on discounting choice patterns as related to real-life decisions (e.g.,
decisions related to health, education, nutrition, savings, etc.).

5. Conclusions

We here studied whether the presence of proposers and their level of perceived
trustworthiness could influence discounting behavior compared to a baseline, and if OXTR
gene DNA methylation levels could related to these effects.

Behavioral results show that the presence of untrustworthy proposers significantly
increases participants’ discounting rates, meaning that they are less prone to wait or to risk
for a larger reward, and the decision to go for the immediate/certain option is associated
to faster response times in both tasks.

We also show with a moderation analysis that higher levels of OXTR gene methylation
are linked to a higher impact of proposer’s social features such as perceived untrustworthi-
ness, especially for participants who started with lower baseline levels.

Although limited in sample size, our study showed promising results and suggests
that further investigations in social and epigenetic variables are justified and desirable.
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