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Abstract. 

Geographical data in economic, social or environmental sciences are usually 

recorded as compositions, i.e. relative frequencies, and a common inquiring 

problem concerns the analysis of these data over different geographical regions. In 

the present paper we define a new statistical test to verify spatial dependence of 

such geographical distributions based on distance correlation, a recently introduced 

measure of dependence between random vectors. The proposed index computes the 

nonlinear spatial distance between distributions and can be applied on 

compositional frequency distributions. An application on Italian electoral data at 

provincial level is presented, to illustrate the capabilities of the proposed test to 

detect spatial dependence. 
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1 Introduction 

The advancements in remote sensing, monitoring networks and geographic 

information systems (GIS) increased significantly the availability of geographical 

spatial data at regional and municipal scales, provided by official governmental 

agencies as well as higher educational institutions, nonprofit organizations or 

private companies. Although the observation and collection of spatial data are 

usually available at a high detailed level with the knowledge of the entire frequency 

distribution of the phenomenon, very often aggregation through summing and 

averaging of values is the most classical dissemination of spatial information and 

many analytical techniques can be applied only on such aggregated data. 

However, in economic and social sciences, but also in earth sciences, such as 

mineralogy, agronomy, geochemistry and hydrology, data are usually recorded as 

compositions, i.e. relative frequencies, and a common inquiring problem concerns 

the analysis and comparison of these data over different geographical regions. In 

such applications, the interest is frequently addressed to analyse the spatial patterns 

and the spatial dependence of the phenomenon. The relative abundance of different 

species in a biological community (Aitchison 1986; Paciorek and McLachlan 2009; 

Billheimer et al. 2001; Pirzamanbein et al. 2014) and the changes in forest 

distribution across a geographical area to explain the environmental patterns of 

variation (Brovkin et al. 2006; Strandberg et al. 2014) are only some examples on 

this topic.  

Such data are usually studied inside the compositional data framework. The 

awareness of the problems related to the statistical analysis of regionalized 

compositional data analysis dates back to a paper by Pawlowsky-Glahn (1984).  



Theoretical developments undertaken since then to solve the problems 

derived by the compositional character of spatially dependent data, have been 

mostly addressed to define appropriate statistical tools and transformations on data 

needed for their analysis, without devoting specific attention on the spatial 

dependence of the compositions. 

In literature, there are different proposed approaches to analyse spatial 

patterns in the multivariate domain, that could also be applied on the categories of a 

frequency distribution, and many of them refer to multivariate data analysis 

(Wartenberg 1985; Lee 2001), like Factor and Principal Component analyses. These 

techniques explore the complex interactions among many variables in a geographic 

context and use a matrix extension of the single variable autocorrelation analysis.  

However, to our knowledge, none of these methods, are specifically defined 

to analyse spatial multivariate dependence analysis on compositional data observed 

over different local zones. 

Recently, Székely et al. (2007) introduced the notion of Distance Correlation 

(DC), as a multivariate distance coefficient applicable to random vectors, able to 

detect nonlinear associations that can be seen as a generalization of the classical 

Pearson correlation coefficient. In this paper, we adapt the DC on the spatial 

domain and we propose a new statistics, the Spatial Distance Correlation (SDC) that 

combines the spatial dependence with the regionalized compositional data. The 

SDC may be considered as a multivariate approach to analyse spatial dependence, 

not limited to the linear case. However, its strength relies on its use to detect spatial 

dependence of a whole distribution (composition), observed over different 

locations. Therefore, spatial dependence is detected using all the available 



information of the variable, without aggregating through summing or averaging the 

observed values. The computation of this new index is easy to perform and is based 

on a measure of distance between distributions. 

The paper is organized as follows. Section 2 reviews the recent literature on 

compositional data and spatial multivariate analysis while in Section 3, the basic 

definitions of distance correlation and their properties are presented, and the SDC is 

introduced, providing theoretical and application tools. In Section 4, an empirical 

study is presented to illustrate the SDC on real data, analysing the spatial 

dependence of the Italian parliamentary election of 2013. A simulation exercise is 

also performed to assess the validity of the proposed test. Finally Section 5 

concludes and summarizes the main findings. 

 

2 A survey of spatial analysis of compositional data 

In many different disciplines, like ecology, demography, marketing and population 

genetics, data are observed as proportions, or fractions, of a whole and typically 

reported as compositions, in the form of some proportions subject to a constant 

sum. Historically, this issue was dealt through the application of Compositional 

Data (CoDa) Analysis: compositional data are vectors of proportions x describing 

the relative contributions of each of the p categories to the total. The elements of the 

composition are non-negative and sum up to a constant. Therefore, their analysis 

requires special statistical techniques, to solve the problems arising from summation 

constraint and the bounded support. The approach originally proposed by Aitchison 

(1982, 1986) and widely applied on such data, used ratios of parts and the log-ratio 

transformation f(x) on the vector x of the proportions (x1,...,xp): 



                                                (1) 

 

In the last few years, many advances have been made to better understand the 

nature of such data and developing appropriate methods to compute the difference 

between two compositions, studying the constrained sample space (the simplex 

space) through the Aitchison distance, providing an Euclidean structure called 

simplicial metric (Pawlowsky-Glahn and Egozcue 2001). Compositional data may 

be provided from different disciplines and household budget patterns, food 

composition, literature sentence composition, portfolio analysis, and election voting 

proportions are only some examples. 

When compositional data are geo-referenced, a major question concerns the 

explanation of the spatial distance and variability structures (Cormack and Ord 

1979). Identification and measurement of spatial patterns is therefore a topic of 

great interest when dealing with georeferenced datasets. Univariate analysis of 

spatial autocorrelation such as Moran’s I (Moran 1948) and Geary’s C (Geary 

1954) are widely used, but extensions to the multivariate case are rare and complex.  

Although most type of data to which CoDa is applied are sampled from 

different locations, the analysis of the spatial structure of frequency distribution was 

neglected until the works of Pawlowsky-Glahn and Burger (1992) and Billheimer et 

al. (1997). 

Pawlowski-Glahn and Burger (1992) show that spurious spatial correlation 

occurs in (co)regionalized compositions, and variograms and cross-variograms 

based on raw data are subject to non-stochastic factors leading to distorted 
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description and interpretation of the spatial dependence between the compositional 

variables. Therefore, to overcome the problem, the authors suggest using the 

additive log-ratio (alr) transformation on the original data and the spatial covariance 

structure can be performed as a cokriging (Pawlowsky-Glahn and Olea 2004). 

Recently, the log-ratio approach was revised into the simplex geometry and 

Egozcue et al. (2003) showed the advantage of using isometric log-ratio (ilr) 

transformation for spatial analysis of compositional data. Many applications can be 

found in geostatistics: for example, Hundelshaussen et al. (2016) use this log-ratio 

on multi-element mineral deposits distribution located in the Brazilian Amazon; 

Bragulat et al. (2004) for a study of compositional data from a bauxite deposit in 

Halimba (Hungary) - which is the largest deposit in Europe continuously mined 

since 1950 - and Buccianti (2011) in the analysis of the water chemistry of the Arno 

(Italy) river basin, to detect compositional changes ascribed to different natural or 

anthropogenic processes.  

Billheimer et al. (1997) introduce a different approach to analyse 

compositional spatial data, by including spatial structure and covariates into a state-

space model to evaluate the variability of a natural system. The proposed 

methodology was applied on benthic survey data from Delaware Bay, to assess the 

impact of environmental changes. 

However, the issue considered by CoDa analysis can be seen as a special case 

of a more general one: measuring the distance between two probability 

distributions.  Cramér–von Mises–Smirnov distance, Hellinger coefficient, Jeffrey’s 

distance, and Rényi divergence coefficient are only some examples of such 

measures (Chung et al. 1989; Baringhaus and Henze 2017).  



These measures assess how close two probability distributions are from one 

another and have been widely applied in probability, statistics, information theory 

and related fields, without extending them specifically to analyse also spatial 

structures. The drawbacks of such distances are their asymmetry and/or the 

disadvantage that they are not distribution-free in finite sample situations.  

In literature there are different attempts to define and analyse spatial 

multivariate dependence that to some extent should be also applied on 

compositional data. Wartenberg (1985) proposes a multivariate spatial correlation 

(MSC) technique, using principal component (PCA) and factor analysis to explore 

spatial patterns in the multivariate domain. The principal components derived by 

Wartenberg rely on the computation of a spatial correlation matrix M and their 

combined loadings and scores. The locality scores show the contributions of the 

individual samples to the spatial structure and, therefore, advice which localities are 

more important. Applications of the MSC are given by the author to infer 

migrational history of European peoples and Foraminifera distribution in Atlantic 

and Indian Ocean sediment cores.  

Grunsky and Agterberg (1988) use a spatial factor approach to study in the 

Ben Nevis Area (Ontario) the lithogeochemical trends related to different 

geological processes, by estimating spatial auto- and cross-correlation functions 

with neighbouring radii varying from 50 m to 4 km. A quadratic function of the 

distances is considered to compute the cross-correlation matrix and adjustments are 

needed to avoid negative eigenvalues in the factor analysis and correlations over the 

unit value. Although the procedure is interesting, instability of the solutions requires 

caution in interpreting the resulting factor patterns. 



Thioulouse et al. (1995) extend the approach of Wartenberg to the concepts of 

local and global spatial structures, generalizing the Geary’s and Moran’s indexes to 

the multivariate case, through the application of PCA or correspondence analysis 

(CA) (Wartenberg 1985).  

However, Lee (2001) showed that Wartenberg’s approach had major 

drawbacks and proposed a bivariate spatial association measure based on spatial 

smoothing, which can be easily used also for spatial multivariate analysis. Finally, 

Dray and Debias (2008) propose a multivariate spatial analysis, that can be seen as 

a generalization of Wartenberg’s approach taking into account the pitfalls pointed 

out by Lee (2001). The approach introduces a row-standardized spatial weight 

matrix W and the analysis of the data table X and WX by the coinertia analysis 

(Dray and Debias 2008) into CA. The method was applied on the vegetation in 

North-eastern France, to depict local spatial patterns. 

An overview of different spatial multivariate approaches can be found in 

Guillot et al. (2009), who focus on the methodological and practical aspects of the 

analytical methods available in literature, starting from a spatial genetic data view. 

As mentioned before, standard CoDa and multivariate analysis, like PCA, CA 

or factor analysis, do not directly take into account spatial relations in their 

computation and their extension to identify spatial structures often imply the use of 

non standard algebra, not always immediate and easy to implement and interpret. 

Multivariate analysis maximizes the scalar product between a linear combination of 

original variables and most of the coefficients proposed are extension of classical 

Pearson correlation index, therefore spatial dependence and distance analyzed so 

far, are usually limited to linear assumption. Moreover, in the Aitchison simplex 



geometry of CoDa, the predictors are linear, as they are linear combinations of 

coordinates.  

The log-ratio transformations in CoDa, and the proposed extensions to 

include spatial dependence, are focused on the estimation and modelling of the 

single log-ratio coefficient and the cross-variogram of the transformed data, without 

proposing any statistical test. The same holds for many multivariate spatial 

analyses, where the identification of the spatial dependence is limited to a 

descriptive interpretation of the outputs. Moreover, a serious shortcoming common 

to all compositional models is that all elements are required to be nonzero.  

Recently, Székely et al. (2007) and Székely and Rizzo (2009) introduced the 

Distance Correlation (DC) analysis as a new multivariate distance coefficient 

applicable to random vectors of arbitrary and not necessarily equal dimension, that 

overcome many limits of the previous mentioned techniques. DC is based on the 

measure of a distance between distributions and is an index ranging between zero 

and one, with zero indicating that the vectors are completely independent, able to 

detect nonlinear associations that are undetectable by the classical Pearson 

correlation coefficient. DC can be also applied as a test to verify dependence and 

the authors provide its limiting distribution. There has been an increasing interest in 

the distance correlation method, ranging across a wide variety of fields, including: 

machine learning (Sriperumbudur et al. 2011; Sejdinovic et al. 2013), climate 

change projections (Racherla et al. 2012), nuclear chemistry (Zhong et al. 2012), 

astrophysics (Martinez-Gomez et al. 2014) and medicine and health (Chakraborty 

and Bhattacharjee 2015).  



Davis et al. (2018) apply the idea of DC to stationary univariate and 

multivariate time series to measure lagged auto- and cross-dependence in a time 

series. Examples of distance correlation on time dependent series are scarce (Zhou 

2012; Fokianos and Pitsillou 2017), and the distance correlation is viewed more as a 

tool for testing independence rather than actually measuring dependence.  

In the present paper, we extend the concept of DC to the spatial domain, by 

proposing a coefficient and a test procedure able to measure the multivariate spatial 

dependence of a data matrix X, in line with the DC of Székely et al. (2007).  

Contrary to the above-cited methods, the approach proposed in the present 

paper is quite general. The Spatial DC (SDC) allows to overcome many of previous 

highlighted limits: it is easy to implement, not limited to linear dependence, based 

on the information derived from all the regional distributions of the variable and 

defined in terms of a coefficient and a statistical test procedure. It can be seen as an 

application of the idea of DC, to measure spatial dependence in geo-coded data. 

Moreover, in multivariate analysis data matrix X is of dimension n´p, with p 

variables and n geographical locations. However, many times in each location 

information is available for all the distribution of a single variable. Therefore, the 

matrix X may be seen as the relative contributions of p categories or frequencies of 

a variable, observed on n different locations. Standard spatial dependence analysis 

implies the aggregation of the distribution into its mean or sum or limiting the 

analysis on one-point observation over the n zones. However, this will cause 

significant information reduction, with possible bias in the detection of spatial 

dependence. 

 



 

3 The Spatial Distance Correlation test 

The distance correlation Â was introduced by Szélesky et al. (2007) and is 

proposed as a coefficient to measure all types of dependence between two random 

vectors (X,Y), with X = (x1,...,xp), Y = (y1,...,yq) and p, q not necessarily equal. For 

all distributions with finite first moments, Â generalizes the idea of correlation, 

such that: 

1. Â (X,Y) = 0 if and only if X and Y are independent 

2. 0 £ Â (X,Y) £ 1 

The distance correlation is given by: 

                                            (2)
 

where the numerator is the distance covariance (dCOV) of X and Y (Székely et al. 

2007), with: 

                               (3) 

and dV(X) and dV(Y) the distance variances of X and Y, similarly defined as in (3), 

with | . | the Euclidian norm. From (3) it is clear that dCOV(X,Y) ≥ 0 and 

dCOV(X,Y) = 0 if and only if X and Y are independent.  

The distance covariance dCOV measures the distance 1  between the joint 

characteristic function of X and Y, fX,Y(t,s), and their marginal characteristics 

functions fX(t), fY(s) and is used to verify the hypothesis of independence against 

dependence: 

H0 : fX,Y = fX fY         H1 : fX,Y ¹ fX fY                            (4) 
 

1	Székely et al. (2007) and Székely and Rizzo (2009) use Euclidean distance, however the same 
results hold for other distance measures. 



 

Therefore, distance covariance and distance correlation provide an extension 

of Pearson correlation to measure dependence in a broader range of application. In 

case X and Y are bivariate normal distributions, the Â coefficient reduces to the 

standard Pearson coefficient. The formula for the corresponding empirical distance 

correlation Ân is easy to implement (Székely et al. 2007): 

i. Compute all the pairwise distances between sample observations 

of the X, to get a distance matrix with elements akl = |xk – xl|p , k,l = 1,...,n; 

ii. Compute the same matrix for the sample Y, with  bkl = |yk – yl|q, 

k,l = 1,...,n; 

iii. Centre the entries of these distance matrices so that their row and 

column means are equal to zero, obtaining the centred distances Akl and Bkl 

with: 

                                        (5) 

where: 

                          (6) 

and similar definitions for Bkl; 

iv. Compute the unbiased sample distance covariance (Székely and 

Rizzo, 2013) as the following square root: 

.                                     (7)
 

The sample statistic converges almost surely to the distance covariance dCOV 

(Székely & Rizzo (2013). The distance variances (dV) are defined consequently, € 

dC ˆ O Vn =
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and sample distance correlation Ân  is computed as the normalized coefficient, 

similarly to the Pearson's correlation.  

Recently, Székely and Rizzo (2013) proposed a modified distance correlation 

statistic Ân* based on the corrected terms of Akl and Bkl, that is advantageous in high 

dimensions and, as p and q tend to infinity; under the independence hypothesis: 

,                                           (8)

 

converges in distribution to a t-Student with n -1 degrees of freedom, where n = 

n(n-3)/2. Tn is approximately normal for p, q > n ³ 10, providing an easily 

interpretable sample coefficient. 

In Monte Carlo studies, the distance correlation test exhibits superior power 

relative to parametric or rank-based likelihood ratio tests against non-monotone 

types of dependence (Székely et al. 2007; Székely and Rizzo 2009). It was also 

shown that the test is competitive with the classical parametric likelihood ratio test, 

when applied to multivariate normal data. 

Distance covariance methodology is based on the assumption that the 

observations are i.i.d.. However, in many practical problems this assumption is 

violated. Rémillard (2009) proposes an extension of the distance covariance 

methodology to non-i.i.d. observations for time series data, for measuring serial 

dependence. If the random variables Xt are stationary, the test can always be 

applied to verify dependence between Xt and Xt-h. 

In the present paper, DC is applied to verify spatial dependence. Therefore, 

the random vector X is composed by p variables observed on n spatial locations and 

Y are the spatial lagged variables, with q = p. 

€ 

Tn = ν −1⋅ ℜn
*

1− ℜn
*( )2



However, due to the multilaterality of proximity in space, the lagged value of 

a variable can be any of the neighbours. The solution commonly adopted in the 

literature is that of defining the spatial lag of a random variable as the mean of the 

random variables observed in the neighbourhoods of it. To this end, we need to 

introduce the spatial matrix W, the non-stochastic spatial weight matrix that 

expresses the proximity links existing between all pairs of sites and Y = WhX is the 

spatial lagged random vector of order h. In fact, in empirical spatial analysis, h is 

usually set equal to one. 

To apply the DC theory on the spatial domain, one is forced to restrict the 

attention to a sub-class of random variables that have some spatial dependence 

characteristics in terms of spatial shifts: the spatial stationary random variables. 

Conversely to the time domain, the spatial shift may take place in terms of 

translation or rotation; therefore spatial stationary variables should be homogenous 

and isotropic (Cressie 1993). 

In our spatial case, for h = 1, the dCOV function is given by: 

,
                   (9) 

with f the characteristic functions of the variables and c a constant (Székely and 

Rizzo 2012). The unbiased sample distance covariance dCOV can be computed 

with the formula given in (7), where the centred distances Akl and Bkl are calculated 

for X and Y = WhX respectively. Therefore, the sample spatial distance correlation 

SDCn for h = 1 is given by: 

 

.                                       (10)
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The case for h > 1 can be easily derived. 

If X has finite first moment, SDCn is well defined and it achieves its minimum 

0 if and only if X and WX are independent (no spatial dependence).  

SDCn can be corrected for high dimensional cases (SDC*n), as made in (8) 

and the statistical test STn can be computed, to verify the presence of spatial 

dependence: 

.                                           (11)

 

STn converges to a t-Student with n -1 degrees of freedom (n = n(n-3)/2) and for 

high p and n, is approximately normal. 

Although SDCn and STn can generally be used to verify the multivariate 

spatial dependence of the p variables in X, as a multivariate Moran’s statistics and 

test, they can be applied as a spatial multivariate generalization of the CoDa 

analysis. In fact, if X is defined by the compositions describing the relative 

contributions of each of the p categories or frequencies of a variable observed on n 

spatial sites, the proposed test is able to verify the presence of spatial dependence of 

the global distribution of a single variable. In this case, the data matrix X should be 

read by row, and each row i = 1, ..., n gives the local distribution of the variable X. 

Therefore, the elements akl = |xk – xl|p will measure the distance between the p 

proportions (or frequencies) observed over two different local sites k and l and may 

be considered as a distance of the two local distributions. The same holds for the 

elements bkl computed on the spatial lagged distributions Y = WX. In this way, the 

proposed SDCn statistics is able to catch the spatial dependence of a single variable, 

taking into account the information of all the frequency distribution. 

€ 
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Therefore, the method presented in the paper is more general than others, by 

testing spatial dependence – not necessary linear - of the distribution of a variable, 

without aggregating the values into their mean or sum, or limiting the analysis on 

one-point observation over the n zones. Moreover, no transformation of data is 

needed, as in regionalized CoDa, and inferential results are easy to implement and 

to interpret. 

In the next section SDCn and STn are applied on real data to verify the 

presence of spatial dependence of electoral compositional results in Italian 

provinces. 

 

4 Analysis of 2013 Italian electoral data 

During the last two decades there has been an increased interest in electoral 

geography (Crespin et al. 2011; Johnston et al. 2005), ascribing to the recent 

availability of detailed geodemographic datasets and to the advances in geospatial 

modelling and estimations. Electoral geography deals with the identification and 

explanation of the inherent geographical processes that affect the voting outcome, 

trying to understand and explain these processes.  

Electoral geography, indeed political geography in general, has been largely 

concerned with mapping distributions which are explained by non-spatial factors 

and spatial analysis has received little attention, despite the “neighbourhood effect” 

introduced in 1969 by K. Cox: “people tend to vote in a certain direction based 

upon the relational effects of the people living in the neighbourhood”. Recently, 

there is a growing body of literature, which suggests that voting patterns are not 

independent from space, however few empirical investigations exist which take 



explicit account of space. Cutts and Webber (2010) examine the determinants of 

voting patterns across constituencies in England and Wales using spatial 

econometric methods. The results suggest that while socioeconomic factors are key 

determinants of party vote shares, there is strong spatial autocorrelation in voting 

patterns. Similar results were obtained by Saib (2017) analysing voting behaviour in 

the 2007 French Presidential elections. Johnston et al. (2001) use a large British 

Household Panel dataset to stress how spatial location influences people voting. 

CoDa models are fitted on French electoral data of the 2015 departmental elections 

by Nguyen et al. (2017) to study the impact of the characteristics of the territorial 

units on the outcome of the elections. 

Moreover, electoral output and its spatial dependence may also impact on 

citizens’ welfare (Basile and Filoso 2018) through the provision of net fiscal 

benefits or fiscal policy decisions of local governments (Santolini 2008). 

In the present paper we apply the spatial distance correlation approach 

introduced in the previous section, to verify the presence of spatial dependence in 

the Italian voting outcome in 2013, consistent with the neighbourhood effect 

concept. The spatial distance analysis is performed by using the energy package 

implemented in the R software. 

Vote share data of Italian parliamentary election in 2013 at province level 

were downloaded from Ministry of the Interior website 

(elezionistorico.interno.gov.it). Abroad votes are not included in the analysed 

dataset. The dataset is composed by n = 110 provinces and p = 30 parties 

(categories). However, in the empirical analysis, only parties with more than 1% 

share are considered distinctly, whether the others are all summed together. 



Therefore, as specified in Table 1, the application is performed with p = 11 

categories, and for all 110 provinces, compositional data of the voting results are 

available. 

< Here Table 1 > 

 

Fig. 1 shows the spatial distribution at province level of the three main parties 

(M5S, PD, PdL), with the graduation of the grey corresponding to the level of share 

(clearer grey for higher values).  

In order to apply the spatial distance correlation analysis, we need to compute 

the spatial weight matrix W, that defines the contiguity between all pairs of 

provinces. In this paper, the spatial weight matrix W is defined in terms of a row-

standardized binary matrix, based on the k-nearest neighbouring distance, where 

each single province has the same number (k) of neighbours. In our Italian case, the 

existence of islands does not allow defining the weight matrix considering only 

simple physical contiguity; otherwise the islands were not connected to the 

peninsula. We choose k = 8, in this way provinces in Sicily and Sardinia are 

connected also to the rest of Italy (Le Gallo and Dall’erba 2006). 

 

< Here Figure 1 > 

 

Standard spatial analyses of electoral results use univariate tests, as Moran’s I 

test, and identify spatial dependence focusing on a party one by one. Conversely, 

spatial distance correlation methodology takes into account the whole voting 

distribution at province level and verifies if this is spatially correlated. Moreover, 



the dependence may be also non linear. The values of SDCn and STn on Italian 

parliamentary elections results are shown in Table 2. All statistics are computed for 

spatial lag h = 1, and SDCn is given in its standard and unbiased version. 

 

< Here Table 2 > 

 

Results highly confirm the presence of spatial dependence in electoral 

provincial distribution of Italian parliamentary election in 2013, in line with the 

neighbourhood effect. Fig. 2 compares the SDCn statistics on the whole 

compositional election distribution with the Moran’s I statistics of the single parties. 

 

< Here Figure 2 > 

 

Values of Moran’s I statistics range from 0.019 (Others) to 0.791 (LN), 

highlighting a high-distinguished behaviour of the spatial dependence of the single 

parties. Conversely, SDCn pick out the spatial dependence of the distribution as a 

whole. 

Similarly to the Moran’s spatial analysis, we may compute the SDCn 

scatterplot (Fig. 3) that allows to give a more in-depth view of the spatial distance 

distribution, enabling to identify any anomalous behaviour with respect to the 

global context. 

Furthermore, we compare the results of the distance correlation approach with 

the multivariate spatial correlation (MSC) technique of Wartenberg generalized by 

Dray and Debias (2008), that use Correspondence Analysis (CA) to explore spatial 



patterns in the multivariate domain. The application is performed by using the 

MULTISPATI approach implemented in the R software, as a function of the ade4 

package (Chessel et al. 2004). 

 

< Here Figure 3 > 

 

This multivariate analysis maximizes the scalar product between a linear 

combination of the original variables and a linear combination of the lagged 

variables. In order to test the statistical significance of the spatial structure of the 

data matrix X, a permutation procedure is used. In our application, the test-statistics 

is equal to 0.52557, with a p-value = 0.00498; therefore, we can reject the 

hypothesis of no spatial autocorrelation. The multivariate procedure output provides 

a barplot of the eigenvalues of CA and scores of plots on the first and second axis 

(Fig. 4). The barplot of eigenvalues suggests two main spatial structures. 

Eigenvalues of MULTISPATI are the product between the variance and the spatial 

autocorrelation of the scores. We note that the last eigenvalue is negative (a 

drawback of this procedure). 

 

< Here Figure 4 > 

 

The first axis opposes LN, FiD, SC to M5S, RC and SEL. The second axis is 

aligned mainly with PdL and UdC, opposed to PD.   

Although all procedures - SDC, Moran and multivariate CA – confirm the 

presence of spatial dependence, interpretation of the results is quite different. The 



single Moran’s I tests and the CA multivariate test are all based on the linear 

correlation assumption. The multivariate CA approach doesn’t analyse spatial 

correlation of all variables (or categories) taken together, but identifies a linear 

combination of the original and the lagged variables, and spatial correlation is 

detect between these two combinations, whereas the Moran’s I test performs the 

spatial analysis in a univariate context. Only the proposed distance correlation 

procedure captures the spatial dependence (not necessarily linear) of the whole 

distribution, without imposing any transformation on the original data matrix. 

To assess the validity of the proposed test, a simulation exercise is performed. 

A Monte Carlo experiment simulates k = 10.000 electoral provinces distributions, 

with data drawn from a uniform distribution U(0;100). Data retrieved from the 

simulation procedure are then used to evaluate the test STn in terms of type I error. 

The test STn is applied on all k = 10.000 spatial independent replications and 

the output of the simulation is reported in Fig. 5, that gives the distribution of the 

test statistics STn, in its unbiased version. 

 

< Here Figure 5 > 

 

To compute the empirical type I rate of the test, it is necessary to calculate 

how many times the statistics reject the null hypothesis of no spatial dependence, at 

a given significance a level (usually set equal 0.05) and compare it to a itself. Fig. 

5 evidences that the empirical rate is certainly lower than the theoretical values, 

because almost all values of STn range in the admission interval. 



Simulations to assess the power of the test are not computed, because of the 

difficulty to define a probabilistic scheme of spatial dependent distributions. 

Therefore, all proposed empirical results, in terms of real data application and 

simulation, corroborate the validity of the test STn on detecting spatial dependence. 

 

Conclusions 

In the present paper we introduce a new approach to identify spatial dependence of 

frequency and compositional distributions observed at geographically adjoining 

locations, without requiring aggregating through summing or averaging the 

observed values of the phenomenon.  

Regionalized univariate compositional data analysis were studied inside the 

CoDa framework, through the application of log-ratio transformations (Aitchinson 

1982, Pawlowsky-Glahn 1984) and, in the multivariate domain, through the use of 

Factor and Principal Component analyses (Wartenberg 1985) or matrix extensions 

of the single variable autocorrelation analysis (Lee 2001). However, all these 

methods can be difficult to interpret, and may lose considerable information in their 

reduction of dimensionality or application of transformations on the observed 

frequency distribution. Moreover, they are all based on the linear dependence 

assumption. 

The idea of the present work is to establish new types of spatial correlation 

tools for the measurement of nonlinear spatial dependence of a single variable 

distribution observed over different locations: the Spatial Distance Correlation 

index and test. Our approach starts from the testing procedure to check the presence 

of Distance Correlation between random vectors, recently introduced by Székely 



and Rizzo (2009) and combines it with the spatial distribution of geolocated 

compositional data analysis. Our procedure allows catching the spatial non linear 

dependence of a variable, looking at the information of its whole distribution. The 

index is based on the computation of the distance between distributions and ranges 

between zero and one, with zero equivalent to spatial independence. 

In the paper we introduce the detailed theoretical backgrounds of the SDC 

index and test and we apply them on Italian electoral data at provincial level, as a 

practical illustration of the capabilities of the proposed test to detect spatial 

dependence.  

The empirical results provide a range of interesting results. First of all, our 

empirical findings provide strong evidence that the electoral data are highly spatial 

dependent. Second, conversely to the univariate Moran’s analysis with high-

distinguished behaviour of the spatial dependence of the single parties, our test is 

able to define a global dependence, looking at the complete distribution of electoral 

results. 

Finally, the test is easy to perform and to interpret, without imposing 

transfromations on data or limiting the attention on linear dependence. 

Possible topics for further investigation and extensions of the SDC analysis 

could be to improve the computation of the test, by considering distances between 

distributions different from the Euclidean one, and comparing the test’s power, 

through simulations and empirical applications. 

Moreover, in spite of the fact that the proposed test emphasises its ability to 

identify spatial non linear dependence of a single variable as compositional 

geographical data, another way to use the SDC analysis is in detecting spatial 



dependence of a vector of variables. Applications and insights are needed to better 

explore this research line.  

In conclusion, this paper has introduced the role of distance correlation to 

detect non linear spatial dependence in geographical compositional data and has 

open a new research and application paths, of particular relevance in economic and 

social sciences, but also in earth sciences, such as mineralogy, agronomy, and 

hydrology, where data are usually recorded as compositions, and the interest is 

often on the analysis and comparison of these data over different geographical 

regions. 

  



Table 1 – Italian Parties in parliamentary election 2013 

Abbrev
iation 

Name 

M5S Movimento 5 Stelle 
PD Partito Democratico 
PdL Popolo della Libertà 
SC Scelta Civica con Monti per 

l’Italia 
LN Lega Nord 
SEL Sinistra Ecologia Libertà 
RC Rivoluzione Civile 
FdI Forza d’Italia 
UdC Unione di Centro 
FiD Fermare il Declino 

Others All others summed together 
 
 



Table 2 -  SDCn and STn 

Statistics Value p-value 
SDCn 0.8207648 - 

SDC*n  (unbiased) 0.6793831 - 
STn 71.02 < 2.2e-16 

 
  



Fig. 1 – Spatial distribution at province level of M5S, PD, PdL. Clearer 

shades of grey correspond to higher voting shares. 

 

 



Fig. 2 – Moran’s I tests and Spatial Distance Correlation 

 

  



Fig. 3 – Spatial Distance Correlation Scatterplot 

 



Fig. 4 - Results of Correspondence analysis (CA): Eigenvalues (a) and scores 
of electoral parties (b). 

 
                              (a)                                                          (b) 

 

  



Fig. 5 – Distribution of STn in the k = 10.000 replications 
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