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1. Introduction

In a number of recent economic events monetary policy actions had milder
or unexpected effects with respect to those foreseen by the models used to
plan them. This is probably because economic theory has not yet reached a
complete understanding of the banking system role in the monetary trans-
mission mechanism. Indeed, the impulses given by the Central Bank have
to “pass through” the banking system that, according to the strand of eco-
nomic literature labeled as “credit view” (see Trautwein, 2000, for a survey),
significantly affect the result of policy actions. Among recent works which
stress the need for a better understanding of banking sector role in the mon-
etary transmission mechanisms, the book by Stiglitz and Greenwald (2003)
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is a primary example. The authors argue that: “It is precisely when mon-
etary policy becomes of crucial importance that the traditional models fail
most dramatically. Later, we will argue that the failure to understand key
aspects of financial institutions and their changes lies behind some of the
recent failure in macro-economic policies, including the 1991 US recession
and the severe recessions and depressions in East Asia that began in 1997.”
(Stiglitz and Greenwald, 2003, p.4).

The link between banks behavior and monetary policy is widely analyzed
in the literature. Some works tackle the topic looking at aggregate variables
(see Bernanke and Gertler, 1995, for example), others focus on the relation-
ship between monetary policy and the banks balance sheet (Kashyap and
Stein, 1994; Bacchetta and Ballabriga, 2000). The effects of the introduction
of capital adequacy standards on banks lending (Gambacorta and Mistrulli,
2003; McAleer et al., 2013; da Silva and Divino, 2013) and more generally on
banks behavior (VanHoose, 2007; Jacques, 2008) and finally on the relation-
ship between capital adequacy and macroeconomic fluctuations (Blum and
Hellwig, 1995) have drawn particular attention in this strand of literature.

The banking sector has been one of the most important protagonist even
in the recent financial turmoil1 which motivated new studies on banks behav-
ior following up policy actions. Some of them dwell on the relevance of banks
assets quality and start talking about the “risk-taking” channel of the mon-
etary policy (see for example Borio and Zhu, 2008; Adrian and Shin, 2009).
Gambacorta (2009) surveys the theory and provides empirical evidence for
this channel of monetary policy.

The theoretical analysis of the bank balance sheet decision, especially
that concerning assets, is a demanding task because of the high heterogeneity
in the opportunities of funds allocation. In fact, each possible borrower is
one of such opportunities and thus, the bank lending activity provides the
major source of heterogeneity. The mathematical approach normally used in
economic modeling handles a limited number of variables so that models for
banks decision making generally determine the total amount lent appointing
some other variable or parameter to account for borrowers heterogeneity.
An alternative modeling strategy that can fully account for heterogeneity

1Laeven and Valencia (2008)’s database assesses the relevance of the systemic banking
crisis phenomenon. They identify 124 systemic banking crises in the period 1970-2007 in
the world.
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adopts the bottom up approach which is implemented by using computational
techniques (Tesfatsion, 2002).

The present paper aims to improve the existing literature by using the
bottom up approach to analyze the bank portfolio decision. In particular,
we focus on the lending portfolio by building a model which keeps track of
individual borrowers’ features over time. The approach is particularly useful
to understand the dynamic implication of a bank choice concerning the loan
portfolio and allows for a detailed knowledge of the state of bank lending
portfolio that any policy maker needs. In particular, we study the relation-
ship between the bank loan portfolio behavior and the policy interest rate
level by analyzing: i) how banks identify the set of projects to be financed
and ii) how the set of financed projects changes with the policy interest rate.
The goal is to evaluate the dynamic effects of this behavior on a number of
variables such as the bank liquidity and risk position.

We share with the recent literature, especially with the one on the mone-
tary policy “risk-taking” channel cited above, the focus on the effects of low
interest rates (Dell’Ariccia et al., 2014). However, the approach proposed by
this papers offers some new insights.

First, we focus on the bank loan portfolio composition rather than on the
composition of the assets of the bank balance sheet. As highlighted above,
the latter approach “averages” out borrowers heterogeneity and tackle the
issue of how much a bank should lend in total and how much should be
allocated to other types of assets such as government bond or market shares.

Second, borrowers heterogeneity is accounted for by considering each
project financed by the bank as a random process. The model has a mean-
variance representation and we do the groundwork to frame the bank lending
portfolio choice using Markowitz’s portfolio theory.

Third, we argue that a bank dealing with low interest rates (Lombardi
and Sgherri, 2007, for example, dwell on the interest rates level in recent
years) operates in a “prickly” situation where the constrains which ensure
its survival become binding and they “overshadow” the objective pursued
by the bank managers in “normal times”. In our framework the bank has
to satisfy two constraints. Firstly, it has a liquidity constraint in the very
short run and secondly, being mainly private enterprises, it has to match a
profitability constraint. Our aim is to investigate how the bank behave to
meet the profitability constraint when economic conditions change and how
this affects the liquidity constraint.

Fourth, the computational approach we use allows to go beyond the one-
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period relationship between the bank and the borrower and let us gain a more
detailed knowledge of the movements in the loan portfolio: we track the dy-
namics of the whole distribution that follows to a change in the environment
faced by the bank.

The paper is organized as follows. In Section 2, we present our model
of the banking activity and define the profitability and liquidity constraints.
The important issue of how the lending activity is conducted to meet the
profitability constraint is treated in section 2.2. In Section 3, we use compu-
tational tools to simulate a bank that behaves according to the rules obtained
in the previous section. Among the results reported in Section 4, the evolu-
tion of the lending portfolio and the resulting impact on the bank liquidity
play a key role. The analysis in sections 2-4 assumes the bank can solve
asymmetric information by bearing screening and monitoring costs. This
assumption is relaxed in section 5 which extends the model of the previous
sections by considering a situation in which asymmetric information remains
between the bank and borrowers despite screening an monitoring activities.
In section 6 a number of issues which arise in our framework is discussed. We
also discuss future extensions of the present analysis. Section 7 concludes.

2. Theory

We investigate a setting in which the bank is committed to a unique ac-
tivity, i.e. lending to entrepreneurs that are willing to take over a production
investment. It is important to highlight that we do not model the effects
of competition among banks. It is the degree of substitution between credit
and other source of financing that matter in the present work. Therefore,
the market structure of the banking sector is not considered in our analy-
sis and the reader can alternatively think of the whole banking system or a
representative bank of a fully competitive credit market when the expression
“the bank” is encountered.

In this section we present the theoretical aspects of our model. The bank
balance sheet, profitability and liquidity are discussed in section 2.1. Section
2.2 presents the modeling of investment projects and the setting of interest
rate for each project. Finally, in section 2.3 we first present the measures
of risk and revenue of a single project and, through them, we obtain risk
and revenue of the lending portfolio. The latter are particularly important
because it is on them that the bank bases its decision.
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2.1. Profitability and liquidity

The bank balance sheet in this model is as follows:

L+ C = D + E (1)

where L is liquidity, C credit, D deposits and E the bank equity. For the sake
of simplicity, we assume that the interest rate on liquidity and on deposits is
zero. Under these assumptions, the profit for a bank (Φ) can be expressed
as

Φ = φC − wC − eE
where φ is the average interest rate gained on loans, w the cost for each unit
of credit and e are dividends.2

In the proposed model, the bank commits to keep a constant ratio between
equity and lending3

E = γC. (2)

In this context a profitability constraint can be identified by imposing
Φ ≥ 0. This bring us to

φ ≥ s (3)

where s = w + γe.
The interplay between influx and outflux of funds generates fluctuations

in liquidity that must be faced by the bank. From a modeling point of
view, it is usual to require L ≥ L̂ = kD. To ease the exposition without
loosing generality, we transform the inequality L ≥ L̂ in L = l̂L̂ with l̂ ≥ 1.
Substituting the just written equality and rule (2) into equation (1) we have

l̂kD + C = D + γC

that brings to
D = [(1− γ)/(1− l̂k)]C. (4)

Using this result, the liquidity constraint can be expressed as:

L̂ = lC

where l = k(1− γ)/(1− l̂k).

2Note that here w are “production costs” such as personnel and screening costs. Under
our assumptions, these are the only costs for a bank because the interest rate on deposits
is assumed to be equal to zero.

3The adoption of this commitment can be seen as an extreme simplification of the Basel
accords contents (Basel Committee on Banking Supervision, April, 2003).
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2.2. The lending activity

The bank finances investment projects. To be realized, each of them
requires the same amount of funds (which we normalize to one). Projects
are heterogeneous and each of them is characterized by its levels of revenue
and risk. In this part of the paper, we analyze a situation in which the bank
can solve asymmetric information problems by bearing screening costs, so
that the bank knows the features of the project the entrepreneur is going
to implement. This setting disciplines our investigation with regards to the
projects to be considered and the level of the interest rate. These two aspects
are discussed in sections 2.2.1 and 2.2.2 respectively.

2.2.1. Investment projects

A first consequence of having a bank which solves asymmetric information
is that the bank can discard inefficient projects and considers only efficient
ones to compose the loan portfolio.4 Selecting efficient projects is a diffi-
cult task especially when the dynamic feature of investment projects (their
outcome evolves over time) are taken into account. To deal with this more
complicate framework, we adopt the simplification - often used by economic
modelers - that projects have two possible outcomes.

We will first focus on single-period projects to better explain the role
of efficient projects, then we extend the framework by considering dynamic
aspects.

Single-period projects. In the single-period case, investment projects last only
one period and have a minimum yield of ρ.5 The bank lends at time t an
amount of 1 for each project (below, the single project is identified with the
lower script i). Project i outcome is realized after 1 period and is modeled
as a random variable taking values {u′′i,1 = 1 + ρ, s′′i,1 = 1 + ρ + πi} with
probabilities {1−pi, pi}. For future reference, we highlight that the revenue of
a project is also a random variable taking values {u′i,1 = ρ, s′i,1 = ρ+πi} with
the same probabilities given above. Note however that relevant information
for a project are πi and pi, and, subtracting the common element 1 + ρ,
each project can be presented as a Bernoulli random variable (Πi) which

4Using the terminology of portfolio theory, a project is efficient if does not exist any
other project having a risk not higher and a revenue not lower than its own.

5In this paper ρ is treated as a parameter, but in future developments it could be
modeled as depending on macroeconomic conditions.
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takes values {ui,1 = 0, si,1 = πi} with probabilities {1 − pi, pi}. Considering
only efficient projects means that a project with a higher average revenue
is associated with a higher level of risk. This requirement is satisfied if the
derivatives of the mean and variance with respect to πi are both positive.
These derivatives depends on the functional form of pi. In this paper we use
the functional form pi = (1 +πi)

−α which allows us to easily investigate both
the situation where the bank can select only efficient projects and a setting
where asymmetric information prevents this possibility. In Appendix A we
show that using this functional form, we have a positive relationship between
revenue and risk when 0 < α ≤ 1.

Multi-period investments. The single period case will be used below to ex-
plain the basic implications of the model. However, through the paper we
will work mainly with the multi-period case. We model a multi-period in-
vestment project as a set of Bernoulli trials (one random variable with two
outcomes for each period of life of the investment). This framework allows
us to give the following discrete representation of the bank-customer rela-
tionship. Borrower and lender meet periodically to evaluate the state of the
project and they decide if the credit is prolonged or payed off.

More formally, a multi-period project is characterized by two sequences
which give the outcome of the project if unsuccessful (u′′i,n) and successful
(s′′i,n) in the nth trial.

As discussed above, if the bank solves asymmetric information, only the
subset of efficient projects is considered in the analysis. A convenient way
to consider efficient projects in a dynamic context builds on the single-
period case by considering projects with the following features: {u′′i,n =
(1 + ρ)n, s′′i,n = (1 + ρ + πi)

n}. The probability of a success in a trial (pi) is
kept constant over time and it decreases with πi as in the single-period case.

2.2.2. The interest rate

A second consequence of having a bank which solves asymmetric infor-
mation is that entrepreneurs are willing to pay an higher interest rate to the
bank with respect to that observed in the financial market. In our framework,
the interest rate is modeled as follows.

The Central Bank sets the policy interest rate r. According to portfo-
lio theory, the market determines a risk premium β. These two elements
determine the capital market line

rmi = r + βσi.
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The capital market line gives the cost of funds an entrepreneur would bear
using direct sources of financing.

The existence of asymmetric information makes it difficult for entrepreneurs
to access financial markets. The bank offers a solution to this problem. In
our model, we acknowledge the role of the bank assuming that entrepreneurs
are willing to pay an interest rate which is at most equal to that identified
by the capital market line (at a level of risk equal to that of their projects)
plus a spread (δ). Consequently, the interest rate on loans is determined by:

ri = δ + rmi = δ + r + βσi. (5)

It is useful to recall that in our case, the standard deviation refers to the
Bernoulli random variable Πi: σi = [π2

i pi(1− pi)]
1
2 .

Below, we will refer to equations (5) as the “augmented” capital market
line.

2.3. The lending portfolio

In this section we analyze the multi-period case. We present the outcome
of a single project and then we point the attention to a situation where a set
of projects is considered. We will first get an intuition of the loan portfolio
management implications by using single-period projects. The case of multi-
period projects is more deeply investigated by numerical methods in sections
3 and 4.

2.3.1. A single project

We recall that in the multi-period case, the outcome of a project i is
described by a set of Bernoulli trials ({u′′i,n = (1 + ρ)n, s′′i,n = (1 + ρ+ πi)

n}).
In what follows, I denotes the interest accrued. Until a credit is not payed

back, I evolves according to

Ii,t+1 = Ii,t(1 + ri) + ri.

Using the initial condition I0 = 0 and iterating n times we obtain

Ii,n,t =
n∑
k=1

(
n

k

)
rki . (6)

where
(
n
k

)
denotes the binomial coefficient.6

6It is straightforward to verify that (1 + ri)
n = 1 + Ii,n.
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This is the amount of interest a credit of type i prolonged n − 1 times
will give back if successful “enough”. Considering that the possibility of the
debt to be fulfilled depends on the s′′i,n sequence, we say that a project is
successful “enough” if ρ+πi ≥ ri.

7 This implies that the bank will be always
able to obtain the principal and interest by waiting for the project being
successful. In the first part of the paper, we work in this favorable situation
and we model the bank-entrepreneur relationship as follows. If the success
has not been yet realized the credit is prolonged but its amount is increased
to take into account the accrued interest. When the project is successful, the
borrower pays off.

At a given point in time, the incoming interest flux from a credit that
was prolonged n− 1 times is a Bernoulli random variable Ii,n,t taking values
{0, Ii,n,t} with probabilities {1−pi, pi} respectively. Because we are interested
in analyzing the model in the portfolio theory framework, we determine the
mean and variance of this variable:

µ(Ii,n,t) = Ii,n,tpi,

σ2(Ii,n,t) = I2
i,n,tpi(1− pi).

It it worth noting that, given δ and β, these equations can be expressed as
functions of r and σi (see Appendix B for details):

µ(Ii,n,t) = µi,n,t(r, σi)

σ2(Ii,n,t) = σ2
i,n,t(r, σi).

2.3.2. The loan portfolio

The bank faces a large number of heterogeneous projects. According to
our assumptions a project is fully characterized by πi and pi. We take account
of the heterogeneity of the potential borrowers by introducing a probability
density pπi which gives the fraction of all the available projects characterized
by a given πi. We also know that in our framework σi is an increasing function
of πi so that, the pπi can be transformed into the pσi distribution which gives
the fraction of projects having a given risk. This second representation is
more convenient when the model is presented in terms of portfolio theory.

7One should take in mind that whenever s′′i,s becomes smaller than 1 + Ii,n,t the bank
loose a part or the whole amount.
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On the other hand, we know from the previous section that a type i credit
that was prolonged n−1 times is successful (and the relative influx is realized)
with probability pi. In other terms, the evolution of the loan portfolio can be
seen from a statistical point of view as an extremely complicated birth and
death process.

Our aim is to gain insight into this complicate random process in order to
choose the loan portfolio. In general terms, the bank has to choose a bounded
and convex set belonging to the support of the pσi random variables. To
simplify, we fix the lower bound of the customer set to σ = 0 and we let the
bank choose the upper bound.

For a bank financing a convex set [0, σ] of projects, the total amount of
interest received is

It =

∫ σ

0

∞∑
n=1

Ci,n,tIi,n,tdσi (7)

where Ci,n,t is the credit which was allotted to type i borrowers in period t−n
and still not refunded (being the amount needed to implement a project equal
to one, this variable also denotes the number of projects having characteris-
tics i and n). The total amount of lending is defined in the following way:

Ct =

∫ σ

0

∞∑
n=1

Ci,n,tdσi.

It is a random variable being a sum of random variables. We are inter-
ested in the average of the projects interest influx:

φt(σ, r) :=
µ(It)
Ct

=

∫ σ

0

∞∑
i=1

pσi,n,tµi,n,t(σi, r)dσi, (8)

where pσi,n,t is the proportion of financed projects having a risk equal to σi
which have been financed n periods before.

Let us recall we focus on the behavior at low levels of the policy interest
rates. In other words we work under the assumption of a binding profitability
constraint. We draw attention on the fact that the profitability constraint
must be satisfied in a relatively long period (say a year). Therefore, we set
the bank problem of choosing the lending portfolio in terms of stationary
quantities, so that the t lower script will be removed from equations. The
average projects interest influx (equation 8) becomes

φ(σ, r) :=
µ(I)

C
=

∫ σ

0

∞∑
i=1

pσi,nµi,n(σi, r)dσi. (9)
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By using equation (3) we identify in the value σs that satisfies the equation

φ(σs, r) = s, (10)

the upper bound of the loan portfolio. In other words, the bank has to finance
projects belonging to the [0, σs] set to satisfy the profitability constraint.

As anticipated above, a simple example of the σs computation can be
obtained from the single-period case; in this case the revenue of each project
can be seen as a Bernoulli random variable taking values {u′i,1 = ρ, s′i,1 =
ρ+πi} with probabilities {1− pi, pi}. Under this assumption, in each period
the set of financed project can be viewed as a new random draw from the
population of projects the bank faces. Equation (9) becomes:

φ(σ, r) =

∫ σ

0

pσi,1µi,1(σi, r)dσi.

where, in this specific case,

µi,1(σi, r) =

{
ri if ri ≤ ρ
ripi + ρ(1− pi) if ri > ρ

and pσi,1 = pσi/
∫ σ

0
pσidσi is the probability of financing a project with a

risk equal to σi given that only the projects with σi ≤ σ are financed. The
upper bound of the set of customers for the single-period case is graphically
identified in figure 1. To build the figure we have used the following settings:
s = ρ = 0.05, δ = 0.01 and β = 0.02. The “augmented” capital market line
(equation 5) and the φ(σ, r) functions are represented for two values of the
policy interest rate (2% and 1%; δ = 1% implies intercepts at 3% and 2%
respectively). The φ(σ, r) functions are obtained under a uniform distribution
of πis. σ

ss are determined by the intersection point of the φ functions with
the s horizontal line. The figure shows how the bank responds by increasing
the upper bound of the loan portfolio to a reduction of the policy interest
rate. Under our assumption the bank lends to projects having a standard
deviation belonging to the set [0, σs2] if the policy interest rate is 2% and to
the wider set [0, σs1] if the policy interest rate is 1%.

More generally, the σs value depends directly on s and inversely on r and
it is equal to zero as long as r + δ > s.8 Thus, a relevant consequence that

8The increase of σs is important in our model. Let us point out that, although we
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Figure 1: determination of the loan portfolio upper bound in the single-period projects
case.

stems from this behavior is that lower policy interest rate pushes the bank
to “board” additional customer having a higher level of risk to satisfy the
profitability constraint.

Hereafter we analyze how the movements of the bank loan portfolio affect
the dynamics of a number of relevant variables of the bank, in particular their
liquidity. Because we will focus on the more complicate multi-period case,
we will progress by numerical computations.

3. Calculations

We start the description of our calculations considering how the bank
balance sheet changes with the policy interest rate. Our first consideration
concerns deposits. It is widely accepted that people choose to be more liquid
at lower interest rates so that a negative relationship between the bank de-
posits and the policy interest rate exists. Using the relationships presented in
section 2.1 we can determine the others variables of the bank balance sheet

analyze the effects of a reduction of the policy interest rate, our results could be also
obtained by an increase of s. We have chosen to analyze the reduction of the policy
interest rate because this implies that the bank management is forced to choose a higher
σs to respect the profitability constraint. In contrast, an increase in s implies the adoption
of a reckless behavior to obtain a higher profitability.
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starting from deposits: r determines D, liquidity is L = l̂kD, the level of
credit can be established solving C in equation (4) and finally, the equity
base is E = γC = L+ C −D.

Once, the total amount of credit is known, the lending activity goes on as
follows. Projects are organized in a finite number of numbered cohorts. In a
simulation time step, entrepreneurs running projects belonging to a cohort
meet the bank. Each loan is payed off if the project is successful, otherwise
it is prolonged. As mentioned above, in this part of the paper we analyze the
very favorable situation in which, the successful outcome of the projects is
alway enough to pay back the principal and the accrued interest. The bank
obtains no influx of funds if credit is prolonged. At the end of the time step,
the bank finances new investments if the total amount of outstanding credit
is lower than that resulting from equation (4). New projects are financed
until the total amount of loans given by equation (4) is reached by randomly
drawing new πis from a uniform distribution with boundaries 0 and πs. These
events repeat in the following time step with the next cohort, and when all
cohorts are updated, a cohorts-cycle is concluded and a new cycle starts with
the first cohort.9

The setting we use to investigate numerically the multi-period case are
similar to those for the single-period case listed above. We set the profitabil-
ity threshold (s) and the minimum revenue from projects (ρ) to 0.05, the
risk premium parameter β to 0.02, the interest rate spread δ to 0.01 and
α = 1. Newly financed projects are assigned new πis drawn from a uniform
distribution. These settings imply that if the policy interest rate is 4% (and
the “augmented” capital market line has intercept at 5%) the time series of
cash influxes is constant at a level which satisfies the profitability constraint:
with this level of the policy interest rate, the bank satisfies the profitability
constraint without taking risk (this is because s = ρ). This level of the policy
interest rate provides a benchmark and we consider to start our numerical
simulations with it.

Concerning the balance sheet, we use a linear function for deposits:

D = c1 − c2r.

For the sake of simplicity, we put γ = l̂k so that, according to equation (4)

9We could compare a simulation time step to a real world day. Since interest accrues
everyday, we think a real world “actual day” fits the concept better than a “working day”.
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we have C = D. For future reference we can thus write

C = c1 − c2r. (11)

We set up the initial level of credit according to this equation. In our
simulations, for example, we set c1 = 2000 and c2 = 25000 so that at the
benchmark interest rate (r = 0.04), the bank finances 1000 projects having
each one a null standard deviation. Projects are arranged in 30 cohorts.

4. Results

We evaluate the effects of moving the policy interest rate on some impor-
tant bank variables first. Then, we will analyze in detail the evolution of the
lending portfolio after the change in r.

As specified above, in our simulations the policy interest rate is initially
set at 4%, it is moved at a lower level for a period and it is brought back to
its initial level. Subsection 4.1 analyzes the effects of the r reduction, while
subsection 4.2 focuses on the effects of bringing the policy interest rate to its
original level.

4.1. A reduction in the policy interest rate

4.1.1. Bank variables

In our model, when the policy interest rate is moved downward, the bank
lends to more risky projects in such a way that the profitability constraint
is met. In other words, we increase the upper bound of the set of financed
projects (πs). Table 1 reports the value of πs which ensures an average
return of the lending portfolio equal to 0.05 at different levels of the policy
interest rate. The table also reports the values of ps and the mean (µs) and
standard deviation (σs) of the Bernoulli random variable {ui = 0, si = πs}
with probabilities {1− ps, ps}.

To explain our arguments without weighting down the exposition, in this
section we present the results of lowering the policy interest rate to two
different levels: 0% and 3%. They represent a mild and a deep policy interest
rate reduction. What happens in between can be deduced from the outcome
of these two levels. Data collected from our simulations on the total cash
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r r + δ πs ps = (1 + πs)−1 µs = πsps σs = [(πs)2ps(1− ps)] 12
0.04 0.05 0 1 0 0
0.03 0.04 1.42 0.413 0.587 0.699
0.02 0.03 2.8 0.263 0.737 1.233
0.01 0.02 4.35 0.187 0.813 1.696

0 0.01 6.15 0.14 0.860 2.133

Table 1: the value of πs which ensures an average return of the lending portfolio equal to
0.05 at different levels of the policy interest rate. Using πs, the variables ps, µs and σs

are computed and reported.

influx, the number of financed projects and the number of projects which
refund are shown in figure 2.10

Looking at graph 2A, one can see how the decrease of the policy interest
rate causes a sudden fall in the influx of funds, then, it gradually increases and
converges to a value that is proportional to the number of financed projects.
Due to the increase in deposits, the total amount of credit suddenly goes from
1000 to 1250 when r is lowered to 3% and to 2000 when r = 0% (see chart
2B). The number of successful projects decreases with the policy interest rate
(chart 2C). Finally chart 2D reports the revenue obtained for each unit of
lending which gives us a measure of the bank liquidity position. To evaluate
the length of the transient state we add vertical lines to the charts. The
dashed line signals the time of the interest rate change while a dashed line
with dots is drawn every 12 cohorts-cycles after the change. Charts show
that the convergence to the new stationary situation takes more time for
r = 0 than for r = 0.03. However, the difference is far less evident in the
number of successful projects than the variables which involves the amount
of interest received.

Figure 2 suggests us to further investigate in two directions. The first
one focuses on how the composition of the lending portfolio changes after a

10Charts report cohorts-cycles data. Let us make an example to further explain what a
cohots-cycle is. Consider for example the 13th cohorts-cycle. It starts in simulation time
361 with cohort 1 and end in simulation time 390 with cohort 30. Bearing this in mind,
the charts were build as follows. For each simulation run, we build a time series which
associates at each time of a given cohort-cycle (in the our example interval 361-390) the
sum taken on the cohorts-cycle of the observed variable. We perform 1000 simulation runs
for each setting and we report the average of the 1000 time series we obtained in charts
2A, 2B and 2C. Chart 2D is the ratio of the time series reported in charts 2A and 2B.
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Figure 2: comparison of bank variables dynamics when r is lowered to 3% and 0% from an
initial level of 4%. The change takes place in period 361 (the first cohort of 13th cohorts-
cycle). The dashed line signals the time of the interest rate change. A dashed line with
dots is drawn every 12 cohorts-cycles after the change.

downward movement of the policy interest rate and the second one concerns
the statistical features of the bank liquidity in this new situation (sections
4.1.2 and 4.1.3 respectively).

4.1.2. Loan portfolio distribution dynamics

Beside the aggregate variables displayed in figure 2, in our simulations we
have recorded the features of each project in each simulation round. It fol-
lows that for each simulation step, we have a collection of πi that represents
the bank loan portfolio. We use this data to build frequency distributions.
The evolution of such distributions is of particular interest for this paper.
Figure 3 allows a comparison of the dynamics of these distributions in the
two cases we are reporting on. A kernel density estimation of the distribu-
tion obtained by pooling the data of each cohort in a given cohorts-cycle
is computed and displayed in the figure every thirty simulation time steps.
After the downward movement of the policy interest rate (time step 360 in
the figure) the distribution is close to the uniform density as we expect from
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Figure 3: evolution of the loan portfolio after a decrease of the policy interest rate. Upper
chart: transition from r = 0.04 to r = 0. Lower chart: transition from r = 0.04 to r = 0.03.
Black highlights the transient period; gray is used when the shape of distributions does
not change much over time.
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r πs C σ(L̃) #L̃− d̄
out of 105

0.04 0 1000 0 0 0
0.03 1.42 1250 0.011 53199 2.134
0.02 2.8 1500 0.0157 54643 2.197
0.01 4.35 1750 0.0202 56734 2.315

0 6.15 2000 0.0258 58423 2.402

Table 2: a number of statistics from the excess liquidity time series at the stationary state

our assumption. Then it evolves towards a distribution whose density in-
creases with πi. The visual inspection of figure 3 shows that it takes about
twelve cohorts-cycles to reach a stable distribution when the interest rate is
lowered to 0 while the transition to a new distribution is achieved in a few
cohorts-cycles when the policy interest rate is lowered to 0.03. The black is
used in the figure to highlight the change of the distribution in the transient
period, while the gray is used to draw distributions the shape of which does
not change much over time. The z axes range is different in the two charts
to allow for a more clear comparison with figure 6.

4.1.3. The statistical features of the new stationary state

In this section we focus on the properties of the bank excess liquidity
when the steady state is reached. Let us first define what we mean for excess
liquidity. From the discussion in the previous section we know that the total
influx is a realization of the random variable defined in equation (7). We also
know from section 2.1 that in each period the required liquidity is L̂ = lC.
Therefore, we define the excess liquidity as follows:

L̃ := L− L̂ = I − lC.

To have a benchmark for our investigation we analyze the case where the
average excess liquidity is zero. Definition (9) and condition (10) toghether
ensure that µ(I) = sC and consequently our benchmark case is obtained by
setting l = s: in this case we have in fact µ(L̃) = 0.

We have recorded data from simulations for the realization of It in a
long period after the stationary distribution has been reached. A number of
statistics computed from the time series obtained at different levels of the
policy interest rate are reported in table 2. We note from the table that the
volatility of L̃ is higher at lower levels of the policy interest rate. A second
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remark can be drawn from counting the number of liquidity shortages, that
is counting how many times the L̃ is negative. The column #L̃− of the table
reports this information when simulations run for a long period (the recorded
data points are 105). Data reported in this column show that the liquidity
situation gradually worsens when the policy interest rate is lowered. A third
comment comes from monitoring the persistence of liquidity shortages. We
compute the length of a liquidity shortage as the number of consecutive
periods in which a negative value of L̃ has been recorded. Let us denote
with d the duration of liquidity shortages. The frequency distribution for
this variable has been computed for the levels of the policy interest rate
considered in table 2. The last column of the table reports the average
length observed at each level of the considered policy interest rate. Figure
4 reports the semi-log plot of the whole duration distribution for the two
values of r we are reporting on. The figure shows how the frequencies fall
exponentially with the length of liquidity shortages. However, the frequency
of long liquidity shortages is significantly higher at r = 0 than at r = 0.03.

The main point of our results is that the behavior of the bank, could limit
the effectiveness of the policy interest rate movements; in our setting, lower
policy interest rates may lead to greater difficulties in managing the bank
liquidity, making it more difficult to resolve liquidity shortages.
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Figure 4: log of absolute frequencies of the length of liquidity shortage periods.
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4.2. Moving to a higher policy interest rate

The evolution of the bank situation when the policy interest rate is
brought back to the initial level is also an object of this study.

The situation is displayed in figure 5 which differs from figure 2 in that
the policy interest rate is moved back to 4% in time step 1800. Again, dashed
lines are used to signal the times of the interest rate changes and a dashed
line with dots is drawn every 12 cohorts-cycle after the changes.

The total amount of interest influx follows an odd dynamic soon after
the policy interest rate increase (see graph 5A). The dynamic is the result
of two forces. The first one is the upper pressure applied by the increase of
the policy interest rate. The second one operates through the evolution of
the lending portfolio. The bank has not full control over the loan portfolio
adjustment process soon after the interest rate increase. In our model, an
increase of the interest rate causes a reduction of deposits and consequently
the bank has to decrease its lending activity.
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Figure 5: comparison of bank variables dynamics when r is lowered to 3% and 0% from an
initial level of 4% and then brought back to the initial level. The interest rate reduction
takes place in period 361 while the interest rate increase is in period 1801. The dashed
lines signal the times of interest rate changes. A dashed line with dots is drawn every 12
cohorts-cycle after each change in r.
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The bank can reduce the number of financed projects by avoiding lending
to a new project when an old one pays back. When the reduction of credit
is significant (as in the case the policy interest rate jumps from 0 to 4%),
this “lending volume” effect outperforms the interest rate effect and the total
interest rate influx decreases (see chart 5A).

The downward adjustment of the volume of lending takes place by the exit
of borrowers characterized by low πis because they have a high probability of
paying off their debt. In other words, during the transition the lower bond of
the bank portfolio is no more zero, but it starts growing for a while after an
increase of the policy interest rate. The loan portfolio runs out of projects
which pay off and, consequently, the number of refunders may fall temporarily
after the policy interest rate change (see figure 5C). When the lower amount
of lending implied by equation (11) is reached, projects with high probability
to refund start entering again the lending portfolio. This happens because
the bank substitutes successful projects with new ones whose πi falls in the
new interval [0, πs]. However, while the projects which exited payed back a
low interest amount, the new projects with a similar degree of risk pay higher
interest rates because of the upward shift of the “augmented” capital market
line. In this phase, the total amount of interest influx moves upward (see
figure 5A).

The long run behavior can be understood by the following considerations.
In our framework, projects with higher πis are “locked” in the bank lending
portfolio for longer time. Even if they were extended when the policy interest
rate was low, they yield a high interest rate because of their high risk. Their
substitution with lower risk projects (those with π = 0 because πs = 0) causes
a decrease of the total interest influx amount in the long run. As outlined
above, chart 5D displays the liquidity available to the bank for each unit of
credit. It shows that liquidity increases significantly in a few cohorts-cycles
after the movement of the interest rate; then its trend inverts and gradually
approach the steady state value.

Even after the interest increase the convergence to the steady situation
slows down when r = 0 because of a higher πs. A peculiarity can be noted
for the number of projects which pay off: the convergence to the new steady
situation is much slower after an increase in r than following a decrease (see
chart 5C).

Building on figure 3, figure 6 highlights the dynamics of the loan portfolio
after the policy interest rate increase. In line with our previous comments,
the figure shows how the densities of high risk projects increase soon after
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Figure 6: evolution of the loan portfolio after an increase of the policy interest rate. Upper
chart: transition from r = 0 to r = 0.04. Lower chart: transition from r = 0.03 to r = 0.04.
Black highlights the transient period; gray is used when the shape of distributions does
not change much over time.
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the policy interest change when r = 0. Then, the densities cumulate in
πi = 0 because for a policy interest rate equal to 4% only risk free projects
are financed; the higher is the risk of a project, the longer it remains in the
loan portfolio. The most relevant changes are highlighted in black as in figure
3.

Summing up, an increase of the policy interest rate causes a reduction of
the risk of the bank loan portfolio in the long run, but this is achieved going
first through an increase of the riskiness of the portfolio. At the aggregate
level this mechanism is revealed by a trough in the number of refunding
projects (visible in figure 5C).

5. Towards a real world situation

In previous sections we analyzed an “ideal” situation where the bank
solves asymmetric information. This implies that only efficient projects are
financed. In particular, in our settings the bank can always obtain the prin-
cipal and interest when the project is successful. This makes the low value
of the Bernoulli random variables irrelevant for the analysis. In fact, it is
convenient for the bank to prolong the loan until the success is obtained.

In this section we integrate the theoretical analysis performed above with
elements which characterize reality. Our final goal is to analyze the case in
which the project bad result can be so small that the bank suffers a loss. A
preliminary step to achieve this goal is to consider projects having a finite
time horizon. Therefore, we evaluate the effect of financing projects with
finite time horizon first and then those of losses. In both cases the low value
of the Bernoulli random variables affects the model results.

5.1. Finite projects time horizon

In previous sections we considered two cases that, from the point of view
of projects time horizon, represent two extremes: the single-period cases and
the multi-period case. The latter can be thought of as the case in which the
project time horizon is infinite. We now look at intermediate cases analyzing
the dynamic of the system when projects - and thus loans - time horizon
(hereafter denoted with n̄) is gradually shortened. This can help shedding
light on situations where economic agents mistrust the future because they
are experiencing a gradual worsening of the overall economic conditions. In
this section, the low value of the Bernoulli random variable is kept at 0 as in
the analysis above, so that if the project is not successful after n̄−1 renewals,
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n̄ πs φ% σ(L̃) πs φ% σ(L̃)
25 6.15 4.884 2.142 6.33 5 2.22
20 6.15 4.798 1.965 6.48 5 2.085
15 6.15 4.654 1.729 6.85 5 1.908
10 6.15 4.418 1.405 7.7 5 1.633
5 6.15 4.031 0.929 11 5 1.174
4 6.15 3.924 0.801 13 5 1.039
3 6.15 3.8 0.652 16 5 0.859
2 6.15 3.649 0.464 24 5 0.634
1 6.15 3.455 0.148 55 5 0.154

Table 3: The effects of project duration on some relevant variables

the bank get the amount (1 + ρ)n̄ at period n̄. This feature will be removed
below.

We perform several simulations setting r = 0 and gradually lowering n̄.
The simulations are carried out considering two different frameworks. In
the first one, the boundaries of the lending portfolio are the same as those
considered in the infinite time horizon case: πi ∈ [0, 6.15]. In the second
case, the upper bound (πs) is adjusted to have an average revenue of the
loan portfolio equal to 5%. The results of these exercises are reported in
table 3. When πs is kept constant at 6.15, both φ and σ decrease when
the projects time horizon is reduced. The table also shows that to keep
the average revenue to the target level, the portfolio upper bound must be
significantly increased. This brings an increase in the volatility of the interest
rate influx, σ(L̃), with respect to the πs = 6.15 case at each level of n̄.

It is worth reporting that high volatility clustering can be observed at low
levels of the project time horizon. Figure 7 allows a comparison of the φ time
series at n̄ = 2 and n̄ = 5. Although we know that the dynamics of events
wich characterize our model affect the auto-correlation of the φ time series,
the volatility clustering observed for example when n̄ = 2 is an unexpected
phenomenon which is relevant for the bank liquidity. According to this result,
the persistence of a high level of uncertainty about the future evolution of
economic conditions - which reduces economic agents’ willingness to subscribe
long term contractual agreements - implies that periods of unstable funds
influx may occasionally burst in periods of “tranquillity” complicating the
bank liquidity management.
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Figure 7: volatility clustering at short project duration

5.2. Losses

When the bank cannot completely remove asymmetric information it is no
more able to select only efficient projects. To account for this possibility, the
framework of the previous sections is modified as follows. First, we remove
the favorable assumption that the lower bond of the Bernoulli random vari-
able is zero allowing for negative values. Second, we remove the requirement
that the average return of the project rises with the project risk.

The first innovation concerns Bernoulli random variables which take val-
ues {ui,1 = −bi, si,1 = πi} instead of {ui,1 = 0, si,1 = πi} (probabilities are
kept to {pi, 1 − pi} as above for now). To set bi, we first draw a random
number from a beta distribution (say ξi). We them multiply it by πi. Note
that if ξi = 1, the Bernoulli random variable will be {ui,1 = −πi, si,1 = πi}.
We then perform a final check to exclude that the bank loses more than the
principal: ξi that implies 1 + ρ− ξiπi < 0 is replaced by 1+ρ

πi
. More formally

we have
bi = min (1 + ρ, ξiπi)

which implies 1 + ρ− bi ≥ 0.11

We proceed in this way because, starting from the situation where the
bank solves asymmetric information, we can produce a gradual worsening of
the situation the bank faces by tuning the shape parameters of the beta dis-
tribution. If we denote the beta distribution with B(B1,B2), we can regulate

11In terms of the notation used in section 2.2.1 we have {ui,1 = −bi, si,1 = πi} for
the Bernoulli random variable which characterize the project. From that we obtain the
revenue random variable: {u′i,1 = ρ − bi, s′i,1 = ρ + πi} and the whole amount random
variable: {u′′i,1 = 1 + ρ− bi, s′′i,1 = 1 + ρ+ πi}.

25



monitoring and screening effectiveness by tuning B1 and B2: asymmetric in-
formation problems are reduced (and thus the model of the previous section
is approached) by lowering B1 and increasing B2. In what follows we model
the worsening of the setting in which the bank operates by decreasing B2
while keeping B1 constant. In particular, we report in this section two cases
characterized by B(1, 1000) and B(1, 500). The amount of losses suffered is
lower in the first case, so that we will call it the “low losses” case and we
will identify the variables with the l super script. The B(1, 500) case will be
consequently called “high losses” and the h super script will be used.

An important issue in evaluating the effects of losses on the bank aver-
age return is how the interest rate on each loan is set. It is straightforward
that the bank wants to compensate losses with an increase of the inter-
est rate. However, this possibility depends on the highest interest rate the
entrepreneurs are willing to pay. Note that for each level of πi there are het-
erogeneous entrepreneurs characterized by different bi. We call prime those
entrepreneurs that, for each πi, have the lowest b. It might be that sub prime
entrepreneurs are willing to pay a higher interest rate, but, if they want to be
indistinguishable from prime ones, they must declare to be willing to pay the
same interest rate. We will consider two cases that differentiate for the dif-
ficulties entrepreneurs have in accessing financial markets. In the first case,
prime entrepreneurs have no serious problems in accessing financial markets;
therefore, the capital market line is the benchmark for setting the interest
rate.

Figure 8 shows what happens to the bank average return and risk when
the lending portfolio changes. Recall that in our model the bank finances
projects in the convex sets [0, πs]. Chart A in figure 8 displays the average
return at three different n̄ and, for each of them, the “low losses” and “high
losses” cases. To ease the understanding of the figure, we specify the meaning
of the labels that appear in the figure: n̄2h, for example, identifies a situation
where the bank lend by contracts having a maximum length of 2 periods
(n̄2) to entrepreneurs whose bad result is obtained by using the “high losses”
(super script h) case.

The chart shows that the average revenue of the lending portfolio has
a maximizer at low n̄. The maximizer increases with n̄, and eventually
disappears. Given n̄, there is a gap in terms of average revenues between
“high losses” and “low losses” cases which increases with πs. This gap shrinks
when n̄ increases (the distance between the solid an dashed lines reduces when
n̄ increases). Figure 8B displays φ as a function of σ. It could be interpreted
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Figure 8: average revenue of the lending portfolio as a function of πs (graphs A, C and
D) and σ (graph B)

as the efficient frontier of portfolio theory.12 πs increases moving from left
to right along the lines. These representation also shows that lending to
entrepreneurs with too high πi increases the loan portfolio risk while lowering
its average return.

Recall that graphs 8A and 8B refer to a situation in which the financial
market is an option for entrepreneurs, in fact we have used the “augmented”
capital market line (equation 5) to obtain them. If entrepreneurs have serious
difficulties in accessing financial markets, the bank can charge an additional
interest rate spread to smooth out the effect of losses. Assuming the bank

12By using a bank objective function (Monti, 1972), this result could be used to reach
the bank optimal solution. We leave this further investigation for future research.
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can observe only πi and that asymmetric information prevents a precise iden-
tification of bi, we allow the bank to set the interest rate according to the
following rule:

ri = δ + r + βσi + γπi. (12)

Provided that asymmetric information does not prevent the bank to know
the distribution of the bis, we can set the last term in equation (12) (γπi)
as the average loss suffered by the bank when πi is observed. For the levels
of B1 and B2 we consider, the average loss is very close to the average of the
B(B1,B2)πi random variable. We thus set γ =B1/(B1+B2).

Figure 8C shows how the average revenue of the lending portfolio changes
when the bank charges an additional interest rate spread. This new pricing
strategy is most effective if n̄ is high while it slightly increases the average
revenue if n̄ is low.

As hinted above, if the bank solves asymmetric information, the prob-
ability of projects being successful cannot decrease very fast with πi. We
show in Appendix A that, if the functional form pi = (1 + πi)

−α is used, the
condition 0 < α ≤ 1 must hold to make both revenue and risk increase with
πi (conditions that characterize a system where asymmetric information is
eliminated by the bank). Figure 8D shows the adverse consequences of facing
α > 1 due to asymmetric information. The chart highlights that an increase
of α affects heavily the shape of the average return: the attainment of high
target levels of revenue is now precluded even at high levels of n̄. Lending to
projects with an higher πi loses its effectiveness as a device to increase the
average return of the lending portfolio even if the bank asks for an additional
interest rate spread (the dashed line labeled n̄20h2 has a maximum).

6. Discussion

In this section we discuss a number of issues arising from our investiga-
tions by pointing out some critical points, possible future extensions and the
relationship with existing empirical literature.

Policy interest rate and bank profits. The identification of determinants of
banks profit is a topic which is drawing attention (Lee and Chih, 2013; Lee
et al., 2014). In our model, lowering the policy interest rate implies a decrease
of the bank profit. This is straightforward because we have assumed a null
interest rate on deposits. One could argue that this profit reduction does not
happen because in the real world the bank sets the interest rates on loans
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and deposits by practicing respectively a mark-up and a mark-down on the
policy rate. In this way active and passive interest rates shift by the same
amount and no effect should be observed on the bank profit. However this
reasoning needs a careful assessment at low levels of the policy interest rate
because the interest rate on deposits cannot be negative. Figure 9 can be
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Figure 9: interest rates mark up and bank profit. rC = r+δ is the interest rate on riskless
borrowers; rD interest rate on deposits. The size of the braces is proportional to the bank
profit.

used to discuss this point. Note that in the figure, the size of the braces
is proportional to the bank profit. If the bank keeps the mark up on loans
constant like in figure 9A, there exists a positive interest rate below which
its profit decreases (r̂ in the figure). This is particularly important in this
framework because we deal explicitly with low interest rate levels. A way
to avoid profit reduction is to keep the interest rate on loans constant when
the policy interest rate is below r̂ like in figure 9B. If one believes in the
validity of the latter solution, s/he has also to admit that monetary policy
is ineffective through the interest rate channel because the reduction of the
policy interest rate does not translate in a reduction of the interest rates for
borrowers. On the contrary, if one believes the downward movement of the
policy interest rate positively affects the situation of firms by lowering the
rate at which they borrow, s/he should endorse the idea that a decrease of
the policy interest rate below a given level causes a reduction of the bank
profit. This paper adopts the latter argument.
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Extending the framework. A more general discussion could be based on the
observation that analyzing the bank liquidity is a “thorny” task, for example
because it is affected by a number of other variables than the interest rate
influx. In the model presented above we analyze a “neutral” benchmark case.
For example, we assumed that deposits and loans have the same dynamics, so
that they do not significantly affect bank liquidity. The extension to different
situation is straightforward.

Our setting is also neutral in that the profitability threshold s, the liq-
uidity threshold l and the minimum projects revenue ρ are kept constant
in time and equal to each other. The analysis can be easily performed for
different values of these parameters. A possible extension is to let s and l be
state dependent and to make them evolving over time by calibrating their
correlation with the business cycle. Concerning this point it would be inter-
esting to analyze the role of capital adequacy standards already mentioned
in the introduction. We showed that a decrease of the policy interest rate
(other things being equal) increases σs, so that the average riskiness of bank
activity increases. However, we have to take into account that capital ade-
quacy rules require an increasing relationship between banks capital and the
riskiness of their assets. More formally, we could let the γ parameter (which
is used in equation 2) depend on a measure of the loan portfolio risk, γ(σs)
with dγ/dσs > 0. As a consequence, being s = w + γ(σs)e, a decrease in
the policy interest rate causes an increase in σs, that in turn brings to an
increase in s (this effect can be found in a recent model by Hitoshi, 2010).

Financial innovation. A largely debated question concerns the role of finan-
cial innovations for the stability of the financial system. This aspect can be
analyzed in an extension of our model. Indeed financial innovation can be
thought of as a new opportunity for the bank to allocate funds in an addi-
tional asset. In our model, all the opportunities available to the bank are
described by the probability distribution pπi . There is a type of financial
innovations that have the potentialities to worsen the overall banking sys-
tem liquidity situation by making it possible for a bank to take additional
risk. They are those that widen the support of pπi , allowing higher levels of
πi that were unaccessible before.13 Collateralized Debt Obligations (CDOs),

13A financial innovation in our framework can be thought of as modifying the “efficient
frontier” of the banks opportunities. The type of innovations that are more dangerous
from our point of view are those which “stretch” the frontier to north-est.
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for example, could be viewed as a kind of these innovations; Haensel and
Krahnen (2007) provide evidence that CDOs “tends to raise the systematic
risk of the issuing bank”.

Relationship with empirical evidence. The investigation carried out in this
paper is strictly theoretical. However, our findings are supported by the
existing empirical evidence. Lang and Nakamura (1995) provide evidence
from the federal Reserve’s Survey on Terms of Bank Lending that a “flight
to quality” (an increase of the percentage of safe borrowers) is observed after
a tightening of the monetary policy. Studying the Japanese case, Watanabe
finds that “a large loss of bank capital caused by the regulator’s tougher
policy towards banks in F[iscal]Y[ear] 1997 not only induced the contrac-
tion of the bank lending supply but, more importantly, caused the banks’
reallocation of their lending supply to unhealthy industries with a higher
concentration of non-performing loans (evergreening)” (Watanabe, 2010, p.
135). By using data from Italian banks, Albertazzi and Marchetti (2010) find
“[...] evidence of a contraction of credit supply, associated to low bank cap-
italization and scarce liquidity, over the 6-month period following Lehman’
bankruptcy”. They also find “[...]that larger less-capitalized banks have re-
allocated their credit away from riskier firms. Quite strikingly, this ‘flight to
quality’ has not been observed for smaller less-capitalized banks”. The last
statement is compatible with evergreening practices in larger less-capitalized
banks in the period before the financial turmoil.

The cited empirical investigations could be interpreted as providing ev-
idence for the existence of a positive relationship between banks health (in
terms of profit an capitalization) and the quality of their loan portfolio. More
generally, this strengthen the recent evidence that, in order to correctly eval-
uate the effects of monetary policy through the lending channel, bank risk
conditions should be considered beside traditional indicators (Altunbas et al.,
2010).

7. Conclusions

In this paper we take up the claim for the need of a more detailed knowl-
edge of the bank behavior when the interest rate is low.

By relying on a computational approach, the paper focuses on the lend-
ing activity of commercial banks. The dynamics generated by the turnover
of heterogeneous loans in the bank portfolio are analyzed considering the
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effects of the policy interest rate movements. In our model, a decrease of the
policy interest rate implies a reduction of interest rate charged on each loan
which in turn shrinks the bank average rate of return. If the bank can solve
asymmetric information, the fall in the average return can be balanced out
by changing the composition of the lending portfolio financing more risky
entrepreneurs who ensure a higher return. However this comes at the cost of
partially loosing control on the composition of the lending portfolio as well
as sluggishness in approaching the new steady situation. When the bank
cannot solve asymmetric information, our model confirms a result already
obtained in the credit rationing literature: the average return from the lend-
ing activity has a maximum. In our model we can identify how the average
return and risk obtained from the lending activity change with bank vari-
ables such as the interest rate charged on each loan, the project life length
and the composition of the loan portfolio.

The proposed model give the possibility to identify the set of projects a
bank finances under various economic conditions. Furthermore, it allows to
evaluate the dynamic of some important variables implied by these choices.
This paper also focuses on the dynamics of the bank liquidity; its analysis
allows a precise understanding of the events following a change in the condi-
tions faced by the bank and reveals unexpected features such as the increase
of volatility clustering when the loan duration is shortened.

Beyond the cited microeconomic aspects, the model highlights mecha-
nisms that operates in the transmission of macroeconomic policies impulses
such as the movement of the reference interest rate decided by the central
bank. In this respect, our work could be used as a component of a more
wide computational model aiming at modeling the macroeconomy using a
bottom up approach. We strongly believe this approach allows for a detailed
knowledge of the state of the economic system and is thus very important for
assessing pros and cons of policy actions.

Appendix A. Positive relationship between average and standard
deviation

We recall that a Bernoulli random variable taking values {u, s} with prob-
ability {1 − pi, pi}, where u is the result in case the success is not realized
and s when it is, has a mean equal to

µi = spi + u(1− pi)
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and the variance is

σ2
i = (s− µi)2pi + (u− µi)2(1− pi)

that, after some algebra, reduces to

σ2
i = (s− u)2pi(1− pi)

If Πi is a Bernoulli random variable taking values {0, πi} with probability
{1− pi, pi} where pi = (1 + πi)

−α, the average is

µi = πi(1 + πi)
−α.

The derivative is

dµi
dπi

= (1 + πi)
−α − απi(1 + πi)

−α−1 = (1 + πi)
−α[1− απi(1 + πi)

−1]

that is positive for all non negative πi as long as α ≤ 1.
The variance is

σ2
i = π2

i (1 + πi)
−α[1− (1 + πi)

−α] = π2
i (1 + πi)

−α − π2
i (1 + πi)

−2α =

π2
i (1 + πi)

−2α[(1 + πi)
α − 1] = µ2

i [(1 + πi)
α − 1].

The derivative is

dσ2
i

dπi
= 2µi

dµi
dπi

[(1 + πi)
α − 1] + µ2

iα(1 + πi)
α−1

that is positive for α > 0.

Appendix B. Mean and variance of a single project in the multi-
period case

In the text we have
µ(Ii,n,t) = Ii,n,tpi,

σ2(Ii,n,t) = I2
i,n,tpi(1− pi).

substituting equation (6) they become

µ(Ii,n,t) =
n∑
k=1

(
n

k

)
rki pi
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σ2(Ii,n,t) =

[
n∑
k=1

(
n

k

)
rki

]2

pi(1− pi).

Form the previous appendix we know that σi is a function of πi and con-
sequently πi can be expressed as a function of σi which implies that the
probability pi = (1− πi)−1 is also a function of σi.

So we can write
µ(Ii,n,t) = µi,n,t(ri, σi)

σ2(Ii,n,t) = σ2
i,n,t(ri, σi).

Finally, ri is determined by using equation (5) so that, given δ and β, it
depends on the policy interest rate r and the standard deviation of the single
project σi. Consequently we can write

µ(Ii,n,t) = µi,n,t(r, σi)

σ2(Ii,n,t) = σ2
i,n,t(r, σi).
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