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Abstract

Maximum likelihood estimation of the Bingham distribution is difficult because
the density function contains a normalization constant that cannot be computed
in closed form. Given the availability of sufficient statistics, Approximate Maxi-
mum Likelihood Estimation (AMLE) is an appealing method that allows one to
bypass the evaluation of the likelihood function. This paper studies the impact
of the input parameters of the AMLE algorithm and suggests some methods for
choosing their numerical values. Moreover, AMLE is compared to the standard
approach consisting in maximizing numerically the (approximate) likelihood ob-
tained with the normalization constant estimated via the Holonomic Gradient
Method (HGM). For the Bingham distribution on the sphere, simulation exper-
iments and real-data applications produce similar outcomes for both methods.
On the other hand, AMLE outperforms HGM when the dimension increases.

Keywords: Directional data, Simulation, Intractable Likelihood, Sufficient
statistics

1. Introduction

The Bingham distribution is one of the most important models for direc-
tional data. In the three-dimensional case the distribution was introduced by
Bingham (1974), who derived its main properties and found exact and asymp-
totic sampling distributions; see also Mardia and Jupp (2000). Recently, the5

properties of the large dimensional Bingham distribution have been studied by
Kume and Walker (2014). The need of modeling such data arises in many scien-
tific fields, such as geology (Peel et al., 2001), crystallography (Krieger Lassen
et al., 1994) and bioinformatics (Kent and Hamelryck, 2005; Hamelryck et al.,
2006; Boomsma et al., 2008); see also Mardia and Jupp (2000) or Fallaize and10

Kypraios (2016) and the references therein.

∗Corresponding author
Email addresses: marco.bee@unitn.it (Marco Bee), roberto.benedetti@unich.it

(Roberto Benedetti), giuseppe.espa@unitn.it (Giuseppe Espa)

Preprint submitted to Computational Statistics & Data Analysis August 26, 2016

Roberto Benedetti
Submitted versionPlease cite as:Bee M Benedetti R Espa G , Approximate maximum likelihood estimation of the Bingham distribution,
Computational Statistics and Data Analysis 108, 84–96, 2017DOI : https://doi.org/10.1016/j.csda.2016.11.004�



To outline the issue under investigation, we start with a general description of
the problem. Consider a q-dimensional random vectorX whose density contains

a normalization constant depending on θ, where θ
def
= (θ1, . . . , θs)

′ ∈ Θ ⊂ Rs is
the parameter vector. Let15

f(x;θ) =
1

c(θ)
exp{−h(x;θ)}, x ∈ Rq, (1)

be the functional form of such a density. If c(θ) cannot be computed in closed
form, the most common strategy consists in using some approximation c̃(θ)
and maximizing the (approximate) likelihood obtained by plugging c̃(θ) into
the likelihood. Distributions with densities that can be written as (1) are com-
monly encountered not only when working with directional data, but also in20

spatial statistics (Cressie, 1991, Section 7.2). In this field, MLE based on an
approximation of the normalizing constant has been proposed, for example, by
Friel and Pettitt (2004). MCMC methods for distributions with intractable nor-
malizations constants have been developed by Møeller et al. (2006) and Murray
et al. (2006).25

The density of a q-dimensional Bingham random vector X is given by

f(x;A) =
1

c(A)
exp{−x′Ax}, x′x = 1, x ∈ Rq, (2)

where A is a q × q symmetric matrix and c(A) is the normalization constant.
It is therefore clear that (2) is a special case of (1). The distribution can be
derived from the intersection of a zero-mean multivariate normal distribution
W∼ Np(0,Ψ) with the unit sphere in Rq, a fact that clarifies the role of the30

matrix A. In this case it turns out that A = Ψ−1; in other words, the exponent
of (2) is equal to the exponent of a zero-mean multivariate normal.

As A is symmetric, its singular value decomposition is given by A = V ΛV ′,
where V is orthogonal and Λ = diag(λ1, . . . , λq). It can be easily verified
(Kume and Walker, 2006) that, ifX follows a Bingham distribution with density35

f(x;A), the random vector Y = V ′X follows a Bingham distribution with
density f(x; Λ). Bingham (1974) has shown that the MLE of V is the matrix
of eigenvectors of the sum of squares and products matrix

∑n
j=1 xjx

′
j , where n

is the sample size, so that one can, without loss of generality, restrict attention
to MLE of Λ.40

The distribution is antipodally symmetric but not circularly symmetric, and
is not identifiable unless we introduce some constraint on Λ, because (Bingham,
1974, Lemma 2.1) the density does not change if we add a positive constant to
the λis. Thus, in the following we will use the constraint λq = 0, and assume
λ1 ≥ · · · ≥ λq = 0.45

Exact evaluation of the likelihood corresponding to (2) is difficult because the
normalization constant cannot be computed explicitly and depends on Λ, so that
it cannot be ignored. Although various methods have been proposed, numerical
approximation of c(Λ) is a computationally expensive problem. When q = 3,
one can use power series and asymptotic series (Bingham, 1964). For a certain50
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range of parameter values, the saddlepoint approximation works well (Kume and
Wood, 2005). Finally, Sei and Kume (2015) show that the Holonomic Gradient
Method (HGM) is quite accurate.

Having computed an approximate value of c(Λ), MLE of the parameters can
be performed by plugging it into the likelihood function and maximizing numer-55

ically the resulting (approximate) likelihood function. This way of proceeding
is also called approximate maximum likelihood estimation (Kume and Wood,
2005, Section 2.3), but is completely different from the Approximate Maximum
Likelihood Estimation technique developed here.

In this paper we propose a simulation-based approach to MLE, called Ap-60

proximate Maximum Likelihood Estimation (AMLE), whose main advantage
consists in avoiding the evaluation of the normalization constant. Broadly
speaking, the method is based on a frequentist reinterpretation of Approximate
Bayesian Computation (ABC) techniques, and its properties have been derived
by Rubio and Johansen (2013) in a general setup; AMLE-based estimation has65

been developed by Bee et al. (2015) for the autologistic model.
The idea consists in generating candidate parameter values from bounded

distributions (they would be the prior distributions in a Bayesian framework),
computing certain summary statistics using the simulated data and then accept-
ing only the parameter values such that the corresponding summary statistic is70

“close” to its observed counterpart. Under regularity conditions, the mode of
the empirical distribution of the accepted parameter values is an approximation
of the MLE. The standard version of AMLE samples the candidate parameter
values from uniform distributions, but it would be possible to use different priors
(Rubio and Johansen, 2013, p. 1637).75

The distinctive feature of AMLE with respect to more traditional approaches
to MLE with intractable constants is that, instead of computing an approxima-
tion of the likelihood and maximizing it, one can directly approximate the MLE
by simulating observations from the distribution of interest. It is worth noting
that AMLE is a quite effective technique but cannot be applied in an automatic80

way, even when the availability of sufficient statistics makes obvious the choice
of the summary statistics. In particular, details such as the choice of the metric,
the ABC sample size and the optimization of the approximated likelihood have
to be selected on a case-by-case basis.

AMLE is particularly appealing when two conditions are satisfied. First,85

its theoretical foundations are more solid when the sufficient statistics of the
model under investigation are known, because in this case the convergence of
the estimator to the MLE is guaranteed. Second, exact simulation of the model
must be possible, and it is highly desirable to have a computationally efficient
sampling algorithm. In other words, the first condition is crucially important90

to make sure that the estimator has the same asymptotic behavior of the MLE,
whereas the second one is relevant to set up the algorithm and limit the com-
putational burden. The Bingham distribution meets both requirements: the
sufficient statistics are readily computed and random number generation can
be accomplished via an accept-reject method developed by Kent et al. (2013).95

Hence, the present setup is very well suited to the use of AMLE.
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The contribution of this article is twofold. First, we work out the details
of a new approach to the estimation of the Bingham distribution based on the
AMLE method of Rubio and Johansen (2013). Second, we carry out a numerical
study aimed at comparing AMLE and the benchmark technique that uses the100

HGM approximation of the normalizing constant.
The rest of the paper is organized as follows. Section 2 outlines the AMLE

approach in a general framework; Section 3 specializes it to the Bingham estima-
tion problem; Section 4 gives the results of extensive simulation experiments and
suggests some strategies for choosing the parameters of the algorithm; Section105

5 analyzes two real datasets and Section 6 concludes.

2. Approximate Maximum Likelihood Estimation

The AMLE approach exploits the potential of ABC techniques in a frequen-
tist setup. In the following we briefly describe the algorithm, referring to Rubio
and Johansen (2013) for details.110

Given a sample (y1, . . . ,yn) ∈ Rq×n from a distribution with density func-
tion f(y;θ), let L(θ;y1, . . . ,yn) be the likelihood function, where θ ∈ Θ ⊂ Rs
is a vector of parameters. If we temporarily assume a Bayesian setup and let
π(θ) be the prior distribution of θ, π(θ|y) is the posterior, given by

π(θ|y) =
f(y|θ)π(θ)∫

Θ
f(y|t)π(t)dt

. (3)

Consider now the following approximation of the likelihood function:115

f̂ε(y|θ) =

∫
Rq×n

Kε(y|z)f(z|θ)dz, (4)

where Kε(y|z) is a normalized Markov kernel and ε is a scale parameter. Plug-
ging (4) into (3) we can compute an approximation of the posterior:

π̂ε(θ|y) =
f̂ε(y|θ)π(θ)∫

Θ
f̂ε(y|t)π(t)dt

.

If we restrict the analysis to a uniform prior on a suitable set D ⊂ Rs, maximiz-
ing the likelihood and maximizing the posterior density is the same, provided
that the posterior is written in the parameterization of interest.

Let η : Rq×n → Rl be a summary statistic. The kernel Kρ
ε (s|t) is defined

on the space of these summary statistics as follows:120

Kρ
ε (η(y)|η(z)) ∝

{
1 ρ(η(y),η(z)) < ε,

0 otherwise,
(5)

where ρ : Rl×Rl → R+ is a metric. If η(y) = y, one obtains the Pritchard et al.
(1999) ABC algorithm. Using a summary statistic η(y) instead of the original
sample y implies no loss of information exactly if η is a jointly sufficient statistic
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for the unknown parameters of the model: in this case, L(θ;y1, . . . ,yn) =
L(θ;η(y1, . . . ,yn)), that is, conditioning upon the sufficient statistics is the125

same as conditioning upon the sample. Thus in the AMLE setup it is highly
recommended to use the sufficient statistics of the model, if available.

The preceding discussion motivates the following algorithm:

Algorithm 1. (AMLE)
130

1. Obtain a sample θ∗ε = (θ∗ε,1, . . . ,θ
∗
ε,m)′ from the approximate posterior

π̂ε(θ|y); m is commonly called ABC sample size;

2. Use this sample to construct a nonparametric estimator φ̂ of the density
π̂ε(θ|y);

3. Compute the maximum of φ̂, θ̃m,ε. This is an approximation of the MLE135

θ̂.

The most common implementation of Step 1 is the ABC rejection algorithm
described by the following pseudo-code.

Algorithm 2. (ABC rejection algorithm)
140

1. Simulate θ∗ from the prior distribution π(·);

2. Generate y = (y1, . . . , yn)′ from f(·|θ∗);
3. Use y to compute summary statistics η(y); accept θ∗ with probability ∝
Kρ
ε (η(y)|η(z)), otherwise return to Step 1.

In the basic AMLE setup, at Step 1 the prior π is the q-product of uni-145

form distributions with supports on (generally different) intervals [θiL, θiU ],
i = 1, . . . , s. The crucial result proved by Rubio and Johansen (2013) is that,
under a mild condition about Kρ

ε (y|z), π̂ε(θ|y) converges pointwise to π(θ|y)
as ε→ 0, for any θ ∈D. As a corollary it can be shown that, if η is a sufficient
statistic for θ, the ABC approximation converges pointwise to the posterior150

distribution.
Finally, under the additional condition of equicontinuity of π̂ε(·|y) on D,

and provided π(·|y) has a unique maximizer θ̃, it is possible to show that
limε→0 π̂ε(θ̃|y) = π(θ̃|y).

Now suppose that a simple random sample θ∗ε = (θ∗ε,1, . . . ,θ
∗
ε,m)′ from the155

approximate posterior π̂ε(·|y) with mode θ̃ε is available. Let θ̃m,ε be an estima-

tor of θ̃ε obtained from θ∗ε such that θ̃m,ε → θ̃ε almost surely when m → ∞.

Then, for any γ > 0, there exists ε > 0 such that limm→∞ |π̂ε(θ̃m,ε|y)−π(θ̃|y)| ≤
γ almost surely.

Although non-sufficient summary statistics can be used and weaker asymp-160

totic results can be obtained in this setup (Rubio and Johansen, 2013, Propo-
sition 2), in this brief summary of the theory we have emphasized the role of
sufficiency. The reason is not only that convergence to the MLE in the terms
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presented above depends on sufficiency, but also that sufficient statistics are
available for the Bingham distribution, and this is a strong argument in favor165

of the use of AMLE for approximate MLE of its parameters.

3. AMLE of the Bingham distribution

Under the identifiability constraint λq = 0, the standard (i.e., with diagonal
Λ) q-dimensional Bingham density is given by

f(x; Λ) =
exp

{
−
∑q−1
i=1 λix

2
i

}
c(Λ)

, (6)

so that the joint density of a random sample (x1, . . . ,xn)′ from (6) is

f(x1, . . . ,xn; Λ) =
exp

{
−n
∑q−1
i=1 λiηi

}
c(Λ)

,

where Λ = diag(λ1, . . . , λq) and ηi = (1/n)
∑n
j=1 x

2
j,i. Hence, by the fac-170

torization theorem, the statistic η = (η1, . . . , ηq−1)′ is jointly sufficient for
λ1, . . . , λq−1.

The Bingham distribution can be simulated by means of an accept-reject
algorithm (Kent et al., 2013; see also Fallaize and Kypraios, 2016) that uses
the Angular Central Gaussian distribution (ACG; Tyler, 1987) as an envelope.175

As pointed out by Kent et al. (2013), evaluating the acceptance probability is
difficult because it depends on the normalizing constant; however, it has been
verified empirically that the efficiency is never lower than 52% when q = 3 (Kent
et al., 2013). For larger q, the efficiency deteriorates rather quickly; although
the actual acceptance rate depends on the numerical values of the parameters,180

when q = 7 some simulations whose results are not reported here give an average
acceptance probability close to the 10% found by Fallaize and Kypraios (2016).
Hence, AMLE becomes computationally more demanding for large-dimensional
problems; see Section 4.3 for further details.

According to algorithms 1 and 2, a pseudo-code of AMLE for a q-dimensional185

standard Bingham random vector X is as follows.

Algorithm 3. (AMLE of the Bingham distribution)

1. Simulate λ∗ from the prior distribution π(λ) =
∏q−1
i=1 π(λi), where π(λi)

is U(λiL, λiU );190

2. Generate y = (y1, . . . ,yn)′ from f(·|λ∗), where f is the Bingham density;
3. Use y to compute sufficient statistics ηsim; accept λ∗ with probability ∝
Kρ
ε (ηobs|ηsim), otherwise return to Step 1. Here, ηobs = (η1, . . . , ηq−1)′ =

(
∑n
j=1 x

2
j,1, . . . ,

∑n
j=1 x

2
j,q−1)′/n are the observed sufficient statistics.

4. Repeat steps 1-3 until m vectors of simulated parameter values λ∗ε =195

(λ∗ε,1, . . . ,λ
∗
ε,m)′ from the approximate posterior π̂ε(λ|y) are accepted; λ∗ε

is the ABC sample.
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5. Use λ∗ε to find a nonparametric estimator φ̂ of the density π̂ε(λ|y);

6. Compute the maximum of φ̂, λ̃m,ε. This is an approximation of the MLE

λ̂.200

Two additional comments are in order about Algorithm 3. As mentioned in
Section 1, to ensure identifiability we use the constraint λ1 ≥ · · · ≥ λq =
0. When working with data, we assume that the observed sufficient statistics
determine the ranking of the parameters, i.e. ηi < ηj ⇒ λi > λj . At Step 1,
to take care of this issue, we first check that λ∗i > · · · > λ∗q−1. If this condition205

is satisfied, the algorithm proceeds; otherwise, Step 1 is repeated. Clearly,
the number of candidate parameter values rejected for this reason increases
when (i) two or more sufficient statistics are close to each other, so that the
supports of the uniform distributions are characterized by more overlap, and
(ii) the dimension q gets large. To overcome this difficulty, it would be possible210

to generate candidate parameter values from conditional uniform distributions:
λ∗i ∼ U [λiL, λ

∗
i−1], i = 2, . . . , q − 1. However, we have verified via simulation

that the computational gain associated to this conditional sampling approach is
negligible compared to the total computational burden of the algorithm. Thus
in the following we stick to the procedure described in Step 1 of Algorithm 3.215

Second, the mode of the joint posterior is typically approximated by means
of the maximum of the multivariate kernel density fitted to the data using
the kde command of the ks R package (Duong, 2014). However, this issue
requires special attention when the dimension of the problem gets larger, as
kernel density approximations quickly become less reliable. In particular, the220

kde command does not work for dimension larger than 6 (and even if it worked,
a very large ABC sample size would be necessary for good results). For these
reasons, when q > 3, we investigate some further techniques. Specifically, we
approximate the mode of the joint distribution via:

1. the maximum of the multivariate kernel density (“K”; only when q ≤ 6);225

2. the sample mean (“M”);

3. the maximum of the univariate kernel densities estimated using the marginal
data (“UKD”);

4. the maximum of the product of the univariate kernel densities estimated
using the marginal data (“P”);230

5. the mean shift algorithm (“MS”);

In cases 2 and 3 the algorithms sequentially use the marginal data, so that
only univariate estimations are required. The remaining methods are truly
multivariate. For MS we use the bmsClustering command of the MeanShift

R package (Ciollaro and Wang, 2016)1. As we know that the distribution is235

unimodal, we specify that there is only one cluster. The approaches 2 to 5 have

1bmsClustering uses the so-called blurring mean shift algorithm; we have also used the
standard version of the algorithm, and the results are identical to the third decimal place.
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the advantage that there is no need to construct an expensive nonparametric
approximation of the multidimensional density at all and allow one to implement
AMLE in dimensions where the kde limitations preclude its use, provided that
the ABC samples are large enough.240

According to the remarks in Section 1, the extension of the method to the
case of general (non diagonal) A is straightforward. The spectral decomposition

of A is A = V ΛV ′ and its MLE is V Λ̂V ′ (Bingham, 1974, Theorem 6.1(c)),

where Λ̂ = diag(λ̂i) is the diagonal matrix of the MLEs of λi (i = 1, . . . , q − 1)
and V is the matrix of the eigenvectors of the sum of squares and products245

matrix
∑n
j=1 xjx

′
j .

Finally, Algorithm 3 can in principle be simplified by exploiting the MCMC
approach developed by Fallaize and Kypraios (2016) to obtain an exact sample
from the posterior. In particular, it would be possible to replace steps 2 and
3 of Algorithm 3 by steps 2 and 3 of the algorithm presented on p. 352 of250

Fallaize and Kypraios (2016), using a uniform prior. Although this way of
proceeding may result in a faster algorithm, it should also be noted that any
MCMC approach does not produce truly independent samples and, as Rubio and
Johansen (2013, Sect. 3.1) point out, dependence between samples produced
via MCMC techniques can make density estimation more complicated.255

Whereas an MCMC-based approach would produce a posterior sample that
is not independent but is an exact sample from the true posterior, the ABC-
based method used here produces a posterior sample that is independent but is
only an approximation of the true posterior. It is not clear a priori which one is
preferable. While this issue is certainly interesting, not only for the estimation260

of the Bingham distribution, but also in more general setups, we do not pursue
it here, also because the implementation of an MCMC-based approach is likely
to be non-trivial, as it requires to set all the classical MCMC inputs (proposal
distribution, burn-in period, stopping criterion, etc.).

3.1. The standard MLE approach265

The log-likelihood function of the standard Bingham distribution is given by

l(Λ;x1, . . . ,xn) = −n

(
q−1∑
i=1

λiηi + n log(c(Λ))

)
. (7)

The benchmark method for computing MLEs is based on the maximization of
the approximate likelihood function obtained by plugging an estimate ĉ(Λ) of
c(Λ) into (7). The first-order conditions are given by

−n
(
ηi +

ĉ′i(Λ)

ĉ(Λ)

)
= 0, i = 1, . . . , q − 1,

where ĉ′i(Λ) is the estimate of the partial derivative of c(Λ) with respect to the
i-th parameter. Sei and Kume (2015) propose to estimate the constant by means
of the holonomic gradient method, which is implemented in the R package hgm270

(Takayama et al., 2015). In the following, we will call HGMs the MLEs obtained
with this approach.
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4. Simulation experiments

The choice of the parameters of the AMLE algorithm is a delicate issue
that deserves a detailed investigation, because inappropriate values can have a275

dramatic impact on the results.
We first apply the algorithm to two synthetic datasets from the Bingham

distribution on the unit sphere, so that q = 3. As one of the aims consists in
comparing AMLE to existing estimation methods, we consider the two samples
analyzed by Mardia and Zemroch (1977) and Fallaize and Kypraios (2016).280

They are called Dataset 1 and Dataset 2, with sufficient statistics respectively
equal to ηobs = (0.30, 0.32)′ and ηobs = (0.02, 0.40)′. The sample size is n = 100
in both cases.

The very first step consists in determining the ranges Di of the uniform
priors, i.e. the intervals such that λi ∈ Di (i = 1, . . . , q − 1). The relationship285

between the λis and the eigenvalues of the sample covariance matrix is quite
complicated (Love, 2007), so that no simple moment-based procedure can be
used to find initial values of the parameters. However, the concentration of the i-
th marginal distribution ofX is a monotone function of λi: as λi gets larger, the
distribution is more peaked along the i-th direction. This feature may be used as290

a guideline to come up with an interval. In absence of any optimal procedure, a
small pilot simulation is usually enough to obtain reasonably precise information
about the ranges Di. In any case, it is not worth spending much time on the
fine tuning of the Dis, because the supports of the uniform distributions have a
rather limited effect on the computational burden (see Section 4.1 for details).295

Besides ε, the other crucial parameter for the properties of the estima-
tors is the metric ρ. In general, the normalized version of the Euclidean dis-

tance d̄(x,y)
def
=
√∑p

i=1((xi − yi)/xi)2 is preferable to the Euclidean distance

d(x,y)
def
=
√∑p

i=1(xi − yi)2; see Sousa et al. (2009) and Beaumont (2010) for
the use of d̄ in the ABC setup2.300

Before turning to the analysis of the impact of the input parameters of the
algorithm, it is worth considering the role of the sample size n. Consider Dataset
2, with λ1 = 25.31, λ2 = 0.762 and λ3 = 0. For n ∈ {500, 1000, 10 000, 30 000}
we simulate n observations from the Bingham distribution with these parame-
ters and compute ηobs. Then we sample 500 pairs of parameter values λi,1 ∼305

U(15, 40) and λi,2 ∼ U(0, 2), for each pair of parameter values we simulate n
observations from the Bingham distribution, compute the corresponding simu-
lated sufficient statistic ηsimi = (ηsimi,1 , ηsimi,2 ) and finally the numerical values of

d̄i(η
obs,ηsimi ) (i = 1, . . . , 500).

Figure A.13 shows the scatterplot of λi,1 and d̄i(η
obs,ηsimi ) for n ∈ {500,310

1000, 10 000, 30 000}. The horizontal line, arbitrarily drawn at d̄ = 0.04, helps
to identify the values of λ1 corresponding to small values of d̄, i.e. the values of

2Note that d̄ is not a distance, but this is not crucial here.
3In the rest of the paper, all the numbers prefixed by “A.” refer to figures reported in the

supplementary material.
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λ1 that would be included in an hypothetical ABC sample determined by the
condition d̄ < 0.04 at step 4 of Algorithm 3. Whereas the shape of the cloud
is approximately the same in the four panels, as n gets larger the borders are315

smoother and the distribution is more peaked near the true value so that the
smallest values of d̄ correspond to values of λ1 closer to the true value. This is
particularly evident for n = 30 000.

4.1. Choosing the parameters of the algorithm

In practice, it is often difficult to have an idea of the values of the normalized320

Euclidean distance between the observed and simulated values of the summary
statistics, unless one has some information about their distributions. Thus,
it is more common to choose, instead of ε, the fraction of accepted values f
(Sousa et al., 2009). In this case one simulates a large number of candidate
parameters from the uniform distributions, uses them to sample the distribution325

and compute the summary statistics, and then includes in the ABC sample only
the parameters corresponding to some predefined fraction f with the smallest
values of the distance between ηobs and ηsim. In the following we adhere to this
way of proceeding and study how the properties of the estimators depend on f .
Typical values of f used in the ABC literature range from 10−2 to 10−5 (see,330

e.g., Sousa et al., 2009, and the references therein).
The ranges Di (i = 1, 2) in datasets 1 and 2 are determined by means of

the following simulation, whose details are explained focusing on Dataset 1.
The value of ηobs suggests marginal distributions with rather high dispersion,
i.e. small values of λ1 and λ2. Simulating np = 10 000 candidate values of the335

parameters λ1 and λ2 respectively from the U(0, 3) and U(0, 2) distributions and
using f = 10%, we obtain empirical ranges [minλi,maxλi] equal to [0.012, 2.218]
for λ1 and [0.001, 1.604] for λ2. According to these outcomes, all the analyses
can be safely carried out with D1 = (0, 3) and D2 = (0, 2). A similar analysis
for Dataset 2 gives ranges [13, 45] for λ1 and [0, 2] for λ2.340

We now analyze the effect of f on the estimators. Note that f = m/np, where
m is the ABC sample size (always equal to 1000 in this experiment) and np is the
number of candidate parameter values simulated from the uniform distributions.
Various fractions f are obtained keeping m = 1000 and using different values
of np. Specifically, we simulate samples of sizes between np = 105 and np =345

25 · 107 from the uniforms, use them for sampling the Bingham distribution
and compute the sufficient statistics. From each sample, we determine the
ABC sample by taking the m = 1000 observations with the smallest normalized
distance between ηobs and ηsim, and compute AMLE by taking the mode of
the kernel density estimated on those observations. The values of f are between350

10−2 and 4 · 10−6, so that they cover a range larger than the one typically used
in the ABC literature (Sousa et al., 2009).

Panels (a) and (c) of Figure A.2 show the AMLEs obtained, whereas (b) and
(d) display the corresponding standard errors, given by the empirical standard
deviations of the simulated distributions of the estimators. The performance of355

AMLE clearly deteriorates only for the last two values of f , respectively equal
to 8 · 10−3 and 10−2. If we omit them, the graphs seem to be characterized
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mostly by sampling variability4. The same analysis for Dataset 2 gives similar
results.

To disentangle the effects of m and np, we carry out two further numerical360

investigations. In the first experiment we use m ∈ {30, 100, 500, 1000, 2000,
3000, 4000} with np = 106; in the second one, we use the same values of m,
but in each case we choose np so as to keep f = 0.5%. For Dataset 1, the

simulated distributions of λ̂1 and λ̂2 in the first experiment are displayed in
panels (a) and (b) of Figure A.3, whereas panels (c) and (d) show the boxplots365

of the parameters in the second experiment. The same graphs for Dataset 2
are in Figure A.4. In both cases the boxplots suggest that the performance of
the estimators is worse for m ≤ 500. On the other hand, the distributions are
similar for m > 500. Finally, Figure A.5 shows the AMLE estimators of λ̂1 and
λ̂2 in dataset 1 for an ABC sample size m ∈ {1, . . . , 2000} with np = 2 · 105.370

Figure A.6 displays the same results for Dataset 2; the AMLE estimators are
computed using the sample mean. Both graphs suggest that the estimators
become approximately stable for m between 500 and 1000.

According to the outcomes just presented, we carry out all the computations
for both datasets with m = 1000 and np = 2 · 105. The computational burden375

associated to a fraction f = 5 · 10−3, obtained with m = 1000 and np =
2 · 105, is relatively small (approximately 11 minutes for Dataset 1 on a CORE
i7 processor with the R programming language and 8Gb of RAM memory). The
larger range of the first uniform distribution increases the computing time in
Dataset 2 to approximately 14 minutes. The modest difference between the two380

computational costs suggests that the ranges of the uniform distributions are
not critical for the total time taken by the procedure.

4.2. Three-dimensional experiments

Figure 1 shows the empirical distributions of the HGM and AMLE parameter385

estimates obtained in 50 replications for Dataset 1 (panels (a) and (b)) and 2
(panels ((c) and (d)). Panels (a) and (c) are the boxplots of HGMs, panels
(b) and (d) refer to AMLEs. Each replication of the experiment consists in
simulating 100 observations from the Bingham distribution with parameters
λ = (0.588, 0.421)′ for Dataset 1 and λ = (25.31, 0.762)′ for Dataset 2 and390

computing the HGM and AMLE estimators.
There are little differences between the two estimators. The HGM box-

plots show somewhat more regular distributions, but it is worth noting that, in
Dataset 1, out of 50 replications, HGM performed via constrained optimization
over the rectangle (0, 2) × (0, 2) produced 2 estimates of λ1 and 9 estimates395

of λ2 equal to 0. Table 1 shows, for both methods, the point estimates, the

4If, in each of the graphs, we omit the last two values and fit a simple linear regression, we
never obtain a slope significantly different from zero, and the correlogram does not suggest
the presence of any autocorrelation.
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Figure 1: Distributions of λ̂1 and λ̂2 for Dataset 1 (panels (a) and (b)) and Dataset 2 (panels
(c) and (d)) over 50 replications of HGM and AMLE.
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Dataset # parameter p. e. s. e. CV(RMSE) rel. perf.

AMLE
1

λ̂1 0.797 0.396 0.762 1.135

λ̂2 0.382 0.280 0.671 0.930

2
λ̂1 25.798 4.415 0.175 1.176

λ̂2 0.739 0.328 0.432 1.060

HGM
1

λ̂1 0.730 0.369 0.672

λ̂2 0.357 0.297 0.722

2
λ̂1 24.939 3.760 0.149

λ̂2 0.683 0.300 0.407

Table 1: Point estimates (p. e.), standard errors (s. e.), CV(RMSE)s and relative per-
formances (rel. perf.) of the estimators of the parameters of the Bingham distribution in
Dataset 1 and 2. All the measures are computed using 50 replications. The AMLE estimation
procedure is implemented with m = 1000 and np = 2 · 105. The true values of the parameters
are λ = (0.588, 0.421)′ in Dataset 1 and λ = (25.31, 0.762)′ in Dataset 2.

standard error, the coefficient of variation of the RMSE and the relative per-
formance. The coefficient of variation of the RMSE, given by CV (RMSE)λ̂i

=

RMSE(λ̂i)/λ̂i, i = 1, 2, has been preferred to the RMSE because of the large
value of the first parameter in Dataset 2; relative performance is defined as the400

ratio CV (RMSE)AMLE/CV (RMSE)HGM . HGMs show a slightly better per-
formance in Dataset 2, whereas in Dataset 1 the CVRMSEs are approximately
the same. In the latter case AMLE should probably be preferred because AM-
LEs are strictly positive with probability 1.

Focusing on the AMLE approach, Figure A.7 shows the simulated distribu-405

tion of the m = 1000 accepted values of the parameters for Dataset 1 (panels
(a) and (b)) and 2 (panels (c) and (d)). Figure A.8 shows an ABC sample of
size 1000 from the joint distribution of the parameters for Dataset 1 (panel (a))
and Dataset 2 (panel (b)). In both cases, the results are very similar to those
obtained by Fallaize and Kypraios (2016).410

4.3. Large-dimensional experiments

In large-dimensional frameworks, the performance of both estimators is ex-
pected to deteriorate. As for AMLE, a larger m is likely to be necessary, because
multivariate kernel density estimation suffers from the curse of dimensionality
and, in practice, more observations are required when the dimension of the415

problem gets larger. For different reasons, standard numerical optimization
techniques become quickly less reliable as the number of parameters increases.
Thus, in this section we investigate the performance of the estimators for the
Bingham distribution with q > 3, approximating the mode of the joint distri-
bution by means of all the methods mentioned in Section 3.420

4.3.1. A 5-dimensional example

Consider first a sample of size n = 100 from the standard Bingham distri-
bution with q = 5. We borrow the setup used by Sei and Kume (2015, p. 329),
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parameter p. e. s. e. CV(RMSE) rel. perf.

AMLEM

λ̂1 7.090 0.230 0.035 0.224

λ̂2 3.032 0.321 0.107 0.488

λ̂3 1.531 0.115 0.075 0.255

λ̂4 0.519 0.129 0.270 0.385

HGM

λ̂1 6.997 1.097 0.155

λ̂2 3.218 0.676 0.219

λ̂3 1.610 0.446 0.292

λ̂4 0.512 0.440 0.701

Table 2: Point estimates (p. e.), standard errors (s. e.), CV(RMSE)s and relative perfor-
mances of the HGM and AMLEM estimators of the parameters of the Bingham distribution in
the 5-dimensional example. AMLEM estimators are computed with m = 1000 and np = 6·105

and the mode of the posterior is approximated by the sample mean. The true values of the
parameters are λ = (7.188333, 3.120184, 1.543555, 0.628081, 0)′.

simulating 100 observations form the Bingham distribution with parameters
λ = (7.188333, 3.120184, 1.543555, 0.628081, 0)′. Some pilot simulations similar425

to those carried out in Section 4.1 suggest that, given the larger number of pa-
rameters, np = 2·105 may be too small, and the variance approximately becomes
stable only for np ' 5 · 105; accordingly, we use np = 6 · 105. Even though the
simulation becomes heavier when the dimension increases, because, as pointed
out in Section 3, the acceptance rate of the algorithm sharply decreases, this430

value of np still guarantees a reasonable computational burden (approximately
35 minutes on a CORE i7 processor with the R programming language and 8Gb
of RAM memory).

The results obtained for λ̂1, . . . , λ̂4 (λ5 is equal to zero in order to ensure
identifiability) via HGM and the best AMLE approach (i.e., the one using sam-435

ple means, AMLEM from now on) are reported in Table 2, whereas Figure 2
shows the boxplots and Figure A.9 displays the bias and the CV(RMSE).

Both the Table and the figures suggest that, in terms of CV(RMSE), AMLE
is significantly more efficient than HGM in this case. In addition, the latter
method has the same problem noted in the simulation experiment concerning440

Dataset 1: in 3 out of 50 cases, the HGM estimator of λ4 is equal to 0. There is
a non-negligible difference among the various versions of AMLE: overall, “M”
and “MS”, whose bias and CV(RMSE) are almost indistinguishable, give the
best results; (see Bee and Trapin, 2016, for a similar result). AMLEM has a
CV(RMSE) between 2 and 5 times smaller than the CV(RMSE) of HGM (see445

Table 2). When turning to the biases and the CV(RMSE)s in Figure A.9, there
is little difference between HGM and AMLE in terms of bias (although the
bias of HGM is the largest one for all parameters), whereas AMLE outperforms
HGM more markedly in terms of CV(RMSE). This implies that the variance of
AMLE is smaller, as can be noted from Figure 2 as well.450

14



Figure 2: Distributions of the HGM and AMLE estimators of λ1, λ2, λ3 and λ4 in the 5-
dimensional example with 50 replications. The dashed horizontal lines denote the true values
of the parameters. The AMLE is obtained via multivariate kerned density estimation (“K”),
sample means (“M”), univariate kernel density estimation (“UKD”), the maximum of the
product of the univariate kernel densities (“P”) and the mean shift algorithm (“MS”).
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4.3.2. A 10-dimensional example

To conclude the simulation experiments, we tackle a challenging 10-dimensional
example. Sampling 100 observations from the Bingham distribution with pa-
rameter vector

λ = (25.3, 10, 6, 5.5, 3.7, 2.5, 2, 1.35, 0.6)′,

we obtain the joint observed sufficient statistics

ηobs = (0.01875, 0.0431, 0.0667, 0.0831, 0.0884, 0.1073, 0.1204, 0.1358, 0.1538, 0.1812)′.

We perform AMLE with np = 105: this is a small number in this setup, but,
given the high rejection rate, it corresponds to an approximately 11-hour long
simulation experiment, which is still viable and in line with the spirit of setting
up a procedure characterized by an acceptable balance between statistical preci-455

sion and computational cost5. To find the mode of the approximated posterior
we use the same algorithms of the 5-dimensional case, except multivariate kernel
density estimation which is not implemented in kde for dimensions larger than
6.

Figure 3 shows the simulated distribution of the estimators of λ1, λ4, λ6 and460

λ9 (the boxplots of the remaining parameters are qualitatively similar), Table
3 compares HGM to AMLEM , which is again the best version of AMLE, and
Figure A.10 shows the bias (panel (a)) and the CV(RMSE) (panel (b)) of all
the estimators.

Overall, the performance of the estimators deteriorates considerably in this465

case, but this is unsurprising if we consider that estimating nine parameters with
100 observations is a difficult task. Turning to the two methods of estimation,
HGM is again the worst performer in terms of CV(RMSE), and this is mainly
due to a larger variability. Moreover, panel (d) of Figure 3 shows that the HGM
estimator of λ9 has a very skewed distribution. The reason is indeed the same470

noted above: many values of λ̂9 are equal to zero. Here this drawback is more
widespread, as 15 values of λ̂9, 4 values of λ̂6 and 1 value of λ̂4 are equal to zero.
AMLEs are not very precise as well; however, despite the relatively small value
of np, they are considerably more stable than the HGM estimators, so that the
CV(RMSE) is always smaller (see Table 3). Analogously to the 5-dimensional475

case, “M” and “MS” are nearly indistinguishable and give better results with
respect to the remaining versions of AMLE. Table 3 suggests that the advantage
of AMLEM with respect to HGM is substantial, as the CV(RMSE) of AMLEM

is from approximately 2 to more than 10 times smaller than the CV(RMSE) of
HGM. Finally, Figure A.10 shows that the bias is approximately the same across480

all the estimators, but, for all versions, AMLE outperforms HGM in terms of
CV(RMSE).

As for AMLE, figures A.11 and A.12 show the marginal distributions of the
accepted values of two randomly chosen marginals. The histograms confirm

5The HGM approach has a non-negligible computational cost as well, as it takes approxi-
mately 45 minutes in this setup.
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Figure 3: Distributions of the HGM and AMLE estimators λ̂1, λ̂4, λ̂6 and λ̂9 in the 10-
dimensional example with 50 replications. The dashed horizontal lines denote the true values
of the parameters. The AMLE is obtained via sample means (“M”), univariate kernel density
estimation (“UKD”), the maximum of the product of the univariate kernel densities (“P”)
and the mean shift algorithm (“MS”). The number of replications is equal to 50.
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Estimator Point estimate Standard error CV(RMSE) Rel. Perf.

AMLE

λ̂1 25.33 1.14 0.05 0.40

λ̂2 9.96 0.84 0.08 0.38

λ̂3 6.11 0.11 0.02 0.14

λ̂4 4.82 0.09 0.12 0.63

λ̂5 3.59 0.12 0.04 0.19

λ̂6 2.53 0.04 0.02 0.07

λ̂7 1.96 0.04 0.03 0.08

λ̂8 1.31 0.04 0.04 0.08

λ̂9 0.52 0.04 0.15 0.17

HGM

λ̂1 25.49 2.86 0.11

λ̂2 10.62 2.12 0.22

λ̂3 6.35 1.01 0.18

λ̂4 4.94 0.93 0.20

λ̂5 3.55 0.84 0.23

λ̂6 2.55 0.76 0.30

λ̂7 1.92 0.73 0.37

λ̂8 1.19 0.66 0.50

λ̂9 0.47 0.50 0.86

Table 3: Point estimates (Pe), standard errors (Se), CV(RMSE)s and relative performances
of the HGM and AMLE estimators of the parameters of the Bingham distribution in the
10-dimensional example. AMLE estimators are computed with m = 1000 and np = 6 · 105

and the mode of the posterior is approximated by the sample mean. The true values of the
parameters are λ = (25.3, 10, 6, 5.5, 3.7, 2.5, 2, 1.35, 0.6)′.

that the distributions of λ1 and λ5 still have the desirable properties obtained485

in the preceding experiments. With respect to the three- and five-dimensional
cases analyzed above, the main difference is an increased variability, which is
explained by the larger dimension of the problem and by the smaller np used
for the 10-dimensional case. It should be noted that, for the purposes of this
simulation exercise, we have been forced to employ a rather large f , but, in a490

single estimation step, one may accept a higher computing time and thus choose
a larger np, which would result in more accurate results.

5. Real-data applications

5.1. Calcite grains data

This example has first been used by Bingham (1974) to illustrate the MLE495

approach. Fallaize and Kypraios (2016) provide a Bayesian analysis of the same
dataset. The data consist of n = 150 measurements on the c-axis of calcite
grains from the Taconic Mountains of New York state.
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Given the sum of squares and products matrix SS
def
=
∑150
i=1 xix

′
i, the

sufficient statistics ηi =
∑n
j=1 x

2
j,i/n (i = 1, . . . , q − 1) are given by λSS(i) /n,500

where λSS(i) are the q − 1 smallest eigenvalues of SS in ascending order, i.e.

λSS(1) ≤ · · · ≤ λ
SS
(q−1).

From Bingham (1974) we know that

SS =

 76.5575 18.2147 12.2406
18.2147 46.7740 6.8589
12.2406 6.8589 26.667

 .

By means of the usual pilot simulation we choose D1 = [1, 6] and D2 =
[0.5, 4] in the implementation of the algorithm. The AMLEs obtained with

m = 1000 and np = 105 are λ̂1 = 3.567 and λ̂2 = 1.963. The HGMs are505

identical to those found by Bingham (1974), i.e. λ̂1 = 3.518 and λ̂2 = 1.956.
Both results are very close to the estimates reported by Fallaize and Kypraios
(2016).

5.2. Earthquake data

The earthquake example is the second real-data application proposed by510

Fallaize and Kypraios (2016), and is based on data first analyzed by Arnold and
Jupp (2013). These two references also give a full description of the data and of
their interpretation, which is therefore omitted here. For the sake of clarity we
only recall that three clusters of three-dimensional observations, called respec-
tively A, B and S (i.e., q = 3), are available. The corresponding sample sizes and515

sufficient statistics are nA = nB = 50, nS = 32, ηA = (0.1152360, 0.1571938)′,
ηB = (0.1127693, 0.1987671)′ and ηS = (0.2288201, 0.3035098)′. For each
dataset, we fit a Bingham distribution, and the results are displayed in Ta-
ble 4. The AMLE parameters are m = 1000 and np = 2 · 105. Throughout this
section, standard errors are computed via non-parametric bootstrap with 100520

replications.
To evaluate whether there is no difference between the clusters A and B, we

compute an approximate 95% confidence region for λA−λB . Two methods are
used. The first is parametric, based on the assumption of bivariate normality;
the second is non-parametric and uses bivariate kernel density estimation. We525

only show the AMLE outcomes here, as with HGM the main message is the
same.

A graphical representation of the results is given in figures 4 and 5. The
bivariate confidence regions computed with the two methods are quite similar,
and the results are in line with those obtained by Fallaize and Kypraios (2016).530

Even though the number of bootstrap replications is rather small for comput-
ing a 95% confidence level, and therefore the curves are not very smooth, the
outcome is clear. The origin is contained in the confidence interval of panel (a),
suggesting that λA is not significantly different form λB . On the other hand,
the origin is well outside the confidence interval for λS−λB (panel (b)), so that535

we reject the hypothesis λS = λB at the 5% level.
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λA1 λA2 λB1 λB2 λS1 λS2

AMLE
Point estimate 4.812 3.732 5.069 2.916 1.846 1.067
Standard error 0.267 0.205 0.281 0.160 0.132 0.161

HGM
Point estimate 5.059 3.804 5.094 2.941 1.809 1.025
Standard error 0.344 0.265 0.333 0.238 0.173 0.234

Table 4: Point estimates and standard errors for the earthquake data. AMLE uses m =
1000 and np = 2 · 105. Standard errors are computed with 100 non-parametric bootstrap
replications.

Figure 4: Scatterplots of λ1 and λ2 in the three samples of the earthquake example. The ABC
sample of size is m = 1000, and the total number of candidate pairs (λ1, λ2) is np = 2 · 105 in
each case.
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Figure 5: Scatterplots of λ̂A1i− λ̂B1i vs λ̂A2i− λ̂B2i (panel (a)) and of λ̂S1i− λ̂B1i vs λ̂S2i− λ̂B2i (panel

(b)), where λ̂Kji is the estimate of the j-th parameter (j = 1, 2) in the K-th dataset (K =

A,B, S) at the i-th replication (i = 1, . . . , 100) of the non-parametric bootstrap procedure
discussed in the text. The ABC sample size is m = 1000 and the total number of candidate
pairs (λ1, λ2) is np = 105.
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6. Conclusion

This paper studies approximate maximum likelihood estimation of the Bing-
ham distribution. We develop a method exploiting Approximate Bayesian Com-
putation techniques to approximate the MLEs. This approach, based on Rubio540

and Johansen (2013), is particularly well-suited for the Bingham distribution.
First, it bypasses the problem of evaluating the normalizing constant. Second,
the sufficient statistics are readily computed. Third, an efficient random number
generator is available. While the importance of the first feature is immediately
apparent, the second can be shown to play a key role for the theoretical prop-545

erties of the estimators, and the third is needed for an efficient implementation
of the algorithm.

Besides assessing the merits of AMLE, we carry out a comparison with the
likelihood approach based on the approximation of the normalizing constant and
the numerical maximization of the approximated likelihood (Bingham, 1974;550

Kume and Wood, 2005; Sei and Kume, 2015).
Overall, the two approaches have a similar performance in the three-dimensio-

nal case; as the dimension increases, AMLE outperforms HGM. This is not sur-
prising in light of the fact that deterministic numerical methods suffer more than
simulation-based methods from the “curse of dimensionality” (see, for example,555

Glasserman, 2003, pp. 2-3). In general, AMLE has an heavier computational
burden with respect to HGM, but in large dimension HGM computing times
are non-negligible as well.

There is a striking resemblance between our outcomes and the output of the
Bayesian analysis, not based on ABC but rather on Markov Chain Monte Carlo560

methods, carried out by Fallaize and Kypraios (2016). This is in line with the
modest impact of the prior distribution found by Fallaize and Kypraios (2016)
by means of a prior sensitivity analysis.

To conclude, we mention two issues that deserve further investigation. First,
when AMLE is used for estimating the parameters of the three-dimensional565

Bingham distribution, computing times are acceptable; however, when the di-
mension of the problem increases, it may be important to devise more efficient
implementations of the ABC rejection algorithm, possibly incorporating recent
developments of the ABC literature into AMLE. Second, the possible modi-
fication of AMLE along the lines sketched at the end of Section 3 requires a570

thorough analysis. An algorithm that uses exact MCMC instead of ABC to
obtain the posterior samples may be computationally more efficient, but the
relative performance of the two approaches need to be carefully studied.
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of the paper. The R codes used for simulating and estimating the Bingham580

distribution are available at http://marcobee.weebly.com/software.html.
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